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Frequency Response Function Measurements via
Local Rational Modeling, Revisited

Rik Pintelon, Fellow, IEEE, Dries Peumans, Member, IEEE, Gerd Vandersteen, Senior Member, IEEE,
and John Lataire, Member, IEEE

Abstract—A finite measurement time is at the origin of
transient (sometimes called leakage) errors in nonparametric
frequency response function (FRF) estimation. If the FRF varies
significantly over the frequency resolution of the experiment
(= reciprocal of the measurement time), then these transients
(leakage) errors cause important bias and variance errors in the
FRF estimate. To decrease these errors, several local modeling
techniques have been proposed in the literature. This paper
presents an overview of the existing methods and gives an in-
depth bias and variance analysis of the FRF and disturbing noise
variance estimates. In addition, a new local modeling approach
is described that combines the small bias error of the local
rational approximation with the low noise sensitivity of the local
polynomial approximation. It is based on an automatic local
model order selection procedure applied to a specific subclass
of rational functions.

Index Terms—frequency response function, nonparametric
estimation, local rational modeling, local polynomial modeling,
transient, leakage.

I. INTRODUCTION

MEASURING frequency response functions (FRF) is a first step
towards the (physical) understanding of the dynamic behavior
of real-life systems. Practical applications can be found in
many disciplines of engineering and (bio-medical) sciences
such as, vibration analysis of mechanical and civil engineering
structures [1], [2], state-of-health monitoring of lithium-ion
batteries [3], hemodialysis measurements [4], characteriza-
tion of vegetable tissues [5], . . . An important difficulty in
retrieving accurate and precise FRF measurements are the
transient (sometimes also called leakage) errors, which can
become significant whenever the FRF varies ‘largely’ over
the frequency resolution (inverse of the experiment time).
Confining these errors within a user defined value imposes a
lower bound on the experiment time needed. This is especially
true for lightly damped systems, such as, vibrating mechanical
and civil engineering structures.

Spectral analysis via averaging of (overlapping) windowed
subrecords is a classical engineering tool for reducing the
impact of transient errors in FRF measurements [6], [7]. A
drawback of the averaging over P non-overlapping subrecords
is the loss in frequency resolution of a factor P . Via a local
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polynomial approximation of the FRF and the transient error, a
smaller bias and variance error of the FRF estimate is obtained,
and this at the full frequency resolution of the experiment
[8], [9]. A local rational approximation of the FRF and the
transient error combined with a linear least squares estimator
(called local Levy method in this paper) has been introduced
in [10], and a detailed comparison with the local polynomial
approach can be found in [11], [12]. Compared with the
local polynomial (LP) method, the local Levy (LL) estimator
reduces significantly the transient error in the neighborhood
of lightly damped resonances. Due to the disturbing noise in
the measurements, and in contrast to the LP technique, the LL
estimates of the FRF and the noise variance are biased [11],
[13].

To cope with the bias in the LL method originating from
the disturbing noise, a local output error (LOE) approach was
proposed in [11], [14]. Beside requiring an iterative minimiza-
tion procedure, LOE has the drawback of an increased noise
sensitivity compared with LL [11], [12]. However, in this paper
it is shown that LOE has similar or better noise sensitivity
than LL, when combined with an appropriate model selection
procedure. Although this property of LOE has already been
predicted in [11], the key to the success of LOE for FRF
estimation is that the model selection is performed on a
specific subset of rational functions.

Summarized, the main contributions of this paper are:

• Rationale explaining why and when a particular subclass
of local rational models performs better than a local
polynomial approximation.

• Overview and comparison of local parametric modeling
techniques for nonparametric FRF estimation.

• Noise variance estimation for all local methods – and the
analysis of the bias.

• Determination of the asymptotic distribution of the FRF
estimates.

• Automatic procedure for selecting the local model order
of a specific subclass of rational functions.

The paper is organized as follows. First, we define the
problem to be solved (Section II). Next, we describe the basic
idea of the local modeling methods (Section III). Further, an
in-depth study of the properties of the existing local parametric
modeling techniques is made (Section IV), resulting in a novel
local rational modeling approach (Section V). The theory
is illustrated on a challenging simulation (Section VI) and
measurement (Section VII) example. Finally, a summary of
the findings can be found in Section VIII.
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Fig. 1. Known input u(t), noisy output y(t) measurement of a linear time-
invariant continuous-time system with transfer function G(s). The system
operates in open loop and the output measurement noise ny(t) is indepen-
dently distributed of the input u(t).

II. PROBLEM STATEMENT

Consider the problem of estimating nonparametrically the
frequency response function (FRF) of a linear time-invariant
system operating in open loop. We assume that the input u(t)
is known and that the output y(t) = y0(t)+ny(t) is noisy, with
y0(t) the true value and ny(t) the disturbing noise [see Fig.
1]. Define furthermore the scaled discrete Fourier transform
(DFT) of N samples of a signal x(t) as,

X(k) = DFT{x(t)} =
1√
N

N−1∑
n=0

x(nTs)e
−j2π knN (1)

with Ts the sampling period. The relationship between U(k) =
DFT{u(t)} and Y0(k) = DFT{y0(t)} is then given by

Y0(k) = G(jωk)U(k) + TG(jωk) (2)

where G(jω) is the plant frequency response function and
TG(jω) the plant transient term. The latter is a smooth
function of jω that decreases to zero as an O(N−1/2) for
N →∞, and it accounts for the difference between the initial
and final conditions of the experiment and a residual alias error
[see [9], Section 6.3, pp. 184–188]. This is in the literature
also know as leakage introduced by a rectangular window.
From (1) and (2), it follows that the frequency resolution of
the measurement equals fs/N , which is the reciprocal of the
experiment duration T = NTs.

Assuming that the output measurement noise ny(t) can be
written as continuous-time filtered band-limited white Gaus-
sian noise e(t), the DFT (1) NY (k) of N samples of ny(t)
can be written as

NY (k) = H(jωk)E(k) + TH(jωk) (3)

where E(k) is the DFT of N samples of the unobserved e(t).
H(jω) is the noise frequency response function, TH(jω) is the
noise transient term that has the same properties as TG(jω)
in (2), and E(k) is white and circular complex normally
distributed [see [9], Section 6.7, pp. 195–200].

Combining (2) and (3) we find an expression for the DFT
Y (k) of the measured output y(t)

Y (k) = G(jωk)U(k) + T (jωk) + V (k) (4a)
T (jω) = TG(jω) + TH(jω) (4b)
V (k) = H(jωk)E(k) (4c)

The properties of TG(jω) and TH(jω) in (4b) differ in two
important ways:

1) The contribution of the plant transient term TG(jω)
to (4a) can be put to zero via coherent sampling of

the steady state response to a periodic excitation [see
[9], Section 2.4, pp. 44–49], while the noise transient
term TH(jω) will always remain different from zero for
colored noise.

2) Consider the spectral analysis estimate based on P
consecutive subrecords of N/P samples each [6]

Ĝ(jωk) =
1
P

∑P
p=1 Y

[p](k)U [p](k)
1
P

∑P
p=1 |U [p](k)|2

(5)

where U [p](k) and Y [p](k) are the DFTs of the p-th
subrecord of u(t) and y(t). Substituting (4) in (5), gives

Ĝ(jωk) = G(jωk) +
1
P

∑P
p=1 T

[p]
G (k)U [p](k)

1
P

∑P
p=1 |U [p](k)|2

+
1
P

∑P
p=1 T

[p]
H (k)U [p](k)

1
P

∑P
p=1 |U [p](k)|2

+
1
P

∑P
p=1 V

[p](k)U [p](k)
1
P

∑P
p=1 |U [p](k)|2

It shows that TG(jω) increases the variability of (5),
and introduces a bias error as T [p]

G (jωk) is correlated
with U [p](k) [see [9], Theorem 6.17 on p. 202], while
TH(jω) only increases the variability of (5) as T [p]

H (jωk)
is independent of U [p](k).

Especially for lightly damped systems, the variance and bias
errors introduced by the transient term T (jω) in (4) are an
issue in nonparametric FRF estimation [7].

III. BASIC IDEA LOCAL MODELING METHODS

In classical spectral analysis estimation (5), the transient
(leakage) problem is handled via time-domain windowing
of the subrecords. Windows often used are the half-sine
and Hanning windows that perform, respectively, a scaled
differencing and a scaled double differencing of the DFT
spectra [7], [9]. Hence, by combining two (half-sine) or three
(Hanning) neighboring frequencies, the impact of the transient
term in (5) is diminished. Based on this observation, the local
modeling techniques use multiple neighboring frequencies to
suppress furthermore the transient error [see Section III-A].

This section is organized as follows. First, we define the
type of local models considered [Section III-A] and, next,
we explain intuitively why and when local rational models
perform better than local polynomial approximations [Section
III-B].

A. Definition of Local Models

To decrease the bias and variance error of the FRF estimate
due to the transient term T (jω) in (4), the local modeling
methods [8], [10], [13], [14] approximate the FRF G(jω) and
the transient T (jω) in a small frequency band centered around
an excited frequency fk = kfs/N

[fk−n, fk−n+1, . . . , fk−1, fk, fk+1, . . . , fk+n−1, fk+n] (6)

by a low order parametric model [see Fig. 2]. This parametric
model is either a complex polynomial or a complex rational
function of j(ωk+r − ωk) = jωr,

G(jωk+r) =
Bc
k(jωr)

Ac
k(jωr)

+O
(( r
N

)gk)
G(gk)(jωk) (7a)



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. XX, XX 3

0 Hz f
k

f
s
/2

-20

0

20
U

(k
) 

(d
B

)

0 Hz f
k

f
s
/2

-20

0

20

Y
(k

) 
(d

B
)

0 Hz f
k

f
s
/2

-20

0

20

G
(j

) 
(d

B
)

0 Hz f
k

f
s
/2

-30

-20

-10

0

T
(j

) 
(d

B
)

Fig. 2. Basic idea of the local modeling approach. Using the known input
and noisy output DFTs U(k) and Y (k) [top row] in a small frequency band
[red ‘+’] centered around an excited frequency fk = kfs/N , the frequency
response function G(jω) [bottom left] and the transient term T (jω) [bottom
right] in (4) are locally approximated by a complex polynomial or a complex
rational function of j(ω−ωk) [gray lines]. The ‘+’ and ‘o’ in the bottom row
indicate the true values inside (red) and outside (black) the local frequency
band.

T (jωk+r) =
Ick(jωr)

Ac
k(jωr)

+O
(( r
N

)tk+0.5)
T (tk)(jωk) (7b)

with ω = 2πf , gk = na,k + nb,k + 1, tk = na,k + ni,k + 1,
r = −n,−n+1, . . . ,−1, 0, 1, . . . , n, X(n)(jω) the n-th order
derivative w.r.t. jω, and where Xc

k(jω), X = B,A, I , are
complex polynomials of order nx,k

Xc
k(jω) =

nx,k∑
n=0

xn,k(jω)n with xn,k ∈ C (8)

The remainders in (7) originate from a Taylor series expansion
at jωk [see, [15] for the local polynomial model, na,k = 0,
and [16] for the local rational model, na,k > 0], and the extra
0.5 in the power of the remainder of the transient term (7b)
is a consequence of the fact that T (jω) = O(N−1/2). Note
that the index k in the polynomial order nx,k has been added
to indicate that the local model order is frequency dependent.

Combining (7) with (8), we find the following relationship
between the complex polynomial coefficients and the FRF and
the transient term at frequency fk

G(jωk) =
b0,k
a0,k

and T (jωk) =
i0,k
a0,k

(9)

where a0,k = 1 for a local polynomial approximation. Re-
peating the local modeling procedure at all frequencies fk,
k = 1, 2, . . . , N/2−1 eventually gives the nonparametric FRF
estimate. Hence, in total, much more parameters are estimated
than the amount of data available. This apparent contradiction
is resolved at the end of Section V-B.

In (7), it is silently assumed that the poles of the noise
and plant transient terms TH(s) and TG(s) are the same.
However, this condition is fulfilled for ARX and ARMAX
model structures only [17]. To deal with this issue, the order
ni,k of the numerator of Ick(s)/Ac

k(s) in (7b) is chosen to be
larger than the order na,k of the denominator. With this choice,
Ick(s)/Ac

k(s) can be written as the sum of a rational function
of order na,k and a polynomial of order ni,k − na,k, where
the rational function models TG(s) and the polynomial TH(s).

There are two reasons why the poles of TG(s) are modeled
instead of those of TH(s):

1) TG(s) introduces a variance and a bias error in the FRF
estimate, while TH(s) only increases the variance.

2) Parametrization (7) simplifies the generation of starting
values for the local rational modeling [see Section IV-B].

Notice that the transient term T (jω) is most important at
the location of the poles of the system G(s) and noise H(s)
transfer functions [9]. Since these pole locations are unknown
beforehand, T (jω) is accounted for over the whole frequency
band.

B. Rational versus Polynomial Approximation

A real rational transfer function G(s) of order nb/na can
always be expanded in partial fractions. Assuming simple
poles pn ∈ C we get

G(s) =

na∑
n=1

Rn
s− pn

+ P (s) (10)

where Rn ∈ C is the residue of the pole pn, and with P (s)
a real polynomial of order nb − na, if nb > na, and zero
otherwise. Subtracting the term R1/(s − p1) from G(s) in
(10) results in a transfer function Gpr(s)

Gpr(s) = G(s)− R1

s− p1
(11)

whose amplitude and phase vary much less than those of G(s)
in the neighborhood of the resonance linked to the pole p1.
Since the remainder in the polynomial approximation (7a),
with na,k = 0, depends on (nb,k + 1)-th derivative of G(jωk)
[see [15]], it follows that, after removal of the pole p1, the
polynomial approximation error in the neighborhood of the
corresponding resonance will be much smaller than that of
the original FRF. This is illustrated in Fig. 3 for the case

G(s) =
1

s2

ω2
0

+ 2ζ s
ω0

+ 1
(12)

with ζ = 0.03, f0 = 1 kHz and p1 = ω0(−ζ + j
√

1− ζ2).
When comparing the gray line with the red circle in the top
row, it can be seen that the FRF cannot be approximated well
by a second order polynomial, resulting in a relative bias error
of -6 dB [50% error] at frequency fk. After removal of the
pole, the relative bias error of the second order polynomial
approximation is reduced to -90 dB [3 × 10−3% error] at
frequency fk, as shown in the bottom row.

The smoothing effect of the pole removal motivates the
following local rational modeling strategy. In a ‘close’ neigh-
borhood of a resonance we choose na,k > 1 and nb,k > na,k
(rational approximation), while elsewhere we select na,k = 0
(polynomial approximation) to avoid nearly coinciding poles
and zeroes in the estimated FRF. How to detect automatically
the ‘close’ neighborhood of a resonance described by a pole
s = p1 is explained in Section V-A. For example, with the
choice na,k = 1 and nb,k > na,k, the complex rational
function Bc

k(jωr)/A
c
k(jωr) in (7a) can be split as

Bc
k(jωr)

Ac
k(jωr)

=
R1,k

jωr − p1,k
+ Pk(jωr) (13)
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Fig. 3. Second order local polynomial modeling [gray lines] in a frequency
band around fk [red ‘+’] before [top row] and after [bottom row] removal
of the pole s = ω0(−ζ + j

√
1− ζ2) in the transfer function G(s) (12)

[fs = 10 kHz]. Left column: amplitude; and right column: phase. The ‘+’
and ‘o’ indicate the true values inside (red) and outside (black) the local
frequency band.

with R1,k ∈ C and Pk(jωr) a complex polynomial of order
nb,k − 1. If p1,k + jωk and R1,k in (13) are close to,
respectively, the pole p1 and its corresponding residue R1,
then

R1,k

jωr − p1,k
≈ R1

jωk+r − p1
(14)

and the polynomial part Pk(jωr) can locally approximate very
well the remaining dynamics G(jωk+r)−R1,k/(jωr − p1,k).
If na,k > 1, then the same reasoning is applied to the nearest
na,k poles.

Summarized, in the ‘close’ neighborhood of a resonance
caused by a pole p1, the remainders of the local polynomial
[(7a) with na,k = 0] and local rational [(7a) with na,k > 0]
models can be approximated as, respectively,

G(mk)(jωk)O
(Ä r
N

ämk)
(15a)Ä

G(jω)− R1,k

jω − (p1,k + jωk)

ä(mk)∣∣∣
ω=ωk

O
(Ä r
N

ämk)
(15b)

where mk = nb,k + 1. To construct (15b), we assumed
that R1,k and p1,k in (13) are fixed. In practice, R1,k and
p1,k are estimated simultaneously with the polynomial part in
(13). This will lower the approximation error because more
parameters are estimated. Therefore, the magnitude of (15b)
is an upper bound for the rational approximation error. The
remainder (15b) of the rational approximation is smaller than
the remainder (15a) of the polynomial approximation if∣∣∣∣∣ÄG(jω)− R1,k

jω − (p1,k + jωk)

ä(mk)∣∣∣
ω=ωk

∣∣∣∣∣ < ∣∣G(mk)(jωk)
∣∣ (16)

Note that (16) puts a condition on the smoothing effectiveness
of the subtraction G(jω)−R1,k/(jω−(p1,k+jωk)) [the error
of (14) should be sufficiently small] and the location of the
frequency fk [fk should be sufficiently close to the resonance].
If both conditions are not fulfilled, then a polynomial approx-
imation will perform better.

IV. LOCAL MODELING METHODS

First, we state the conditions on the input and the disturbing
noise under which the FRF can be estimated from (4) [Sec-
tion IV-A]. Next, we give an overview of the existing local

methods for estimating the FRF [Section IV-B]. Their pros
and cons are discussed and a detailed bias [Section IV-B] and
variance [Section IV-D] analysis is made. Finally, a local noise
variance estimator is proposed [Section IV-C] which is used
for estimating the variance of the FRF [Section IV-D].

A. Basic Assumptions

Due to the smoothness of the FRF G(jω) and the transient
T (jω), the terms G(jωk)U(k) and T (jωk) in (4) can be
distinguished only if the input DFT U(k) varies in a non-
smooth way over the frequency. This leads to the following
identifiability condition.

Assumption 1 (Roughness Input DFT). At the excited fre-
quencies fk = kfs/N , the spectral difference

|U(k + 1)− U(k)| = O(N0)

with U(k) the scaled DFT (1), does not vanish to zero as
N →∞.

Examples of ‘rough’ signals are random noise, periodic
noise, random phase multisines, and (pseudo)random binary
sequences [see [9], Chapter 5]. To avoid any bias due to a
correlation between the true input and the output noise it is
assumed that the system operates in open loop.

Assumption 2 (Known input, Noisy Output Observation of
a System Operating in Open Loop). The system operates in
open loop and the true input u(t) is independent of the noise
ny(t) at the output. ny(t) can be written as continuous-time
filtered band-limited white Gaussian noise e(t).

B. Overview of Local Methods for FRF Estimation

According to the model structure used, (7) with na,k = 0
or (7) with na,k > 0, the local methods can be classified in
the local polynomial and the local rational methods. The local
polynomial (LP) method minimizes

VLP(θk, Zk) =
n∑

r=−n
|eLP(jωr, θk, Zk)|2 (17a)

eLP(jωr, θk, Zk) = Y (k + r)−Bc
k(jωr, θk)U(k + r)

− Ick(jωr, θk) (17b)

θk = [b0,k, . . . , bnb,k,k, i0,k, . . . , ini,k,k]T (17c)

w.r.t. θk ∈ Cnb,k+ni,k+2, where Zk is a vector containing the
known input and noisy output DFT spectra in the band [k −
n, . . . , k + n] (see [8]). The local rational methods aim to
minimize the local output error (LOE) cost function

VLOE(θk, Zk) =
n∑

r=−n
|eLOE(jωr, θk, Zk)|2 (18a)

eLOE(jωr, θk, Zk) = Y (k + r)− Bc
k(jωr, θk)

Ac
k(jωr, θk)

U(k + r)

− Ick(jωr, θk)

Ac
k(jωr, θk)

(18b)

θk = [a0,k, . . . , ana,k,k,b0,k, . . . , bnb,k,k,

i0,k, . . . , ini,k,k]T (18c)
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w.r.t. θk ∈ Cna,k+nb,k+ni,k+3 and subject to a constraint, for
example, ana,k,k = 1 or ‖θk‖2 = 1. While (17) is a linear least
squares problem, (18) is a nonlinear least squares problem
requiring an iterative optimization method and starting values.

In [10] the nonlinear minimization problem (18a) is avoided
by calculating the Levy solution [18] of the rational approxi-
mation problem. The local Levy (LL) method minimizes

VLL(θk, Zk) =
n∑

r=−n
|eLL(jωr, θk, Zk)|2 (19a)

eLL(jωr, θk, Zk) = Ac
k(jωr, θk)Y (k + r)

−Bc
k(jωr, θk)U(k + r)− Ick(jωr, θk) (19b)

w.r.t. θk defined in (18c). Due to the weighting of the output
noise V (k + r) (4c) with Ac

k(jωr, θk) in the residual (19b),
the noise at the borders of the local frequency band are
overemphasized and the minimizer of (19a) is biased [see [9],
Section 9.8.2, pp. 301–303], even if the disturbing noise on
the equation error (19b) is white [17].

Dividing the residual in (19b) by an initial guess of the
denominator polynomial Ac

k(jωr, θ
[0]
k ), where θ[0]k is the mini-

mizer of (19a), reduces the amplification of the output noise at
the borders of the local frequency band. The obtained weighted
linear least squares estimate θ

[1]
k can be used to calculate a

(hopefully) improved estimate of the denominator polynomial
Ac
k(jωr, θ

[1]
k ), giving a (hopefully) better estimate θ[2]. Recur-

sive application of this procedure results in the Sanathanan
and Koerner solution [19] of the local rational approximation
problem [14]. The i-th step of the local Sanathanan and
Koerner (LSK) method minimizes

VLSK(θ
[i]
k , Zk) =

n∑
r=−n

∣∣∣eLL(jωr, θ
[i]
k , Zk)

Ac
k(jωr, θ

[i−1]
k )

∣∣∣2 (20)

w.r.t. θ[i]k and with eLL(jωr, θk, Zk) defined in (19b). Similar
to the local Levy method (19) the local Sanathanan and
Koerner method is biased due to the weighting of the output
noise with Ac

k(jωr, θ
[i]
k ) [see [9], Section 9.8.3, pp. 303–305].

Applying the Sanathanan and Koerner iteration to a partial
fraction parametrization of the rational functions results in the
local vector fitting method [13].

Solving the full nonlinear minimization problem (18) re-
duces the bias caused by the output noise in the local Levy
and local Sanathanan and Koerner estimates [14]. To avoid
almost coinciding estimated pole-zero pairs in local frequency
bands that are ‘far away’ from a resonance, a model selection
procedure should be added [see [11] and Section V-A].

An approach that combines the bias reduction property of
the LOE method (18) with the global minimization property
of the LL (19) and LSK (20) methods is the local generalized
total least squares (LGTLS) estimator [13], based on the GTLS
estimator of [20]. Approximating the noise variance σ2

V (k +
r) = var(V (k+ r)) ≈ σ2

V (k), for r = −n,−n+ 1, . . . , n, the
LGTLS estimator minimizes

VLGTLS(θk, Zk) =

∑n
r=−n |eLL(jωr, θk, Zk)|2∑n
r=−n σ

2
V (k)|Ac

k(jωr, θk)|2
(21)

TABLE I
VALUES OF αk , β AND γ IN THE BIAS EXPRESSION (23) OF

THE LOCAL METHODS.

local method αk β γ
LP (17) nb,k + 1 ∞ ∞

LOE (18) na,k + nb,k + 1 1 ∞
LL (19), LSK (20) na,k + nb,k + 1 0 ∞

LGTLS (21), LBTLS (22) na,k + nb,k + 1 1 1

w.r.t. θk and subject to the constraint ‖θk‖2 = 1. Similar to
the local Levy method (19), the noise at the borders of the
local frequency band is overemphasized in (21).

Following the same lines of the Sanathanan and Koerner
iteration (20), the noise amplification in (21) can be suppressed
by dividing the residual (19b) with an initial guess of the
denominator polynomial. The i-th step of the resulting local
bootstrapped total least squares (LBTLS) estimator[13], based
on the BTLS estimator of [20], minimizes

VLBTLS(θ
[i]
k , Zk) =

∑n
r=−n

|eLL(jωr,θ
[i]

k
,Zk)|2

σ2
V
(k)|Ac

k
(jωr,θ

[i−1]

k
)|2∑n

r=−n
|Ac
k
(jωr,θ

[i]

k
)|2

|Ac
k
(jωr,θ

[i−1]

k
)|2

(22)

w.r.t. θ[i]k and subject to the constraint
∥∥∥θ[i]k ∥∥∥

2
= 1. As

initial value θ
[0]
k we take the LGTLS solution (21). Similar

to the LOE method (18), near pole-zero cancellations in local
frequency bands ‘far away’ from a resonance are avoided via
a model selection procedure [see [13] and Section V-A].

Note that the global minimizers of the nonlinear least
squares cost functions (21) and (22), (i) are independent of
σ2
V (k), and (ii) are calculated via a generalized singular value

decomposition of a matrix pair [see [20]]. In the remainder of
this section we analyze the bias of the local methods and the
impact of the approximation σ2

V (k + r) ≈ σ2
V (k) in (21) and

(22).
All local methods are subject to the bias errors of the

polynomial or rational approximations (7). In addition, all
methods – except LP (17) – also have (for finite n and N )
a bias contribution due to the disturbing output noise. The
following theorem quantifies these two bias contributions as
a function of the number of time domain samples N and the
number of frequencies 2n+ 1 in the local frequency band.

Theorem 1 (Bias Local FRF Estimate). Under Assumptions
1 and 2, the bias of the local FRF estimates equals

E{Ĝ(jωk)} −G(jωk) = G(αk)(jωk)O
Ä( n
N

)αkä
+

σ2
V (k)

E{‖Y0(k)‖2}

î
O
Ä 1

(2n+ 1)β

ä
+

(σ2
V (k))

′

σ2
V (k)

O
Ä( n
N

)γäó
(23)

with ()′ the derivative w.r.t. k, N the number of time domain
samples used for calculating the DTF, and 2n+ 1 the number
of frequencies in the local frequency band. The values αk,
β and γ in (23) are given by Table I and correspond to,
respectively, the polynomial or rational approximation error,
the bias caused by the disturbing noise, and the bias due to the
approximation σ2

V (k+r) ≈ σ2
V (k) for r = −n,−n+1 . . . , n.

Proof. See Appendix A.
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From (23) it can be seen that for the LOE, LGTLS and
LBTLS estimators the approximation errors [first and third
term] vanish as N → ∞ for n fixed, while the bias error
due to the noise tends to zero as n → ∞. To reconcile these
conflicting demands, n should increase slower to infinity than
N , for example, n = O(Nδ) with 0 < δ < 1. Proceeding in
this way the width (2n+1)fs/N in Hz of the local frequency
band still decreases to zero while the number of frequencies
2n+ 1 in that band increases to infinity.

C. Local Estimation of the Noise Variance

Assuming that the disturbing noise is white in the local
frequency band [k − n, k + n], a noise variance estimate is
obtained from the difference between the measured output
Y (k) and the output Ŷ (k) predicted by the local models

σ̂2
V (k) =

1

2n+ 1− nθk

n∑
r=−n

∣∣Y (k + r)− Ŷ (k + r)
∣∣2 (24a)

Ŷ (k + r) = Ĝc
k(jωr)U(k + r) + T̂ c

k (jωr) (24b)

where Ĝc
k and T̂ c

k are the local estimates of the FRF and the
transient term

Ĝc
k(jωr) =

Bc
k(jωr, θ̂k)

Ac
k(jωr, θ̂k)

, T̂ c
k (jωr) =

Ick(jωr, θ̂k)

Ac
k(jωr, θ̂k)

(24c)

and with nθ,k the number of free local parameters (= total
number minus one for the rational models)

nθ,k = na,k + nb,k + ni,k + 2 (24d)

The difference between the number of local equations 2n+ 1
and the number of local parameters nθ,k (24d) is called the
degrees of freedom dofk

dofk = 2n+ 1− nθ,k (25)

It accounts for the decrease in degrees of freedom of the
output residual by the nθ,k estimated model parameters, and
quantifies the uncertainty of the noise variance estimate (24a)
via a χ2-distribution with 2dofk degrees of freedom.

