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Abstract (200 words max.): 

 

Purpose of review: Dendritic cells (DCs) are the gatekeepers of our immune system and indispensable 

in the anti-tumor immune response. In recent years, their classification has been revised considerably 

using single-cell sequencing approaches. In this review, we focus on their unique role in cancer and how 

specific DC subsets can be manipulated to induce an effective and durable anti-tumor response. 

 

Recent findings:  



Historically, due to the ease of their isolation in sufficient cell numbers from peripheral blood, the utility 

of monocyte-derived DCs as therapeutic cancer vaccines was explored in the clinic. However, it became 

clear that naturally circulating myeloid DCs (myDC), exerting their physiological role, are a functionally 

more powerful cellular source of antigen presenting cells. With the advent of immunomagnetic bead 

technology to isolate naturally circulating DC subsets, the therapeutic value of these myDC subsets is 

currently being explored. Since DCs are also needed in the tumor microenvironment in order to 

"relicense" the activity of anti-tumor T cells, also intratumoral administration routes for DC vaccines 

are explored. In addition, to circumvent the use of expensive cellular vaccines, approaches to attract 

DCs to the tumor microenvironment are considered of interest in order to repair a defective cancer-

immunity cycle.   

 

 

Summary: In recent years, the type of DCs used for vaccination and their administration route evolved 

considerably. Intratumoral vaccination strategies require combination with additional stimuli to ensure 

proper functioning of DCs in the tumor microenvironment. Moreover, intratumoral administration 

limits the applicability to patients with accessible lesions. 
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Text of review  

 

Introduction 

Although the treatment of advanced melanoma has been revolutionized through the introduction of 

immune checkpoint inhibitors (ICI) targeting programmed death ligand 1 (PD-1; e.g., pembrolizumab 



and nivolumab) and CTLA-4 (ipilimumab) by significantly increasing survival, benefit resulting from this 

treatment remains absent in a plethora of patients.(1-11) For these patients the need for effective 

cancer treatments remains unmet.  

An effective immune response against cancer cells requires a series of events that must occur in a 

certain order and re-occur iteratively, a process referred to as the cancer-immunity cycle.(12) Herein,  

dendritic cells (DCs) play a central role with their gatekeeper function, as they sense, capture, and 

process antigens released from tumors (e.g., cancer-testis antigens, differentiation antigens, 

neoantigens). DCs present these tumor-associated antigens (TAA) via major histocompatibility 

complex (MHC) I or II molecules to naïve T cells and prime and activate these in the presence of pro-

inflammatory cytokines (e.g., type 1 interferons (IFN), interleukin-12 (IL-12), tumor-necrosis factor-α) 

and damage-associated molecular patterns. Activated TAA-specific effector T cells are able to migrate 

and infiltrate into the tumor microenvironment (TME), recognizing the TAA presented in a MHC at the 

cell surface of cancer cells leading to targeted cancer cell killing.(12)  

A possible explanation for failure of ICI may be the absence of DCs in the TME, and mechanisms that 

lead to the exclusion of DCs from the tumor have been recently identified. Among these, the activation 

of the oncogenic WNT/β-catenin pathway has been identified as an important driver for the exclusion 

of Batf3-expressing myeloid DCs (myDCs), also termed conventional DCs (cDCs), from the TME as a 

result of a downregulated production of chemokines that are necessary to attract these myDCs from 

the blood into the TME.(13-15) Spranger et al have shown that the migration of effector T cells depends 

on the presence of CD103+ myDCs that produce the chemokine CXCL10. Alterations in the CXCR3-

CXCL9/10 chemokine axis were seen in β-catenin-expressing tumors leading to defective migration of 

effector T cells. Additionally, the absence of myDCs at the invasive margin and within metastases has 

been correlated with defective activation of cytotoxic T lymphocytes (CTL), thereby allowing 

metastases to escape the antitumor immune response.(16) Additionally, an analysis of data from The 

Cancer Genome Atlas (TCGA) demonstrated that naturally circulating DCs (nDCs), especially myDCs, 

but not monocyte-derived DCs (moDCs), seem to be associated with improved survival in various 



cancers.(17-19) Of interest, the presence of myDCs also correlated more strongly with T-cell infiltration 

into tumors as compared to neoantigen load in 266 melanomas from TCGA.(20) It has been described 

that infiltration of type 1 cDCs (cDC1) in human tumors has shown an association with better 

responsiveness to anti-PD-1 checkpoint blockade.(21) More recently, it has been described that 

successful anti-PD-1 therapy requires crosstalk between T cells and DCs. Effective treatment with anti-

PD-1 checkpoint inhibitors requires DCs to produce IL-12 for which IFN-γ secretion from CTL is 

required.(22) Animal models indicate that myDCs are essential for priming anti-tumor T-cell responses, 

with cDC1 (Batf3-dependent CD103+/CD141+ DCs) mediating CD8+ CTL and conventional type 2 DCs 

(cDC2) CD4+ T-cell responses.(23) Preclinical experiments in mice have shown that CD4+ T-cell 

responses are dependent of the transcription factor IRF4 in cDC2s and that exogenous IL-10 and IL-33 

can recover the ability of IRF4-deficient cDC2s to promote CD4+ T cells.(24, 25) Altogether, these 

observations show that DCs are crucial players in the TME to mount an effective anti-tumor immune 

response. The ability of DCs to mount this adaptive immunity against cancer cells can be harnessed for 

cancer therapy. Various strategies are currently under evaluation to exploit DCs for therapeutic 

reasons, all having different costs, applicability, and feasibility. Some of these are the use of free 

adjuvants or DC-activation factors (e.g., synthetic CpG oligonucleotides), DC-mobilizing and -expanding 

agents (e.g., FMS-like tyrosine kinase 3 ligand (Flt3L)), the use of viral vectors or vaccines that express 

TAAs and activating factors for DCs, or the adoptive transfer of DCs.(26) This review focuses on the 

evolution of DC-based vaccines and strategies to increase their presence in the TME for the treatment 

of melanoma.   

 

Historical perspective of DC vaccines 

Conventional therapeutic DC-applications have relied on the “therapeutic vaccination” paradigm 

where DCs were injected intradermally, subcutaneously, intravenously, or intranodally. In this 

approach, the isolation of autologous DCs or in vitro generation of DCs is followed by ex vivo 

manipulation including maturation, amplification, and antigen loading before reinfusion to patients. 



Most frequently moDCs have been used for this approach. However, only modest response rates were 

achieved despite continued optimization of various vaccination parameters such as the choice of 

antigens as well as the maturation protocol. The generation of moDCs requires several days of ex vivo 

culture which increases the cost of such a cellular advanced therapy medicinal product (ATMP).  

Interestingly, instead of using tumor antigens, one recent first-in-human, randomized phase II study 

investigated a monocyte-derived type-1-polarized DC vaccine targeting selected tumor blood vessel 

antigens in combination with the tyrosine kinase inhibitor dasatinib in ICI-refractory advanced 

melanoma patients.(27) Immunologic responses such as increased immune cell infiltration and/or 

objective clinical responses have been observed in 46% of evaluable patients. Another approach is the 

combination of DC vaccination with adoptive tumor-infiltrating T-cell (TIL) transfer. Complete and 

durable clinical responses have been observed in ICI-resistant, metastasized melanoma patients 

treated with adoptive TIL combined with autologous tumor lysate-loaded DC vaccination.(28) Also, a 

randomized phase II trial investigated lymphodepletion plus adoptive cell transfer of TILs, with or 

without DCs pulsed with MART-1 was performed. However, there was no significant difference 

between both treatment arms.(29)  

 

Primary, naturally circulating dendritic cells: more potent vaccines? 

