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Interim analysis is the practice of performing a statistical analysis when the data have only 9 

been partially collected, for example, to save resources or to handle the uncertainty of the 10 

true effect size. Most statistical designs featuring interim analysis have been developed 11 

either in a general statistical setting or for application in clinical trials. As a result, most of 12 

them make assumptions and have conditions that in a preclinical setting are usually not 13 

met. In this paper, we present necessary changes to the most common forms of interim 14 

analysis enhanced for animal experiments, specifically for the t-test and the one-way 15 

ANOVA. Finally, we present software that allows freeware use to serve the research 16 

community to facilitate the design of experiments featuring interim analyses.  17 

The app can be found at icds.be/gsdesigner. It is in the public domain and its code can be 18 

found on github.com/ICDS-vubUZ/gsd-designer. In this GitHub folder, one can also find a 19 

tutorial for the app. 20 

The use of interim analyses is common in clinical trials, due to its potential benefits. An 21 

appropriate statistical design featuring an interim analysis can reduce the sample size for an 22 

experiment by 20% (Neumann et al., 2017; Wassmer and Brannath, 2016), which can bring 23 

significant practical, financial, and ethical benefits. Such a design can also be used to help balance 24 
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concerns in power analysis caused by the uncertainty of the effect size. This is especially applicable 25 

in preclinical studies involving animals, where generally very little information is available in 26 

advance, making it hard to estimate an appropriate sample size. 27 

Given the potential benefits, it should be no surprise that several papers (Fitts, 2011, 2010; 28 

Ludbrook, 2003; Maïofiss-Dullin et al., 2007; Neumann et al., 2017; Steward and Balice-Gordon, 29 

2014; van Wilgenburg et al., 2003) have been written to investigate or encourage the use of 30 

interim analyses in preclinical studies. The papers by van Wilgenburg et al. (2003), and Steward 31 

and Balice-Gordon (2014) have a much wider scope and do not discuss any particular models 32 

which should be used. Others (Ludbrook, 2003; Maïofiss-Dullin et al., 2007; Neumann et al., 2017), 33 

despite being explicitly written for animal experiments, describe methods which are unsuitable 34 

for this context, or at the very least are severely suboptimal. This is either because they use bounds 35 

that are only suitable at large sample sizes or because they lose a considerable amount of statistical 36 

power in ways that could easily have been avoided by enhancing the design mathematically. To 37 

the best of our knowledge, only the bounds proposed by Fitts (2011, 2010) are truly suitable for 38 

the preclinical context for which they were intended. However, they are inflexible both for 39 

handling data loss and for error spending, thereby usually requiring a higher maximum total 40 

sample size. 41 

In this paper, we discuss the use of interim analyses in the context of the null hypothesis 42 

significance testing (NHST) framework. While the use of p-values to draw conclusions is flawed 43 

and often misinterpreted (Tong, 2019; Ziliak and McCloskey, 2008), it remains the dominant form 44 

of statistical analysis in scientific literature. In order to counter some of the problems created by 45 

the NHST, it is becoming more common to encourage or even require reporting of the magnitude 46 

effect and its uncertainty, rather than overly focusing on statistical significance (Betensky, 2019; 47 

Sullivan and Feinn, 2012). As such, the impact of using interim analyses on the estimate of the 48 

effect size and its confidence interval are also discussed in this paper. 49 



3 
 

Problem statement and objectives 50 
Problem statement 51 

Consider a study with a few experimental treatments and a control group. In a classical 52 

experimental design, we would wait until all measurements are made, all the data have been 53 

collected, and only then do we perform statistical analysis. However, it is also possible to perform 54 

an analysis when only part of the data was collected, obtain a significant result, and finish the 55 

study. If the result is not significant, but still sufficiently promising, we can continue collecting 56 

more data and re-evaluate later. This practice is referred to as performing an interim analysis and 57 

when performed correctly, this can have significant benefits. Obtaining a significant result early 58 

will save time, effort, and resources required to collect the remaining measurements, as well as 59 

minimize the number of animals to be used and prevent associated animal suffering. Performing 60 

interim analyses can be done solely with those aspects in mind, but it can also solve more 61 

problematic issues rendered by classical designs 62 

The gold standard for sample size calculation is through power analysis (Silverman et al., 2014; 63 

van Wilgenburg et al., 2003), where the resulting sample size will depend on the assumed effect 64 

size. However, the true effect size is uncertain in advance;  otherwise, there would be little value 65 

in performing the experiment. When we expect the effect size to be larger than the minimal 66 

scientifically relevant difference, it can be difficult to determine an appropriate sample size. We 67 

do not want to end up with non-significant results merely because we were too optimistic about 68 

our effect size, nor do we want to overspend and cause unnecessary suffering just because we 69 

were too cautious. Adding interim analyses balances those considerations. 70 

Researchers have also reported issues in power analysis sample size determination due to 71 

practical limitations in terms of personnel and equipment (Fitzpatrick et al., 2018). The required 72 

sample size may be larger than what can be processed at once, e.g. due to labor-intensive animal 73 

procedures and data collection processes, or limitations in housing capacity. Such constraints 74 
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create an extra burden on researchers and while a sequential design cannot completely remove 75 

this problem, it can certainly make it generally less burdensome. 76 

Another dilemma resolved through interim analysis occurs in case of larger than expected data 77 

loss. In this case, the researcher can either collect a second batch of data, to compensate for the 78 

data loss, or perform the data analysis with the limited data available, knowing that the design is 79 

underpowered. The latter option contains a significant risk that even if a meaningful effect is 80 

present, it will not be significant. On the other hand, the former option might significantly prolong 81 

the duration of the experiment. In such circumstances, performing an interim analysis can prevent 82 

this in case the results are significant, but without the need to discard the collected data if the 83 

interim result was not significant. Either way, the design will be sufficiently powered. Some extra 84 

precautions need to be taken when implementing an interim analysis for these reasons. These are 85 

discussed in appendix B. 86 

Regardless of the reason for performing an interim analysis, there are some consequences. When 87 

we set a significance level, it is meant to limit the probability of a false positive, the type I error. If 88 

we perform multiple analyses, we have multiple opportunities to obtain a significant result, so our 89 

total probability of a false positive increases. Similarly, if we decide to stop early because the data 90 

seems insufficiently promising, this decreases the total probability of obtaining a significant result. 91 

However, it also increases the probability of a false negative, the type II error. Both types of errors 92 

can be controlled by adapting each analysis to that p-value at which our result is significant and 93 

from which p-value our treatment is insufficiently promising to continue our experiment. 94 

If we want to increase the probability of getting a significant result early, then we can increase the 95 

allowed probability of a false positive at an earlier analysis. To control the type I error, the total 96 

probability of a false positive under the null hypothesis needs to stay the same. In order to 97 

compensate for the increase at the earlier analysis, we need to decrease the probability of getting 98 
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a significant result at a later analysis. However, at the later analysis, we have a larger total sample 99 

size, so more power. If the loss of power is too severe, we can compensate by slightly increasing 100 

the sample size at the last analysis. These levels of freedom are studied and adapted to enhance 101 

and optimize animal studies in this paper. 102 

Experimental set-up 103 

The statistical designs we discuss in this paper are Group Sequential Designs (GSD). In this type of 104 

design, interim analyses provide the opportunity to determine if the results are (in)sufficiently 105 

significant and to end the experiment early. 106 

In this article, we discuss GSDs for the t-test and the one-way ANOVA only. Just as in a fixed sample 107 

size experiment, i.e. a design without interim analysis, we assume the data to be identically and 108 

independently distributed. This means the experimental design is not changed once the 109 

experiment has started, the same procedures, dose, mouse type, etc. are used in the first set of 110 

collected data points as in all proceeding measurements.  111 

Similarly, the statistical design and the rules for the GSD should not be changed once the 112 

experiment has started. The most important reason is that once one has knowledge of the data, 113 

any change to the model almost certainly introduces a bias rendering conclusions unreliable. The 114 

second reason is practical, namely that the choice of sequential design will influence the sample 115 

size calculation. Therefore, determining the appropriate statistical design should be done 116 

simultaneously with the power analysis. 117 

Nowadays, GSDs are considered to be a special case of adaptive designs. Other types of adaptive 118 

designs may or may not have this same ability to stop early, but mainly they allow to change key 119 

features of the design at the time of the interim analysis, e.g. doses or number of experimental 120 

branches. These extra adaptive features are often unsuitable for hypothesis testing at small 121 

sample sizes, or they reduce the power of the test, requiring a larger sample size to compensate 122 
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(Jennison and Turnbull, 2005; Kelly et al., 2005; Tsiatis and Mehta, 2003; Wassmer and Brannath, 123 

2016). 124 

Such adaptive designs might certainly be of interest in explorative preclinical experiments or to 125 

merge experiments that are currently performed separately. In this paper, however, we focus on 126 

improving on, and dealing with issues in, hypothesis testing experiments as they are currently 127 

performed in preclinical settings. As such, the GSDs are the most powerful and most suitable 128 

designs for this confirmatory context. Additionally, GSDs are more similar to traditional statistical 129 

designs and hence easier to learn and use for most researchers. 130 

Existing methodology 131 

The main difference between various GSDs is generally the choice of critical values, i.e. the values 132 

that the test statistics need to exceed or not in order to be considered significant or to be 133 

insufficiently promising to continue the experiment. One of the older and better-known GSDs are 134 

the Pocock bounds (Pocock, 1977). These keep the critical values the same over all analyses, which 135 

has the advantage that they are easy to use. A significant downside is that this method is not very 136 

statistically powerful. They can also lead to the awkward situation where an effect is not found to 137 

be statistically significant despite the test statistic being much larger than it would have to be for 138 

a fixed sample design. The O’Brien-Fleming bounds (O’Brien and Fleming, 1979) reduce these 139 

problems by having stricter bounds at early analyses and less strict as more data is collected.  The 140 

alpha spending approach developed by Lan and Demets (1983) allows the user to specify exactly 141 

how strict or flexible they wish to be early on.  142 

Both the Pocock and the O’Brien-Fleming bounds are fixed bounds designs, which require the 143 

number of interim analyses and the amount of data collected at each analysis to be determined in 144 

advance. The alpha spending approach is more flexible and can easily be adapted in case the data 145 

collection does not go as planned, e.g. in case of data loss. In theory, the alpha spending approach 146 
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does not even require the number of analyses to be fixed in advance, although doing so is not 147 

advised in practice.  148 

Originally, all these methods were only developed to stop early for significance. Since then, natural 149 

extensions of each of these methods have been published to stop early for futility, i.e. for 150 

insufficiently promising data. While the above methods are in theory not restricted to any specific 151 

test, applying the theory is easier in some cases than in others. The bounds or software packages 152 

one will find in practice are often calculated for normally distributed test statistics. At the time of 153 

writing, this is the case in the original papers themselves in the SEQDESIGN procedure for SAS and 154 

the gsDesign R-package. The reason for this is that many test statistics asymptotically approach a 155 

normal distribution if the sample size is sufficiently large. This asymptotic approximation works 156 

well if the sample size is large, as is common in clinical trials, but becomes inaccurate at the smaller 157 

sample sizes generally used in preclinical studies. 158 

For preclinical studies, Fitts (2011, 2010) obtained Pocock-style bounds through simulation for 159 

several different tests commonly used in preclinical research. In the context of clinical trials with 160 

small sample sizes, Shao and Feng (2007) did the same for Pocock-style bounds of the t-test. The 161 

reason Fitts’ and Shao and Feng’s bounds differ, is that the former provides significance bounds 162 

for the p-values, whereas the latter provides them for the test statistics. For normally distributed 163 

test statistics both approaches have the same result, therefore in the original Pocock paper this 164 

distinction was not relevant and as such not discussed. 165 

As for the alpha spending approach, techniques for small sample sizes have only been discussed 166 

in the clinical context and only for the t-test. Rom and McTague (2020) have described a numerical 167 

technique to calculate the exact significance bounds for designs with only one interim analysis and 168 

no futility bounds. For designs with beta spending and/or with more analyses, Nikolakopoulos et 169 
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al. (2018) discuss an approximate analytical correction to improve the significance bounds of the 170 

normal asymptotic approximation. 171 

In this paper, we extended the formulas for the exact approach of Rom and McTague to calculate 172 

exact futility bounds as well. We improved the analytical approximation of Nikolakopoulos et al. 173 

Consequently, we also provide several recommendations on how to simulate and evaluate the 174 

critical bounds, the nominal error level, and the power quickly and with the desired level of 175 

accuracy. 176 

Objectives 177 

The main objective of this paper is to propose efficient group sequential designs for the preclinical 178 

setting. This includes providing methods to approximate the corresponding critical values such 179 

that the correct significance level and power level are achieved at the small sample sizes common 180 

in these types of experiments. Additional properties in the designs we discuss, are the flexibility 181 

to handle data loss efficiently and a minimization of the expected costs, sample size, and/or 182 

duration of the experiment. 183 

A secondary objective is to facilitate the design of such experiments by providing open-source 184 

software and by providing technical details useful for design purposes in a preclinical context. 185 

Toy example 186 

To illustrate the concepts in this paper, we apply them to a toy example. This toy example is an 187 

experiment on mice where the researchers wish to investigate the difference between a treatment 188 

group and a control group. This same control group has been used for other experiments in the 189 

past, so the mean and standard deviation we expect there are estimated with values of 1 and 0.1 190 

respectively. 191 

The treatment group, on the other hand, is completely new. From similar experiments, the 192 

researchers think it is likely that the treatment group can outperform the control group with a 193 
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mean that is 20% higher. However, if we are sufficiently confident that the improvement is less 194 

than 14%, this is a strong enough claim to publish and justify not pursuing follow-up experiments. 195 

Here, sufficiently confident is 1 – β = 80%, the desired power of the design. The significance level 196 

in this experiment is the usual α = 5%. If we are 95% confident that the improvement is larger 197 

than 0%, this is a strong enough claim to publish and justify follow-up experiments.  198 

The researchers will compare these two groups using a one-sided t-test, for which the effect size 199 

is called Cohen’s d (Cohen, 2013). By combining all the above information, one obtains a likely 200 

effect size of 2 and a minimally relevant effect size of 1.4. Under a normal fixed sample design, the 201 

minimum sample size to obtain sufficient power for the minimally relevant effect size is 8 mice 202 

per group or 16 mice in total. 203 

The process of collecting the data from these mice is very labor-intensive and as a result, only 6 204 

mice can be processed per day. This means that the total data collection process will take 3 days. 205 

In this toy example, the researchers choose to perform a statistical test at the end of each day. 206 

Revisiting alpha and beta spending 207 
Alpha spending 208 

The alpha spending approach is a type of group sequential design developed by Lan and Demets 209 

(1983). Unlike earlier designs, such as the Pocock (1977) and O’Brian-Fleming (1979) bounds, this 210 

approach allows considerably more flexibility in choosing when and how often to perform interim 211 

analyses. This is done by defining how large the type I error is allowed to be at any point in time 212 

during the experiment. A larger type I error allowed at an earlier analysis increases the probability 213 

of stopping early and thereby saving more time and resources. Since the increase in power at the 214 

earlier analysis is smaller than the loss of power at later analyses, the price paid is that the total 215 

power of the experimental design decreases. 216 
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Based on the allowed type I error probabilities, we can calculate critical values determining the 217 

threshold for significance. This can be done either for the test statistics, in which case they are 218 

called significance bounds, or for their corresponding p-values. 219 

These test statistics or p-values are calculated the same way as without interim analysis. Most, if 220 

not all, commonly available statistical software return these values for a normal t-test or one-way 221 

ANOVA. We conclude the result is significant if the test statistic is larger than the significance 222 

bound or if the obtained p-value is smaller than the critical p-value. Mathematically speaking, 223 

these two approaches are completely equivalent. From a researcher’s perspective, however, they 224 

might not be. 225 

One reason is that in traditional designs, the p-value is the probability that the null-hypothesis is 226 

rejected, in the case that the null-hypothesis is true.. After the first interim analysis, that is no 227 

longer the case. Since the data from our first interim analysis is also used in the second analysis, 228 

there is a correlation between their test statistics and hence the traditional probability 229 

distributions no longer apply. An example of the difference between the critical values for the p-230 

values and the actual probability of a type I error is illustrated for a specific design for the toy 231 

example in table 1. Because of this difference, our intuitive understanding of what these p-values 232 

mean, tends to be wrong. Hence it is generally preferable to work with significance bounds instead. 233 

The distribution of the type I error over the different analyses can be quantified with an alpha 234 

spending function α(t), which is defined as the total allowed probability that we have made a type 235 

I error before or at time t. When we have collected no data yet, this probability should be zero. At 236 

the other extreme, when we have collected all our data, this probability should be equal to the 237 

desired significance level α. Other than that, the only restriction on our spending function is that 238 

it should be non-decreasing, as we cannot retroactively reduce the probability of what we did 239 

earlier on. 240 
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In the above paragraph, t has been stated to represent time, but it does not have to. It is usually 241 

more meaningful to let the alpha spending function depend on the amount of data collected, where 242 

the time of the data collection does not matter. In this case, t would represent the sample size. Both 243 

of these interpretations are used in clinical studies and in both cases it is common to rescale t such 244 

that is not going from begin time to end time or from zero to maximum total sample size, but rather 245 

from 0 to 1. This way t can be interpreted as the information fraction, the ratio of the information 246 

gathered at interim relative to the total information gathered in case the experiment does not 247 

terminate at any of the interim analyses. It is this information fraction that allows us to handle 248 

data loss flexibly and efficiently. This is discussed more in Appendix B. In general, a meaningful 249 

choice for the information fraction is the ratio of the sample size at each analysis and the maximum 250 

total sample size. This choice was used in the example in table 1 with t equal to 6/16, 12/16, and 251 

16/16 at the respective analyses. 252 

Once it has been determined which information fraction to enter into the alpha spending function, 253 

we should mention the choice of the alpha spending function itself. There are infinite possibilities 254 

for choosing an alpha spending function, none of which are uniformly optimal. The best choice will 255 

depend on several factors, but this discussion is out of scope for this paper. Functions that are 256 

steeper early on and flatter towards the end have a higher probability of stopping early but are 257 

less powerful and require a higher maximum sample size to compensate. Conversely, functions 258 

that stay low in the beginning and only start rising near the end have higher power, but a lower 259 

probability of stopping early. The effect on the toy example of several different spending functions 260 

is illustrated in table 2. 261 

We can define an expected sample size by weighing the used sample size at each analysis by the 262 

probability to stop at that analysis. In an optimistic scenario where the effect size is larger than 263 

the minimal relevant effect size, we are more likely to obtain a significant result early on, and 264 

therefore have a lower expected sample size N. Both the power and the odds of stopping early 265 
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depend on the underlying effect size as well as the design. This is illustrated on the toy example in 266 

table 2. Due to the discrete nature of small sample sizes, it is hard to predict the exact effects of 267 

each choice. It is therefore probably wise to look at several options during the planning phase of 268 

the experiment. 269 

When reporting the results of an experiment, it is good practice to report the magnitude of the 270 

observed effect, as statistical significance (or non-significance) by itself is not particularly 271 

meaningful. For the first analysis, one can simply use the regular effect size estimate and 272 

confidence interval as one would without GSD. However, at later analyses, the classical formula 273 

leads to an overestimation of the effect size and its confidence interval.  274 

Assume in the toy example a design with O’Brien-Fleming spending function rendering a 275 

significant result at the second analysis, with a T statistic of 2.311. The naive, uncorrected estimate 276 

of Cohen’s d would be 1.33 with 90%-confidence interval [0.283, 2.62]. However, applying the 277 

correction, the Cohen’s d drops to 1.29 and [0.231, 2.37] respectively. This correction can be 278 

calculated in the app. For a more in-depth discussion of correction methods, we refer to Appendix 279 

A. 280 

Beta spending 281 

The concept of beta spending is entirely analogous to that of alpha spending, but rather than 282 

stopping early because we have reached significance, we can now stop early because the data is 283 

insufficiently significant. Instead of controlling the false positive rate under the null hypothesis, 284 

with beta spending, we are controlling the false-negative rate under the alternative hypothesis. 285 

This requires defining the alternative hypothesis, which in this case is the minimal scientifically 286 

relevant effect size or most pessimistic scenario for which we require sufficient power. 287 

Based on the allowed type II error probabilities, we can once again calculate critical values either 288 

for the test statistics, now referred to as futility bounds, or for their corresponding p-values under 289 
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the traditional probability. Due to the same reasoning as in the previous section, we prefer to work 290 

with the futility bounds rather than the p-values. 291 

While it is possible to perform beta spending by itself, it is most commonly applied in combination 292 

with alpha spending. In this case, the result is still significant if the test statistic exceeds the 293 

significance bound, but insufficiently promising if the test statistic is lower than the futility bound. 294 

One only continues collecting data if the test statistic lies somewhere in between the significance 295 

and futility bound. 296 

Since the test needs to achieve the required significance level, the last futility bound is determined 297 

by the allowed type I error, rather than the type II error. In case we apply alpha spending as well, 298 

this means we set the futility bound to be equal to the significance bound of the final analysis. 299 

As with the type I error in the previous section, it is possible to quantify the type II error spending 300 

through a beta spending function, 𝛽𝛽(𝑡𝑡). The significance and futility bounds of the toy example for 301 

several error spending functions can be found in table 3. Note that the significance bounds in the 302 

later analyses are lower for a design with beta spending than that of the corresponding design 303 

without beta spending in table 2. Similarly, the futility bounds are higher in a design with alpha 304 

spending than in its equivalent without alpha spending. Since alpha and beta spending partially 305 

negate each other’s downsides, they are often applied in a balanced way using identical spending 306 

functions. 307 

Unlike in the situation where we only use alpha spending or beta spending, it is no longer the case 308 

that the effect size is exclusively over- resp. underestimated. Nevertheless, even when applying 309 

both alpha and beta spending, a correction of the effect size estimate and its confidence interval is 310 

still needed.  311 
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Application 312 
The first part of any study is planning. For the largest part, this remains the same as one would do 313 

without interim analysis, save for two additional steps and one significantly affected step. The first 314 

new step is determining rules for when to perform an interim analysis. The second new step is to 315 

determine the allowed type I and II errors at these analyses, i.e. choosing the error spending 316 

functions. The step that is affected by adding interim analysis, is the power analysis for the sample 317 

size calculation. 318 

Number and timing of the interim analyses 319 

In the toy example, the implementation of the interim analyses is straightforward as the data is 320 

gathered in batches and therefore it is natural to update the analysis periodically. The only real 321 

choice one needs to make is if one chooses to perform an interim analysis at the end of every single 322 

batch or if some will be skipped. In other types of experiments, the researchers may not have the 323 

same restrictions and can choose the size of each batch, hence having complete freedom over the 324 

number and timing of the analyses. In yet other experiments, adding interim analyses might bring 325 

its own costs. Since group sequential designs work on the principle that the next batch is only 326 

started after the previous one has been processed, this might significantly prolong the duration of 327 

certain experiments in such a way that the added costs outweigh the benefits. The practical 328 

restrictions and possibilities will differ per experiment and need to be looked into on a case-by-329 

case basis, but some general recommendations can be made on a statistical basis. 330 

While there is no theoretical limit to the number of interim analyses, it was mentioned earlier that 331 

each interim analysis ‘uses’ some of our allowed probability of making type I and/or type II errors, 332 

we spend our alpha and beta. By implementing too many analyses, the probability of drawing a 333 

conclusion becomes so small that it undercuts the benefits of the group sequential design. 334 

Generally, having a total of 2 or 3 analyses works out well. Having more than 5 analyses usually 335 

becomes inefficient. The exact ideal amount and timing depend, among other things, on the 336 
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difference between the optimistic and pessimist effect sizes. A larger optimistic effect size will 337 

benefit from more and earlier testing. 338 

Power analysis and sample size calculation 339 

In regular, fixed sample designs the achieved power can be substantially higher than the required 340 

power since we can only have whole numbers as sample size. This is the case in our toy example, 341 

where a sample size of 8 mice per group leads to a power of 0.845 or 4.5% above our required 342 

power, but having only 7 mice per group will leave the model underpowered. 343 

Adding interim analyses with no other design changes will generally reduce the statistical power 344 

of the design. However, unlike in the situation where we have a large sample size, this does not 345 

need to imply that the power drops below the required level. This can be seen for the toy example 346 

in tables 2 and 3 where one of the choices of error spending functions still has sufficient power, 347 

even though it has the same total sample size as the fixed sample design. 348 

The natural way of fixing the other designs is by increasing the maximum total sample size until 349 

the desired power has been reached. Other ways to make a design more powerful are to decrease 350 

the number of analyses, change their timing or choose a different error spending function. 351 

In table 4 we have adapted the sample sizes of the examples from tables 2 and 3 such that the 352 

minimum required power for the toy example, 0.8, has been achieved. In this case, adding one or 353 

two mice per group sufficed, giving a maximum total sample of 18 or 20 mice per design. This is 354 

the sample size of the worst-case scenario where we cannot draw any conclusions in the interim 355 

analyses and continue to the final analysis. In contrast to the fixed sample size designs, we do not 356 

know what the final sample size will be until after the experiment. However, we can calculate the 357 

expected value of the sample size, i.e. the average obtained sample size if we were to repeat the 358 

experiment often enough. 359 
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This expected sample size will also depend on the effect size since the probability of obtaining a 360 

significant result is larger if the effect size is large. The expected sample sizes for the toy example 361 

are shown in case there is no effect (d = 0), for the pessimistic effect size (d = 1.4), and for the 362 

optimistic effect size (d = 2). 363 

While it might seem tempting to choose alternative solutions to increase the power that do not 364 

require raising the maximum total sample size, it is worth pointing out that a lower maximum 365 

sample size does not necessarily lead to a lower expected sample size. In the designs covered for 366 

our toy example, the designs to achieve the best average sample sizes are the designs featuring 367 

the Pocock-type and compromise error spending functions. This is despite having a larger 368 

maximum sample size than other competing designs.  369 

From the above discussion, it should be clear the potential gains of GSDs depend on the properties 370 

of the design, but also the true effect size. Even so, in our toy example, the expected sample size 371 

remains below 13 for all three designs featuring alpha and beta spending, regardless of the effect 372 

size. This shows that substantial gains can be made, even without researchers actively putting 373 

effort into optimizing the GSD.  374 

Calculating the critical values 375 

Either during the planning or at the interim analysis itself, the critical value to determine 376 

significance needs to be calculated. Unfortunately, the critical values can only be approximated. 377 

This can be done in a few different ways. 378 

The most common analytical approach in clinical trials is through asymptotic approximation. The 379 

more data get collected, the more the t-distribution resembles a normal distribution, so the critical 380 

values are based on Z-tests rather than t-tests. This is fine for the large sample sizes common in 381 

clinical trials, but problematic at the much smaller sample sizes common in preclinical contexts. 382 

Most existing software uses this approach without mentioning this restriction. So if researchers 383 
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choose to work with software other than our free web application, it is important they verify the 384 

applicability of their software package. 385 

To obtain boundaries suitable for the t-test in the preclinical context there are currently three 386 

options: use simulation as we do in our application, use iterative numerical integration as 387 

proposed by Rom and McTague (2020), or improve the analytical approximation through a 388 

formula as was done by Nikolakopoulos et al ( 2018). For the one-way ANOVA, to the best of our 389 

knowledge only simulation is available. For a technical discussion of these techniques, their 390 

advantages, disadvantages, and our extensions and improvements, we refer to Appendix A. 391 

Rules of thumb for preclinical studies 392 

Planning a group sequential design involves more choices than planning a traditional fixed sample 393 

design. Here are some guidelines that should facilitate those choices and help avoid the most 394 

common pitfalls.(Kelly et al., 2005) 395 

 Check if the chosen software is suitable for small sample sizes. If not, apply a t-trans-396 

formation as described in appendix A under the section “Analytical approximation”. 397 

 Keep the number of analyses limited. A total of two or three analyses usually works 398 

well, more than five is generally inefficient. 399 

 Compare several spending functions before making a decision. The best choice dif-400 

fers per experimental set-up. 401 

 Determine rules on how to handle data loss or other required flexibility of the design 402 

before the start of the experiment. 403 

 Do not make ad hoc changes to the design after the experiment has started. 404 

 Performing both alpha and beta usually has a better trade-off between expected sam-405 

ple size and power. If it is deemed highly unlikely that there is no relevant effect, then it 406 

is better to only apply alpha spending. 407 
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Conclusion 408 

Implementing group sequential designs can reduce the average cost, duration, and sample size in 409 

preclinical experiments. This type of design can aid in navigating the uncertainty of the true effect 410 

size as well as providing a flexible and efficient way of dealing with data loss. 411 

Due to the small sample sizes common in this setting, specialized techniques need to be applied. 412 

In this paper, we discussed and improved such techniques for the t-test and the one-way ANOVA. 413 

Furthermore, a free simulation tool is presented specifically designed for preclinical applications. 414 

This tool circumvents the typical limitations of other methods wherein large sample 415 

approximations are used.  416 
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