For all local methods the noise variance estimate (24a) is
biased due to the white noise approximation and the bias error
of the estimated local models. In addition, all methods – except
LP (17) – also have (for finite n and N ) a bias contribution due
to the correlation between the disturbing noise V (k + r) (4c)
and the estimated local models Ĝc

k(jωr) and T̂ c
k (jωr). The

following theorem quantifies these three bias contributions as
a function of the number of time domain samples N and the
number of frequencies 2n+ 1 in the local frequency band.

Theorem 2 (Bias Local Noise Variance Estimate). Under
Assumptions 1 and 2 the bias of the local variance estimate
(24) equals

E{σ̂2
V (k)} − σ2

V (k) = (σ2
V (k))′O

( n
N

)
+ σ2

V (k)O
( 1

nα
)

+O(b2G) (26)

with ()′ the derivative w.r.t. k, N the number of time domain
samples used for calculating the DTF, 2n + 1 the number of

frequencies in the local frequency band, and bG the right hand
side of (23). α = ∞ for LP (17) and α = 1 for LOE (18),
LL (19), LSK (20), LGTLS (21), and LBTLS (22). The terms
in the right hand side of (26) correspond to, respectively, the
approximation σ2

V (k+r) ≈ σ2
V (k) in the local frequency band,

the correlation between the disturbing noise and the estimated
local models, and the bias error of the local models.

Proof. See Appendix B.

D. Variance Nonparametric FRF Estimate

First, we show that the local FRF estimate (9) is asymptoti-
cally (n→∞) (circular) complex normally distributed. Next,
we handle the practical calculation of the variance of the FRF
estimate and the construction of a 100×p% confidence bound.

Theorem 3 (Asymptotic Distribution Local FRF Estimate).
Under Assumptions 1 and 2 the FRF estimate (9) has – in the
absence of local modeling errors – the following (asymptotic)
distribution:

1) LP (17) method: circular complex normally distributed.
2) LOE (18) method: asymptotically (n → ∞) circular

complex normally distributed.
3) LL (19), LSK (20), LGTLS (21), and (22) are asymptot-

ically (n→∞) complex normally distributed.

Proof. See Appendix C.

A practical consequence of Theorem 3 is that the (asymp-
totic) distribution of the LP and LOE FRF estimates is solely
determined by the (asymptotic) variance

var(Ĝ(jωk)) = E{|Ĝ(jωk)− E{Ĝ(jωk)}|2} (27)

while that of the LL, LSK, LGTLS and LBTLS estimates also
requires the knowledge of

E{(Ĝ(jωk)− E{Ĝ(jωk)})2} (28)

Hence, the most compact uncertainty regions of the LP and
LOE FRF estimates are circles [see [9], Section 2.4.2.3 on pp.
48–49], while those of the LL, LSK, LGTLS and LBTLS FRF
estimates are – in general – ellipses.

In the remainder of this section we discuss the practical cal-
culation of (27) and the construction of a 100×p% confidence
bound. If the disturbing noise variance is constant in the local
frequency band [k − n, k + n] then, under Assumption 2, the
LOE estimator (18) is the maximum likelihood solution which
is asymptotically (n→∞) efficient [see [9], Theorem 9.21 on
pp. 298–299]. Hence, within the class of consistent estimators,
the covariance matrix of the LOE estimate θ̂k is asymptotically
(n → ∞) the smallest, and can be approximated by the
Cramér-Rao lower bound (CRLB)

CRLB(θk,0) = σ2
V

[
JHLOE(θk,0)JLOE(θk,0)]−1 (29)

with JLOE(θk) = ∂eLOE/∂θk, eLOE ∈ C(2n+1)×1 the vector
of the local output error residuals (18b), and θk,0 the vector
of the true local model parameters. In practice σ2

V and θk,0 in
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(29) are unknown and replaced by, respectively, σ̂2
V (k) (24a)

and θ̂k, resulting in the following estimate‘Cov(θ̂k) = σ̂2
V (k)

[
JHLOE(θ̂k)JLOE(θ̂k)]−1 (30)

Note that (30) is also valid for the LP method (17). Since the
BTLS estimate is mostly (very) close to the ML solution, the
covariance of the LBTLS estimate (22) can be approximated
well by (30), where θk is the minimizer of (22). For the other
local estimators (LL, LSK, and LGTLS) the approximation
error of (30) is bigger.

Finally, using (30), a variance estimate σ̂2
Ĝ

(jωk) of the FRF
(9) is obtained as, respectively,

σ̂2
Ĝ

(jωk) = ”var(b̂0,k) (31a)

σ̂2
Ĝ

(jωk) = |Ĝ(jωk)|2
(”var(â0,k)

|â0,k|2
+
”var(b̂0,k)

|b̂0,k|2

− 2Re
(’covar(â0,k, b̂0,k)

â0,k b̂0,k

))
(31b)

where the second equation is the result of a first order Taylor
series expansion of (9) [proof: use Eq. (79) of Appendix
C]. Note that the degrees of freedom of (31) determines the
uncertainty of the noise variance estimate (24a).

Taking into account the uncertainty (degrees of freedom
dofk) of the FRF variance estimate (31), a 100×p% confidence
bound for Ĝ(jωk) can be constructed as a circle with center
Ĝ(jωk) and radius σ̂Ĝ(jωk)

√
Fp(2, 2dofk),

Prob
(
|Ĝ(jωk)−G(jωk)| 6 σ̂Ĝ(jωk)

√
Fp(2, 2dofk)

)
= p (32)

where Fp(2, 2dofk) is the 100 × p% percentile of an
F (2, 2dofk)-distributed random variable with 2 and 2dofk
degrees of freedom [see [9], Eq. (2-40), p. 51].

V. AUTOMATIC PROCEDURE FOR SELECTING THE LOCAL
MODAL ORDER OF A SPECIFIC SUBCLASS OF RATIONAL

FUNCTIONS

Based on the insights provided by Sections III and IV, an
automatic local model order selection procedure is proposed
in Section V-A. Application of this procedure on a specific
subclass of rational functions, defines a new local rational
modeling approach [Section V-B].

While in the previous sections it is explicitly assumed
that the input is known, and that the system is linear and
operates in open loop, an extension of the novel local rational
modeling method to noisy input, noisy output measurements
of a certain class of nonlinear systems operating in feedback
is presented in Section V-C.

A. Model Order Selection

From Figs. 2 and 3 it can be deduced that the complexity of
the local polynomial and local rational models (7) depends on
the local frequency band. Therefore, an appropriate procedure
for selecting the polynomial orders in these models is needed
to avoid undermodeling (the bias error is larger than the noise
error) and overmodeling (overfitting) such as, for example, an
estimated pole-zero pair that is almost coinciding because it

fits a noise peak instead of the plant dynamics. This is valid
for each of the local modeling techniques discussed in Section
IV-B. Since the rational model (7) with na,k = 0 simplifies to
the polynomial model, we will concentrate the discussion to
the selection of the polynomial orders na,k, nb,k and ni,k in
(7).

A difficulty in selecting the appropriate model order (values
of na,k, nb,k and ni,k), is that the amount of local data 2n+1
is marginally larger than the number of free local model
parameters nθ,k (24d). Indeed, as a rule of thumb, the amount
of data should be at least ten times the number of model
parameters for the large sample results ((2n + 1)/nθ,k � 1)
to be useful for finite sample sizes [21]. To cope with small
sample sizes (2n+ 1 ∼ nθ,k), a modified Akaike information
criterion (AIC) has been proposed in [21]. Here, following the
same lines of [22], we use the equivalently modified minimum
description length (MDL) criterion because it rejects better
complex models than AIC. Since the ultimate goal of all
local modeling techniques is to minimize the output error cost
function (18) without overfitting, the modified MDL criterion
to be minimized over na,k, nb,k and ni,k takes the form

VLOE(θ̂k, Zk)

dofk
e
log(4n+2)

nθ,k
dofk−2 (33)

where nθ,k and dofk are defined in (24d) and (25) respectively,
and with θ̂k the minimizer of LP (17), LOE (18), LL (19),
LSK (20), LGTLS (21) or LBTLS (22) cost function. The
modified MDL criterion (33) predicts what would happen if
the estimated local model is evaluated on a validation data set
[23]. It avoids splitting the data record in an identification and
a validation data set of equal length, which would result in a
loss of frequency resolution of a factor two.

Notice that the minimization of (33) in each local frequency
band [k − n, k + n] requires the estimation of multiple local
models over a three dimensional space of integer numbers
na,k, nb,k, ni,k ∈ N. Some practical guidelines for limiting
the search space and, hence, the computation time, are given
in Section V-B.

B. Local Rational Modeling Procedure

First, note that the choice nb,k > na,k is beneficial for
modeling the residual plant dynamics after a pole removal [see
Section III-B for a numerical example]. Next, practice showed
that the local polynomial approximations of odd degree 2R+1
do not perform better than the even degree 2R ones [see
Section III.B of [24] for a rationale]. Therefore, the difference
between the numerator nb,k and denominator na,k orders of
the plant transfer function (7a) will be limited to even numbers.

In order to model the noise transient in (4), the numerator
order ni,k of the transient term (7b) is chosen to be larger than
the denominator order na,k of the plant transfer function [see
Section III-A for a motivation]. Finally, the local (rational)
models should be kept as simple as possible, and poles should
only be introduced when needed.
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actuator

feedback

Fig. 4. Noisy input u(t), noisy output y(t) measurement of a system
G(s) subject to process noise w(t) and operating in feedback. The input-
output measurement noise nu(t), ny(t) and the process noise w(t) are
independently distributed of the reference signal r(t).

Based on these observations we impose the following con-
straints on na,k, nb,k and ni,k during the minimization of (33)

na,k = 0, 1, . . . , na,max 6 3 (34a)
nb,k = na,k + 2R with R = 1, 2, . . . , Rmax 6 4 (34b)
ni,k = nb,k (34c)

Hence, in each local frequency band [k−n, k+n], at most 16
different local models are estimated, and the one minimizing
(33) is selected.

Note that the model selection can be performed at the level
of the initial [LL (19) and LGTLS (21) methods] or the final
[LSK (20), LBTLS (22) and LOE (18) methods] estimates.
While the second option is, from a statistical point of view,
better than the first option, it takes (much) more computation
time. Practice shows that the model selection based on the
starting values performs well and, therefore, this solution is
preferred.

Finally, the width 2n+ 1 of the local frequency band [k −
n, k + n] is chosen to be the same for all frequencies k. It is
determined by the minimal degrees of freedom dofmin set by
the user. From (25), we derive

n = d0.5
(
dofmin + (nθ,k)max − 1

)
e (35)

with dxe the smallest integer larger than or equal to x, and
where (nθ,k)max is the number of model parameters of the
most complex model in (34) and equals 3na,max + 4Rmax +
2 [(24d) with na,k = na,max and nb,k = ni,k = na,max +
2Rmax]. Due to the overlap of the local frequency bands, the
local FRF and noise variance estimates are each correlated
over the frequency. With the choice (35), the correlation length
over the frequency k of these nonparametric estimates equals
±2n at all frequencies. It explains the apparent contradiction
that the total number of estimated parameters

∑N/2−1
k=1 nθ,k,

with nθ,k defined in (24d), is much larger than the total amount
of data N/2− 1.

C. Extensions

Provided that a known reference signal r(t) is available,
noisy input u(t), noisy output y(t) measurements of a system
G(s) subject to process noise w(t) and operating in feedback
[see Fig. 4] can be handled using the procedure of Section

V-B. Such a reference signal is typically the signal stored in
an arbitrary waveform generator. In the first step, the FRFs
from the known reference r(t) to the noisy input u(t) and the
noisy output y(t) are estimated. These are open loop problems
satisfying the assumptions of Section IV-A. In the second step,
the FRF from input to output is obtained as the ratio of the
FRF from reference to output to the FRF from reference to
input.

If the system behaves nonlinearly, then the proposed pro-
cedure estimates the best linear approximation [see [25] for
the definition of the best linear approximation and the class
of nonlinear systems considered]. Its variance depends on the
input-output measurement noise, the process noise, and the
nonlinear distortions due to the nonlinear input-output and
nonlinear input-process noise interactions [see [25] for the
details].

VI. SIMULATION EXAMPLE

A simulation example was chosen to illustrate the above
theoretical results. Therefore, note that the bias of the LSK and
LBTLS methods is larger than that of the LOE estimator [see
Theorems 1 and 2]. Next, LL requires (much) less calculation
time than LGTLS, which is important for the model order
selection procedure [see Sections V-A and V-B]. Finally, we
want to compare the performance of the local polynomial
and the mixed local polynomial-local rational modeling ap-
proaches. Therefore, the LP, LL and LOE estimates are cal-
culated for a lightly damped sixteenth order continuous-time
system. Note that the LL estimates are used for initializing the
minimization of the LOE cost function (18).

Each pole of the system has a damping ratio ζ = 1.25 ×
10−3, and the eight resonance peaks have frequencies f resm ,
m = 1, 2, . . . , 8, and corresponding 3 dB bandwidth ∆3dB

m ≈
2ζf resm [see Table II]. The simulated transfer function G(s)

TABLE II
RESONANCE FREQUENCIES f resm

AND CORRESPONDING 3 DB
BANDWIDTH ∆3dB

m .

m f resm (Hz) ∆3dB
m (Hz)

1 104.4 0.26
2 203.9 0.51
3 303.3 0.76
4 402.8 1.0
5 502.2 1.3
6 601.7 1.5
7 701.1 1.8
8 800.6 2.0

has the form

G(s) =
8∑

m=−8,m 6=0

−10s2mRm
s− sm

(36)

[see Fig. 5], with sm = 2πf resm (−ζ + j
√

1− ζ2), s−m = sm,
R−m = Rm, and where Rm is a uniformly [−1, 1] distributed
random variable [the Matlab random generator is started from
its default value, rng(‘default’), which is the Mersenne Twister
with seed 0].

The noisy transient transient response y(t) of the
continuous-time system G(s) (36) to a band-limited (zero
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Fig. 5. True amplitude [left] and phase [right] at the frequency resolution
fs/N ≈ 1.95 Hz of the simulation – High system order, white disturbing
noise example.

power spectral density for |f | > 900 Hz), continuous-time
white Gaussian noise excitation u(t), with zero mean value
and standard deviation 0.0210, is obtained as follows. First,
one period of 2048 samples of the steady state response of
G(s) to periodic white Gaussian noise with a bandwidth of
900 Hz is calculated at the rate fs = 2 kHz. Next, zero mean,
discrete-time filtered white Gaussian noise ny(t) is added
at the sampling instances. The noise transfer function is a
second order Chebyshev filter with a passband ripple of 10
dB and a cutoff frequency of 0.8fs/2. The discrete-time white
noise standard deviation σ is chosen such that the output
signal-to-noise ratio (SNR) is either 30 dB (large noise level:
σ = 2

√
2103) or 50 dB (low noise level: σ = 2

√
2102).

Finally, starting from the first N = 1024 samples of the known
input u(t) and the noisy output y(t), the local polynomial
(LP), the local Levy (LL) and local output error (LOE)
estimates of the FRF and its variance are calculated for the
F = 460 excited frequencies in the band [2 Hz, 900 Hz] with
the following parameters in equations (34) and (35)

LP : na,max = 0, Rmax = 3 and dofmin = 10 (37a)
LL,LOE : na,max = 3, Rmax = 2 and dofmin = 10 (37b)

The corresponding local bandwidths are

LP : 2n+ 1 = 25 ⇒ ∆f = 48.8 Hz (38a)
LL,LOE : 2n+ 1 = 29 ⇒ ∆f = 56.6 Hz (38b)

which is obtained by combining (24d), (34), (35) and (37). The
top row of Fig. 6 shows the orders of the local rational models
selected by the procedure of Section V-A for one random
realization of the input and the disturbing noise. One could
be surprised that the most complex models (two poles) are
not located at the resonances but in between. It just indicates
that in between resonances, more than one peak significantly
contributes to the FRF. Note also that the LL method selects a
polynomial model in local frequency bands where the variation
of the FRF is limited. As such, the LL model selection
procedure combines the low bias of the rational approximation
with the low noise sensitivity of the polynomial model. The
whole procedure is repeated for 1000 independent random
realizations of the excitation u(t) and the disturbing noise
ny(t), and this for an output SNR of 30 dB and 50 dB.

Fig. 6 compares the sample mean of the 1000 LP and LOE
estimates to the true value for an output SNR of 30 dB.
It can be seen that the LP method completely fails in the
neighborhood of the resonance peaks. This poor performance
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Fig. 6. Local polynomial [LP: left column] and local output error [LOE: right
column] estimates of the sixteenth order continuous-time system (36) for an
output SNR of 30 dB. Top row: model complexity selected by LP [left] and
local Levy [LL: right] methods for one realization of the 1000 Monte-Carlo
runs. Bottom row: sample mean local FRF estimates [black] over 1000 Monte-
Carlo runs. Blue: sample variance of the sample mean. Green: magnitude of
the complex bias error of the sample mean.
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Fig. 7. Comparison of the sample variances [blue] and biases [green] of the
mean FRF estimates and of the mean output variance estimates [red]. Dark
color: local Levy estimate. Light color: local output error estimate. Black:
true value. Top row and bottom left: SNR of 30 dB. Bottom right: SNR of
50 dB.

is due to the fact that no or just one DFT frequency lies within
the 3 dB bandwidths of the resonances [compare the frequency
resolution fs/N ≈ 1.95 Hz with the 3 dB bandwidths ∆3dB

i

in Table II], while at least seven frequencies are needed [24].
Despite the very small frequency resolution, the LOE estimates
perform quite well. Although in between the resonances the
LOE bias error of the sample mean [green line] is almost
everywhere larger than the variance error [blue line], for
one realization, the variance is the dominant error source
[10 log10(1000) = 30 dB larger than the blue line].

A detailed comparison of the local Levy (LL) and local
output error (LOE) estimates is shown in Fig. 7 for an SNR
of 30 dB [top row and bottom left] and 50 dB [bottom right].
At the resonance frequencies, the sample variance [top left
plot] and bias [top right plot] of the mean LOE estimate is
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steel beam (top view)

steel beam (front view)
nylon thread

excitation point

Fig. 8. Experimental setup for measuring the flexural vibrations of a steel
beam. The input of the mini-shaker [B&K 4810] is controlled by the output
r(t) of a VXI arbitrary waveform generator [HPE 1445A, Zout = 50 Ω]
via an amplifier and a series resistance R = 20 Ω/5 W. The force f(t) and
acceleration a(t) signals, measured with an impedance head [B&K 8001], are
amplified [B&K 2635] and buffered [Zin > 5MΩ, Zout = 50 Ω], before
being applied to the VXI data acquisition channels [HP 1430A, Zin = 50 Ω].

(significantly) smaller than that of the LL method, while it is
the other way around at a few other frequencies. Hence, the
LOE estimate of the FRF is not uniformly better than that of
the LL method. The bottom row of Fig. 7 shows the LOE
and LL output noise variance estimates σ̂2

V (k) for an output
SNR of 30 dB [left] and 50 dB [right]. From the left plot, a
(significant) bias error can be observed in the neighborhood
of the resonances for both estimates. However, the bias of the
LOE estimate is everywhere (much) smaller than that of the
LL method. Comparing the bottom plots of Figure 7, it can
be seen that the relative bias error (σ̂2

V (k)−σ2
V (k))/σ2

V (k) of
the LOE estimate decreases with increasing SNR, which is not
the case for the LL method. It indicates that the second term
in (23) dominates the bias error (26) for the LOE estimate,
which is not the case for the LL method.

Note that the non-zero bias errors of the LOE estimates in
Figures 6 and 7 are due to the non-zero ratio n/N and the
finite number of frequencies 2n + 1 in the local frequency
bands, while those of the LL method remain non-zero, even if
n→∞ and n/N → 0 [see Theorems 1 and 2 on, respectively,
pages 5 and 6].

VII. MEASUREMENT EXAMPLE

Fig. 8 shows the experimental setup for measuring the
flexural vibrations of a steel beam. The steel beam of density
7800 kg/m3 and size 61 cm×2.17 cm ×4.93 mm, is hung by
two nylon threads to the ceiling. Proceeding in this way the
impact of external effects on the setup are minimized [free-free
boundary conditions]. A transverse force is applied at 10 cm
from the end of the beam by means of a mini-shaker [B&K
4810]. The output signal of an arbitrary waveform generator
is first amplified before connecting it resistively to the input
of the mini-shaker. This series resistor is inserted to avoid
the adverse effect of the inductive loading of the amplifier
by the mini-shaker. Finally, the force (input) and acceleration
(output) signals, measured with an impedance head [B&K
8001], are amplified and buffered before they are sampled
at the rate fs = 10 MHz/29 ≈ 19.531 kHz by the alias
protected data acquisition channels. Synchronized sampling of
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Fig. 9. Local polynomial [LP: left column] and local output error [LOE:
right column] modeling of the full steal beam data [fk = kfs/Nfull with
fs = 19.531 kHz and Nfull = 50 × 1024]. Top row: model complexity
selected by the LP [left] and the local Levy [LL: right] methods. Bottom
row: estimate of the FRF [black] and its variance [red], and magnitude of the
complex difference |Ĝfull

LP (jωk) − Ĝfull
LOE(jωk)| between the LP and LOE

estimates [green].

the signals is guaranteed by an internal 10 MHz master clock
that synchronizes the generator and acquisition boards.

A random binary sequence r(t) of length Nfull = 50×1024
is applied to the mini-shaker resulting in input (force) and
output (acceleration) signals of, respectively, u = 242 mV rms
and y = 256 mV rms. Starting from this full data set, the
local polynomial (LP) and local output error (LOE) estimates
of the FRF and its variance are calculated with the following
parameters in (34) and (35)

LP : na,max = 0, Rmax = 3 and dofmin = 10 (39a)
LOE : na,max = 2, Rmax = 2 and dofmin = 10 (39b)

Since the modeling starts from the known reference signal
r(t) and the noisy input u(t), noisy output y(t) observations,
the procedure of Section V-C is followed. Therefore, the local
bandwidths corresponding to (39) are

LP : 2n+ 1 = 25 ⇒ ∆f = 9.5 Hz (40a)
LOE : 2n+ 1 = 29 ⇒ ∆f = 11.1 Hz (40b)

This is obtained by combining (35) and (39) with nθ,k =
na,k+2(nb,k+ni,k+2) and n = d0.5

(
dofmin+(nθ,k)max/2−

1
)
e.
The local Levy (LL) estimates are used for initializing

the local output error (LOE) method and for selecting the
local rational model order. Fig. 9 shows the LP and LOE
estimates and the selected local polynomial and local rational
model orders. Eight resonances at f resi , i = 1, 2, . . . , 8, can be
distinguished:

f res1 = 17.3 Hz, f res2 = 760 Hz, f res3 = 936 Hz, (41a)
f res4 = 2.10 kHz, f res5 = 2.41 kHz, f res6 = 4.15 kHz, (41b)
f res7 = 4.36 kHz, f res8 = 5.76 kHz (41c)
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Fig. 10. Local polynomial [LP: left column] and local output error [LOE:
right column] modeling of the short steal beam data [fk = kfs/Nshort with
fs = 19.531 kHz and Nshort = 2 × 1024]. Top row: model complexity
selected by the LP [left] and the local Levy [LL: right] methods. Bottom
row: LP Ĝshort

LP (jωk) and LOE Ĝshort
LOE (jωk) estimates [black] and their

variance [red], and the magnitude of the complex difference [green] between
the full and short data estimates |Ĝshort

LP (jωk) − Ĝfull
LOE(jωk)| [left] and

|Ĝshort
LOE (jωk)− Ĝfull

LOE(jωk)| [right].

From the bottom right plot of Fig. 9 it can be seen that the
LP estimates perform equally well as the LOE estimates [the
green line is below the red line], except in the neighborhood
of the anti-resonances and the resonances f res1 , f res2 and f res3 .
Although mostly a polynomial of order two is selected by
the LP and LL methods [see the top row], the LP and LOE
estimates are not exactly the same. This is due to the fact
that the local bandwidths (40) are different. Similar to the
simulation example, the most complex models appear in the
neighborhood of, but not exactly at, the resonances, and LL
selects polynomial models in local frequency bands with a
restricted variation of the FRF. The high variability of the
FRF estimates at the resonance frequencies originates from
the poor input signal-to-noise ratio, since at those frequencies
almost no energy can be injected into the system.

To verify the performance of the local modeling techniques
on short data records, the last Nshort = 2 × 1024 samples
of the response to the random binary excitation are used
for estimating the FRF and its variance, and the results are
compared to those on the full data record [Nfull = 50× 1024
samples]. Starting from the short data set, the local polynomial
(LP) and local output error (LOE) estimates of the FRF and
its variance are calculated with the following parameters in
(34) and (35)

LP : na,max = 0, Rmax = 3 and dofmin = 6 (42a)
LOE : na,max = 3, Rmax = 3 and dofmin = 6 (42b)

and the corresponding local bandwidths are

LP : 2n+ 1 = 21 ⇒ ∆f = 200 Hz (43a)
LOE : 2n+ 1 = 29 ⇒ ∆f = 277 Hz (43b)

Fig. 10 shows the LP and LOE estimates and the selected
local polynomial and local rational model orders. From the
bottom row it can be seen that the LP estimates fail completely
in the neighborhood of almost all resonances, all except the
fifth and seventh, and all anti-resonances. The LOE correctly
estimates six out of the eight resonances (41) and all anti-
resonances. However, since the bias errors of the LOE esti-
mates at the first and last resonances are (almost) as large as
the estimates themselves, we conclude that the measurement
time of the short data record is too small for getting reliable
results at these frequencies.

Note that the estimated variances (red lines) predict quite
well the difference between the short and full data FRF
estimates (green lines). Hence, the user gets automatically a
warning in which frequency band(s) the results are unreliable.
However, since the fraction outside the 95% confidence bound
(32) of the LP and LOE FRF estimates equals, respectively,
22% and 16% instead of 5%, the error bounds generated for
the short data set are somewhat too small in this measurement
example.

From the top right plots of Figs. 9 and 10, it can be
concluded that the LOE estimates of the short data record
require much more complex local rational models than those
of the full data record. This is due to the much larger local
frequency band of the short data record (43b) compared with
that of the full record (40b).

Finally, it has been observed that the local Levy estimates
(not shown here) of the full and short data records are
quite similar to the LOE estimates with the difference of an
overestimated noise variance when na,k > 0.

VIII. CONCLUSION

As already mentioned in [11] for the local output error
(LOE) method and in [13] for the local bootstrapped total
least squares, an appropriate model order selection procedure
is a key element for the success of all local rational modeling
methods. Another key element is the choice of the model
structure (34), where the numerator order of the local rational
function is larger than the denominator order. All conclusions
concerning the local modeling techniques strongly rely on
these two elements.

The LOE method combined with the automatic model
selection procedure of Section V-B is a valid alternative for
the local polynomial (LP) approach, because it optimally
integrates the small bias error of the rational approximation
with the low noise sensitivity of the polynomial approxi-
mation. If the frequency resolution of the measurement [=
inverse of the experiment duration] is such that less than
seven DFT frequencies lie within the 3 dB bandwidths of the
resonances, then the bias reduction of LOE compared with LP
is significant. Hence, to achieve in these cases a user specified
accuracy, the required LOE measurement time will be much
smaller than that of the LP method.

Initializing LOE with the local Levy (LL) estimate, and
selecting the local rational model order via the LL method,
works well and is a good compromise between calculation
time and statistical performance. In most cases the LL and
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LOE FRF estimators perform equally well. Only at the res-
onance peaks of lowly damped poles, the root mean squared
error of LL can be significantly larger. However, the major
difference between both methods is the (much) larger bias of
the LL noise variance estimate. Since a reliable uncertainty
bound is as important as the FRF estimate itself, and since
an (asymptotically) unbiased estimate of the noise variance is
essential for parametric transfer function modeling [see [9],
Chapters 10 and 12], LOE is preferred over LL.

APPENDIX A
PROOF OF THEOREM 1

The first term in the right hand side of (23) originates from
the polynomial and rational approximation errors in (7).

The second term in the right hand side of (23) reflects the
noise contribution to the bias error. Under Assumptions 1 and
2, this noise bias error is zero (β = ∞) for the LP estimator
(17) because it is a linear least squares problem with noiseless
regression matrix. For all the other local methods the bias is a
consequence of their stochastic behavior for increasing values
of the number of frequencies 2n + 1 in the local frequency
band. Under Assumptions 1 and 2:

1) LL (19) and LSK (20) are inconsistent estimators [see
[9], Section 9.8, pp. 301–305] and, therefore, are biased.
Hence, β = 0 in (23).

2) LOE (18) is a consistent estimator. If in addition the
disturbing noise variance is constant in the local fre-
quency band, then also the LGTLS (21) and LBTLS
(22) estimators are consistent. Hence, the biases of the
LOE, LGTLS and LBTLS estimates decrease to zero as
an O(1/(2n+1)) [see [9], Theorem 9.21, pp. 298–299],
and β = 1 in (23).

Assuming that the rational approximation errors can be ne-
glected, we show in the remainder of this appendix that
the noise bias term is proportional to the noise-to-signal
ratio and prove the bias contribution of the approximation
σ2
V (k + r) ≈ σ2

V (k) for the LGTLS and LBTLS estimators.
The (noise) bias terms in Sections A-A to A-C are calculated

for 2n+ 1→∞. Given the relationship between the FRF and
the rational model, G(jωk) = b0,k/a0,k (9), and the fact that
the transient parameters are asymptotically (2n + 1 → ∞)
zero, it is sufficient to perform the analysis for the a- and
b-coefficients only.

In this appendix, f ′(θk) denotes the derivative of f(θk) w.r.t.
the local parameter vector (θk)re, where (X)re stacks the real
and imaginary parts of X on top of each other

(X)re =

Å
Re(X)
Im(X)

ã
. (44)

By extension, f ′′(θk) is the second order derivative of f(θk)
w.r.t. (θk)re.

A. Noise Bias LL and LSK

We calculate the noise bias term of the LL method (19).
The calculation for the LSK estimator (20) follows exactly
the same lines.

Under Assumptions 1 and 2, the expected value of the LL
cost (19a) equals

VLL(θk) = E{VLL(θk, Zk)}
= E{VLL(θk, Zk,0)}

+
n∑

r=−n
σ2
V (k + r)|Ac

k(jωr, θk)|2 (45)

where Zk,0 = E{Zk}. A first order Taylor series expansion
at the true parameter value θk,0 of V ′LL(θk), the derivative of
(45) w.r.t. (θk)re, gives

V ′TLL(θk) ≈ V ′TLL(θk,0) + V ′′LL(θk,0)(θk − θk,0)re (46)

where, using E{V ′LL(θk,0, Zk,0)} = 0,

V ′TLL(θk,0) =
n∑

r=−n
σ2
V (k + r)

(
|Ac
k(jωr, θk,0)|2

)′T
= σ2

V (k)O(2n+ 1) (47)
V ′′LL(θk,0) ≈ E{V ′′LL(θk,0, Zk,0)}

≈ E{|Y0(k)|2}O(2n+ 1) (48)

Evaluating (46) at θ̃k, the minimizer of (45), and using
V ′TLL(θ̃k) = 0, we get an expression for the bias θ̃k − θk,0
of the parameter estimate

(θ̃k − θk,0)re ≈ −V ′′−1LL (θk,0)V ′TLL(θk,0) (49)

Combining (9) with (47)–(49) proves the noise bias term in
(23).

B. Noise Bias LOE, LGTLS and LBTLS

We derive a bias expression for the LOE estimator (18) un-
der Assumptions 1 and 2. The derivation for the LGTLS (21)
and LBTLS (22) estimators, under the additional condition that
the disturbing noise variance is white in the local frequency
band [k − n, k + n], follows exactly the same lines.

A first order Taylor series expansion with remainder of
the derivative V ′LOE(θk, Zk) of the LOE cost (18) at the true
parameter value θk,0, gives

V ′TLOE(θk, Zk) = V ′TLOE(θk,0, Zk)+V
′′
LOE(Ûθk, Zk)(θk−θk,0)re (50)

where Ûθk = tθk + (1− t)θk,0 with t ∈ [0, 1]. Evaluating (50)
at θ̂k, the minimizer of (18), and using V ′LOE(θ̂k, Zk) = 0, we
get an exact expression for the difference θ̂k − θk,0

(θ̂k − θk,0)re = −V ′′−1LOE(Ûθk, Zk)V ′TLOE(θk,0, Zk) (51)

Using the strong law of large numbers for 2n + 1 → ∞, the
right hand side of (51) can be elaborated as

(θ̂k − θk,0)re = δθk(Zk) + bθk(Zk) (52a)

δθk(Zk) = −V ′′−1LOE(θk,0)V ′TLOE(Zk, θk,0)

= O((2n+ 1)−1/2) (52b)

bθk(Zk) =
[
V ′′−1LOE(θk,0)− V ′′−1LOE(Ûθk, Zk)

]
V ′TLOE(θk,0, Zk)

= O((2n+ 1)−1) (52c)

with VLOE(θk) = E{VLOE(θk, Zk)}, δθk(Zk) the zero-mean
random contribution [E{δθk(Zk)} = 0], and with bθk(Zk) the
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non-zero mean random part [proof: see [9], Theorem 17.21
and Corollary 17.25 on pp. 634 and 635, respectively].

Via a first order Taylor series expansion of V ′′LOE(Ûθk, Zk)
at θk,0, the expression of bθk(Zk) (52c) can be refined. After
some calculations we find that

E{bθk(Zk)} =
σ2
V (k)

E{|Y0(k)|2}
O
( 1

2n+ 1

)
(53)

[proof: see [9], Appendix 19.D, part (ii), on pp. 689–690].
Combining (9) with (53) proves the noise bias term in (23).

C. Bias LGTLS and LBTLS Caused by the Local White Noise
Approximation

We derive an expression for the bias of the LGTLS estimator
(21) due to the approximation σ2

V (k+r) ≈ σ2
V (k) in the local

frequency band [k − n, k + n]. The bias term of the LBTLS
method (22) is obtained in a similar way.

Under Assumptions 1 and 2, the expected value of the
LGTLS cost (21) equals

VLGTLS(θk) = E{VLGTLS(θk, Zk)}
= E{VLGTLS(θk, Zk,0)}

+

∑n
r=−n σ

2
V (k + r)|Ac

k(jωr, θk)|2∑n
r=−n σ

2
V (k)|Ac

k(jωr, θk)|2
(54)

with Zk,0 = E{Zk}. Under Assumption 2, the noise variance
σ2
V (k) is a smooth function of the frequency. Hence, in the

local frequency band [k − n, k + n], σ2
V (k + r) can be

approximated as

σ2
V (k + r) ≈ σ2

V (k) + (σ2
V (k))′

r

N
(55)

where ()′ is the derivative w.r.t. k. Combining (54) and (55),
gives

VLGTLS(θk) ≈ E{VLGTLS(θk, Zk)}+ 1

+
(σ2
V (k))′

Nσ2
V (k)

∑n
r=−n r|Ac

k(jωr, θk)|2∑n
r=−n |Ac

k(jωr, θk)|2
(56)

Expanding V ′LGTLS(θk), the derivative of (56) w.r.t. (θk)re, in
a first order Taylor series at the true parameter value θk,0, we
get

V ′TLGTLS(θk) ≈ V ′TLGTLS(θk,0) + V ′′LGTLS(θk,0)(θk − θk,0)re (57)

where, using E{V ′LGTLS(θk,0, Zk,0)} = 0,

V ′TLGTLS(θk,0) ≈ (σ2
V (k))′

σ2
V (k)

O
( n
N

)
(58)

V ′′LGTLS(θk,0) ≈ E{V ′′LGTLS(θk,0, Zk,0)}
≈ E{|Y0(k)|2}O(2n+ 1) (59)

Evaluating (57) at θ̃k, the minimizer of (54), and using
V ′TLGTLS(θ̃k) = 0, we get an expression for the bias θ̃k − θk,0
of the parameter estimate

(θ̃k − θk,0)re ≈ −V ′′−1LGTLS(θk,0)V ′TLGTLS(θk,0) (60)

Combining (9) with (58)–(60) proves the third bias term in
(23).

APPENDIX B
PROOF OF THEOREM 2

The proof of (26) is given in [9], Appendix 7.D, pp. 271–
272, for the LP method. In this appendix we prove (26) for
the LOE, LL, LSK, LGTLS and LBTLS estimators. First, we
derive an approximate expression for the output residual Y (k+
r)− Ŷ (k+ r) [Section B-A]. Next, using this expression, the
expected value of the local noise variance estimate is analyzed
[Section B-B].

A. Approximate Expression for the Output Residual

For all local rational methods, the estimated polyno-
mials Xc

k(jωr, θ̂k), X = A, B, and I , can be split
into three contributions: the true value Xc

k,0(jωr), the bias
error Xc

k,bias(jωr), and the zero-mean noise contribution
Xc
k,noise(jωr) = O((2n+ 1)−1/2)

Xc
k(jωr, θ̂k) = Xc

k,0(jωr) +Xc
k,bias(jωr) +Xc

k,noise(jωr) (61)

Using Y+y
X+x ≈

Y
X (1 + y

Y −
x
X ) for the rational functions, the

predicted output (24b) can be approximated as

Ŷ (k + r) ≈ Y0(k + r) + Ybias(k + r) + Ynoise(k + r) (62a)

with Y0(k+ r) the true value, Ybias(k+ r) the bias due to the
noise and the local rational approximations

Ybias(k + r) =

Gc
k,0(jωr)U(k + r)

(Bc
k,bias(jωr)

Bc
k,0(jωr)

−
Ac
k,bias(jωr)

Ac
k,0(jωr)

)
+ T c

k,0(jωr)
(Ick,bias(jωr)
Ick,0(jωr)

−
Ac
k,bias(jωr)

Ac
k,0(jωr)

)
(62b)

and Ynoise(k + r) = O((2n + 1)−1/2) the zero-mean noise
contribution

Ynoise(k + r) =

Gc
k,0(jωr)U(k + r)

(Bc
k,noise(jωr)

Bc
k,0(jωr)

−
Ac
k,noise(jωr)

Ac
k,0(jωr)

)
+ T c

k,0(jωr)
(Ick,noise(jωr)
Ick,0(jωr)

−
Ac
k,noise(jωr)

Ac
k,0(jωr)

)
(62c)

Taking into account (62), the output residual V̂ (k+r) = Y (k+
r)− Ŷ (k + r) can be written as

V̂ (k + r) = V (k + r) + Ybias(k + r) + Ynoise(k + r) (63)

Hence, a natural estimate of the noise variance is given by

σ̂2
V (k) =

1

2n+ 1

n∑
r=−n

|V̂ (k + r)|2 (64)

In the next section of this appendix we analyze the expected
value of (64).
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B. Expected Value Noise Variance Estimate
Since E{Ybias(k + r)V (k + r)} = 0 and E{Ybias(k +

r)Ynoise(k + r)} = 0, the expected value of (64) has four
non-zero contributions

E{σ̂2
V (k)} =

1

2n+ 1

ï n∑
r=−n

σ2
V (k + r)

+
n∑

r=−n
|Ybias(k + r)|2 +

n∑
r=−n

E
{
|Ynoise(k + r)|2

}
+ 2Re

( n∑
r=−n

E
{
Ynoise(k + r)V (k + r)

})ò
(65)

where Re(x) denotes the real part of x. Using the approxima-
tion (55), the first sum of (65) becomes

1

2n+ 1

n∑
r=−n

σ2
V (k + r) = σ2

V (k) + (σ2
V (k))′O

( n
N

)
(66)

In the second sum of (65), Ybias(k + r) depends on the bias
of the estimated local model parameters θk. Since the latter is
described by bG, the right hand side of (23), we get

1

2n+ 1

n∑
r=−n

|Ybias(k + r)|2 = O(b2G) (67)

Using Ynoise(k+ r) = O((2n+ 1)−1/2), the third sum of (65)
equals

1

2n+ 1

n∑
r=−n

E
{
|Ynoise(k + r)|2

}
= O

( 1

2n+ 1

)
(68)

In Section B-C of this appendix it is shown that E{Ynoise(k+
r)V (k + r)} = O(n−1). Therefore, the contribution of the
fourth sum of (65) is

2Re
Ä n∑
r=−n

E
{
Ynoise(k + r)V (k + r)

2n+ 1

}ä
= O

( 1

2n+ 1

)
(69)

Collecting (65)–(69) proves the right hand side of (26).
Note that the estimated local model parameters θk introduce,

via Ynoise(k + r), a correlation over the frequency r of
the output residual V̂ (k + r) (63). For the LP method the
corresponding decrease in degrees of freedom of V̂ (k + r)
is exactly nθk [proof: see [9], Appendix 7.B, pp. 269–270].
Although this is an approximation for the other methods, it
motivates why 2n + 1 in (64) is replaced by 2n + 1 − nθk
giving (24a). The effect of this modification is a reduction of
the O(n−1) term in (26).

C. Correlation Local Estimates – Noise
We prove (69) for the LL estimator (19). The proof for the

other local methods follows the same lines.
The linear least squares problem (19) can be written as an

overdetermined set of equations

Yk = H(Vk)θk + Vk +Rk (70a)

with Yk, Vk and Rk (2n + 1) × 1 vectors of, respectively,
the output Y (k), the disturbing noise V (k) and the rational
approximation errors R(k) in the local frequency band

Xk = [X(k − n), . . . , X(k), . . . , X(k + n)]T (70b)

with X = Y , V and R, and where H(Vk) is a (2n+ 1)×nθk
regression matrix depending on the disturbing noise Vk. The
linear least squares estimate

θ̂k = (HH(Vk)H(Vk))−1HH(Vk)Yk (71)

can be split into three contributions

θ̂k = θk,0 + θk,bias + θk,noise (72)

where θk,0 is the true value, θk,bias the bias due to the
disturbing noise Vk and the rational approximation errors
Rk, and θk,noise the zero-mean random contribution. Note
that Y0(k + r), Ybias(k + r) and Ynoise in (62a) depend on,
respectively, θk,0, θk,bias and θk,noise [see (61)].

Via a first order approximation of θk,noise

θk,noise ≈ (HH(0)H(0))−1HH(0)Vk (73)

the correlation between θk,noise and V (k+r) can be calculated

E{θk,noiseV (k + r)} = (HH(0)H(0))−1HH(0)E{VkV (k + r)}

= O
( σ2

V (k)

2n+ 1

)
(74)

where the second equality uses HH(0)H(0) = O(2n + 1)
and the fact that E{VkV (k + r)} has only one non-zero entry,
namely σ2

V (k+ r). Combining (62c) with (74), it follows that
E{Ynoise(k + r)V (k + r)} = σ2

V (k)O((2n + 1)−1), which
proves (69).

APPENDIX C
PROOF OF THEOREM 3

Under Assumption 2, the disturbing noise V (k) in (4) is
circular complex normally distributed. Hence, applying the
results of Chapter 9 of [9] it follows immediately that the LP,
LL, LSK, LGTLS, LBTLS and LOE estimates of the local
model parameters θk are asymptotically (n → ∞) complex
normally distributed.

In the remainder of this appendix we will show that the
(asymptotic) distribution of the LP and LOE estimates is
circular complex. It means that

E{(θ̂k − E{θ̂k})(θ̂k − E{θ̂k})T } = 0 (75)

so that the second order moments of θ̂k are solely determined
by

Cov(θ̂k) = E{(θ̂k − E{θ̂k})(θ̂k − E{θ̂k})H} (76)

Note that (75) is not zero for the LL, LSK, LGTLS and LBTLS
estimates and, hence, their complex normal distributions are
fully characterized by both second order moments (75) and
(76).

The minimizer of the LP cost function (17) can be written
as

θ̂k = −
(
JHLPJLP

)−1
JHLPYk (77)

with JLP = ∂eLP/∂θk, eLP ∈ C(2n+1)×1 the local polynomial
residuals (17b) and Yk defined in (70b). Since θk (77) is via
Yk (4) an affine analytic function of the disturbing noise Vk
defined in (70b) [JLP is independent of Vk], it is also circular
complex distributed for finite values of n [see [26], Chapter
4]. Given relationship (9), with a0,k = 1, between the FRF
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and the LP estimate, Property 1 of Theorem 3 immediately
follows.

Using (52), and in the absence of local modeling errors, the
minimizer of the LOE cost function (18) can asymptotically
(n→∞) be written as

θ̂k − θk,0 = −
(
JHLOE(θk,0)JLOE(θk,0)

)−1
× JHLOE(θk,0)eLOE(θk,0) (78)

with JLOE(θk) = ∂eLOE(θk)/∂θk and eLOE(θk) ∈
C(2n+1)×1 the vector of the local output error residuals (18b)
[proof: see Appendix D]. Since eLOE(θk,0) is a linear analytic
function of Vk and since JLOE(θk,0) is independent of Vk, the
right hand side of (78) is circular complex distributed. It proves
that θ̂k is asymptotically (n→∞) circular complex normally
distributed. A first order Taylor series expansion of (9)

Ĝ(jωk) ≈ G(jωk) +
∂G(jωk)

∂θk,0
(θ̂k − θk,0) (79)

shows that Ĝ(jωk) is asymptotically an affine function of θ̂k,
which concludes the proof of Property 2 of Theorem 3.

Note that the LL, LSK, LGTLS, and LBTLS estimates
are not circular complex distributed because they are not an
analytic function of the disturbing noise Vk. See, for example,
the factor HH(Vk)H(Vk) in the LL estimate (71). Using (79)
the asymptotic (n → ∞) complex normal distribution of the
FRF estimate (9) follows from that of θ̂k.

APPENDIX D
PROOF OF EQ. (78)

In the absence of modeling errors, (52) is asymptotically
(n→∞) equal to

(θ̂k − θk,0)re = −V ′′−1LOE(θ0)V ′TLOE(θ0, Zk) (80)

where

V ′′LOE(θ0) = 2Re
(
JH(θk,0)J(θk,0)

)
(81a)

V ′TLOE(θ0, Zk) = 2Re
(
JH(θk,0)eLOE(θk,0)

)
(81b)

with J(θk) = ∂eLOE(θk)/∂(θk)re. Using the chain rule of
the partial derivative, taking into account that eLOE(θk) is an
analytic function of θk, we find

J(θk) =
î

∂eLOE(θk)
∂Re(θk)

∂eLOE(θk)
∂Im(θk)

ó
=
[
JLOE(θk) jJLOE(θk)

]
(82)

with JLOE(θk) = ∂eLOE(θk)/∂θk. Combining (82) with (81),
gives

Re
(
JH(θk,0)J(θk,0)

)
=

ï
Re
(
M(θk,0)

)
−Im

(
M(θk,0)

)
Im
(
M(θk,0)

)
Re
(
M(θk,0)

) ò
=
(
M(θk,0)

)
Re

(83a)

Re
(
JH(θk,0)eLOE(θk,0)

)
=

ï
Re
(
X(θk,0)

)
Im
(
X(θk,0)

) ò
=
(
X(θk,0)

)
re

(83b)

with M(θk) = JHLOE(θk)JLOE(θk) and X(θk) =
JHLOE(θk)eLOE(θk), and where the second equality in (83a)

and (83b) define the matrix operators ()Re and ()re respec-
tively. Collecting (80), (81) and (83) we finally obtain

(θ̂k − θk,0)re = −
((
M(θk,0)

)
Re

)−1(
X(θk,0)

)
re

= −
(
M−1(θk,0)

)
Re

(
X(θk,0)

)
re

= −
(
M−1(θk,0)X(θk,0)

)
re

(84)

where the second and third equality use, respectively, Lemmas
15.3 and 15.4 on pp. 553 and 554 of [9]. From (84) we deduce
immediately that θ̂k − θk,0 = −M−1(θk,0))X(θk,0), which
proves (78).
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