Bone marrow emergent "natural DCs" are present in the peripheral blood and have recently been 

classified according to their surface markers and function using functional, transcriptomic and 

proteomic analyses.(30-34) This classification has been elucidated using sophisticated techniques 

amongst others single-cell RNA-sequencing of human blood DCs, monocytes, and progenitors.(30) 

Naturally circulating DCs reflect a heterogenous group of cells both functionally and morphologically, 

but also concerning their location. In humans, the two major subsets are myDCs and plasmacytoid 

dendritic cells (pDCs), each with a distinct phenotype and function during an immune response.(35) As 

myDCs and pDCs both express different pattern recognition receptors, they respond to different 

stimuli and have different patterns of migration.(36) It has been shown that myDCs and pDCs may act 



synergistically in a bidirectional way.(37, 38) Extended preclinical research indicates that myDCs are 

essential in “re-licensing” antitumor T lymphocytes to eradicate tumor cells within the TME.(17, 19) It 

has been shown that myDCs play an essential role in the initiation of antigen-specific antitumoral 

immunity.(13, 17)  

For several reasons, harvesting pDCs and/or myDCs for the use as vaccines has gained interest over 

the past years since their clinical grade isolation by immunomagnetic bead cell sorting has become 

feasible. Until now, nDCs have been investigated in a small number of early phase clinical trials. The 

trials have used either “myDC only” vaccines, “pDC only” vaccines or combined “myDC/pDC” vaccines. 

In addition, the route of administration differed between trials as did the number of DCs administered.   

The only trial so far that investigated exclusively pDCs in a phase I clinical trial (NCT01690377) was 

performed in patients with stage IV or unresectable stage III melanoma. After isolation, pDCs were 

stimulated with the prophylactic Frühsommer-Meningoenzephalitis vaccine and loaded with gp100 

and tyrosinase and then administered intranodally three times bi-weekly, followed by two 

maintenance administrations every 6 months. CD4+ and CD8+ T-cell responses directed against gp100 

and tyrosinase have been observed, indicating immunogenicity of the vaccine. This vaccine was safe 

without any high-grade adverse events.(39)  

Plasmacytoid DCs were also investigated in a combined vaccine with myDCs. A phase I/II trial 

(NCT02574377) in patients with stage III melanoma who underwent a complete lymph node dissection 

compared intranodal administration of a pDC-vaccine versus myDC-vaccine versus a combined 

pDC/myDC-vaccine. The activation of both myDCs and pDCs was accomplished using protamine/mRNA 

and DCs were loaded with gp100, tyrosinase, NY-ESO-1, MAGE-C2, and MAGE-A3. Antigen-specific 

CD8+ T cells were detected in skin test-derived T cells and in peripheral blood in 80% and 55% of the 

patients, respectively. In 64% of the patients, functional IFN-γ-producing T cells were found in the skin 

test. Only low-grade adverse events were observed.(40) 

Additionally, a randomized, double-blind, placebo-controlled phase III trial in patients with stage 

IIIB/IIIC melanoma was set up to evaluate intranodal administration of nDCs loaded with synthetic 



peptides as an adjuvant treatment (NCT02993315). However, accrual was stopped prematurely after 

inclusion of 151 patient due to the availability of adjuvant treatment with anti-PD-1 antibodies in the 

Netherlands since November 2018. Adjuvant nDC-vaccination in stage IIIB and IIIC melanoma patients 

showed no benefit over placebo in terms of 2-year recurrence-free survival.(41) 

Also, a subcutaneously administered pDC cell line-based vaccine has been investigated in melanoma 

patients in a first-in-human trial, showing a significant increase in the frequency of circulating anti-

tumor specific T lymphocytes and stable disease as best clinical response. (42) 

 

Intratumoral administration to increase DC numbers in the TME 

The presence of DCs in the TME is of utmost importance for effective induction of anti-tumor 

immunity. Thus, intratumoral administration of nDCs could hypothetically turn a “cold”, non-inflamed 

tumor into an inflamed TME if the necessary stimuli are present. Intratumoral treatments such as 

oncolytic viruses (e.g., talimogene laherparepvec (T-VEC)(Imlygic, Amgen) or synthetic Toll-like 

receptor agonists (e.g., tilsotolimod)) have gained interest. DCs can either be administered 

intratumorally as autologous, non-substantially manipulated CD1c (BDCA-1)+ and CD141 (BDCA-3)+ 

myDCs (non-ATMP) or autologous manipulated DCs that are loaded ex vivo with TAA and/or activated 

by TLR agonists before injection (ATMP).  

Early phase clinical trials have been conducted or are currently ongoing that investigate an 

intratumoral DC vaccination in combination with other immunotherapeutic agents, including oncolytic 

viruses, ICI, or prophylactic vaccines. 

As a first-in-human study, a phase I basket trial (NCT03707808) for patients with solid tumors that 

mainly included patients with advanced melanoma investigated intratumoral injection of autologous, 

unmanipulated CD1c (BDCA-1)+ myDCs in combination with intratumoral injection of ipilimumab and 

the anti-PD-L1 antibody avelumab plus intravenous administration of nivolumab. In this trial that 

included nine heavily pretreated patients with advanced, ICI-refractory solid tumors, clinical responses 

have been observed in injected and non-injected lesions. An increase in tumor-infiltrating CD8+ T 



lymphocytes as well as an upregulation of PD-L1 on on-treatment biopsies of a patient who achieved 

a durable partial response were observed.(43)  

In another phase I clinical trial (NCT03747744), intratumoral administration of autologous, 

unmanipulated CD1c (BDCA-1)+ myDCs or the combination with CD141 (BDCA-3)+ myDCs in 

combination with the oncolytic virus T-VEC was investigated.(44, 45) In total, 13 patients were included 

and underwent study treatment; clinical responses were observed in injected as well as non-injected 

lesions, however, not always translating into an overall response. Two patients with ICI-refractory 

melanoma have developed durable complete responses persisting more than two years after 

treatment. Interestingly, on-treatment biopsies revealed a strong infiltration by inflammatory cells in 

regressing lesions of these two patients. The treatment was also tolerated well with mainly low-grade 

adverse events and especially local reactions at the injection-site.(44, 45)  

Currently, intratumoral injection of CD1c (BDCA-1)+/CD141 (BDCA-3)+ myDCs combined with an AS01B 

adjuvant, which is a component of a prophylactic shingles vaccine and has preclinically shown DC-

maturating properties, as an alternative stimulus for T-VEC is under evaluation in a phase I clinical trial 

(NCT03707808). The intratumoral administration of AS01B and CD1c (BDCA-1)+/CD141 (BDCA-3)+ 

myDCs is combined with intratumoral injection of ipilimumab and intravenous administration of 

nivolumab. First safety and antitumoral results are pending. 

A randomized phase II clinical trial is currently investigating stereotactic body radiation therapy and 

systemic pembrolizumab with or without intratumoral avelumab and ipilimumab plus CD1c (BDCA-

1)+/CD141 (BDCA-3)+ myDCs in patients with solid tumors, including advanced melanoma patients who 

present with oligometastatic progression after PD-1-based therapy (NCT04571632). This trial for the 

first time also allows the injection of visceral lesions making such an intratumoral approach potential 

for more patients.(46) 

Finally, intratumoral injection of an autologous moDC vaccine is currently being investigated in a phase 

I study, wherein safety and efficacy of moDCs pulsed with tumor lysate (PV-001-DV) combined with 

systemic infusion of PV-001-DCs in advanced melanoma patients is investigated (NCT03803397).  



 

Novel strategies to turn tumors into in situ vaccines 

Besides DC vaccines, also strategies to attract DCs into the TME are under investigation. Radiotherapy 

has been shown to prime tumor-specific CD8+ T cells, which is dependent on infiltration of cDC1 in the 

tumor by radiotherapy-induced type I IFNs. Wennerberg et al described that CD73 is increased upon 

radiotherapy and that CD73 blockade with radiotherapy restored radiotherapy-induced cDC1 

infiltration in settings where induction of type I IFNs was suboptimal.(47)   

Recently, Bergamaschi et al proposed a model wherein heterodimeric IL-15 promotes intratumoral 

CTL and cDC1 accumulation. In response to heterodimeric IL-15 treatment, activated CD8+ T cells and 

