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FROBENIUS AND SEPARABLE FUNCTORS FOR THE CATEGORY OF

ENTWINED MODULES OVER COWREATHS, II: APPLICATIONS

D. BULACU, S. CAENEPEEL, AND B. TORRECILLAS

Abstract. Let H be a quasi-Hopf algebra. We apply results obtained in [8] to give necessary
and sufficient conditions for the forgetful functor from Doi-Hopf modules, two-sided Hopf modules

or Yetter-Drinfeld modules over H to representations of the underlying algebra to be Frobenius

(resp. separable). We show that in some situations these conditions reduce to the unimodularity
and/or (co)semisimplicity of the quasi-Hopf algebra H.

Introduction

This paper is the final one in a series that had as main goal the study of Frobenius and separable
properties for forgetful functors defined on categories of entwined modules over cowreaths obtained
from certain quasi-Hopf actions and coactions. We initiated this study in [6] where we presented
the connection between (co)wreaths and certain (co)ring structures, as well as their connection with
certain entwined modules. This leaded us to a connection between Frobenius/separable wreaths in
2-categories and algebra extensions produced by them that are Frobenius/separable, see [11]. We
should note that the general theory of Frobenius monads was considered by Street in [24]. Last but
not least, in [8] we developed a theory that allows us not only to achieve our mentioned goal but
also to produce similar results for other generalizations of Hopf algebras.
Frobenius/separable functors are strictly related to Frobenius/separable algebra extensions, see
[11, 14]. From this perspective, in Hopf algebra theory, the study of Frobenius and separability
for Doi-Hopf modules was done in [13, 15, 16]. Afterwards this study was refined and applied
to entwined modules by Brzeziński in [2]. In either case the Frobenius or separability property
reduces to a certain morphism to be an isomorphism or to a list of conditions imposed to a certain
bilinear form, respectively. In [8] we uncovered a monoidal interpretation for these results. Namely,
Doi-Hopf modules can be regarded as entwined modules over a cowreath (or mixed wreath [25] or
generalized entwined structure), and the latter is nothing but a coalgebra in the Eilenberg-Moore

category T #
A associated to a certain algebra A; then the forgetful functor is Frobenius/separable if

and only if this coalgebra is Frobenius/coseparable within the monoidal category T #
A . We should

point out that these characterizations apply to any cowreath in a monoidal category for which the
unit object is what we called in [11] a left ⊗-generator, a property stronger than the generator
property. So they apply to the category of vector spaces, the category of bimodules RMR over an
Azumaya k-algebra R, the category of finite dimensional Hilbert complex vector spaces FdHilb or
to the category Zk as introduced in [12]. For more details we refer to [11, Examples 3.2].
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2 D. BULACU, S. CAENEPEEL, AND B. TORRECILLAS

When we pass to quasi-Hopf algebras, the Doi-Hopf module categories cannot be viewed as entwined
modules over entwining structures. This motivated us to investigate monoidal cowreaths (which can
be regarded as generalized entwining structures), as they appear naturally from the applications
that we have in mind: the study of categories of Doi-Hopf modules, two-sided Hopf modules and
Yetter-Drinfeld modules over a quasi-Hopf algebra. Using the general theory performed in [8], we
find necessary and sufficient conditions for which they are Frobenius or separable cowreaths but
these conditions are quite technical even in the Hopf algebra case. Nevertheless, with some effort we
were able to find concrete examples, and also to rephrase in some cases the Frobenius/separability
property of the cowreath (or, equivalently, of the forgetful functor to the representations of the
underlying algebra) in terms of unimodularity or/and (co)semisimplicity of H. We should also
stress the fact that we invented techniques that allow to produce in each case that we are dealing
with results that are new even for Hopf algebras; see for instance the results related to the Frobe-
nius/separability properties for the category of two-sided Hopf modules as well as the results related
to the separability property for Yetter-Drinfeld modules.
The paper is organized as follows. In Section 1, we present preliminary results on Frobenius/separable
cowreaths in monoidal categories and quasi-Hopf algebras. In Section 2, we study the Frobe-
nius/separable property for the categories of Doi-Hopf modules over a quasi-Hopf algebra H, as
introduced in [4]. Let A be a right H-comodule algebra. To a coalgebra C in the monoidal category

MH , we can associate a coalgebra C in T #
A . If C is a Frobenius coalgebra inMH , then the forget-

ful functor from the category of Doi-Hopf modules to the category of A-modules is Frobenius, see
Proposition 2.3. The converse property holds if A = H, see Theorem 2.4. We have a similar result
on the separability of the forgetful functor, see Proposition 2.6. Moreover, the relationship between

coseparability of C as a coalgebra inMH and in T #
A is well-understood: there is a bijection between

normalized Casimir morphisms for C inMH and normalized Casimir morphisms for C in T #
A that

satisfy the additional condition (2.18), see Theorem 2.7. Consequently, if the functor is separable
then this does not imply C ∈ MH coseparable; as we will see such a situation occurs in the case
when we work with two-sided Hopf modules, a particular class of Doi-Hopf modules.
In Section 3 we focus on the category of two-sided Hopf modules, see [4]. Since this category is
isomorphic to a suitable category of Doi-Hopf modules, we can apply the results of Section 2. Some
interesting results can be obtained in the situation where A = C = H. The forgetful functor
F : HMH

H →MH is separable if and only if H is unimodular, see Theorem 3.7. H is a coseparable
coalgebra in HMH if and only if H is unimodular and cosemisimple, see Proposition 3.6. Thus the
coseparability of the coalgebra H in HMH is not equivalent to the separability of the functor F , as
it happens in the Frobenius case: F is Frobenius if and only if F is separable, if and only if H is a
Frobenius coalgebra in HMH , i.e. H is unimodular.
The Frobenius/separability property for the forgetful functor defined on a category of Yetter-
Drinfeld modules (see [9]) is studied in Section 4. The category of Yetter-Drinfeld modules is
also isomorphic to a suitable category of Doi-Hopf modules, so that the results of Section 2 can be
applied, see Proposition 4.2. We obtain complicated conditions, but better results can be obtained
in the situation where A = C = H, that is, when we deal with classical Yetter-Drinfeld modules.
The first main result is Theorem 4.5, telling that F : YDH

H →MH is Frobenius if and only if H is
finite dimensional and unimodular, if and only if H is finite dimensional and Frobenius as a coal-
gebra in HMH . The second main result is Theorem 4.9, saying that F : YDH

H →MH is separable
if and only if H is a coseparable coalgebra in HMH , i.e. H is unimodular and cosemisimple. If
H is finite dimensional, then we can consider the Drinfeld double D(H), and the algebra extension
H ↪→ D(H) is Frobenius (resp. separable) if and only if H is unimodular (resp. unimodular and
cosemisimple). Note that the proofs of these results are based on the structure theorem for two-
sided Hopf H-bimodules, see [18]. Another characterization about the separability of D(H) over
H, in terms of so-called ad-(co)invariant integrals, was obtained by Ardizzoni in [1, Section 3].



ENTWINED MODULES OVER COWREATHS 3

1. Preliminaries

1.1. The categories TA and T #
A . For the definition of a monoidal category (C,⊗, 1, a, l, r) and

related topics we refer for instance to [19, 20]. We will often delete the tensor symbol ⊗, and write
X ⊗Y = XY , provided that X,Y are objects of C. We write Xn for the tensor product of n copies
of X. Furthermore, the identity morphism of an object X ∈ C will be denoted by IdX or simply X.
Let (A,mA, ηA) be an algebra in C. A (right) transfer morphism (called transition map by Tambara

[26]) through A is a pair (X,ψ), with X ∈ C and ψ : XA→ AX in C such that

(1.1) (a) ψ ◦XmA = mAX ◦Aψ ◦ ψA and (b) ψ ◦Xη
A

= η
A
X.

The categories TA and T #
A coincide at the level of objects; their objects are right transfer morphisms

through A. A morphism X → Y in TA is a morphism f : X → Y in C such that ψ ◦ fA = Af ◦ ψ.

A morphism X → Y in T #
A is a morphism f : X → AY in C such that

(1.2) mAY ◦Af ◦ ψ = mAY ◦Aψ ◦ fA.

The composition of two morphisms f : X → Y and g : Y → Z in T #
A is g • f = mAZ ◦ Ag ◦ f .

The identity on (X,ψ) is η
A
X. The tensor product of X and Y is XY = (XY,ψX · ψY = ψXY ◦

XψY ). The tensor product of f : X → X ′ and g : Y → Y ′ in T #
A is given by the composition

mAXY ◦ AψY ◦ fg. The unit object is (1, A). TA and T #
A are strict monoidal categories, and we

have a strong monoidal functor F : TA → T #
A , which is the identity on objects, and F (f) = η

A
f ,

for f : X → Y in TA. If a morphism in T #
A is of the form η

A
f , with f : X → Y in C, then f is a

morphism in TA.
We can recall now from [8] the notion of cowreath and of entwined module over a cowreath.

Definition 1.1. A cowreath (mixed wreath or generalized entwining structure) in C is a triple

(A,X,ψ), where A is an algebra in C, and (X,ψ) is a coalgebra in T #
A , i.e. it is an object (X,ψ) ∈ T #

A

together with morphisms δ : X → AX2 and ε : X → A in C such that the following relations hold:

(a) mAX
2 ◦AψX ◦AXψ ◦ δA = mAX

2 ◦Aδ ◦ ψ,
(b) mAX

3 ◦AδX ◦ δ = mAX
3 ◦AψX2 ◦AXδ ◦ δ,

(c) mA ◦Aε ◦ ψ = mA ◦ εA,(1.3)

(d) mAX ◦AεX ◦ δ = η
A
X,

(e) mAX ◦Aψ ◦AXε ◦ δ = η
A
X.

Conditions (a) and (c) mean that δ and ε define morphisms X → X2 and X → 1 in T #
A . (b) is the

coassociativity of the comultiplication δ and (d) and (e) are the left and right counit property.

Definition 1.2. An entwined module over a cowreath (A,X,ψ) consists of a right A-module M in
C and a right A-linear morphism ρ : M →MX in C satisfying

ρX ◦ ρ = µX2 ◦Mδ ◦ ρ;(1.4)

µ ◦Mε ◦ ρ = M,(1.5)

where µ : M ⊗A→M is the morphisms in C that defines the right A-module structure on M .

(1.4) is the coassociativity of the coaction ρ, and (1.5) is the counit property. The fact that ρ is
right A-linear is expressed by the formula

(1.6) ρ ◦ µ = µX ◦Mψ ◦ ρA.
We denote by C(ψ)XA the category of (right) entwined modules over the cowreath (A,X,ψ) in the
monoidal category C. The morphisms are right A-linear morphisms in C that behaves well with
respect to the right X-coactions.
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1.2. Frobenius and separable cowreaths. Let C be a monoidal category and (A,X,ψ) a cowreath
in C.
We say that (A,X,ψ) is Frobenius if (X,ψ) is a Frobenius coalgebra in T #

A . Explicitly, according

to [8, Lemma 4.4], (X,ψ) in T #
A is a Frobenius coalgebra if and only if there exist morphisms

t : 1→ AX and B : X2 → A in C such that

(1.7)

(a) mAX ◦At = mAX ◦Aψ ◦ tA,
(b) mA ◦BA = mA ◦AB ◦ ψX ◦Xψ,
(c) mAX ◦Aψ ◦AXB ◦ δX = mAX ◦ABX ◦ ψX2 ◦Xδ,
(d) mA ◦AB ◦ tX = ε = mA ◦AB ◦ ψX ◦Xt.

t is called the Frobenius element and B is called the Casimir morphism, while the pair (t, B) is
called a Frobenius system for the Frobenius coalgebra (X,ψ).

We say that (A,X,ψ) is separable if (X,ψ) is a coseparable coalgebra in T #
A , i.e. a coalgebra together

with a normalized Casimir morphism B. By [8, Proposition 6.4] this means that B : X2 → A is a
morphism in C satisfying (1.7.b, c) and the normalized condition

(1.8) mA ◦AB ◦ δ = ε.

In Sections 2, 3 and 4 we give necessary and sufficient conditions for which some cowreaths that
appear in the context of quasi-Hopf algebras are Frobenius (respectively separable). In particular,
this provides examples of Frobenius (respectively separable) cowreaths (or generalized entwining
structures) that are not distributive laws (or entwining structures) in the classical sense. Equiv-
alently, this means that certain forgetful functors are Frobenius (respectively separable). Recall
that Morita [21] called a functor Frobenius if it has left and right adjunctions which are naturally
equivalent. For the definition of a separable functor we refer to [22], or to [23] for the case when
the functor has an adjoint, which is merely our case.
In the sequel, we need the following auxiliary result. Recall that an adjunction X a Y in C is
a quadruple (X,Y, b, d), with X,Y objects in C and morphisms b : 1 → Y X (the counit or the
coevaluation morphism) and d : XY → 1 (the unit or the evaluation morphism) satisfying

(1.9) Y d ◦ bY = Y and dX ◦Xb = X.

Y is called a right adjoint of X, and is denoted by ∗X. X is called a left adjoint of Y , and is denoted
by Y ∗.
From now on we work over a field k, and C will be Mk, the category of k-vector spaces. To

emphasize this we will denote sometimes T #
A by T (Mk)#A . If, moreover, we want to emphasize a

certain monoidal category C then we will write T (C)#A in place of T #
A .

Proposition 1.3. If (X,ψ) ∈ T (Mk)#A has a left or right dual, then X is finite dimensional.

Consequently, if (X,ψ) is a Frobenius coalgebra in T (Mk)#A , then X is finite dimensional.

Proof. Assume that we have an adjunction (X,ψ) a (Y, ϕ) in T (Mk)#A , with unit b : k → AYX

and counit d : XY → A. Applying the definition of the monoidal structure of T (Mk)#A , we find
that the second formula in (1.9) takes the form

(1.10) mX ◦AdX ◦ ψY X ◦Xb = ηX.

Let b(1) = ai ⊗ yi ⊗ xi ∈ A⊗ Y ⊗X, and use the following notation for ψ:

(1.11) ψ : X ⊗A→ A⊗X, ψ(x⊗ a) = aψ ⊗ xψ,

where in the both cases the summation is implicitly understood. Then (1.10) can be rewritten as

aiψd(xψ ⊗ yi)⊗ xi = fi(x)⊗ xi = 1A ⊗ x,
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for all x ∈ X, where fi : X → A, fi(x) = aiψd(xψ ⊗ yi). Take a complement V of the subspace
k1A ⊂ A, so that we have A = V ⊕ k1A as vector spaces. Let p : A→ V and g : A→ k1A be the
projections of A onto V and k1A. Then a = p(a) + 〈g, a〉1A, for all a ∈ A, and we find that

(p ◦ fi)(x)⊗ xi + 1A ⊗ 〈g ◦ fi, x〉xi = 1A ⊗ x

in A⊗X = V ⊗X ⊕ k1A ⊗X. Taking the projection of both sides onto k1A ⊗ x, we find that

1A ⊗ 〈g ◦ fi, x〉xi = 1A ⊗ x,

and x = 〈g ◦ fi, x〉xi, proving that X is generated by xi’s.
The proof in the case where (X,ψ) has a left dual is similar; the second statement follows from the

fact that (X,ψ) is selfdual in T #
A (Mk), see [8, Remark 4.3]. �

1.3. Quasi-bialgebras and quasi-Hopf algebras. Recall that a quasi-bialgebra over a field k is
an associative unital algebra H, with a comultiplication ∆ : H → H ⊗H that is coassociative up
to conjugation by an invertible element Φ ∈ H ⊗H ⊗H, called the reassociator:

(1.12) (H ⊗∆)(∆(h)) = Φ(∆⊗H)(∆(h))Φ−1,

for all h ∈ H. In addition, ∆ is an algebra morphism and is counital via an algebra map ε : H → k.
Φ is a normalized 3-cocycle in the following sense:

(H ⊗H ⊗∆)(Φ)(∆⊗H ⊗H)(Φ) = (1H ⊗ Φ)(H ⊗∆⊗H)(Φ)(Φ⊗ 1H),(1.13)

(H ⊗ ε⊗H)(Φ) = 1H ⊗ 1H .(1.14)

The following notation is used for the reassociator Φ and its inverse Φ−1:

Φ = X1 ⊗X2 ⊗X3 = · · · , Φ−1 = x1 ⊗ x2 ⊗ x3 = · · · ∈ H ⊗H ⊗H.

Summation is implicitly understood. We use Sweedler’s notation ∆(h) = h1 ⊗ h2, for the comulti-
plication. Since ∆ is not coassociative, we have to write

(∆⊗H)(∆(h)) = h(1,1) ⊗ h(1,2) ⊗ h2 , (H ⊗∆)(∆(h)) = h1 ⊗ h(2,1) ⊗ h(2,2), etc.

A quasi-Hopf algebra is a quasi-bialgebra H together with an algebra morphism S : H → Hop and
elements α, β ∈ H such that

S(h1)αh2 = ε(h)α and S(h1)βh2 = ε(h)β(1.15)

X1βS(X2)αX3 = 1 and S(x1)αx2βS(x3) = 1.(1.16)

The antipode of a quasi-Hopf algebra is an anti-coalgebra morphism in the following sense: there
exists an invertible element f = f1⊗f2 ∈ H⊗H, called the Drinfeld twist or gauge transformation,
such that ε(f1)f2 = ε(f2)f1 = 1 and

(1.17) f∆(S(h))f−1 = (S ⊗ S)(∆cop(h)),

for all h ∈ H. Note that f and f−1 can be described explicitly:

f = (S ⊗ S)(∆cop(x1))γ∆(x2βS(x3)),

f−1 = ∆(S(x1)αx2)δ(S ⊗ S)(∆cop(x3)),

where γ, δ ∈ H ⊗H are given by the formulas

γ = S(x1X2)αx2X3
1 ⊗ S(X1)αx3X3

2 = S(X2x12)αX3x2 ⊗ S(X1x11)αx3,(1.18)

δ = X1
1x

1βS(X3)⊗X1
2x

2βS(X2x3) = x1βS(x32X
3)⊗ x2X1βS(x31X

2).(1.19)

Furthermore, f = f1 ⊗ f2 = F 1 ⊗ F 2 and f−1 have the following properties:

f∆(α) = γ, ∆(β)f−1 = δ and(1.20)

f1X1 ⊗ F 1f21X
2 ⊗ F 2f22X

3 = S(X3)f1F 1
1 ⊗ S(X2)f2F 1

2 ⊗ S(X1)F 2.(1.21)
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The category MH of right H-modules over H is monoidal. The tensor product of M,N ∈ MH is
M ⊗N with right H-action (m⊗ n) · h = m · h1 ⊗ n · h2, for m ∈M , n ∈ N and h ∈ H. The unit
object is the groundfield k with H-action induced by ε. The associativity constraint is given by the
formula

aM,N,P ((m⊗ n)⊗ p) = m · x1 ⊗ (n · x2 ⊗ p · x3),

for all m ∈M , n ∈ N and p ∈ P .
A coalgebra (C,∆C , εC) in the monoidal category MH is called a right H-module coalgebra. The
comultiplication ∆C : C → C ⊗ C is denoted by ∆C(c) = c1 ⊗ c2. Note that, in general, C is not
coassociative as a coalgebra in Mk.
If H is a quasi-bialgebra with reassociator Φ then Hop is also a quasi-bialgebra with reassociator
Φ−1. If H is a quasi-Hopf algebra with bijective antipode then Hop is also a quasi-Hopf algebra,
with antipode Sop = S−1, and distinguished elements αop = S−1(β) and βop = S−1(α), where
α, β ∈ H are as in (1.15) and (1.16).
The category of H-bimodules HMH is isomorphic toMH⊗Hop . Since H⊗Hop is a quasi-bialgebra,
MH⊗Hop and HMH are monoidal categories. A coalgebra in HMH is called an H-bimodule
coalgebra.

1.4. (Bi)comodule algebras over quasi-Hopf algebras. Recall from [17] that a right H-
comodule algebra is a unital associative algebra A together with an algebra morphism ρ : A →
A⊗H, ρ(a) = a〈0〉 ⊗ a〈1〉, and an invertible element Φρ ∈ A⊗H ⊗H such that:

Φρ(ρ⊗H)(ρ(a)) = (A⊗∆)(ρ(a))Φρ, for all a ∈ A,(1.22)

(1A ⊗ Φ)(A⊗∆⊗H)(Φρ)(Φρ ⊗ 1H) = (A⊗H ⊗∆)(Φρ)(ρ⊗H ⊗H)(Φρ),(1.23)

(A⊗ ε) ◦ ρ = A,(1.24)

(A⊗ ε⊗H)(Φρ) = (A⊗H ⊗ ε)(Φρ) = 1A ⊗ 1H .(1.25)

In a similar way we can define left comodule algebras (B, λ,Φλ) over H. In this situation we will
denote λ(b) = b[−1] ⊗ b[0] ∈ H ⊗B, for all b ∈ B, and

Φλ = X̃
1

λ ⊗ X̃
2

λ ⊗ X̃
3

λ = · · · ; Φ−1λ = x̃1λ ⊗ x̃2λ ⊗ x̃3λ = · · · .

We end this Section by recalling the notion of bicomodule algebra, as it was first introduced by
Hausser and Nill in [17] under the name “quasi-commuting pair of H-coactions”.

Definition 1.4. Let H be a quasi-bialgebra. An H-bicomodule algebra A is a sixtuple (A, λ, ρ,Φλ,
Φρ,Φλ,ρ) such that (A, λ,Φλ) is a left H-comodule algebra, (A, ρ,Φρ) is a right H-comodule algebra,
and Φλ,ρ ∈ H ⊗A⊗H is an invertible element such that the following compatibility relations hold,
for all u ∈ A:

Φλ,ρ(λ⊗H)(ρ(u)) = (H ⊗ ρ)(λ(u))Φλ,ρ;

(1H ⊗ Φλ,ρ)(H ⊗ λ⊗H)(Φλ,ρ)(Φλ ⊗ 1H) = (H ⊗H ⊗ ρ)(Φλ)(∆⊗ IdA ⊗ IdH)(Φλ,ρ);

(1H ⊗ Φρ)(H ⊗ ρ⊗H)(Φλ,ρ)(Φλ,ρ ⊗ 1H) = (H ⊗ S ⊗∆)(Φλ,ρ)(λ⊗H ⊗H)(Φρ).

It is shown in [17] that the following additional relations hold in an H-bicomodule algebra A:

(H ⊗A⊗ ε)(Φλ,ρ) = 1H ⊗ 1A, (ε⊗A⊗H)(Φλ,ρ) = 1A ⊗ 1H .

(H,∆,∆,Φ,Φ,Φ) is an example of an H-bicomodule algebra. If A is an H-bicomodule algebra,
then (Aop, λ, ρ,Φ−1λ ,Φ−1ρ ,Φ−1λ,ρ) is an Hop-bicomodule algebra.
We will use the following notation:

Φλ,ρ = Θ1 ⊗Θ2 ⊗Θ3 = Θ
1 ⊗Θ

2 ⊗Θ
3

; Φ−1λ,ρ = θ1 ⊗ θ2 ⊗ θ3 = θ
1 ⊗ θ2 ⊗ θ3.
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2. Frobenius and separable properties for Doi-Hopf modules over quasi-Hopf
algebras

Doi-Hopf modules over a quasi-bialgebra have been introduced in [4]. Several types of modules, for
example two-sided Hopf modules and Yetter-Drinfeld modules, are Doi-Hopf modules, see [4, 7].
The category of Doi-Hopf modules appears as the category of entwined modules over an appropriate
cowreath in the category of vector spaces Mk. Since the groundfield k is a ⊗-generator of Mk, we
can apply [8, Theorems 4.8 & 6.5], to find necessary and sufficient conditions for the Frobenius and
separability property of the forgetful functor from Doi-Hopf modules to modules over the underlying
algebra. These conditions can be rephrased in the special situation where the underlying algebra A
is the quasi-bialgebra H.
Let A be a right H-comodule algebra and let C be a right H-module coalgebra. Let ψ : C ⊗A→
A ⊗ C, ψ(c ⊗ a) = a〈0〉 ⊗ c · a〈1〉. Then (C,ψ) ∈ T #

A , and (C,ψ) is a coalgebra in T #
A , with

comultiplication and counit given by the formulas

δ : C → A⊗ C ⊗ C, δ(c) = X̃1
ρ ⊗ c1 · X̃2

ρ ⊗ c2 · X̃3
ρ ; ε : C → A, ε(c) = εC(c)1A.

The category Mk(ψ)CA is just the category of Doi-Hopf modules M(H)CA, as introduced in [4, 7].
A Doi-Hopf module is a right A-module with a k-linear map ρ : M →M ⊗C, ρ(m) = m(0) ⊗m(1)

such that

(ρ⊗M)(ρ(m)) = (M ⊗∆C)(ρ(m)) · Φρ,
ρ(m · a) = m(0) · a〈0〉 ⊗m(1) · a〈1〉.

A morphism in M(H)CA is a k-linear map that is right A-linear and right C-colinear.

2.1. Frobenius properties for Doi-Hopf modules. Let H be a quasi-bialgebra, let A be a right
H-comodule algebra and let C be a right H-module coalgebra.
According to [8, Theorem 4.8], the forgetful functor F : M(H)CA → MA is Frobenius if and only

if (C,ψ) ∈ T (Mk)#A is a Frobenius coalgebra. If this is the case then by Proposition 1.3 we get C
finite dimensional or, equivalently, that C has a right dual inMk. Thus F is Frobenius if and only
if C is finite dimensional and one of the eight equivalent conditions (i)-(viii) in [8, Theorem 5.6] is
satisfied. Condition (vii) states that there exists t = ai ⊗ ci ∈ A⊗C (summation understood) such
that

(2.1) aai ⊗ ci = aia〈0〉 ⊗ ci · a〈1〉,
for all a ∈ A, and the map

(2.2) ∗C ⊗A→ A⊗ C, ∗c⊗ a 7→ 〈∗c, (ci)2 · X̃3
ρ〉 aiX̃1

ρa〈0〉 ⊗ (ci)1 · X̃2
ρa〈1〉

is an isomorphism, where ∗C = Hom(C, k) is the right dual of C in Mk.
Let H be a quasi-Hopf algebra. A simple computation tells us that

(2.3) ∗C ⊗A→ A⊗ ∗C, ∗c⊗ a 7→ X̃1
ρa〈0〉 ⊗ S(X̃2

ρa〈1〉)αX̃
3
ρ · ∗c

is an isomorphism with inverse

(2.4) A⊗ ∗C → ∗C ⊗A, a⊗ ∗c 7→ a〈1〉x̃
2
ρβS(x̃3ρ) · ∗c⊗ a〈0〉x̃1ρ,

where 〈h · ∗c, c〉 = 〈∗c, c ·h〉, for h ∈ H, c ∈ C and ∗c ∈ ∗C. We therefore obtain the following result.

Proposition 2.1. Let H be a quasi-Hopf algebra, A a right H-comodule algebra and C a right
H-module coalgebra. Then the forgetful functor F : M(H)CA →MA is Frobenius if and only if C
is finite dimensional and there exists t = ai ⊗ ci ∈ A⊗ C satisfying (2.1) and such that

(2.5) κ : A⊗ ∗C → A⊗ C, a⊗ ∗c 7→ 〈∗c, (ci)2 · (x̃2ρ)2p2S(x̃3ρ)〉 aaix̃1ρ ⊗ (ci)1 · (x̃2ρ)1p1

is an isomorphism. Here p1 ⊗ p2 = x1 ⊗ x2βS(x3) ∈ H ⊗H.
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Proof. This follows from the fact that the morphism (2.5) is the composition of the morphism (2.2)
and the isomorphism (2.4). We leave the verification of this detail to the reader. �

Our next result is that Proposition 2.1 can be applied in the case where C is a Frobenius coalgebra
in MH . First we need the following characterisation of Frobenius coalgebras in MH .

Proposition 2.2. Let H be a quasi-Hopf algebra. A coalgebra C in MH is Frobenius if and only
if C is finite dimensional and there exists t ∈ C obeying

(2.6) t · h = ε(h)t,

for all h ∈ H, and such that

(2.7) χ : ∗C → C, χ(∗c) = 〈∗c, t2 · p2〉t1 · p1

is a k-linear isomorphism. Here p1 ⊗ p2 = x1 ⊗ x2βS(x3) ∈ H ⊗H.

Proof. Step 1. A Frobenius coalgebra in MH is finite dimensional.
If C is a Frobenius coalgebra in MH , then there exists t ∈ C and B : C ⊗ C → k such that
t · h = ε(h)t, B(c · h1 ⊗ c′ · h2) = ε(h)B(c⊗ c′) and

B(c2 · x2 ⊗ c′ · x3)c1 · x1 = B(c ·X1 ⊗ c′1 ·X2)c′2 ·X3, B(t⊗ c) = εC(c) = B(c⊗ t),

for all h ∈ H and c, c′ ∈ C, see [8, Definition 4.2]. In this situation, C is finite dimensional since

c = εC(c2)c1 = B(c2 ⊗ t)c1 = B(c2 · x2 ⊗ t · x3)c1 · x1 = B(c ·X1 ⊗ t1 ·X2)t2 ·X3,

for all c ∈ C.
Step 2. A finite dimensional coalgebra C in MH has a right dual in MH . ∗C = Hom(C, k), with
right H-action 〈∗c · h, c〉 = 〈∗c, c ·S(h)〉, is a right dual of C inMH . The evaluation map d and the
coevaluation map b are given by the formulas

d(c⊗ ∗c) = 〈∗c, c · β〉 and b(1) = cj ⊗ cj · α,

where cj ⊗ cj ∈ ∗C ⊗ C is the finite dual basis of C as a k-vector space.
Step 3 If C is a finite dimensional coalgebra inMH , then ∗C is an algebra inMH and C is a right
∗C-module; the unit of ∗C is εC , and the multiplication is given by

〈∗c � ∗d, c〉 = 〈∗c, c2 · g2〉〈∗d, c1 · g1〉,

where g1 ⊗ g2 = f−1 ∈ H ⊗H is the inverse of the Drinfeld twist f . The right ∗C-action on C is
given by the formula

c↼∗c = 〈∗c, c2 · p2〉 c1 · p1,

where p1 ⊗ p2 = x1 ⊗ x2βS(x3) ∈ H ⊗H.
Applying [8, Remark 4.3], we obtain that C is Frobenius if and only if C and ∗C are isomorphic as
right ∗C-modules inMH , which means that there exists a right H-linear isomorphism χ : ∗C → C
satisfying

χ(∗c � ∗d) = χ(∗c)↼∗d,

for all ∗c, ∗d ∈ ∗C. t = χ(εC) satisfies (2.6-2.7). Conversely, if t satisfies (2.6-2.7), then χ as defined
in (2.7) is a right ∗C-linear isomorphism in MH . Further detail is left to the reader. �

Proposition 2.3. Let H be a quasi-Hopf algebra, A a right H-comodule algebra and C a right H-
module coalgebra. If C is a Frobenius coalgebra in MH then the forgetful functor F : M(H)CA →
MA is Frobenius.
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Proof. Proposition 2.2 produces t satisfying (2.6-2.7). It is easy to see that 1A ⊗ t satisfies (2.1). It
follows from (2.6) and the fact that ε(x̃2ρ)x̃

1
ρ ⊗ x̃3ρ = 1A ⊗ 1H that the morphism κ defined in (2.5)

takes the form

κ(a⊗ ∗c) = a⊗ 〈∗c, t2 · p2〉 t1 · p1 = a⊗ χ(∗c).

κ is an isomorphism since χ is an isomorphism, and we conclude from Proposition 2.1 that F is a
Frobenius functor. �

H is a right H-comodule algebra, so we can consider the category of relative Hopf modulesM(H)CH ,
also denoted as MC

H , see [10]. Theorem 2.4 generalizes [16, Theorem 3.5].

Theorem 2.4. Let H be a quasi-Hopf algebra, let A be a right H-comodule algebra and C a right H-
module coalgebra, and assume that the forgetful functor F :M(H)CA →MA is Frobenius. Consider
an algebra map ζ : A→ k, and let t = ζ(ai)ci, where t = ai ⊗ ci ∈ A⊗ C satisfies (2.1). Then

(2.8) γ : ∗C → C, γ(∗c) = 〈ζ, x̃1ρ〉 〈∗c, t2 · (x̃2ρ)2p2S(x̃3ρ)〉 t1 · (x̃2ρ)1p1

is an isomorphism. If ζ̃ = (ζ ⊗H) ◦ ρ : A → H is surjective, then C is a Frobenius coalgebra in
MH . Consequently, the forgetful functor F : M(H)CH → MH is Frobenius if and only if C is a
Frobenius coalgebra in MH .

Proof. Assume that F is Frobenius. It follows from Proposition 2.1 that κ : A ⊗ ∗C → A ⊗ C,
given by (2.5), is an isomorphism. κ is left A-linear, so it follows that M ⊗ ∗C ∼= M ⊗A (A⊗ ∗C) ∼=
M ⊗A (A ⊗ C) ∼= M ⊗ C are isomorphic as vector spaces, for all M ∈ MA. Since k ∈ MA

by restriction of scalars via ζ, it follows that we have an isomorphism between ∗C and C. This
isomorphism is the map γ given in (2.8).

Assume that ζ̃ : A → H is surjective. For all a ∈ A, we have that ζ(a〈0〉)t · a〈1〉 = ζ(a)t, and it

follows that t · h = ε(h)t, for all h ∈ H. Then we obtain that γ(∗c) = 〈∗c, t2 · p2〉t1 · p1, hence γ
coincides with the map χ from Proposition 2.2, and it follows that C is a Frobenius coalgebra in
MH .
Take A = H, and ζ = ε. Then ζ̃ = H is surjective, so C is a Frobenius coalgebra inMH . Conversely,
if C is a Frobenius coalgebra in MH , then F is Frobenius by Proposition 2.3. �

2.2. Separability for the category of Doi-Hopf modules. We will now study the separability
of the functor F . Let C be coalgebra (in the category of vector spaces, or in the category of H-
(bi)modules over a quasi-bialgebra H). The convolution product 〈∗c∗d, c〉 = (∗c⊗ ∗d)∆C(c) defines
a (possibly non-associative) multiplication on ∗C.
The result below is a specialization of [8, Proposition 6.4 & Theorem 6.5] for the cowreath defined
by our Doi-Hopf datum.

Proposition 2.5. Let H be a quasi-bialgebra, A a right H-comodule algebra and C a right H-
module coalgebra. The forgetful functor F : M(H)CA → MA is separable if and only if C is a

coseparable coalgebra in T (Mk)#A . The coseparability of C is equivalent to conditions (i), (ii) and
(iii). Under the assumption that C is finite dimensional, these conditions are also equivalent to
(iv), (v), (vi) and (vii).
(i) There exists a k-linear map ξ : C ⊗ C → A⊗ C, ξ(c⊗ c′) = ξ1(c, c′)⊗ ξ2(c, c′), such that

a〈0,0〉ξ
1(c · a〈0,1〉, c′ · a〈1〉)⊗ ξ2(c · a〈0,1〉, c′ · a〈1〉) = ξ1(c, c′)a〈0〉 ⊗ ξ2(c, c′) · a〈1〉;

(X̃1
ρ)〈0〉ξ

1(c · (X̃1
ρ)〈1〉, c

′
1 · X̃2

ρ)⊗ ξ2(c · (X̃1
ρ)〈1〉, c

′
1 · X̃2

ρ)⊗ c′2 · X̃3
ρ

= ξ1(c, c′)X̃1
ρ ⊗ ξ2(c, c′)1 · X̃2

ρ ⊗ ξ2(c, c′)2 · X̃3
ρ

= X̃1
ρξ

1(c2 · X̃3
ρ , c
′)〈0〉 ⊗ c1 · X̃2

ρξ
1(c2 · X̃3

ρ , c
′)〈1〉 ⊗ ξ2(c2 · X̃3

ρ , c
′);

X̃1
ρξ

1(c1 · X̃2
ρ , c2 · X̃3

ρ)⊗ ξ2(c1 · X̃2
ρ , c2 · X̃3

ρ) = 1A ⊗ c,
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for all a ∈ A and c, c′ ∈ C.
(ii) There exists a k-linear map B : C ⊗ C → A such that

a〈0,0〉B(c · a〈0,1〉 ⊗ c′ · a〈1〉) = B(c⊗ c′)a,(2.9)

X̃1
ρB(c2 · X̃3

ρ ⊗ c′)〈0〉 ⊗ c1 · X̃2
ρB(c2 · X̃3

ρ ⊗ c′)〈1〉
= (X̃1

ρ)〈0〉B(c · (X̃1
ρ)〈1〉 ⊗ c′1 · X̃2

ρ)⊗ c′2 · X̃3
ρ ,(2.10)

X̃1
ρB(c1 · X̃2

ρ ⊗ c2 · X̃3
ρ) = εC(c)1A,(2.11)

for all a ∈ A and c, c′ ∈ C.
(iii) There exists a k-linear map T : C → Homk(C,A) such that

T (c)(c′)a = a〈0,0〉T (c · a〈1〉)(c′ · a〈0,1〉),
X̃1
ρT (c′)(c2 · X̃3

ρ)〈0〉 ⊗ c1 · X̃2
ρT (c′)(c2 · X̃3

ρ)〈1〉

= (X̃1
ρ)〈0〉T (c′1 · X̃2

ρ)(c · (X̃1
ρ)〈1〉)⊗ c′2 · X̃3

ρ ,

X̃1
ρT (c2 · X̃3

ρ)(c1 · X̃2
ρ) = εC(c)1A,

for all a ∈ A and c, c′ ∈ C.
(iv) There exists a left and right A-linear, C-colinear map Ψ : A ⊗ C → ∗C ⊗ A, Ψ(a ⊗ c) =
Ψ1(a⊗ c)⊗Ψ2(a⊗ c), such that

(2.12) Ψ1(1A ⊗ c2 · X̃3
ρ)(c1 · X̃2

ρ)X̃1
ρΨ2(1A ⊗ c2 · X̃3

ρ) = εC(c)1A,

for all c ∈ C.
(v) There exists a left and right A-linear, C-colinear map Λ : A ⊗ C → A ⊗ ∗C, Λ(c ⊗ c′) =
Λ1(c⊗ c′)⊗ Λ2(c⊗ c′), such that

(2.13) Λ2(1A ⊗ c2 · X̃3
ρ)(c1 · X̃2

ρΛ1(1A ⊗ c2 · X̃3
ρ)〈1〉p̃

2
ρ)X̃

1
ρΛ1(1A ⊗ c2 · X̃3

ρ)〈0〉p̃
1
ρ = εC(c)1A,

for all c ∈ C. Here p̃1ρ ⊗ p̃2ρ = x̃1ρ ⊗ S(x̃2ρ)αx̃
3
ρ ∈ A ⊗H. The left and right A-action and the right

C-coaction on A⊗ ∗C are given by the formulas

a · (a′ ⊗ ∗c) = aa′ ⊗ ∗c ; (a⊗ ∗c) · a′ = aa′〈0〉 ⊗
∗c · a′〈1〉,(2.14)

a⊗ ∗c 7→ aX̃1
ρ ⊗ (cj · S−1(X̃3

ρ)q2(X̃2
ρ)2S

−1(g1))(∗c · q1(X̃2
ρ)1S

−1(g2))⊗ cj ,(2.15)

where cj ⊗ cj ∈ C ⊗ ∗C is the finite dual basis for C, and q1 ⊗ q2 = X1 ⊗ S−1(αX3)X2 ∈ H ⊗H.

(vi) There exists a k-linear map Ψ : C → ∗C ⊗A, Ψ(c) = Ψ
1
(c)⊗Ψ

2
(c), such that

Ψ
1
(c′ · a〈1〉)(c · a〈0,1〉)a〈0,0〉Ψ

2
(c′ · a〈1〉) = Ψ

1
(c′)(c)Ψ

2
(c′)a;

Ψ
1
(c′)(c2 · X̃3

ρ)X̃1
ρΨ

2
(c′)〈0〉 ⊗ c1 · X̃2

ρΨ
2
(c′)〈1〉

= Ψ
1
(c′1 · X̃2

ρ)(c · (X̃1
ρ)〈1〉)(X̃

1
ρ)〈0〉Ψ

2
(c′1 · X̃2

ρ)⊗ c′2 · X̃3
ρ ;

Ψ
1
(c2 · X̃3

ρ)(c1 · X̃2
ρ)X̃1

ρΨ
2
(c2 · X̃3

ρ) = εC(c)1A,

for all a ∈ A and c, c′ ∈ C.

(vii) There exists a k-linear map Λ : C → A⊗ ∗C, Λ(c) = Λ
1
(c)⊗ Λ

2
(c), such that

Λ
1
(c)a〈0〉 ⊗ S(a〈1〉) · Λ

2
(c) = a〈0〉Λ

1
(c · a〈1〉)⊗ Λ

2
(c · a〈1〉),

X̃1
ρΛ

1
(c1 · X̃2

ρ)⊗ Λ
2
(c1 · X̃2

ρ)⊗ c2 · X̃3
ρ

= Λ
1
(c)X̃1

ρ ⊗
(
g1S(q2(X̃2

ρ)2)X̃3
ρ · cj

)(
g2S(q1(X̃2

ρ)1) · Λ2
(c)

)
⊗ cj ,

Λ
2
(c2 · X̃3

ρ)(c1 · X̃2
ρΛ

1
(c2 · X̃3

ρ)〈1〉p̃
2
ρ)X̃

1
ρΛ

1
(c2 · X̃3

ρ)〈0〉p̃
1
ρ = εC(c)1A,
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for all c ∈ C and a ∈ A. Here g1⊗g2 is the inverse of the Drinfeld’s twist f , p̃1ρ⊗p̃2ρ = x̃1ρ⊗x̃2ρβS(x̃3ρ)

and cj ⊗ cj ∈ C ⊗ ∗C is the finite dual basis for C. For simplicity, we considered ∗C as a left H-
module via h · ∗c = ∗c · S−1(h), for all h ∈ H and ∗c ∈ ∗C.

Proof. The equivalence between (i), (ii), (iv) and (vi) follow from [8, Proposition 6.4 & Theorem
6.5].
(ii)⇔ (iii). Follows from the fact that C∗ ⊗ A and Homk(C,A) are isomorphic vector spaces if C
is finite dimensional.
(iv)⇔ (v). ∗C ⊗ A and A ⊗ ∗C are isomorphic as vector spaces, see (2.3-2.4). The left and right
A-action and the right C-coaction on ∗C ⊗ A can be transported on A ⊗ ∗C. A technical but
straightforward computation shows that these structure maps are precisely the ones stated in (2.14)
and (2.15), we leave the verification of these details to the reader. Furthermore, since Ψ can be
recovered from Λ as

Ψ1(a⊗ c)⊗Ψ2(a⊗ c) = Λ2(a⊗ c) · S−1(Λ1(a⊗ c)〈1〉p̃2ρ)⊗ Λ1(a⊗ c)〈0〉p̃1ρ,

we find that Ψ satisfies (2.12) if and only if Λ satisfies the third condition in (vii).
The proof of (v)⇔ (vii) is similar to the proof of (iv)⇔ (vi). �

Proposition 2.6 can be viewed as a separable analog of Proposition 2.3.

Proposition 2.6. Let H be a quasi-bialgebra, let A be a right H-comodule algebra and let C be a
right H-module coalgebra. If C is a coseparable coalgebra in MH then F : M(H)CA → MA is a
separable functor.

Proof. Applying [8, Proposition 6.3] to the case where C =MH , we obtain that C is coseparable if
and only if there exists a k-linear map B : C ⊗ C → k such that

B(c · h1 ⊗ c′ · h2) = ε(h)B(c⊗ c′) ; B(c1 ⊗ c2) = εC(c) ;(2.16)

B(c ·X1 ⊗ c′1 ·X2)c′2 ·X3 = B(c2 · x2 ⊗ c′ · x3)c1 · x1,(2.17)

for all c, c′ ∈ C and h ∈ H. With the help of B we construct a Casimir morphism B : C ⊗ C → A

for the coalgebra (C,ψ) in T #
A as follows:

B(c⊗ c′) = B(c · x̃2ρ ⊗ c′ · x̃3ρ)x̃1ρ,

for all c, c′ ∈ C. B is a morphism in T #
A since

a〈0,0〉B(c · a〈0,1〉 ⊗ c′ · a〈1〉) = B(c · a〈0,1〉x̃2ρ ⊗ c′ · a〈1〉x̃3ρ)a〈0,0〉x̃1ρ
(1.22)

= B(c · x̃2ρa〈1〉1 ⊗ c
′ · x̃3ρa〈1〉2)x̃1ρa〈0〉 = ε(a〈1〉)B(c · x̃2ρ ⊗ c′ · x̃3ρ)x̃1ρa〈0〉

(1.24)
= B(c⊗ c′)a,

for all a ∈ A and c, c′ ∈ C. B satisfies (2.10) since

(X̃1
ρ)〈0〉B(c · (X̃1

ρ)〈1〉 ⊗ c′1 · X̃2
ρ)⊗ c′2 · X̃3

ρ

= B(c · (X̃1
ρ)〈1〉x̃

2
ρ ⊗ c′1 · X̃2

ρ x̃
3
ρ)(X̃

1
ρ)〈0〉x̃

1
ρ ⊗ c′2 · X̃3

ρ

(1.23)
= B

(
c · x̃2ρX1(X̃2

ρ)1 ⊗ c′1 · (x̃3ρ)1X2(X̃2
ρ)2

)
x̃1ρX̃

1
ρ ⊗ c′2 · (x̃3ρ)2X3X̃3

ρ

(1.25)
= B

(
c · x̃2ρX1 ⊗ c′1 · (x̃3ρ)1X2

)
x̃1ρ ⊗ c′2 · (x̃3ρ)2X3

= B(c2 · (x̃2ρ)2x2 ⊗ c′ · x̃3ρx3)x̃1ρ ⊗ c1 · (x̃2ρ)1x1
(1.23)

= B
(
c2 · Ỹ 3

ρ ỹ
2
ρ(x̃3ρ)1 ⊗ c′ · ỹ3ρ(x̃3ρ)2

)
Ỹ 1
ρ (ỹ1ρ)〈0〉x̃

1
ρ ⊗ c1 · Ỹ 2

ρ (ỹ1ρ)〈1〉x̃
2
ρ

(1.25)
= B

(
c2 · Ỹ 3

ρ ỹ
2
ρ ⊗ c′ · ỹ3ρ

)
Ỹ 1
ρ (ỹ1ρ)〈0〉 ⊗ c1 · Ỹ 2

ρ (ỹ1ρ)〈1〉

= Ỹ 1
ρ B(c2 · Ỹ 3

ρ ⊗ c′)〈0〉 ⊗ c1 · Ỹ 2
ρ B(c2 · Ỹ 3

ρ ⊗ c′)〈1〉.
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Finally, B satisfies the normalizing condition (2.11), since

X̃1
ρB(c1 · X̃2

ρ ⊗ c2 · X̃3
ρ) = B(c1 ⊗ c2)1A = εC(c)1A,

for all c ∈ C. �

We have seen in Theorem 2.4 that a right H-module coalgebra C is Frobenius inMH if the forgetful
functor F : MC

H →MH is Frobenius. A similar property does not hold in general for separability.
In order to conclude that C is a coseparable coalgebra from the fact that the forgetful functor is
separable, an additional condition on the Casimir morphism B : C ⊗ C → H associated to F is
needed.

Theorem 2.7. Let H be a quasi-Hopf algebra with bijective antipode and let C be a right H-module
coalgebra. There is a bijective correspondence between the set of normalized Casimir morphisms for

C inMH and the set of normalized Casimir morphisms B for (C,ψ) in T #
H satisfying the condition

(2.18) B(c⊗ c′) = εB(c · x2 ⊗ c′ · x3)x1,

for all c, c′ ∈ C.

Proof. A normalized Casimir morphism for C inMH is a map B : C⊗C → k satisfying (2.16-2.17).
We have seen in the proof of Proposition 2.6 that B : C ⊗C → H, B(c⊗ c′) = B(c · x2 ⊗ c′ · x3)x1

is a normalized Casimir morphism for (C,ψ) in T #
H , which means that

h(1,1)B(c · h(1,2) ⊗ c′ · h2) = B(c⊗ c′)h,(2.19)

X1B(c2 ·X3 ⊗ c′)1 ⊗ c1 ·X2B(c2 ·X3 ⊗ c′)2 = X1
1B(c ·X1

2 ⊗ c′1 ·X2)⊗ c′2 ·X3,(2.20)

X1B(c1 ·X2 ⊗ c2 ·X3) = εC(c)1H .(2.21)

From the definition of B, it follows easily that B satisfies (2.18).

Conversely, assume that B : C⊗C → A satisfies (2.18-2.21). Then B = εB is a normalized Casimir
morphisms for C in MH . It follows from (2.19) that B is a morphism in MH , and it follows from
(2.21) that B is normalized, that is, B(c1 ⊗ c2) = εC(c), for all c ∈ C. The most difficult part is to
prove that B satisfies (2.17). First observe that qL = q1 ⊗ q2 = S(x1)αx2 ⊗ x3 ∈ H ⊗H has the
properties

(2.22) q21p
1S−1(q1)⊗ q22p

2 = 1⊗ 1 and S(h1)q1h(2,1) ⊗ q2h(2,2) = q1 ⊗ hq2,
for all h ∈ H. Here pL = p1 ⊗ p2 = X2S−1(X1β)⊗X3 ∈ H ⊗H. For later use, we record that

(2.23) S(p1)q1p21 ⊗ q2p22 = 1⊗ 1 and h(2,1)p
1S−1(h1)⊗ h(2,2)p2 = p1 ⊗ p2h,

for all h ∈ H. We will compute

X = c′2 · Y 3y3S−1(q1X1B(c · Y 1q21X
2 ⊗ c′1 · Y 2q22X

3)y2β)y1

in two different ways.

X
(2.18)

= B(c · Y 1q21 ⊗ c′1 · Y 2q22)c′2 · Y 3y3S−1(q1y2β)y1

(2.16)
= B(c · Y 1 ⊗ c′1 · Y 2)c′2 · Y 3y3S−1(αy2β)y1

(1.16)
= B(c · Y 1 ⊗ c′1 · Y 2)c′2 · Y 3.

Making use of the formula q1X1 ⊗ q21X
2 ⊗ q22X

3 = S(z1)q1z21 ⊗ q2z22 ⊗ z3, we also find that

X = c′2 · Y 3y3S−1(q1z21B(c · Y 1q2z22 ⊗ c′1 · Y 2z3)y2β)z1y1

(2.19,2.22)
= c′2 · Y 3y3S−1(q1(Y 1

2 z
2y21)1B(c · q2(Y 1

2 z
2y21)2 ⊗ c′1 · Y 2z3y22)β)Y 1

1 z
1y1

(1.13)
= ((c′ · x3)2 ·X3) · S−1(q1x21X

1
1B((c · q2x22) ·X1

2 ⊗ (c′ · x3)1 ·X2)β)x1

(2.20)
= c1 · q21x2(2,1)X

2B(c2 · q22x2(2,2)X
3 ⊗ c′ · x3)2S

−1(q1x21X
1B(c2 · q22x2(2,2)X

3 ⊗ c′ · x3)1β)x1

(1.15)
= B(c2 · q22x2(2,2)p

2 ⊗ c′ · x3)c1 · q21x2(2,1)p
1S−1(q1x21)x1
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(2.23)
= B(c2 · q22p2x2 ⊗ c′ · x3)c1 · q21p1S−1(q1)x1

(2.22)
= B(c2 · x2 ⊗ c′ · x3)c1 · x1.

It follows that B(c · Y 1 ⊗ c′1 · Y 2)c′2 · Y 3 = B(c2 · x2 ⊗ c′ · x3)c1 · x1, for all c, c′ ∈ C, which means
that B is a normalized Casimir morphism for the coalgebra C in MH .
It can be easily checked that the two correspondences defined above are inverse each other. �

3. Frobenius and separable properties for two-sided Hopf modules over quasi-Hopf
algebras

3.1. Two-sided Hopf modules. Consider a quasi-bialgebra H, a right H-comodule algebra A
and an H-bimodule coalgebra C. A two-sided (H,A)-bimodule over C is an (H,A)-bimodule M
together with a k-linear map ρM : M →M ⊗ C, ρM (m) = m(0) ⊗m(1) satisfying

(M ⊗ ε)ρM = M ; Φ · (ρM ⊗ IdH)(ρM (m)) = (M ⊗∆)(ρM (m)) · Φρ;
ρM (h�m) = h1 � m(0) ⊗ h2 ·m(1) ; ρM (m ≺ a) = m(0) ≺ a〈0〉 ⊗m(1) · a〈1〉,

for all m ∈ M , h ∈ H and a ∈ A. HMC
A is the category of two-sided (H,A)-bimodule over C,

and left H-linear, right A-linear, C-colinear maps. It was shown in [6, Prop. 6.3] that HMC
A is

isomorphic to a category of entwined modules over a cowreath in HM.

Proposition 3.1. Let H be a quasi-bialgebra, let A be a right H-comodule algebra and let C be an
H-bimodule coalgebra. A ∈ HM by restriction of scalars via ε. Consider the map

ψ : C ⊗A→ A⊗ C, ψ(c⊗ a) = a〈0〉 ⊗ c · a〈1〉.

Then (C,ψ) ∈ T (HM)#A . (C,ψ) is a coalgebra in T (HM)#A , with comultiplication and counit

δ : C → A⊗ C ⊗ C, δ(c) = X̃1
ρ ⊗ c1 · X̃2

ρ ⊗ c2 · X̃3
ρ ; ε = ηA ◦ εC : C → A.

The categories (HM)(ψ)CA and HMC
A are isomorphic.

As before, ∆C(c) = c1 ⊗ c2 is our Sweedler type notation for the comultiplication of a coalgebra C
within the monoidal category of H-(bi)modules.
For our purposes, this description of HMC

A as a category of entwined modules is not very useful,
since the unit object k of HM is not ⊗-generator for HM, a condition that is needed in the more
important results from [8], for example Theorem 4.8 and Proposition 6.1. This is why we provide
an alternative description of HMC

A as a category of entwined modules, this time over a cowreath
structure in kM, which will enable us to discuss when the forgetful functor F : HMC

A → HMA is
Frobenius or separable.

Proposition 3.2. Let H be a quasi-bialgebra, let A be a right H-comodule algebra and let C be
an H-bimodule coalgebra. Then C is right H ⊗ Hop-module coalgebra and A ⊗ Hop is a right

H ⊗ Hop-comodule algebra. In particular, C is a coalgebra in the category T #
A⊗Hop . Finally the

category of Doi-Hopf modules M(H ⊗Hop)CA⊗Hop is isomorphic to the category HMC
A of two-sided

(H,A)-bimodules over C.

Proof. We have seen that HMH and MH⊗Hop are isomorphic as monoidal categories, so C is a
right H ⊗Hop-module coalgebra with right H ⊗Hop-action c · (h⊗ h′) = h′ · c · h, for all c ∈ C and
h, h′ ∈ H. It is easy to see that A⊗Hop is a right H ⊗Hop-comodule algebra with

ΦA⊗Hop = (X̃1
ρ ⊗ x1)⊗ (X̃2

ρ ⊗ x2)⊗ (X̃3
ρ ⊗ x3) ∈ (A⊗Hop)⊗ (H ⊗Hop)⊗ (H ⊗Hop),

and

ρA⊗Hop : A⊗Hop → (A⊗Hop)⊗ (H ⊗Hop), ρA⊗Hop(a⊗ h) = (a〈0〉 ⊗ h1)⊗ (a〈1〉 ⊗ h2).

It was shown in Section 2 that C is a coalgebra in the category T #
A⊗Hop . It is now easy to verify

that the categories M(H ⊗Hop)CA⊗Hop and HMC
A are isomorphic. �
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3.2. Frobenius properties for the category of two-sided Hopf modules.

Proposition 3.3. Let H be a quasi-bialgebra, A a right H-comodule algebra and C an H-bimodule
coalgebra. The forgetful functor F : HMC

A → HMA is Frobenius if and only if C is finite dimen-
sional and there exists t = ai ⊗ hi ⊗ ci ∈ A⊗H ⊗ C such that

(3.1) aai ⊗ hih⊗ ci = aia〈0〉 ⊗ hih1 ⊗ h2 · ci · a〈1〉,
for all a ∈ A and h ∈ H, and the k-linear map κ : ∗C ⊗A⊗H → A⊗H ⊗ C,

(3.2) κ(∗c⊗ a⊗ h) = 〈∗c, x3 · (ci)2 · X̃3
ρ〉aiX̃1

ρa〈0〉 ⊗ h1x1hi ⊗ h2x2 · (ci)1 · X̃2
ρa〈1〉,

is an isomorphism. If H is a quasi-Hopf algebra with bijective antipode then F is Frobenius if and
only if C is finite dimensional and there exists t = ai ⊗ hi ⊗ ci ∈ A ⊗H ⊗ C satisfying (3.1) and
such that γ : A⊗H ⊗ ∗C → A⊗H ⊗ C given by the formula

(3.3) γ(a⊗ h⊗ ∗c) = 〈∗c, (S−1(X3)q2X2
2 · (ci)2 · (x̃2ρ)2p2S(x̃3ρ)〉 aai ⊗ hih⊗ q1X2

1 · (ci)1 · (x̃2ρ)1p1

is an isomorphism. Here qR = q1 ⊗ q2 = X1 ⊗ S−1(αX3)X2 ∈ H ⊗H.

Proof. The conditions (3.1) and (3.2) are the conditions (2.1) and (2.2) specialized to the right
H ⊗Hop-comodule algebra A⊗Hop. The second assertion follows from Proposition 2.1, applied to
the Doi-Hopf datum in Proposition 3.2. Note that pH

op

R = qR and qH
op

R = pR, so that pH⊗H
op

R =
(p1 ⊗ q1)⊗ (p2 ⊗ q2). �

Recall that a left integral in a quasi-bialgebra H is an element t ∈ H such that ht = ε(h)t, for all
h ∈ H. A quasi-Hopf algebra H with bijective antipode contains a non-zero left integral if and only
if H is finite dimensional, and in this case, the space of left integrals in H has dimension one, see
[3]. Then there exists µ : H → k such that th = 〈µ, h〉t, for every h ∈ H. µ is called the modular
element of H (in the dual space H∗ = ∗H). For all h ∈ H, we have that

〈µ, h1〉〈µ, S(h2)〉 = 〈µ, h1〉〈µ, S−1(h2)〉 = ε(h),

see (1.16-1.15), so it follows that µ is convolution invertible with inverse µ−1 = µ ◦ S = µ ◦ S−1. It
can be easily verified that µ is an algebra map.
A right integral in H is a left integral in Hop. We call H unimodular if there exists a non-zero left
integral in H that is also a right integral, or, equivalently, if µ = ε.

Theorem 3.4. Let H be a quasi-Hopf algebra with bijective antipode, A a right H-comodule algebra
and C an H-bimodule coalgebra. Let F : HMC

A → HMA be the forgetful functor. Then the following
assertions hold:

(i) If C is a Frobenius coalgebra in HMH , F is Frobenius.
(ii) Assume that F is Frobenius. Then for every algebra morphism ζ : A → k, there exists

t ∈ C such that h · t = ε(h)t, for all h ∈ H, ζ(a〈0〉)t · a〈1〉 = ζ(a)t, for all a ∈ A, and

κ : ∗C → C, κ(∗c) = ζ(x̃1ρ)〈∗c, q2 · t2 · (x̃2ρ)2p2S(x̃3ρ)〉 q1 · t1 · (x̃2ρ)1p1

is an isomorphism of vector spaces. Consequently, if there exists an algebra morphism
ζ : A→ k such that ζ̃ = (ζ ⊗H)ρ is surjective then C is a Frobenius coalgebra in HMH .

(iii) F : HMC
H → HMH is Frobenius if and only if C is a Frobenius coalgebra in HMH .

(iv) F : HMH
H → HMH is Frobenius if and only if H is finite dimensional and unimodular.

Proof. (i) follows from Proposition 2.3 and Proposition 3.2.
(ii) If F is a Frobenius functor then there exists t = ai ⊗ hi ⊗ ci ∈ A ⊗H ⊗ C such that (3.1-3.3)
hold. If ζ : A→ k is an algebra map then ζ⊗ε : A⊗Hop → k is also an algebra map. Furthermore,
we have that ε(hih)ζ(aai)ci = ζ(aia〈0〉)h ·ci ·a〈1〉, for all h ∈ H and a ∈ A, and t = ε(hi)ζ(ai)ci ∈ C
is such that h · t = ε(h)t, for all h ∈ H, and ζ(a〈0〉)t · a〈1〉 = ζ(a)t, for all a ∈ A. The remaining
assertions follow from Theorem 2.4 and Proposition 3.2.
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(iii) also follows from Theorem 2.4 and Proposition 3.2.
(iv) in view of (iii), it suffices to show that H ∈ HMH is Frobenius if and only H is finite dimensional
and unimodular.
If H ∈ HMH is a Frobenius coalgebra, then F is a Frobenius functor, and it follows from Proposi-
tion 3.2 and Proposition 1.3 that H is finite dimensional. H is a Frobenius coalgebra in MH⊗Hop ,
so there exists t ∈ H such that ht = th = ε(h)t, for all h ∈ H, and

(3.4) θ : ∗H → H, θ(∗h) = 〈∗h, q2t2p2〉q1t1p1,

is an isomorphism of vector spaces, see the proof of Proposition 2.3. It follows that t is a non-zero
left and right integral in H, and so H is unimodular.
Conversely, assume that H is finite dimensional and unimodular. Let t be a non-zero left and
right integral in H. Since t is a non-zero integral in H by [3, Remarks 2.6(ii)] we know that θ
defined in (3.4) is a left H-linear isomorphism, where ∗H is considered as a left H-module via
〈h · ∗h, h′〉 = 〈∗h, S−1(h)h′〉, for all h, h′ ∈ H. But this is part of the structure of the right dual
of H in HMH , in the sense that ∗H is a right dual of H in HMH . ∗H is an H-bimodule via
〈h · ∗h · h′, k〉 = 〈h∗, S−1(h)kS(h′)〉, for all h, h′, k ∈ H. The evaluation and coevaluation are given
by the formulas

d : H ⊗ ∗H → k, d(h⊗ ∗h) = 〈∗h, S−1(α)hβ〉 and b : k → ∗H ⊗H, b(1) = li ⊗ S−1(β)liα,

where li ⊗ li ∈ H ⊗ ∗H is the finite dual basis for H.
t is also a right integral in H. Using the formula t1p

1 ⊗ t2p2S(h) = t1p
1h ⊗ t2p2, for all h ∈ H,

we can prove that θ is right H-linear. Therefore θ is an isomorphism between H and ∗H in HMH .
Looking now again at the isomorphism between HMH and MH⊗Hop and taking into account the
formulas (2.6-2.7) applied to the quasi-Hopf algebra H ⊗Hop, we conclude that H is a Frobenius
coalgebra in HMH . �

3.3. Separability for the category of two-sided Hopf modules. Let H be a quasi-Hopf alge-
bra with bijective antipode, A a right H-comodule algebra and C an H-bimodule coalgebra. Then
C is a coalgebra in three different monoidal categories:

• C is a coalgebra in the monoidal category HMH
∼= MH⊗Hop , by assumption. Let W be

the set of normalized Casimir morphisms for C in HMH .

• C is a coalgebra in the monoidal category T #
A⊗Hop , see Proposition 3.2. Let W# be the set

of normalized Casimir morphisms for C in T #
A⊗Hop .

• C is a coalgebra in the monoidal category T (HM)#A , see Proposition 3.1. Let HW# be the

set of normalized Casimir morphisms for C in T (HM)#A .

Recall that, in general, a coseparable coalgebra is a coalgebra together with a normalized Casimir
morphism.
It is immediate that coseparability of C as a coalgebra in HMH

∼=MH⊗Hop implies coseparability

of C as a coalgebra in T #
A⊗Hop , and this yields a map w : W →W#.

If C is coseparable as a coalgebra in T (HM)#A , then the forgetful functor F : (HM)(ψ)CA
∼= HMC

A
∼=

M(H ⊗Hop)CA⊗Hop → HMA
∼=MA⊗Hop is separable, which is equivalent to the coseparability of

C as a coalgebra in T #
A⊗Hop . This implies that we have a map w# : HW# →W#.

The aim of Theorem 3.5 is to study w and w#. We first give an explicit description of the elements
of W, W# and HW#.
• W consists of k-linear maps Σ : C ⊗ C → k such that

Σ(h1 · c · h′1 ⊗ h2 · c′ · h′2) = ε(h)ε(h′)Σ(c⊗ c′),(3.5)

Σ(X2 · c2 · x2 ⊗X3 · c′ · x3)X1 · c1 · x1 = Σ(x1 · c ·X1 ⊗ x2 · c′1 ·X2)x3 · c′2 ·X3,(3.6)

Σ(c1 ⊗ c2) = εC(c),(3.7)
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for all c, c′ ∈ C and h ∈ H.
• W# consists of k-linear maps B : C ⊗C → A⊗H, B(c⊗ c′) = BA(c⊗ c′)⊗BH(c⊗ c′) ∈ A⊗H,
such that

a〈0,0〉B
A(h(1,2) · c · a〈0,1〉 ⊗ h2 · c′ · a〈1〉)⊗BH(h(1,2) · c · a〈0,1〉 ⊗ h2 · c′ · a〈1〉)h(1,1)

= BA(c⊗ c′)a⊗ hBH(c⊗ c′);(3.8)

X̃1
ρB

A(x3 · c2 · X̃3
ρ ⊗ c′)〈0〉 ⊗BH(x3 · c2 · X̃3

ρ ⊗ c′)1x1 ⊗BH(x3 · c2 · X̃3
ρ ⊗ c′)2x2 · c1

· X̃2
ρB

A(x3 · c2 · X̃3
ρ ⊗ c′)〈1〉 = (X̃1

ρ)〈0〉B
A(x12 · c · (X̃1

ρ)〈1〉 ⊗ x2 · c′1 · X̃2
ρ)(3.9)

⊗ BH(x12 · c · (X̃1
ρ)〈1〉 ⊗ x2 · c′1 · X̃2

ρ)x11 ⊗ x3 · c′2 · X̃3
ρ ;

X̃1
ρB

A(x2 · c1 · X̃2
ρ ⊗ x3 · c2 · X̃3

ρ)⊗BH(x2 · c1 · X̃2
ρ ⊗ x3 · c2 · X̃3

ρ)x1 = εC(c)1A ⊗ 1H ,(3.10)

for all c, c′ ∈ C, a ∈ A and h ∈ H.
• HW# consists of k-linear maps B : C ⊗ C → A such that

a〈0,0〉B(h1 · c · a〈0,1〉 ⊗ h2 · c′ · a〈1〉) = ε(h)B(c⊗ c′)a,(3.11)

(X̃1
ρ)〈0〉B(x1 · c · (X̃1

ρ)〈1〉 ⊗ x2 · c′1 · X̃2
ρ)⊗ x3 · c′2 · X̃3

ρ

= X̃1
ρB(X2 · c2 · X̃3

ρ ⊗X3 · c′)〈0〉 ⊗X1 · c1 · B(X2 · c2 · X̃3
ρ ⊗X3 · c′)〈1〉(3.12)

X̃1
ρB(c1 · X̃2

ρ ⊗ c2 · X̃3
ρ) = εC(c)1A,(3.13)

for all c, c′ ∈ C, a ∈ A and h ∈ H.

Theorem 3.5. Let H be a quasi-Hopf algebra with bijective antipode, A a right H-comodule algebra
and C an H-bimodule coalgebra.

(i) We have a map w : W →W#,

w(Σ)(c⊗ c′) = Σ(X2 · c · x̃2ρ ⊗X3 · c′ · x̃3ρ)x̃1ρ ⊗X1.

In the case where A = H, w corestricts to a bijection between W and the subset W# ⊂ W#

consisting of B ∈ W# satisfying

B(c⊗ c′) = (ε⊗ ε)B(X2 · c · x2 ⊗X3 · c′ · x3)x1 ⊗X1,

for all c, c′ ∈ C. The inverse of w is w−1(B) = (ε⊗ ε)B.
(ii) We have a map w# : HW# →W#,

w#(B)(c⊗ c′) = B(X2 · c⊗X3 · c′)⊗X1.

w# corestricts to an isomorphism between HW# and the subset W# ⊂ W# consisting of

B ∈ W# satisfying

B(c⊗ c′) = (A⊗ ε)B(X2 · c⊗X3 · c′)⊗X1,

for all c, c′ ∈ C. The inverse of w# is (w#)−1(B) = (A⊗ ε) ◦B.

(iii) If A = H, then W# ⊂ W#. Consequently, if C is a coseparable coalgebra in HMH , then it

is a coseparable coalgebra in T (HM)#H , too.

Proof. (i) Follows easily from Theorem 2.7 applied to the data in Proposition 3.2.
(ii) We first show that B = w(Σ) ∈ W#. B satisfies (3.9) since

X̃1
ρB(X2x3 · c2 · X̃3

ρ ⊗X3 · c′)〈0〉 ⊗X1
1x

1 ⊗X1
2x

2 · c1 · X̃2
ρB(X2x3 · c2 · X̃3

ρ ⊗X3 · c′)〈1〉
(1.13)

= X̃1
ρB(x31X

2Y 2
2 · c2 · X̃3

ρ ⊗ x32X3Y 3 · c′)〈0〉 ⊗ x1Y 1

⊗x2X1Y 2
1 · c1 · X̃2

ρB(x31X
2Y 2

2 · c2 · X̃3
ρ ⊗ x32X3Y 3 · c′)〈1〉

(3.11)
= X̃1

ρB(X2 · (Y 2 · c)2 · X̃3
ρ ⊗X3 · (Y 3 · c′))〈0〉 ⊗ Y 1
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⊗X1 · (Y 2 · c)1 · X̃2
ρB(X2 · (Y 2 · c)2 · X̃3

ρ ⊗X3 · (Y 3 · c′))〈1〉
(3.12)

= (X̃1
ρ)〈0〉B(x1Y 2 · c · (X̃1

ρ)〈1〉 ⊗ x2Y 3
1 · c′1 · X̃2

ρ)⊗ Y 1 ⊗ x3Y 3
2 · c′2 · X̃3

ρ
(3.11)

= (X̃1
ρ)〈0〉B(y21x

1Y 2 · c · (X̃1
ρ)〈1〉 ⊗ y22x2Y 3

1 · c′1 · X̃2
ρ)⊗ y1Y 1 ⊗ y3x3Y 3

2 · c′2 · X̃3
ρ

(1.13)
= (X̃1

ρ)〈0〉B(X2x12 · c · (X̃1
ρ)〈1〉 ⊗X3x2 · c′1 · X̃2

ρ)⊗X1x11 ⊗ x3 · c′2 · X̃3
ρ .

It is left to the reader to show that (3.11,1.12) imply (3.8), and that (3.13) implies (3.10). Moreover,

B(c⊗ c′) = (A⊗ ε)B(X2 · c⊗X3 · c′)⊗X1, so that Im(w#) ⊂ W#.

Conversely, if B ∈ W#, then B = (A⊗ ε) ◦B ∈ HW#. Applying A⊗ ε⊗ C to (3.9) we find that

(X̃1
ρ)〈0〉B(x1 · c · (X̃1

ρ)〈1〉 ⊗ x2 · c′1 · X̃2
ρ)⊗ x3 · c′2 · X̃3

ρ

= X̃1
ρB

A(c2 · X̃3
ρ ⊗ c′)〈0〉 ⊗BH(c2 · X̃3

ρ ⊗ c′) · c1 · X̃2
ρB

A(c2 · X̃3
ρ ⊗ c′)〈1〉

(∗)
= X̃1

ρB(X2 · c2 · X̃3
ρ ⊗X3 · c′)〈0〉 ⊗X1 · c1 · X̃2

ρB(X2 · c2 · X̃3
ρ ⊗X3 · c′)〈1〉,

as needed. At (∗), we used the formula

B(c⊗ c′) = (A⊗ ε)B(X2 · c⊗X3 · c′)⊗X1 = B(X2 · c⊗X3 · c′)⊗X1,

for all c, c′ ∈ C. Applying A ⊗ ε to (3.8) and (3.10), we obtain (3.11) and (3.13), proving that
B ∈ HW#. It is straightforward to see that both constructions are inverses.
(iii) If B ∈ W# then B ∈ W# since

(H ⊗ ε)B(X2 · c⊗X3 · c′)⊗X1

= (ε⊗ ε)B(Y 2X2 · c · x2 ⊗ Y 3X3 · c′ · x3)(H ⊗ ε)(x1 ⊗ Y 1)⊗X1

= (ε⊗ ε)B(X2 · c · x2 ⊗X3 · c′ · x3)x1 ⊗X1 = B(c⊗ c′),

for all c, c′ ∈ C. �

We will now focus on the situation where A = C = H. The coseparability of H as a coalgebra
in HMH has been studied in [18, Sec. 7]. Following [18], a biinvariant form is a morphism Ξ :
H ⊗H → k in HMH . Ξ is called cocentral if

Ξ(X2h2x
2 ⊗X3h′x3)X1h1x

1 = Ξ(x1hX1 ⊗ x2h′1X2)x3h′2X
3,

for all h, h′ ∈ H. Thus a biinvariant cocentral form in the sense of [18] is a Casimir morphism for
H as a coalgebra in HMH .
The comments following [18, Cor. 7.5] entail that the existence of a non-zero biinvariant cocentral
form Ξ : H ⊗ H → k for a quasi-Hopf algebra H with bijective antipode is equivalent to the
unimodularity of H. In this situation, there is a bijective correspondence between biinvariant
cocentral forms and left cointegrals λ on H, these are functionals λ : H → k satisfying

(3.14) λ(V 2h2U
2)V 1h1U

1 = µ(x1)λ(hS(x2))x3,

for all h ∈ H, where µ is the modular element of H and

(3.15) U = U1 ⊗ U2 = g1S(q2)⊗ g2S(q1) and V = V 1 ⊗ V 2 = S−1(f2p2)⊗ S−1(f1p1).

f = f1 ⊗ f2 is the Drinfeld twist with inverse f−1 = g1 ⊗ g2, q1 ⊗ q2 = X1 ⊗ S−1(αX3)X2 and
p1 ⊗ p2 = x1 ⊗ x2βS(x3).
If H is finite dimensional then the the space L of left cointegrals is of dimension one. H is cosemisim-
ple if and only if there exists λ ∈ L such that λ(S−1(α)β) = 1, see [18]. This leads to the following
result.

Proposition 3.6. Let H be a finite dimensional quasi-Hopf algebra. H is coseparable as a coalgebra
in HMH if and only if H is unimodular and cosemisimple.
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Proof. We have seen above that there exists a Casimir morphism for the coalgebra H in HMH if
and only if H is unimodular. In this case, we have a bijection between L and the set of Casimir
morphisms for H as a coalgebra in HMH , see [18, Cor. 7.4]. The Casimir morphism Ξ corresponding
to λ ∈ L is given by the formula

Ξ(h⊗ h′) = λ(S−1(α)hβS(h′)).

Thus H is a coseparable coalgebra in HMH if and only if H is unimodular and there exists λ ∈ L
such that λ(S−1(α)h1βS(h2)) = ε(h), for all h ∈ H, or, equivalently, λ(S−1(α)β) = 1, that is, H is
cosemisimple. �

We will now study the separability of the forgetful functor F : HMH
H → HMH in the case where

H is a finite dimensional quasi-Hopf algebra.

Theorem 3.7. For a finite dimensional quasi-Hopf algebra H, the following assertions are equiv-
alent:

(i) the forgetful functor F : HMH
H → HMH is separable;

(ii) H is unimodular;
(iii) F is a Frobenius functor.

Proof. (i)⇒ (ii). Suppose that F is separable. Applying Proposition 2.5 (v) and Proposition 3.2

we obtain a morphism Λ : H ⊗ Hop ⊗ H → H ⊗ Hop ⊗ ∗H in M(H ⊗ Hop)HH⊗Hop which is left
H ⊗Hop-linear and satisfies a certain normalizing condition. Then Λ is left H ⊗Hop-linear and a
morphism in HMH

H . As in the proof of Theorem 2.4 we deduce that for any right H ⊗Hop-module
M (or, equivalently, for any H-bimodule M), there exists a morphism M ⊗H →M ⊗ ∗H in HMH

H .
Applying Proposition 2.5 (v) to the Doi-Hopf datum described in Proposition 3.2, we find that
M ⊗H, M ⊗ ∗H ∈ HMH

H . The structure maps on M ⊗H and M ⊗ ∗H are given by the formulas

h · (m⊗ ~) · h′ = h1 ·m · h′2 ⊗ h2~h′2;

ρ(m⊗ ~) = x1 ·m ·X1 ⊗ x2h1X2 ⊗ x3h2X3;

h · (m⊗ ∗h) · h′ = h1 ·m · h′1 ⊗ S(h′2)⇀∗h↼S−1(h2);

ρ(m⊗ ∗h) = x1 ·m ·X1 ⊗
(
S(X2)1U

1X3⇀hi↼x3V 1S−1(x2)1
)(

S(X2)2U
2⇀∗h↼V 2S−1(x2)2

)
⊗ hi,

for all h, ~, h′ ∈ H, ∗h ∈ ∗H and m ∈ M . Here hi ⊗ hi ∈ H ⊗ ∗H is the finite dual basis of H, U
and V are the elements defined in (3.15) and ⇀ and ↼ are the well-known canonical left and right
actions of H on ∗H, given by the formula 〈h⇀∗h↼h′, h′′〉 = 〈∗h, h′′h′h〉.
Applying this to M = k ∈ HM by restriction of scalars via ε, we obtain a morphism H → ∗H in

HMH
H . H ∈ HMH

H via the multiplication and comultiplication, and the structure on ∗H is given
by the formulas

(3.16) h · ∗h · h′ = S(h′)⇀∗h↼S−1(h) and ρ(∗h) =
(
U1⇀hi↼V 1

) (
U2⇀∗h↼V 2

)
⊗ hi,

for all h, h′ ∈ H and ∗h ∈ ∗H. Applying [18, Theorem 7.3], we find a Casimir morphism for H as a
coalgebra in HMH , and therefore H is unimodular.

(ii)⇒ (i). If H is unimodular, then there exists a non-zero left and right integral t in H and a

non-zero left cointegral λ on H such that 〈λ, S−1(t)〉 = 1. By [5, Prop. 4.1] we have that

(3.17) λ(q2t2p
2)q1t1p

1 = λ(S−1(q1t1p
1))q2t2p

2 = 1.

In the sequel we will need the following formula, see [3, Lemma 3.3]:

(3.18) λ(S−1(h)h′) = µ(h1)λ(h′S(h2)),
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for all h, h′ ∈ H. So when H is unimodular we have λ(S−1(h)h′) = λ(h′S(h)), or, equivalently,

(3.19) λ↼S−1(h) = S(h)⇀λ,

for all h ∈ H.
It follows from Proposition 2.5 (vii) and Proposition 3.2 that the separability of F is equivalent to

the existence of a k-linear map Λ : H → H ⊗H ⊗ ∗H, Λ(h) = Λ
1
(h)⊗ Λ

2
(h)⊗ Λ

3
(h) such that:

Λ
1
(~)h1 ⊗ h′1Λ

2
(~)⊗ S(h2)⇀Λ

3
(~)↼S−1(h′2)

= h1Λ
1
(h′2~h2)⊗ Λ

2
(h′2~h2)h′1 ⊗ Λ

3
(h′2~h2),(3.20)

Λ
3
(x2h1X

2)(S−1(Y 2)h′S(y2))X1Λ
1
(x2h1X

2)y1 ⊗ Y 1Λ
2
(x2h1X

2)x1 ⊗ Y 3x3h2X
3y3

= Λ
3
(h)(V 2h′2U

2)Λ
1
(h)⊗ Λ

2
(h)⊗ V 1h′1U

1,(3.21)

Λ
3
(x3h2X

3)(q2Λ
2
(x3h2X

3)2x
2h1X

2Λ
1
(x3h2X

3)2p
2)X1Λ

1
(x3h2X

3)1p
1

⊗ q1Λ
2
(x3h2X

3)1x
1 = ε(h)1⊗ 1,(3.22)

for all h, ~, h′ ∈ H. We will show that

Λ : H → H ⊗H ⊗ ∗H, Λ(h) = 1⊗ t⊗ S(h)⇀λ

satisfies (3.20-3.22). (3.20) is satisfied since

Λ
1
(~)h1 ⊗ h′1Λ

2
(~)⊗ S(h2)⇀Λ

3
(~)↼S−1(h′2)

= h1 ⊗ h′1t⊗ S(~h2)⇀λ↼S−1(h′2)
(3.19)

= h1 ⊗ t⊗ S(h′~h2)⇀λ

= h1 ⊗ th′1 ⊗ S(h′2~h2)⇀λ = h1Λ
1
(h′2~h2)⊗ Λ

2
(h′2~h2)h′1 ⊗ Λ

3
(h′2~h2),

for all h, ~, h′ ∈ H. To prove (3.21), we first compute that

Λ
3
(x2h1X

2)(S−1(Y 2)h′S(y2))X1Λ
1
(x2h1X

2)y1 ⊗ Y 1Λ
2
(x2h1X

2)x1 ⊗ Y 3x3h2X
3y3

= (S(x2h1X
2)⇀λ)(S−1(Y 2)h′S(y2))X1y1 ⊗ Y 1tx1 ⊗ Y 3x3h2X

3y3

= λ(h′S(h1X
2y2))X1y1 ⊗ t⊗ h2X3y3 = λ(h′S(h1))1⊗ t⊗ h2,

for all h, h′ ∈ H. From [18, Lemma 3.13], we recall that the formula

(3.23) U [1⊗ S(h)] = ∆(S(h1))U [h2 ⊗ 1],

holds for all h ∈ H. This allows us to compute that

Λ
3
(h)(V 2h′2U

2)Λ
1
(h)⊗ Λ

2
(h)⊗ V 1h′1U

1 = (S(h)⇀λ)(V 2h′2U
2)1⊗ t⊗ V 1h′1U

1

= λ
(
V 2(h′S(h1))2U

2
)

1⊗ t⊗ V 1(h′S(h1))1U
1h2

(3.14)
= λ(h′S(h1))1⊗ t⊗ h2,

for all h, h′ ∈ H, and (3.21) follows. Finally

Λ
3
(x3h2X

3)(q2Λ
2
(x3h2X

3)2x
2h1X

2Λ
1
(x3h2X

3)2p
2)X1Λ

1
(x3h2X

3)1p
1 ⊗ q1Λ

2
(x3h2X

3)1x
1

= (S(x3h2X
3)⇀λ)(q2t2x

2h1X
2p2)X1p1 ⊗ q1t1x1

= λ(q2t2x
2h1X

2p2S(x3h2X
3))X1p1 ⊗ q1t1x1 = λ(q2t2x

2h1βS(x3h2))1⊗ q1t1x1

= ε(h)λ(q2t2p
2)1⊗ q1t1p1

(3.17)
= ε(h)1⊗ 1,

for all h ∈ H, so that (3.22) holds.
�

Our conclusion is that the forgetful functor F : HMH
H → HMH is Frobenius if and only if H is a

Frobenius coalgebra within HMH , that is, if and only if H is finite dimensional and unimodular. But
in the separable case we have a completely different situation, provided that H is a finite dimensional
quasi-Hopf algebra: H is a coseparable coalgebra in HMH if and only if H is unimodular and
cosemisimple while F is separable if and only if H is unimodular; so we might have F separable
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although H is not a coseparable coalgebra in HMH . However the remarkable thing is that in the
finite dimensional case F is separable if and only if it is Frobenius, since both properties reduce at
the unimodularity property of H.

4. Frobenius and separable properties for Yetter-Drinfeld modules over
quasi-Hopf algebras

The aim of this Section is to apply our results to the category of Yetter-Drinfeld modules over
a quasi-Hopf algebra. In particular, we will be able to characterize when the algebra extension
H → D(H), from a finite dimensional quasi-Hopf algebraH to its Drinfeld doubleD(H) is Frobenius
or separable.
Following [9] we introduce the notion of right Yetter-Drinfeld module over a quasi-bialgebra.

Definition 4.1. Let H be a quasi-bialgebra, let C be an H-bimodule coalgebra and let A an H-
bicomodule algebra. A right (H,A,C)-Yetter-Drinfeld module is a right A-module M together with
a k-linear map ρM : M → M ⊗ C, ρM (m) = m(0) ⊗m(1), called the right C-coaction on M , such
that ε(m(1))m(0) = m and

(m(0)·Θ2)(0) ⊗Θ1·(m(0)·Θ2)(1) ⊗m(1)·Θ3

= (m·X̃3

λ)(0)·X̃
1

ρ ⊗ X̃
1

λ·(m·X̃
3

λ)(1)1 ·X̃
2

ρ ⊗ X̃
2

λ·(m·X̃
3

λ)(1)2 ·X̃
3

ρ;

m(0)·u<0> ⊗m(1)·u〈1〉 = (m·u[0])(0) ⊗ u[−1]·(m·u[0])(1),

for all m ∈M and u ∈ A. YD(H)CA will be the category of right (H,A,C)-Yetter-Drinfeld modules
and A-linear maps preserving the C-coaction.

The category of left-right Yetter-Drinfeld modules is isomorphic to a certain category of left-right
Doi-Hopf modules, see [7]. A similar result for the category of right Yetter-Drinfeld modules can
easily be deduced from this. For a right H-comodule algebra A, and a left H-module coalgebra C,
we have an isomorphism of categories AM(H)C ∼=M(Hop)CAop . For a right Yetter-Drinfeld datum
(H,A,C) as in Definition 4.1, we have an isomorphism of categories

(4.1) YD(H)CA
∼= AopYD(H)C .

Combining these properties with [7, Theorem 3.8], we obtain the following isomorphisms of cate-
gories:

YD(H)CA
∼= AopYD(Hop)C ∼= Aop2M(H ⊗Hop)C ∼=M(Hop ⊗H)CAop2op ,

where Aop2 is the right H ⊗Hop-comodule algebra associated to the Hop-bicomodule algebra Aop

as in [7, Prop. 3.3]; the H-bimodule coalgebra C is viewed as a right Hop ⊗H-module coalgebra
through the monoidal isomorphism of categories identification HMH

∼=MHop⊗H . More precisely,
if we denote A2 = Aop2op then A2 = A as a k-algebra and it is a right Hop ⊗H-comodule algebra
with coaction

ρ2 : A→ A⊗ (Hop ⊗H), ρ2(u) = u[0]〈0〉 ⊗
(
S(u[−1])⊗ u[0]〈1〉

)
;

and

Φρ2 = (x̃3λ)〈0〉X̃
1

ρΘ
2
〈0〉 ⊗

(
S(x̃2λΘ)1f1 ⊗ (x̃3λ)〈1〉1X̃

2

ρΘ
2
〈1〉

)
⊗

(
S(x̃1λ)f2 ⊗ (x̃3λ)〈1〉2X̃

3

ρΘ
3
)
.

C is a right Hop ⊗H-module coalgebra, with right Hop ⊗H-action given by c · (h⊗ h′) = h · c · h′,
for all h, h′ ∈ H and c ∈ C.
By the opposite versions of [7, Lemmas 3.6 and 3.7], we have that the category isomorphism F :
YD(H)CA →M(Hop ⊗H)C

A2 is given by the following formulas. F (M) = M as a right A-module,

and the right C-coaction is given by

ρ′M (m) = m(0′) ⊗m(1′) = (m · q̃2λ)(0) ⊗ q̃1λ · (m · q̃2λ)(1),
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for all m ∈M . Here q̃λ = q̃1λ ⊗ q̃2λ = S(x̃1λ)αx̃2λ ⊗ x̃3λ ∈ H ⊗A.

We present a description of the inverse G of F . For a right (Hop⊗H,A2, C)-Hopf module M , with
right A-action · and right C-coaction ρ′M , ρ′M (m) = m(0′) ⊗m(1′) ∈M ⊗ C, we define G(M) = M
as a right A-module, with right C-coaction ρM : M →M ⊗ C, given by the formula

(4.2) ρM (m) = m
(0)
⊗m

(1)
= m(0′)·(p̃2λ)〈0〉 ⊗ S(p̃1λ)·m(1′)·(p̃2λ)〈1〉,

for all m ∈M . Here p̃λ = p̃1λ⊗ p̃2λ = X̃
2

λS
−1(X̃

1

λβ)⊗ X̃3

λ ∈ H ⊗A. G is the identity on morphisms.
The study of the Frobenius and separable properties of the forgetful functor F : YD(H)CA →MA

reduces to the study of the Frobenius and separable properties of the forgetful functor

F :M(Hop ⊗H)CA2 →MA.

Thus necessary and sufficient conditions for the Frobenius property or the separability of F can be
obtained by applying Propositions 2.1 and 2.5 to the Doi-Hopf datum (Hop ⊗H,A2, C).

4.1. Frobenius properties for Yetter-Drinfeld modules.

Proposition 4.2. Let H be a quasi-Hopf algebra, let C be an H-bimodule coalgebra and let A be
an H-bicomodule algebra. The forgetful functor F : YD(H)CA →MA is Frobenius if and only if C
is finite dimensional and there exists t = ui ⊗ ci ∈ A⊗ C such that

uui ⊗ ci = uiu[0]〈0〉 ⊗ S(u[−1])ciu[0]〈1〉 ,

for all u ∈ A, and the map κ : A⊗ ∗C → A⊗ C,

κ(u⊗ ∗c) = 〈∗c, X̃1

λS(θ11(X̃
2

λ)1p
1)f2 · (ci)2 · θ2〈1〉2(x̃2ρ)2p

2S(θ3x̃3ρ)〉

uuiθ
2
〈0〉x̃

1
ρ(X̃

3

λ)〈0〉 ⊗ S(θ12(X̃
2

λ)2p
2)f1 · (ci)1 · θ2〈1〉1(x̃2ρ)1p

1(X̃
3

λ)〈1〉,

is an isomorphism. As before, f = f1⊗f2 is the Drinfeld’s twist, pL = p1⊗p2 = X2S−1(X1β)⊗X3

and pR = p1 ⊗ p2 = x1 ⊗ x2βS(x3). Consequently, F is a Frobenius functor if C is a Frobenius
coalgebra in HMH .

Proof. Recall that pH
op

R = qHR = q1 ⊗ q2 = X1 ⊗ S−1(αX3)X2. Therefore pH
op⊗H

R = (q1 ⊗ p1) ⊗
(q2 ⊗ p2). Moreover, pR and qR satisfy the property

(4.3) p1h⊗ p2 = h(1,1)p
1 ⊗ h(1,2)p2S(h2) , hq1 ⊗ q2 = q1h(1,1) ⊗ S−1(h2)q2h(1,2),

for all h ∈ H. This allows us to compute that

x̃1ρ2 ⊗ (x̃2ρ2)1(q1 ⊗ p1)⊗ (x̃2ρ2)2(q2 ⊗ p2)(S−1 ⊗ S)(x̃3ρ2)

= θ2〈0〉x̃
1
ρ(X̃

3

λ)〈0〉 ⊗
(
q1g11S(θ1X̃

2

λ)1 ⊗ θ2〈1〉1(x̃2ρ)1(X̃
3

λ)〈1〉(1,1)p
1
)

⊗
(
X̃

1

λS
−1(g2)q2g12S(θ1X̃

2

λ)2 ⊗ θ2〈1〉2(x̃2ρ)2(X̃
3

λ)〈1〉(1,2)p
2S(θ3x̃3ρ(X̃

3

λ)〈1〉2)
)

(4.3)
=

(1.17)
θ2〈0〉x̃

1
ρ(X̃

3

λ)〈0〉 ⊗
(
q1g11G

1S(θ12(X̃
2

λ)2)f1 ⊗ θ2〈1〉1(x̃2ρ)1p
1(X̃

3

λ)〈1〉

)
⊗
(
X̃

1

λS
−1(g2)q2g12G

2S(θ11(X̃
2

λ)1)f2 ⊗ θ2〈1〉2(x̃2ρ)2p
2S(θ3x̃3ρ)

)
(∗)
= θ2〈0〉x̃

1
ρ(X̃

3

λ)〈0〉 ⊗
(
S(θ12(X̃

2

λ)2p
2)f1 ⊗ θ2〈1〉1(x̃2ρ)1p

1(X̃
3

λ)〈1〉

)
⊗
(
X̃

1

λS(θ11(X̃
2

λ)1p
1)f2 ⊗ θ2〈1〉2(x̃2ρ)2p

2S(θ3x̃3ρ)
)
,

in A⊗ (Hop ⊗H)⊗2. Here f−1 = G1 ⊗G2 is a second copy of f−1. At (∗), we used the equality

(4.4) q1g11G
1 ⊗ S−1(g2)q2g12G

2 = S(p2)⊗ S(p1),
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see [5, (4.13)]. The first part in the statement is an immediate consequence of Proposition 2.1,
applied to (Hop ⊗ H,A2, C). The second part can be deduced easily from Proposition 2.3, using
the monoidal category isomorphism HMH

∼=MHop⊗H . �

The natural question arises whether the converse of the final statement in Proposition 4.2 holds: is
C a Frobenius coalgebra in HMH if F is Frobenius? Theorem 2.4 provides an answer to questions
of this type, but, unfortunately, it cannot be applied in our situation. We have an algebra map
ε : H → k, but the associated map ε̃ : H → Hop ⊗ H, ε̃(h) = S(h1) ⊗ h2, is not surjective.
However, in the case where C = H, we obtain an affirmative answer to the question, using the
structure theorem for quasi-Hopf algebras. We need some preliminary results first.

Lemma 4.3. Let H be a finite dimensional quasi-Hopf algebra and let µ be its modular element.
Hµ is the vector space equipped with left and right H-action and right H-coaction ρ given by the
formulas

h · ~ · h′ = µ(h1)h2~h′ ; ρ(~) = µ(x1)x2~1 ⊗ x3~2.
Hµ is a quasi-Hopf H-bimodule. If λ is a non-zero left cointegral on H then

ζ : Hµ → ∗H, ξ(~) = S(~)⇀λ

is an isomorphism in HMH
H , with inverse given by the formula

ζ−1(∗h) = 〈∗h, S−1(q1t1p
1)〉S−1(q2t2p

2),

where t is a left integral in H such that λ(S−1(t)) = 1.

Proof. Recall from (3.16) that ∗H ∈ HMH
H . It follows from the comments made before Definition

5.3 in [18] that Hµ is a quasi-Hopf H-bimodule and that ζ is an isomorphism in HMH
H . Our present

contribution is the explicit description of ζ−1. Using (4.3) and (3.17), one can verify that ζ and ζ−1

are inverses. �

Let H be a quasi-bialgebra. YDH
H will be a short notation for YD(H)HH .

Lemma 4.4. Let H be a quasi-Hopf algebra. If the forgetful functor F : YDH
H →MH is Frobenius

then H is finite dimensional and there exists an element t ∈ H such that

(4.5) µ(h(2,1))S(h1)th(2,2) = µ(h)t,

for all h ∈ H, where µ is the modular element of H. Furthermore, the map Υ : ∗H → H,

(4.6) Υ(∗h) = 〈µ, y21x1X3
1 〉 〈∗h,X1S(y11X

2
1p

1)f2t2y
2
(2,2)x

2
2p

2S(y3x3)〉 S(y12X
2
2p

2)f1t1y
2
(2,1)x

2
1p

1X3
2

is an isomorphism and satisfies

(4.7) 〈µ, h(2,1)〉S(h1)Υ(∗h)h(2,2) = 〈µ, h(2,1)〉Υ(S(h(2,2))⇀
∗h↼h1),

for all ∗h ∈ ∗H and h ∈ H.

Proof. It follows from Proposition 1.3 that H is finite dimensional if F is Frobenius. Then the
forgetful functor M(Hop ⊗H)H

H2 →MH is also Frobenius. Applying the first part of Theorem 2.4

to the algebra map µ : H → k, we find t ∈ H obeying µ(h(2,1))S(h1)th(2,2) = µ(h)t, for all h ∈ H,
and such that Υ : ∗H → H,

Υ(∗h) = 〈µ, y21x1X3
1 〉 〈∗h,X1S(y11X

2
1p

1)f2t2y
2
(2,2)x

2
2p

2S(y3x3)〉S(y12X
2
2p

2)f1t1y
2
(2,1)x

2
1p

1X3
2

is an isomorphism. Note that we made also use of the computation performed in the proof of
Proposition 4.2, applied to the Doi-Hopf datum (Hop ⊗H,H2, H).
In order to prove (4.7), we compute that

〈µ, h(2,1)〉 S(h1)Υ(∗h)h(2,2) = 〈µ, y21x1(X3h2)1)〉 〈∗h,X1S(y11X
2
1p

1)f2t2y
2
(2,2)x

2
2p

2S(y3x3)〉

S(y12X
2
2p

2h1)f1t1y
2
(2,1)x

2
1p

1(X3h2)2
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(2.23,1.12)
= 〈µ, y21x1h(2,2)1X

3
1 〉 〈∗h, h1X1S((y1h(2,1))1X

2
1p

1)f2t2y
2
(2,2)x

2
2p

2S(y3x3)〉

S((y1h(2,1))2X
2
2p

2)f1t1y
2
(2,1)x

2
1p

1h(2,2)2X
3
2

(4.3,1.12)
= 〈∗h, h1X1S((y1(h2)1)1X

2
1p

1)f2t2(y2(h2)(2,1))(2,2)x
2
2p

2S(y3(h2)(2,2)x
3)〉

µ((y2(h2)(2,1))1x
1X3

1 )S((y1(h2)1)2X
2
2p

2)f1t1(y2(h2)(2,1))(2,1)x
2
1p

1X3
2

(1.12,1.17)
= 〈∗h, h1X1S(y11X

2
1p

1)f2(S(h(2,1)1)th(2,1)(2,2))2y
2
(2,2)x

2
2p

2S(h(2,2)y
3x3)〉

〈µ, h(2,1)(2,1)y
2
1x

1X3
1 〉S(y12X

2
2p

2)f1(S(h(2,1)1)th(2,1)(2,2))1y
2
(2,1)x

2
1p

1X3
2

(4.5)
= 〈µ, h(2,1)y21x1X3

1 〉〈∗h, h1X1S(y11X
2
1p

1)f2t2y
2
(2,2)x

2
2p

2S(h(2,2)y
3x3)〉

S(y12X
2
2p

2)f1t1y
2
(2,1)x

2
1p

1X3
2

= 〈µ, h(2,1)〉Υ(S(h(2,2))⇀
∗h↼h1),

for all h ∈ H and ∗h ∈ ∗H, finishing the proof of the Lemma. �

We will need the following formulas, see [18], and [5, (4.14)].

[1⊗ S−1(h)]V = [h2 ⊗ 1]V∆(S−1(h1)),(4.8)

qR = [q̃2 ⊗ 1]V∆(S−1(q̃1)),(4.9)

pR = ∆(S(p̃1))U [p̃2 ⊗ 1], and(4.10)

S(g1)q1g21 ⊗ q2g22 = S(p2)f1 ⊗ S(p1)f2.(4.11)

By the definitions of pR and pL and using (1.13) we obtain that

X1
1p

1 ⊗X1
2p

2S(X2)⊗X3 = x1 ⊗ x2S(x31p
1)⊗ x32p2 and(4.12)

y1p1 ⊗ y2p21 ⊗ y3p22 = X2
1p

1S−1(X1)⊗X2
2p

2 ⊗X3.(4.13)

Theorem 4.5 generalizes [16, Theorem 4.2] to the quasi-Hopf algebra setting. Note that our approach
is different from the one in [16].

Theorem 4.5. For a quasi-Hopf algebra H, the following assertions are equivalent:

(i) The forgetful functor F : YDH
H →MH is Frobenius;

(ii) H is finite dimensional and unimodular;
(iii) H is finite dimensional and Frobenius as a coalgebra in HMH .

Proof. (ii)⇔ (iii). If H is finite dimensional then H is a Frobenius coalgebra in HMH if and only

if H is unimodular, see the proof of (iv) of Theorem 3.4.
(i)⇒ (ii). It follows from Lemma 4.4 that H is finite dimensional, and that there exists t ∈ H

satisfying (4.5) and such that Υ : ∗H → H defined in (4.6) is an isomorphism. For all ∗h ∈ ∗H, we
have that

Υ(∗h)
(1.17,4.3)

= 〈µ, y21x1X3
1 〉 〈∗h,X1S(p1)f2(S(y1X2)ty22x

2X3
(2,1))2p

2S(y3x3X3
(2,2))〉

S(p2)f1(S(y1X2)ty22x
2X3

(2,1))1p
1

(4.4,1.12)
= 〈µ, y21X3

(1,1)x
1〉 〈∗h, S−1(g2S(X1))q2(g1S(y1X2)ty22X

3
(1,2)x

2)2p
2S(y3X3

2x
3)〉

q1(g1S(y1X2)ty22X
3
(1,2)x

2)1p
1,

Let ζ : H → ∗H be the isomorphism defined in Lemma 4.3. For all h ∈ H, we have that

(Υ ◦ ζ)(h) = 〈µ, y21X3
(1,1)x

1)〉 〈λ, S−1(g2S(X1))q2(g1S(y1X2)ty22X
3
(1,2)x

2)2p
2S(hy3X3

2x
3)〉

q1(g1S(y1X2)ty22X
3
(1,2)x

2)1p
1

(4.9,4.10)
= 〈λ, S−1(g2S(X1))V 2(S−1(q1)g1S(y1X2)ty22X

3
(1,2)x

2S(p1))2U
2S(hy3X3

2x
3)〉

〈µ, y21X3
(1,1)x

1〉 q2V 1(S−1(q1)g1S(y1X2)ty22X
3
(1,2)x

2S(p1))1U
1p2
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(3.23,4.8)
=

(3.14)
〈λ, S−1(q1g21S(X1)1)g1S(y1X2)ty22X

3
(1,2)x

2S(z2h1y
3
1X

3
(2,1)x

3
1p

1)〉

〈µ, z1y21X3
(1,1)x

1〉 q2g22S(X1)2z
3h2y

3
2X

3
(2,2)x

3
2p

2

(1.17,4.11)
= 〈λ, S−1(f1)X1

2p
2S(y1X2)ty22X

3
(1,2)x

2S(z2h1y
3
1X

3
(2,1)x

3
1p

1)〉

〈µ, z1y21X3
(1,1)x

1〉 S(X1
1p

1)f2z3h2y
3
2X

3
(2,2)x

3
2p

2,

and

〈µ, h1〉(Υ ◦ ζ)(h2)
(1.12)

= 〈λ, S−1(f1)X1
2p

2S(y1X2)ty22X
3
(1,2)x

2S(h(1,2)z
2y31X

3
(2,1)x

3
1p

1)〉

〈µ, z1h(1,1)y21X3
(1,1)x

1〉 S(X1
1p

1)f2h2z
3y32X

3
(2,2)x

3
2p

2

(3.18,4.5)
= 〈λ, S−1(f1h1)X1

2p
2S(z11y

1X2)t(z12y
2)2X

3
(1,2)x

2S(z2y31X
3
(2,1)x

3
1p

1)〉

〈µ, (z12y2)1X
3
(1,1)x

1〉 S(X1
1p

1)f2h2z
3y32X

3
(2,2)x

3
2p

2

(1.13,1.12)
= 〈λ, S−1(f1h1)X1

2p
2S(z1y1X2)tz22y

2
(1,2)X

3
(1,1)2

w1
2x

2S(z3y22X
3
(1,2)w

2x31p
1)〉

〈µ, z21y2(1,1)X
3
(1,1)1

w1
1x

1〉 S(X1
1p

1)f2h2y
3X3

2w
3x32p

2

(4.12)
= 〈λ, S−1(f1h1)X1

2p
2S(z1y1X2)tz22(y2X3

1 )(1,2)P
2S(z3(y2X3

1 )2)〉
〈µ, z21(y2X3

1 )(1,1)P
1〉S(X1

1p
1)f2h2y

3X3
2

(4.3)
= 〈λ, S−1(f1h1)X1

2p
2S(z1y1X2)tz22P

2S(z3)〉
〈µ, z21P 1y2X3

1 〉 S(X1
1p

1)f2h2y
3X3

2
(4.12,1.12)

= 〈λ, S−1(f1h1)x2S(z1x3(1,1)y
1p1)tz22P

2S(z3)〉

〈µ, z21P 1x3(1,2)y
2p21〉 S(x1)f2h2x

3
2y

3p22,

where pR = P 1 ⊗ P 2 a second copy of pR. Taking h = α, we find that

〈µ, α1〉(Υ ◦ ζ)(α2)
(1.20)

= 〈λ, S−1(γ1)x2S(z1x3(1,1)y
1p1)tz22P

2S(z3)〉 〈µ, z21P 1x3(1,2)y
2p21〉 S(x1)γ2x32y

3p22
(1.18,3.18)

= 〈λ, S−1(α)w1X2x2S(z1x3(1,1)y
1p1)tz22P

2S((w2X3
1 )2z

3)〉

〈µ, (w2X3
1 )1z

2
1P

1x3(1,2)y
2p21〉 S(X1x1)αw3X3

2x
3
2y

3p22
(4.5,1.12)

= 〈λ, S−1(α)w1X2x2S(z1(w2X3
1 )1x

3
(1,1)y

1p1)tz22(w2X3
1 )(2,1)2P

2S(z3(w2X3
1 )(2,2))〉

〈µ, z21(w2X3
1 )(2,1)1P

1x3(1,2)y
2p21〉S(X1x1)αw3X3

2x
3
2y

3p22
(4.3)
= 〈λ, S−1(α)w1S(z1w2

1y
1p1)tz22P

2S(z3))〉 〈µ, z21P 1w2
2y

2p21〉 αw3y3p22
(4.13)

= 〈µ, z21P 1p2〉 〈λ, S−1(α)S(z1p1)tz22P
2S(z3)〉α = xα,

with

(4.14) x = 〈µ, z21P 1p2〉 〈λ(S−1(α)S(z1p1)tz22P
2S(z3)〉 ∈ k.

Let ~ = (Υ ◦ ζ)−1(α). Since µ(α1)(Υ ◦ ζ)(α2) = xα = xΥζ(~), we have that µ(α1)α2 = x~, and
therefore 0 6= µ(α) = xε(~), and x 6= 0. We have now all the ingredients to prove that H is
unimodular, that is, µ = ε. Observe that

(ε ◦Υ)(∗h) = 〈µ, y21x1X3〉 〈∗h,X1S(y1X2S−1(β))ty22x
2βS(y3x3)〉

= 〈µ, y21p1p2〉 〈∗h, S(y1p1)ty22p
2S(y3)〉,

for all ∗h ∈ ∗H. Thus (ε ◦Υ)(λ↼S−1(α)) = x. Applying ε to (4.7) we obtain that

〈µ, h〉(ε ◦Υ)(∗h) = 〈µ, h(2,1)〉(ε ◦Υ)(S(h(2,2))⇀
∗h↼h1)

= 〈µ, h(2,1)y21p1p2〉 〈∗h, h1S(y1p1)ty22p
2S(h(2,2)y

3)〉
for all ∗h ∈ ∗H and h ∈ H. Taking ∗h = λ↼S−1(α) = 〈µ, α1)S(α2)⇀λ, we conclude that

〈µ, h〉x = 〈µ, h〉(ε ◦Υ)(λ↼S−1(α)) = 〈µ, (αh2)1y
2
1p

1p2〉〈λ, h1S(y1p1)ty22p
2S((αh2)2y

3)〉
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(3.18)
= 〈µ, y21p1p2)〉 〈λ, S−1(αh2)h1S(y1p1)ty22p

2S(y3)〉 = ε(h)x,

for all h ∈ H, and it follows that µ = ε since x 6= 0.
(ii)⇒ (i). If H is finite dimensional and unimodular, then H is a Frobenius coalgebra in HMH , see

the proof of (iv) of Theorem 3.4. By Proposition 2.3, the forgetful functorM(Hop ⊗H)H
H2 →MH

is Frobenius, and therefore F is a Frobenius functor as well since M(Hop ⊗ H)H
H2 and YDH

H are

isomorphic. �

4.2. Separability for the category of Yetter-Drinfeld modules. We now focus on the sep-
arability of the forgetful functor F : YD(H)CA → MA. Applying Proposition 2.5 and using the
isomorphism between the categories YD(H)CA and M(Hop ⊗H)C

A2 , we obtain necessary and suffi-

cient conditions for the separability of F .

Proposition 4.6. Let H be a quasi-Hopf algebra, let A be an H-bicomodule algebra, and let C be
a finite dimensional H-bimodule coalgebra with dual basis cj ⊗ cj ∈ C ⊗ ∗C. Then the forgetful

functor F : YD(H)CA →MA is separable if and only if there exists a k-linear map Λ : C → A⊗ ∗C,

Λ(c) = Λ
1
(c)⊗ Λ

2
(c) ∈ A⊗ ∗C, such that

Λ
1
(c)u[0]〈0〉 ⊗ S(u[0]〈1〉)⇀Λ

2
(c)↼u[−1]

= u[0]〈0〉Λ
1
(S(u[−1]) · c · u[0]〈1〉)⊗ Λ

2
(S(u[−1]) · c · u[0]〈1〉),

(x̃3λ)〈0〉X̃
1

ρΘ
2
〈0〉Λ

1
(S(x̃2λΘ1)f1 · c1 · (x̃3λ)〈1〉1X̃

2

ρΘ
2
〈1〉)⊗ Λ

2
(S(x̃2λΘ1)f1 · c1 · (x̃3λ)〈1〉1X̃

2

ρΘ
2
〈1〉)

⊗ S(x̃1λ)f2 · c2 · (x̃3λ)〈1〉2X̃
3

ρΘ
3 = Λ

1
(c)(x̃3λq̃

1
ρΘ2
〈0〉)〈0〉x̃

1
ρ ⊗

(
g1S(Θ2

〈1〉x̃
3
ρ)q̃

2
ρΘ3⇀cj

↼S(x̃1λ)q1(x̃2λ)1Θ1
1

) (
g2S((x̃3λq̃

1
ρΘ2
〈0〉)〈1〉x̃

2
ρ)⇀Λ

2
(c)↼q2(x̃2λ)2Θ1

2

)
⊗ ci,

Λ
2
(S(x̃1λ)f2 · c2 · (x̃3λ)〈1〉2X̃

3

ρΘ
3)

(
S(x̃2λ)Θ1Λ

1
(S(x̃1λ)f2 · c2 · (x̃3λ)〈1〉2X̃

3

ρΘ
3)[−1]θ

1p̃1λ)f1

· c1 · (x̃3λ)〈1〉1X̃
2

ρΘ
2
〈1〉Λ

1
(S(x̃1λ)f2 · c2 · (x̃3λ)〈1〉2X̃

3

ρΘ
3)[0]〈1〉θ

2
〈1〉p̃

2
ρS(θ3)

)
(x̃3λ)〈0〉X̃

1

ρΘ
2
〈0〉Λ

1
(S(x̃1λ)f2 · c2 · (x̃3λ)〈1〉2X̃

3

ρΘ
3)[0]〈0〉θ

2
〈0〉p̃

1
ρp̃

2
λ = εC(c)1A,

for all c ∈ C and u ∈ A. ⇀ and ↼ are the left and right H-actions on ∗C induced by the H-bimodule
structure of C, namely 〈h⇀∗c↼h′, c〉 = 〈∗c, h′ · c · h〉.

Proof. The follows from Proposition 2.5 (vii) after we show that

(x̃3λ)〈0〉X̃
1

ρΘ
2
〈0〉 ⊗ (S−1(F 2)⊗ g1)

(
S−1 ⊗ S

) (
(p2 ⊗ q2)(S(x̃2λΘ1)2f

1
2 ⊗ (x̃3λ)〈1〉(1,2)(X̃

2

ρ)2Θ2
〈1〉2

)

(S(x̃1λ)f2 ⊗ (x̃3λ)〈1〉2X̃
3

ρΘ
3)
)
⊗ (S−1(F 2)⊗ g2)

(
S−1 ⊗ S

) (
(p1 ⊗ q1)

(S(x̃2λΘ1)1f
1
1 ⊗ (x̃3λ)〈1〉(1,1)(X̃

2

ρ)1Θ2
〈1〉1

)
)

= (x̃3λq̃
1
ρΘ2
〈0〉)〈0〉x̃

1
ρ ⊗

(
S(x̃1λ)q1(x̃2λ)1Θ1

1

⊗g1S(Θ2
〈1〉x̃

3
ρ)q̃

2
ρΘ3

)
⊗
(
q2(x̃2λ)2Θ1

2 ⊗ g2S((x̃3λq̃
1
ρΘ2
〈0〉)〈1〉x̃

2
ρ)
)

in A⊗ (Hop⊗H)⊗2. Note that the Drinfeld twist in Hop is S−1(g2)⊗S−1(g1), where g1⊗ g2 is the
inverse of the Drinfeld twist f in H. The above equality follows from a straightforward computation
using (1.17), the axioms of a quasi-Hopf algebra and of a bicomodule algebra over a quasi-bialgebra,
and the formula

(4.15) f2S−1(F 2f12 p
2)⊗ F 1f11 p

1 = q1 ⊗ S(q2),

which is a consequence of (1.21) and of the fact that f1βS(f2) = S(α). We leave the verification of
the details to the reader. �
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The conditions in Proposition 4.6 are rather complicated. However they are fulfilled if C is a
coseparable coalgebra in HMH , see Proposition 2.6. We will show that the converse is also true in
the particular case when C = A = H. It will turn out that the structure theorem for quasi-Hopf
algebras plays a crucial role in the proof, indicating that it is not possible to make a generalization
for arbitrary H-bimodule coalgebras C. We also emphasise the fact that this result is also new in
the case where H is a classical Hopf algebra. We first need some preparatory results.

Lemma 4.7. Let H be a finite dimensional quasi-Hopf algebra and let λ be a left cointegral on H.
Then the following relations hold, for all h, h′ ∈ H,

〈λ, q2h2U2〉q1h1U1 = 〈µ, x1〉 〈λ, S−1(f1)hS(x2)〉 f2x3,(4.16)

〈λ, h′h2U2〉h1U1 = 〈µ, x1〉 〈λ, S−1(f1)h′2p
2hS(x2)〉 S(h′1p

1)f2x3.(4.17)

Proof.

〈λ, q2h2U2〉q1h1U1 (4.15)
= 〈λ, S−1(F 1f11 p

1)h2U
2〉 f2S−1(F 2f12 p

2)h1U
1

(1.17)
= 〈λ, V 2(S−1(f1)h)2U

2〉 f2V 1(S−1(f1)h)1U
1

(3.14)
= 〈µ, x1〉 〈λ, S−1(f1)hS(x2)〉f2x3;

〈λ, h′h2U2〉 h1U1 (2.23)
= 〈λ, h′q2p22h2U2〉 S(p1)q1p21h1U

1

(2.22)
= 〈λ, q2(h′2p

2h)2U
2〉 S(h′1p

1)q2(h′2p
2h)1U

1

(4.16)
= 〈µ, x1〉 〈λ, S−1(f1)h′2p

2hS(x2)〉 S(h′1p
1)f2x3,

as stated. �

Lemma 4.8. Let H be a finite dimensional quasi-Hopf algebra and let µ be the modular element
of H. Consider the isomorphism ζ : Hµ → ∗H from Lemma 4.3. We can define Yetter-Drinfeld
module structures on Hµ and ∗H such that ζ is an isomorphism of Yetter-Drinfeld modules. These
structures are given by (4.21, 4.22) and (4.18, 4.20).

Proof. The first aim is to make ∗H into a Yetter-Drinfeld module. This goes in several steps.
1) By Proposition 2.5 (v) we know that H ⊗ ∗H ∈ M(Hop ⊗ H)H

H2 via the structure given by

(~⊗ ∗h) · h = ~h(2,1) ⊗ S(h(2,2))⇀
∗h↼h1 and

ρ(~⊗ ∗h)

= ~x31X1Y 2
1 ⊗

(
g1S(q2(x3(2,1)X

2Y 2
2 )2)x3(2,2)X

3Y 3⇀hi↼S(x1)f2S−1(F 2S(x2Y 1)2f
1
2 p

2)
)

(
g2S(q1(x3(2,1)X

2Y 2
2 )1)⇀∗h↼S−1(F 1S(x2Y 1)1f

1
1 p

1)
)
⊗ hi

(1.17)
=

(4.15)
~x31X1Y 2

1 ⊗
(
g1S(q2X2

2Y
2
(2,2))X

3Y 3⇀hi↼S(x1)q1x21Y
1
1

)
(
g2S(x32q

1X2
1Y

2
(2,1))⇀

∗h↼q2x22Y
1
2

)
⊗ hi,

for all h, ~ ∈ H and ∗h ∈ ∗H.
2) H⊗ ∗H is a left H-module via h · (~⊗ ∗h) = h~⊗ ