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3Vrije Universiteit Brussel, Department of Applied Physics and Photonics, Brussels Photonics (B-PHOT), Pleinlaan 2,
B-1050 Brussels, Belgium

(Received 9 June 2016; published 28 December 2016)

We report on a bifurcation mechanism following which an external-cavity laser diode emits regular oscillating
output power at a high frequency. This frequency does not vary with the external-cavity length and it can be
adjusted by varying the feedback strength. We observe this phenomenon numerically by investigating the external-
cavity modes generated by a semiconductor laser subject to a phase-conjugate optical feedback. Particularly, we
explore the effects of both the feedback rate and the time delay induced by the feedback on the frequency of
the external-cavity modes. Counterintuitively, we evidence that having a short cavity does not necessarily yield
oscillations at higher frequencies. We show that the key parameter in order to generate high-frequency solutions
is the feedback rate. This parameter fixes the frequency of the solutions obtained independently of the time delay.
We finally relate our observations to Hopf bifurcation phenomena.

DOI: 10.1103/PhysRevA.94.061803

Semiconductor lasers have been studied for several decades
due to the richness of their nonlinear dynamics [1,2]. Modu-
lating the injection current, adding feedback, or injecting light
from another source can either improve the laser performances
or lead to dynamical regimes where the emitted light oscillates
regularly or chaotically with time [3,4]. For some time, it has
been considered a challenge to make a semiconductor laser
oscillate or pulse at frequencies higher than its relaxation
oscillation frequency. In a laser with conventional optical
feedback (COF), oscillations or pulses at a frequency inversely
proportional to the external-cavity length can be obtained
[5–11]. The focus was thus put on obtaining ultrashort cavities,
which was achieved thanks to distributed feedback lasers
where the external cavity is integrated with the laser device [12]
and oscillations at high frequency have been unlocked [12,13].

Another approach for unlocking oscillating states in a laser
diode is to use phase-conjugate feedback (PCF). It has been
shown that a laser with PCF sustains external-cavity modes
(ECMs) which are self-pulsating solutions at harmonics of
the external-cavity frequency [14–16], and higher harmonics
are unlocked as the feedback rate is increased. The authors
of Ref. [16] suggest in their conclusion that reducing the
time delay would also contribute to increasing the frequency
of oscillations observed. In this Rapid Communication, we
show theoretically that the system locks on ECMs of higher
harmonics when increasing the external-cavity length at a fixed
feedback rate, such that the oscillation frequency remains al-
most constant. In a laser with PCF, the self-pulsation frequency
is thus determined by the feedback rate, independently from
the external-cavity length, whereas in a laser with COF regular
high-frequency oscillations require shortening the external
cavity [7–12,17].

A semiconductor laser subject to instantaneous PCF can be
described by the following dimensionless rate equations [14]

Ẏ = (1 + iα)ZY + γ Y ∗(t − θ ), (1)

T Ż = P − Z − (1 + 2Z)|Y |2, (2)

where Y (t) corresponds to the complex electric field and
Z(t) represents the carrier density. The time t is normalized
by the photon lifetime τp. γ is the dimensionless feedback
rate proportional to the square root of the power reflectivity
of the phase-conjugate mirror (PCM), α corresponds to the
linewidth enhancement factor, θ is the external-cavity round-
trip time normalized by τp, T is the ratio of carrier to photon
lifetimes, and P is the pump parameter above threshold. In
this Rapid Communication, we consider the following set of
parameter values that have been largely used in the literature
[14,15,18–20]: α = 3, T = 1428, and P = 0.0417.

These values correspond to a semiconductor laser operating
close to threshold. The range of θ considered in this study
is between 1 and 958, or—using τp = 1.4 ps—equivalently
between 0.0014 and 1.34 ns in real time units. This range
is centered around θ = 476, the value considered in several
studies that use a fixed time delay [14,15,21]. The upper bound
is close to the value used in the experimental observation of
ECMs [16]. The multiple delayed round-trips in the external
cavity are not taken into account in this model because we
are interested in relatively low reflectivities of the external
mirror (γ between 0 and 0.05). Moreover, the frequency
dependence of the PCM reflectivity and the time for light
to traverse the nonlinear medium have also been neglected.
The latter assumption is justified since we typically use short
crystals (less than 1 cm long) to generate the phase-conjugate
signal [22–24]. Later on, we demonstrate that accounting
for the crystal finite penetration length does not modify our
conclusions.

We explore the effects of both the delay θ and the feedback
strength γ on the ECMs. To this end, we use a fourth order
Runge-Kutta algorithm to compute time traces from which
we create a bifurcation diagram of the output power versus
the feedback rate γ for a given value of the time delay θ .
Figure 1(a) shows a bifurcation diagram obtained for θ = 400.
The typical behavior of a laser with PCF is observed, i.e., a
stable steady state for a very low feedback rate, followed by
a Hopf bifurcation leading to undamped oscillations at the
relaxation frequency of the laser and then a succession of
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FIG. 1. (a) Bifurcation diagram corresponding to the extrema of
the output power with γ as the bifurcation parameter. The bifurcation
diagram has been obtained from Eqs. (1) and (2) with the values of
the parameters fixed to P = 0.0417, θ = 400, T = 1428, and α = 3.
(b) Mapping of periodic solutions in the parameter plane (θ,γ ). The
color bar on the right indicates the frequency of oscillations in GHz.
The orders of ECMs are labeled on the bands of hyperbolic shape and
the red arrows and crosses serve as indicators for Figs. 2 and 3.

bifurcations corresponding to a cascade of different regimes
[14,19]. For higher values of γ , the system exhibits successive
ECMs interspersed with regions of chaos that shrink as γ

increases [15].
From this bifurcation diagram and the associated time

traces, we identify the oscillating solutions and measure their
frequencies, discarding steady states, quasiperiodic solutions,
and chaos. We repeat the process for values of the time delay in
the aforementioned range and report the measured frequency
of oscillations in Fig. 1(b), color-coded in the plane (θ,γ ). The
white background corresponds to regions where the dynamics
have been discarded (nonoscillating solutions). Each band in
the map corresponds to a unique ECM of order n [numerical
labels in Fig. 1(b)], meaning that its frequency is equal to
n times the external-cavity frequency fEC = 1/(θτp). The
oscillating frequency of the ECM of order n is therefore given
by fn = n/(θτp). The undamping of relaxation oscillations
is observed in the bottom of the map for low values of γ .
The darkest shade of blue identifies parameter regions where
the laser shows regular self-pulsation at a frequency close
to the frequency of relaxation oscillations, varying from
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FIG. 2. (a) Frequency of the time-periodic regimes for θ = 400
as a function of the feedback rate. (b) and (c) are the time series of
the output power for γ = 0.025 and γ = 0.05, respectively. Other
parameters are the same as in Fig. 1(a).

750 MHz to 1 GHz—with τp = 1.4 ps—depending on the
values of γ and θ .

We then explore the map by scanning it along different
directions [see red arrows in Fig. 1(b)]. First, we look at the
evolution of the oscillation frequency as a function of the
feedback rate with a fixed time delay θ = θ1 = 400 [vertical
red line in the map of Fig. 1(b)] [see Fig. 2(a)]. We observe
that the frequency of oscillations is close to the harmonics
of fEC = 1.78 GHz, as expected from the literature [15,16].
Increasing the feedback rate leads to the successive stepwise
increase of the frequencies. The system visits a significant
number of ECMs of higher order, which is illustrated with the
time traces in Figs. 2(b) and 2(c), corresponding to the red
crosses in Fig. 2(a).

In Fig. 3, we represent the frequency of the oscillations as
a function of θ for two fixed values of γ (γ = γ1 = 0.025 in
gray and γ = γ2 = 0.05 in black). It corresponds to horizontal
scans of the map in Fig. 1(b) (see red lines). We first observe
that for a slight increase of the delay, the frequency of
the oscillations decreases. When the time delay is increased
further, we observe that the oscillation frequency goes back
up to values close to where it started, which corresponds to
a jump to an ECM of higher order. This pattern repeats itself
along the θ axis. In the end, the oscillation frequency tends to
a constant value when increasing the time delay. Figures 3(b)
and 3(c) represent time traces for different values of θ but with
γ fixed. We observe that the system generates oscillations of
about the same frequency although the external-cavity length
doubles from panel (b) to panel (c).

This property is unique and counterintuitive in comparison
to what is known from the literature for external-cavity laser
diodes [5,7]. For comparison, we plot in Fig. 3(a) (in blue
with symbol �) the evolution of the frequency for the stable
and regular oscillations in the output power of a laser diode
subject to COF and γ = 0.025, all other parameters remaining
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FIG. 3. (a) Frequency of the periodic oscillations for γ1 = 0.025
(gray) and γ2 = 0.05 (black) as a function of θ for a laser subject
to PCF. In blue with diamonds (�), the frequency of the periodic
oscillations for γ1 = 0.025 as a function of θ for a laser subject to
COF. (b) and (c) are the time series of the output power for θ = 400
and θ = 815, respectively, in the PCF configuration. Values of the
other parameters are the same as in Fig. 2(a) except γ = 0.05.

the same as for the PCF case. In the COF case, a short cavity is
more likely to yield the highest possible frequency of regular
oscillation. In the PCF configuration instead, a short cavity can
slightly increase the frequency but the ruling parameter is the
feedback rate. It means that faster oscillations are attainable in
the system by increasing the reflectivity of the PCM, regardless
of the cavity length.

To summarize this result, we can say that the value of
γ approximately sets a particular value for the frequency of
oscillation (fγ ) of the laser with PCF. The system will naturally
find the order n of ECM that allows fn = n/(θτp) to be the
closest possible to fγ . In addition, fγ increases monotonously
with γ . In order to provide a possible origin for this behavior,
we study the Hopf bifurcations of our system, and how the
ECM solutions emerge from them.

To this end, we investigate Eqs. (1) and (2) using a
continuation method [25] with θ fixed to 476 (see Fig. 4).
The system admits two steady states that we call upper (red
dashed line) and lower (blue solid line) steady states. The
Hopf bifurcations emerging from the steady-state branches are
marked by circles (©). Note that we only consider the interval
of feedback strength [0.018; 0.056], for clarity, but other
Hopf bifurcations exist outside this interval. The black curves
correspond to the maxima of the different ECMs and the purple
(thick solid) lines correspond to the regions where they are
stable. They are delimited by squares (�) and stars (∗) which
are saddle-node and torus bifurcations, respectively. Green
(gray solid) lines represent periodic solution branches that link
the ECM to the steady-state branches by Hopf bifurcations. We

 γ

FIG. 4. Bifurcation diagram obtained by continuation. Black
lines are the maxima of ECM branches, red (dashed) lines and
blue (solid) lines at the bottom are the upper and lower steady-state
branches, respectively. Green (gray solid) lines correspond to the
periodic solution branches linking the ECM to the steady-state
branches by Hopf bifurcation. Circles (©) are Hopf bifurcations
emerging from the steady states. Squares (�) are saddle-node
bifurcations and stars (∗) are torus bifurcations. The purple (thick
solid) lines represent the areas where the ECM is stable. θ = 476 and
the other parameters are the same as in Fig. 1(a).

observe that each branch of ECM is connected to two Hopf
bifurcations: one from the upper steady state and one from the
lower steady state.

From the direct numerical simulations, we are mostly
interested in the effect of time delay rather than the feedback
strength. Since the ECMs exist through Hopf bifurcations,
it is worthwhile to study the Hopf bifurcations and their
frequencies in the parameter plan (θ,γ ). To this end, we
consider the Hopf bifurcation conditions derived in Ref. [14]
[Eqs. (B8) and (B9)] and use the Newton-Raphson method in
order to find the different Hopf branches. We then follow
each branch in the range of feedback strength and delay
previously mentioned and obtain Fig. 5(a). Red shows the
Hopf bifurcation points emerging from the upper steady-state
branch and blue from the lower steady-state branch.

In comparison with Fig. 1(b), we first observe that the shape
of the Hopf bifurcation branches follows the shape of the ECM
bands. Second, the total number of Hopf bifurcations emerging
from the upper and lower steady-states is approximately twice
the number of ECMs, which is consistent with our observation
in Fig. 4.

Of particular interest is the frequency of the Hopf bi-
furcations. In Fig. 5(b), we represent the Hopf bifurcation
frequencies at two given values of γ (0.025 in gray and 0.05
in black). The circles correspond to the one emerging from
the lower steady state, whereas the crosses correspond to the
upper steady state. As observed for the ECM frequencies [see
Fig. 3(a)], the value of γ sets the frequency. For example, when
γ = 0.025, the frequency of the Hopf bifurcations is around
7.5 GHz, whereas when γ = 0.05 the frequency is around
15 GHz. Note that some of the Hopf bifurcation frequencies
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FIG. 5. (a) Hopf bifurcation points emerging from the upper
steady-state branch (red dashed lines) and from the lower steady-state
branch (blue full lines) in the (θ,γ ) plan. Values of the parameters are
the same as in Fig. 1(a). (b) Hopf bifurcation frequency as a function
of θ . Crosses (+) correspond to the Hopf bifurcation points emerging
from the upper steady state, whereas circles (◦) correspond to the
lower steady state. Gray and black colors correspond to γ1 = 0.025
and γ2 = 0.05, respectively. Other parameters are the same as in
Fig. 1(b).

exist at low values. They appear when a branch of Hopf
bifurcation in the (θ,γ ) plan folds back. These values are
close to those found for the ECMs. Indeed, for comparison,
Fig. 6(a) shows the evolution of the frequency of ECMs as a
function of θ (gray dots). The symbols � and ∗ indicate the
saddle-node and torus bifurcations delimiting the stability of
the ECMs, as indicated in Fig. 5(a). The feedback rate γ sets
the value of the oscillation frequency and that value is close
to that obtained from the inspection of the Hopf bifurcation
frequencies. Moreover, that picture explains why high order
ECMs, i.e., ECMs of higher harmonic frequencies, remain
stable when increasing θ , hence allowing for the laser self-
pulsation frequency to remain constant in spite of the increase
of external-cavity length. The stability of ECMs is indeed
determined by the saddle-node and torus bifurcations and these
bifurcations define a range of θ for which the ECM is stable,
labeled �θ in Fig. 6(b), which increases when increasing θ .
This mechanism that explains the stability of ECMs in PCF
leads to the self-determining frequency mechanism and also
to multistability between ECMs. The increased stability of
ECMs when increasing the time delay θ for the PCF case is
an opposite conclusion to the one typically retrieved from the
long-delay limit analysis of time-delay systems [26,27].
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FIG. 6. (a) Gray dots: Frequency of the periodic oscillations for
γ1 = 0.025 without noise. The labels correspond to the external-
cavity mode order. � and ∗ are saddle-node and torus bifurcations,
respectively. Green crosses: Frequency of the periodic oscillations
for γ1 = 0.025 with spontaneous emission noise. Orange circles:
Frequency of the periodic oscillations using the filtered PCF model
of Ref. [23] with parameters P = 0.005, τr = 50, and α = 3.3. (b)
Evolution of the range of θ leading to stable ECM, labeled �θ as a
function of n, the external-cavity mode order.

Finally, we have checked whether our theoretical prediction
of a self-determining self-pulsation frequency in PCF still
holds in situations closer to experimental realizations. In
particular, we consider two situations: (i) adding spontaneous
emission noise in models (1) and (2) or (ii) accounting
for the finite penetration depth in the nonlinear medium
as typically observed in experiments using photorefractive
crystals. Spontaneous emission is modeled by adding a term√

Rξ (t) in Eq. (1) [20,28] modeling a white Gaussian noise
of variance R and mean zero. For realistic values of R such
as R = 10−12 (corresponding to D = 10−4 ns−1 in Ref. [28]),
the model predicts that the jumps between ECMs may occur
at slightly different values of θ and in a slightly more erratic
way. As shown in Fig. 6(a) (green “+” symbols) the self-
pulsation frequency shows a similar evolution with θ as in the
deterministic case. The inclusion of the photorefractive crystal
penetration depth is done as in Ref. [23] with an additional
filter equation on the feedback field. The orange circles in
Fig. 6(a) show the evolution of the self-pulsing frequency for
parameters P = 0.005, τr = 50 meaning a crystal about 5 mm
long with a refractive index equal to 2.1, α = 3.3. Since this
filtering effect leads to restabilization of the laser dynamics for
large γ , the regime of ECM is shifted to lower γ . The situation
shown in Fig. 6(a) is for a lower feedback rate (γ = 0.019)
and hence leads to a lower self-pulsating frequency, which is
consistent with our previous analysis.

In summary, we have reported a counterintuitive phe-
nomenon in external-cavity laser diodes. In order to generate
high-frequency solutions, we usually consider very small ex-
ternal cavities, a challenge which has been tackled with on-chip
integration. However, in the case of a laser with PCF, unlocking

061803-4



RAPID COMMUNICATIONS

SELF-DETERMINING HIGH-FREQUENCY OSCILLATION . . . PHYSICAL REVIEW A 94, 061803(R) (2016)

high-frequency oscillating states can be achieved over a large
range of external-cavity lengths. Indeed, we have found that
the system self-determines its favored oscillating frequency
based on the feedback rate, with only small variations when
varying the length of the external cavity. Furthermore, we
explain this property by a bifurcation analysis and relate it to
Hopf bifurcations from which emerge the oscillating solutions.
Our conclusion is robust against the addition of noise or when
taking into account the penetration depth of the laser beam in
the nonlinear medium constituting the phase-conjugate mirror.
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