NK cells released IFN-γ and XCL-1. Increased levels of XCL-1 induced recruitment of cDC1 in tumors, 

which in turn induced secretion of the chemokines CXCL9 and CXCL10 that attract CD8+ T cells and NK 

cells into the tumor.(48) In advanced tumors, this effector response is largely suppressed but radiation 

can be used to jumpstart the cancer-immunity cycle by inducing cancer cell-intrinsic type I IFN release 

to attract cDC1 which in turn produce CXCL9 and CXCL10. IL-15 is expressed by cDC1 and thus fosters 

the crosstalk between CD8+ T cells, NK cells, and cDC1 to reprogram the tumor immune contexture.(49) 

Another cytokine that is capable of increasing the number of intratumoral DCs is Flt3L. Flt3L drives 

expansion of various bone marrow progenitor populations, however, in mature cells Flt3 expression is 

only observed in pDCs and myDCs. Flt3L administration expands both DC-subsets and pre-DCs in the 

blood. However, Flt3L does not affect the maturation state of the DCs.(16, 50) This could be overcome 

by co-injection of a TLR agonist, which is explored by Hammerich et al who combine local 

administration of Flt3L, radiation therapy and the TLR3 ligand poly-ICLC and showed increased CD8+ T-

cell responses in patients suffering from indolent non-Hodgkin’s lymphoma.(51)  

 

Conclusions and perspectives 

In recent years, nDCs have come to the forefront of cancer vaccines instead of moDCs, especially 

because of their more mature functional properties. Furthermore, intratumoral administration of nDCs 



in combination with TME-priming agents seems to be a feasible and safe alternative for classical DC 

vaccines and should be investigated more thoroughly (Figure 1). Intratumoral therapies are also mainly 

feasible for patients with accessible tumor lesions such as cutaneous, lymph node or other soft tissue 

metastases, since injection of visceral lesions requires experienced radiologists and computed 

tomography-guidance and the risk for iatrogenic complications remains higher. Strategies using 

intratumoral injection of non-substantially manipulated nDCs or in situ “vaccines” make it possible that 

all private tumor antigens of an individual patient can be processed by the DCs present in the TME, 

which stands in contrast to DC vaccines that have been loaded with specific tumor antigens. A possible 

disadvantage of injecting or attracting DCs in the tumor could be inhibition of DC-activation/function 

in the TME, thereby skewing them towards a protumoral phenotype. This can potentially be 

circumvented by rational combination with DC-activating agents.  

Finally, strategies that attract DCs into the TME are explored to circumvent the expensive cell isolation 

and/or ex vivo culture procedures for DC-vaccines. 

 

Key Points  

(3-5 key points/sentences that summarize your article) 

• In the recent years, naturally circulating DCs such as myeloid and plasmacytoid dendritic cells 

are earning more interest to be used as cancer vaccine instead of monocyte-derived DCs, 

mainly for their more mature functional properties. 

• Intratumoral administration of naturally circulating DCs in combination with tumor 

microenvironment-priming agents seems to be a feasible and safe alternative for classical DC 

vaccines.  

• To obviate the need for expensive cellular vaccines, approaches to attract DCs into the tumor 

microenvironment are being developed.  
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Figure legends: 

(Attach figures and tables separately) 

Fig 1. 

Heading: Evolution of DC-based vaccines for treatment of melanoma patients. 

Legend: Evolution of DC-based vaccines for treatment of melanoma patients. Naturally circulating 

DCs and monocytes are isolated from blood through leukapheresis and immunomagnetic cell sorting, 

and in case of moDCs differentiated in vitro from monocytes. Over the past years, the type of DCs and 

administration route for DC vaccination evolved considerably. More recently focus shifted from 

traditional and intratumoral vaccines to in situ vaccines. Figure created in BioRender.  

Flt3L: FMS-like tyrosine kinase 3; ICI: immune checkpoint inhibitors; IL-15: interleukin 15; moDC: 

monocyte-derived dendritic cell; myDC: myeloid dendritic cell; OV: oncolytic virus; pDC: plasmacytoid 

dendritic cell; TAA: tumor-associated antigens; TLR: toll-like receptor 
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