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ABSTRACT

In this research, we have adapted our recently proposed Versatile Similarity Measure (VSM) for holographic
data analysis. This new measure benefits from nice mathematical properties like boundedness to [0;1], relative
error weighting based on the magnitudes of the signals, steerable similarity between original and negative phase;
symmetry with respect to ordering of the arguments and the regularity of at least a continuous function. Utilizing
its versatile design, here we present a set of VSM constructions specifically tailored to best fit the characteristics
of complex wavefield of holograms. Also performance analysis results are provided by comparing the proposed
constructions as fast, stand-alone perceptual quality predictors to few available competitors of the field, namely
MSE and the average SSIM of the real and imaginary parts of holograms. Comparing their visual quality
prediction scores with the mean opinion scores (MOS) of the hologram reconstructions shows a significant gain
for all of the VSM constructions proposed in this paper, paving the way towards designing highly efficient
perceptual quality predictors for holographic data in the future and also representing the potential of utilizing
VSM for other applications working with complex valued data as well.

Keywords: VSM, Digital Holography, Quality Assessment, PQP, Complex analysis

1. INTRODUCTION

Digital Holography provides the prospect to enable a high quality of experience (QoE) in terms of 3D visual
perception. In medical imaging for example Digital Holographic Microscopy facilitates a highly accurate ax-
ial(depth) resolution which is exploited in a number of applications like study of undisturbed cell processes and
their morphology1 , red blood cell studies2 and tomography3 . One setup to record a digital hologram requires
the recording of interference patterns at multiple depths of a highly coherent and collimated reference beam
and the reflected beam from the object. From this the full information of the electro-magnetic field, which is
complex valued, can be inferred in one plane. In Computer Generated Holography this complex valued data
can be obtained directly by simulating the light propagation. From this data the object can be visualized by
reversing the light propagation numerically or optically. Thereby the focal plane and perspective (within the
recorded field of view) can be chosen freely.

One might assume this visual complex data can be handled by repeating a desired operation from regular 2D
imagery for the polar or Cartesian coordinate components independently. But even if mathematically equivalent,
the polar form was found to be subjected to highly non-linear distortions with respect to its components. This
behavior is known from digital image processing4–7 and persists for holograms, where the phase encodes —
amongst others — the depth information. However, for tasks like compression and consequently visual quality
assessment of the compressed holograms, even the components in a Cartesian coordinate system are highly
correlated and an averaged evaluation on split parts is unfavorable. Over and above, the visual quality assessment
of holograms receives an extra level of complexity comparing with regular imaging modalities. This refers to the
fact that data processing and channel distortions degrade the hologram while the visual quality of the encoded
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scene can be judged only after the reconstruction process. On top of that the perceived quality depends on the
chosen perspective as well.

An efficient algorithm for perceptual quality prediction of holographic data, should be able to effectively
analyze the hologram and predict the perceived quality of the reconstructed object ideally, without performing
the reconstruction process. Thus the judgment of the quality of a holographic visualization should be based on
its unique complex valued representation. Such algorithms primarily require an efficient measure to compare
the complex valued distorted holograms with the reference. Euclidean distance based error measures like Mean
Squared Error (MSE) are widely utilized for measuring the dissimilarity of holograms since it is possible to
apply them directly on complex data, even though MSE is not bounded and, more importantly, lacks local
interpretability. Alternatively, one may use the conventional similarity measures defined for real-valued data to
separately evaluate the real-valued components of any representation of complex numbers in holograms. In [8]
Structural SIMilarity (SSIM) was used to calculate the similarity of the real and imaginary parts of holograms
and then obtain the final score by averaging the two scores. However, that way any correlation between the two
parts is discarded and it is also not possible to discriminate between holograms, one with extremely high quality
on one channel while the other one is extremely low and another hologram with equally half quality level on
both channels.

A successor of the SSIM which is invariant to the size of the matched patterns is the Complex-Wavelet SSIM
(CWSSIM)9 . Although its name may lead one to think that it would be suited for complex valued data, it is
designed for real-valued data on a fundamental level. The evaluation of the CWSSIM consists of three stages:
1) Fourier transform, 2) wavelet transform with a complex-valued steerable wavelet pyramid construction, 3)
evaluation of a variation of the SSIM on the complex-valued wavelet coefficients. The Fourier transform is used
to incorporate low sensitivity to small translations and rotations which manifest itself in the Fourier domain
as constant phase shifts. The wavelet transform adds a scale invariance and separates phase from magnitude
distortions whilst being insensitive to constant phase shifts. The final component is a version of the SSIM that
is defined on complex-valued data. It equals the SSIM with respect to absolute values and ignores constant
phase shifts. These constant-phase shifts are resulting from small rotations, translations, luminance or contrast
changes eventually only after stages 1) and 2), if real-valued input data is assumed. As such the CWSSIM is
ill-fit for complex valued data.

Recently in10 , a new versatile similarity measure (VSM) was introduced specifically designed for error analysis
of data containing complex values. In this research, we present a set of VSM constructions that can be used
for analysis of complex wavefields. All the new constructions inherit the general characteristics of the VSM
framework, which means every construction benefits from nice mathematical properties like boundedness to
[0, 1], relative error weighting based on the magnitudes of the signals, steerable similarity between original and
negative phase, symmetry with respect to ordering of the arguments, and the regularity of at least a continuous
function. In section [2], the VSM framework and the proposed constructions are detailed. In section [3], the
experimental set up for performance evaluation of proposed measures is explained. In section [4], the evaluation
results are provided. The proposed methods are compared with MSE and SSIM, their differences are analyzed
and in the final section we provide the conclusion and outline future work.

2. VERSATILE SIMILARITY MEASURE ORIGINS

The general VSM model is formed as a product of three factors. Given two complex matrices of equal shape, we
evaluate per entry:

∀z, w ∈ C : ρ(z, w) = γM(z, w) · γrφ(z, w) · γaφ(z, w), (1)

where γM is a measure of the error in magnitude, γrφ is a measure of the relative phase error, and γaφ is a
measure of the absolute phase error. This simple design makes it possible to locally interpret the similarity of
data and/or to employ any pooling method for a less localized result. Furthermore, the product structure allows
for an easy interpretation as it is ∼ 0, if and only if any of the components fails. Individual factors may be
replaced/adapted to an application independently. In the following, we will motivate the introduction of each
component with simple examples, analyze their properties , and provide a set of possible options.
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As mentioned earlier, the amplitude and phase parts of complex valued data behave fundamentally different.
Hence, it makes sense to judge the quality of visual complex-valued data based on polar coordinates instead of
their less sensitive Cartesian pendants. Aside from this we also actively investigated several ideas (not shown
here) to extend notions of similarity on real-valued data for Cartesian coordinates and obtained unsatisfying
results.

Case 1: Let us consider z = 1eiφ and w = αeiφ with α ∈ R, φ ∈ [0, 2π). We will keep the parameter ranges
for α, φ for the rest of this section. The initial motivation for the VSM was the notion of similarity for real-valued
numbers, which sits at the core of the SSIM. This similarity notion is based on a bounded quantity (outside of
(0, 0)), here simply referred to as s

∀x, y ∈ R : s(x, y) =
2xy

x2 + y2
=

1− (x− y)2

x2 − y2
∈ [−1, 1] . (2)

Values close to 1 suggest high similarity of x and y, values close to −1 mark high similarity of opposite signs
and values close to 0 mark large differences. This notion will suit us whenever we operate in the real domain R.
For now, we note that by using γM(z, w) = s(|z| , |w|) it coincides with eq. (2) on R+

0 and extends this notion
by rotation around the origin. Note, that restricting the matching of s(x, y) to R+

0 is mandatory because it is
an odd function on R and γM should stay independent of phase differences. We thus have found one candidate
for our first term measuring the magnitude similarities of arbitrary complex numbers. This provides a good
foundation for our model by reusing established notions.

Case 2a: We discriminate z = αeiφ from its negative −z directly through the absolute phase error γaφ.
Intuitively it can be implemented as a (near) step function that solely depends on the absolute values of the
phase differences. It assigns distinguishes chosen ranges of those absolute values of phase differences. For example
those larger than 90◦ from those that are smaller. The number of those ranges and the assigned values are rather
arbitrary choices and no single good intuition can be established here. For certain applications two intervals,
one marking values ”close to” z and those ”close to” −z with a similarity of −1, as SSIM proposes, seems good
but other values such as 0, 0.5, 1 or more intervals could have their stands too.

Case 2b: The more interesting case of arbitrary phase differences φ is analyzed by setting z = 1 and w = eiφ.
The error in phase is measured best by the deviation of w from the line spanned by z, −z since we could already
take care of distinguishing these two points with γaφ eventually. Thus we introduce the relative phase error
which measures how far off the w is of that very line and assigns a similarity to it. The intuition is that a small
phase difference from the line should still make up for a high similarity. The similarity should be low for 90◦

relative phase difference, that is maximal distance, and again depending on the application possibly other values
in the range (0◦, 90◦). For the sake of simplicity we restrict ourselves in this work to the simple case of minimal
similarity for a relative phase difference of 90◦, which means two similarity intervals on the unit circle. This
notion can be motivated in many applications based on electromagnetic waves since they are known to possess
an instantaneous representation by two orthogonal, linear polarization components. These components would
correspond to the polarization planes spanned by the direction of propagation including z or its 90◦ rotated
pendant.

Now, all three components are assembled and we facilitate some requirements for each of the components.
The first property, we would like to enforce, is scale-invariance to account for mismatches in magnitude:

∀α ∈ R+∀z, w ∈ C : ρ(z, w) = ρ(αz, αw). (3)

Since magnitude is rated only via γM this is the only term affected by the condition. This requirement is the
most intuitive way to handle differences in magnitude. Given for example z1 = 1, z2 = 255, w1 = 2, w2 = 256 we
expect that γM(z1, w1)� γM(z2, w2). This invariance can be interpreted as assigning similarities proportional to
the 1−dist, for example using the Euclidean distance, of the points inverted along the unit circle in the complex
domain. This is nothing other than concatenating z−1 with 1 − ‖z − w‖2 in case of the Euclidean distance. In
practice, this construction will give rise to a series of other problems, such as unboundedness in the origin, but
we might still keep the motivation of the relative scaling requirement for γM and search for similar functions.
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One candidate is already delivered by eq. (2) and others will be given shortly. A second required property, which
holds for eq. (2) too, is the symmetry with respect to the order of the arguments, i.e.

∀z, w ∈ C : ρ(z, w) = ρ(w, z). (4)

Note, ρ will be symmetric with respect to the origin in general only, if γaφ ≡ 1. From the reasoning given for
the cases 2a) and 2b) the invariance under constant phase shifts of both arguments already follows

∀φ∀z, w ∈ C : ρ(z, w) = ρ(zeiφ, weiφ). (5)

Fourth, we explicitly aim for functions that are bound for all arguments. This will make normalization before
pooling largely unnecessary and ensure a local as well as global interpretability. Finally, we like to use the liberty
of selecting each of the components quite freely to obtain a function ρ that is at least continuous. This is a
favorable outcome for any possible subsequent optimization tasks. In principle, it would be possible to extend
the model, (1), with one exponent per factor, as it is already common for the SSIM. However, we decided not to
add these explicit exponents at this stage, as they can be easily included into each of the single components.

These properties are visualized in fig. 1 using one exemplary choice for each of the components, each evaluated
with respect to the same point of reference 3 + 0.1i.

Figure 1: Regions of high similarity for an examplary VSM ρ and its three components: magnitude error γM,
relative γrφ and absolute phase error γaφ evaluated for varying z ∈ C.

We close this section with presenting some choices for each of the components. Defining the scale of two com-
plex numbers, z, w, based on the minimum as s := min (|z| , |w|) and based on the maximum as t := max (|z| , |w|)
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Figure 2: Magnitude error measure deductions alike 1 − z−1 of varying regularity and shape. The values in
brackets give the parameter values. For the functions based on the Gaussian distribution the pairs are (σ, p).
Shown are the behaviors for a fixed point of reference and a fixed offset.

we have for γM:

γM
{

Abs−1Min

}
(z, w) :=

(
||z| − |w||

s
+ 1

)−1
, (6a)

γM
{

Abs−1Max

}
(z, w) := 2

(
||z| − |w||

t
+ 1

)−1
− 1 (6b)

γM {Abs} (z, w) := 1− ||z|
p − |w|p|

|z|p + |w|p
, p ∈ [1,∞], (6c)

γM {Gaus} (z, w) := 1− exp

(
−
(

s

||z| − |w||

)p/(
2σ2
))

, p, σ ∈ (0,∞), (6d)

γM {Bump} (z, w) :=
e

e− 1
exp

(
−
[
1 +

(
s

||z| − |w||

)p]−1)
− 1

e− 1
, p ∈ [1,∞). (6e)

Examples for the functions above are shown in Fig. 2. All these methods require a regularization in (0, 0) to
account for γM(0, 0) := 1 and smoothen out existing discontinuities near the origin. The regularization is done
by imposing a lower bound in form of a cone, of radius ε and height 1, centered in the origin. It is given as:

R1 (γM(x, y), x, y, ε) :=

γM(x, y) , (|x|2 + |y|2) > ε,

max
{
γM(x, y), 1− |x|

2+|y|2
ε

}
, (|x|2 + |y|2) <= ε,

. (7)

Thereby it should be ε� 1, e.g. ε = 10−8.

(6a) follows the initial idea of closely as possible whilst being bound to [0, 1] and as such continuous in C. To
get a finite upper bound in z−1, it is changed into (z+ 1)−1. If we base the scale on the maximum instead of the
minimum absolute value of the two arguments, we arrive at (6b). (6c) extends the relative difference by allowing
powers p 6= 1. It is continuous and bound to (0, 1). (6d) measures the difference in magnitude with respect to
a scale corrected as |z|−1 within the exponential decay of the Gauss distribution to improve regularity. Its two
parameters are the standard deviation, σ, and a power, p, of the |z|−1 dependency. A mean value different than
0 is not meaningful as 1 should be assigned only in case of exact coincidence with respect to magnitude. The
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Figure 3: Some examples illustrate the variability in relative phase error measures that yield high values for
small angles, decline fast, and are 0 in ±π/2. The values in parenthesis are the parameters used.

model is C∞ and bound to [0, 1). (6e) is based on the so called bump function (p = 2). It takes the power p of
the relative difference in magnitude as a parameter and is C∞ as well as bound to [0, 1).

All relative phase differences, ∠ (z, w) ∈ [0, π], are measured in terms of the complex phase, ang (z) ∈ [0, 2π),
both defined as:

∠ (z, w) :=

|ang (z)− ang (w)| , <= π

|2π − ang (z)− ang (w)| , otherwise

(8)

Some selected options for γrφ are displayed in Figure. 3. The propositions in this section are all based on
exponential or trigonometric functions to achieve high regularity.

γrφ {|Cos|} (z, w) := |cos (∠ (z, w))| , (9a)

γrφ {Cos} (z, w) :=
1

2
(cos (2∠ (z, w)) + 1) , (9b)

γrφ {GausM} (z, w) := (1 + d) exp
(
−a∠ (z, w)

2
)
− d , a :=

4

π2
loge

(
1 + d

d

)
, d ∈ (0, 1) (9c)

(9a) is a simple reflection of cos at 0, continuous but not differentiable in ±π/2. (9b) is a shifted and squeezed
cos and hence C∞ everywhere. (9c) is based on a periodic continuation of a modified Gaussian distribution
defined on [−π/2, π/2]. It takes a parameter d that is used to lower and rescale the Gaussian distribution such
that it is 1 in 0 and 0 in {±π/2}. A mean value 6= 0 is not meaningful and a standard deviation 6= 1 would lead
to non-surjectivity or unboundedness. This model is C∞ everywhere.

We present only one option to measure the absolute phase error which ties in already perfectly with the
physical orthogonality condition on γrφ still ensuring continuity of ρ.

γaφ(z, w) := λ+ (1− λ)H(
π

2
− ∠ (z, w)), (10)

This mirrored and shifted Heaviside function has one height parameter λ ∈ (0, 1), which controls directly the
similarity of ρt(z,−z). It can be interpreted via ρ(z,−z) = γaφ(z,−z) = λ ∈ [0, 1], ρ(z, z) = γaφ(z, z) = 1.
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3. EXPERIMENTAL SETUP

The goal in these experiments is to investigate the practical relevance of the mentioned functions in previous
section for the three modules of VSM (ρ) for specific case of Holographic data. Table 1, shows the selected
functions and corresponding parameters settings. A total number of 220 constructions were tested for the VSM
based on the 3 γrφ and 5 γM (with parameters as mentioned in Table 1). All 220 constructions were tested on
subjectively rated holograms of the INTERFERE-I database which contains 5 references and 96 CGH compressed
holograms. More details about tested holograms can be found in [11]. After calculating pairwise VSM values for
each Hologram pair, a simple median and average pooling was performed to calculate the overall prediction scores
for the distorted hologram. Here after, VSM constructions with median and mean pooling will be represented
as VSMmed and VSMµ respectively.

We also measured MSE and channel wise SSIM for real and imaginary parts of those holograms. The
MSE results were normalized by the square of the Frobenius norm of the reference hologram hereafter will
be shown as the Normalized Mean Square Error (NMSE). The SSIM results were averaged over the real and
imaginary channels and through the text will be indicated as SSIMµ. Later on the 1 − VSM and 1 − NMSE
were used as similarity measures. The results from all 222 measures (220 VSM’s plus NMSE and SSIMµ) were
compared against the Mean Opinion Scores (MOS) gathered from the human subjects who rated the quality of
the reconstructed holograms. The evaluation criteria used to compare the performance of the above similarity
measures are the Mean Absolute Difference (MAD) between MOS scores and the predicted similarity measures,
Pearson, Spearman and Kendall correlation coefficients. For the MAD we simply averaged over the absolute
difference between 96 MOS for all holograms and the predicted quality scores of each quality measure. The
MAD value is used as an indicative of the prediction accuracy, thus lower MAD represents better overall MOS
prediction through the whole dataset. The Pearson Correlation (CorrP) shows us how linear the behaviour is for
each quality measure compared to MOS. The Spearman rank order correlation (CorrS), while being less sensitive
to outliers than CorrP, is used to provide us an estimation of monotonicity for each quality measure compared
to the MOS. Kendall’s tau correlation (CorrK) is calculated to measure the degree of associativity between MOS
and predicted scores.

Table 1: VSM modules, corresponding functions and their parameter settings, overall making 220 combinations
to be used as VSM constructions in the experiments.

VSM Module Function Parameters

γM

γM
{

Abs−1Min

}
(z, w) (6a) -

γM
{

Abs−1Max

}
(z, w) (6b) -

γM {Abs} (z, w) (6c) p ∈ {1, 2}
γM {Gaus} (z, w) (6d) (p, σ) ∈ {(1, 1) , (1, 2) , (2, 1) , (2, 2)}
γM {Bump} (z, w) (6e) p ∈ {1, 2, 3}

γrφ

γrφ {|Cos|} (z, w) (9a) -

γrφ {Cos} (z, w) (9b) -

γrφ {GausM} (z, w) (9c) d ∈
{

10−4, 10−3, 10−2
}

γaφ γaφ(z, w) (10) λ ∈ {−1, 0, 0.5, 1}

4. ANALYSIS OF THE RESULTS AND DISCUSSION

In this section, the experimental results from the evaluation test are provided. Figure 4 represents the results
for all the VSM constructions in terms of MAD. The corresponding values for NMSE and SSIMµ are depicted in
the graph as an straight line (repetition of the same value) for the sake of easier comparison. First, one can see
that for almost all VSMmed the prediction error is larger than VSMµ, representing less overall accuracy. This
can be due to less sensitivity of the Median to the outliers (which in this case will be certain points or regions
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Table 2: Best VSM constructions with respect to the evaluation criteria and pooling strategies applied.

Criterion Pooling Corresponding Best VSM Construction Index

MAD (lowest)
Median VSM1 = γM {Abs}p=2 · γrφ {GausM}d=10−4 · γaφ {λ = −1} (z, w) 29

Mean VSM2 = γM {Gaus}(p,σ)=(2,1) · γrφ {GausM}d=10−4 · γaφ,λ=−1(z, w) 89

CorrP (highest)
Median VSM3 = γM {Gaus}(p,σ)=(2,1) · γrφ {GausM}d=10−4 · γaφ,λ=−1(z, w) 89

Mean VSM4 = γM {Gaus}(p,σ)=(2,1) · γrφ {|Cos|} · γaφ,λ=−1(z, w) 85

CorrS (highest)
Median VSM5 = γM {Gaus}(p,σ)=(1,2) · γrφ {|Cos|} · γaφ,λ=0.5(z, w) 67

Mean VSM6 = γM {Bump}p=3 · γrφ {Cos} · γaφ,λ=−1(z, w) 161

CorrK (highest)
Median VSM7 = γM {Abs}p=1 · γrφ {GausM}d=10−4 · γaφ,λ=−1(z, w) 9

Mean VSM8 = γM {Bump}p=3 · γrφ {Cos} · γaφ,λ=−1(z, w) 161

on the hologram which are highly degraded) affecting the overall quality of the reconstruction. Apart from this,
it can be seen that irrespective to the pooling strategy, almost all of the VSM constructions show less average
difference compared to the NMSE values. Also compared to the SSIMµ, many of the constructions, especially
the ones with mean pooling, show better performance. However, in certain cases the constructions show more
overall difference than SSIMµ.

Figure 5 represents the Pearson correlation coefficient for all the tested methods. similar to the Figure 4
values for NMSE and SSIMµ are represented as straight lines. Interestingly, it turns out all VSM constructions
irrespective to the pooling strategy clearly outperform both NMSE and SSIMµ in terms of linear correlation with
MOS. Also it can be seen that SSIMµ is slightly better than NMSE . In Figure 6, where results for Spearman
rank correlation are shown, again a significant gap between all VSM constructions and the other two competitors
can be seen. However, here it is the NMSE which shows better performance than SSIMµ. The Kendall’s tau
correlations are shown in Figure 7, where similar to the case of CorrS, all VSM constructions clearly perform
better than the other two measures and again NMSE stands higher than SSIMµ. Overall, the results of our
experiments demonstrates a consistently better performance of VSM (for all the functions proposed for different
modules) over the NMSE and SSIMµ and this is irrespective to the parameters settings and pooling strategy.

The next goal is to find the best possible construction for VSM for the tested combinations of proposed
functions which are summarized in table 1. However, depending on the evaluation criterion and pooling strategy,
different constructions show slightly better performance over the others. Due to this, we were unable to find a
single construction which consistently performs better than all and for all evaluation criteria. Table 2 shows best
constructions with respect to each evaluation criterion and pooling strategy. An interesting conclusion which can
be drawn by looking at these constructions, is that for 7 out of 8 constructions, for γaφ(z, w) in (10), λ = −1.
This is important because it shows that at least for holographic data modality the best choice(w.r.t to subjective
ratings) for maximum phase dissimilarity is equal to phase shift of π. Moreover, wherever γrφ {GausM} (9c)
appears, d = 10−4, suggesting that this parameter should be very small.(e.g values smaller than 10−4 may slightly
improve the performance).

Finally in Figure 8, the correlation values of 8 constructions depicted in Table 2 are shown side by side
NMSE and SSIMµ . As we mentioned previously, it is obvious that any of the tested VSM constructions and
especially the ones presented in Table 2 not only outperform the conventional quality measures for all evaluation
criteria but also suggest a significant compatibility with the perceptual quality of the reconstructed holograms.
Considering the fact that in this research we put the least effort for pooling the final VSM score by simply using
the average or Median of all pairwise calculated ρs, even more improvements can be expected to achieve if more
advanced pooling strategies utilized in future.
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5. CONCLUSION

In this research, The recently introduced Versatile Similarity Measure framework was utilized to propose a set of
constructions for visual quality assessment of digital holograms. Every and each of the proposed constructions
along with two traditional quality measures of the field namely MSE and SSIM were tested over complex wavefield
of a set of subjectively rated computer generated holograms (INTERFERE-I database). The predicted similarity
scores of each quality measure was compared with the provided Mean Opinion Scores of reconstructed holograms.
The experimental results demonstrated consistently better performance for all of the VSM constructions proposed
in this paper over the MSE and SSIM. Such a consistently good performance is suggesting the potential of VSM
framework to be utilized for designing future holographic PQPs and also its capability for error analysis of other
data modalities where comparison of complex valued data is required.
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Figure 4: Mean of absolute difference between 96 MOSes and predicted scores for 220 VSM constructions with
median and mean pooling. The corresponding value both for NMSE and SSIMµ are shown as an straight line.
Lower value considered better and represents more accurate prediction of MOSes.

Figure 5: Pearson correlation coefficient calculated for 220 VSM constructions with median and mean pooling.
The correlation value both for NMSE and SSIM is shown as a straight line.
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Figure 6: Spearman correlation coefficient calculated for 220 VSM constructions with median and mean pooling.
The correlation value both for NMSE and SSIM is shown as a straight line.

Figure 7: Kendall correlation coefficient calculated for 220 VSM constructions with median and mean pooling.
The correlation value both for NMSE and SSIM is shown as a straight line.
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Figure 8: Pearson, Spearman and Kendall correlation coefficient for NMSE, SSIM, and the best 8 VSM con-
structions.

Proc. of SPIE Vol. 10396  103961I-12

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/22/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx


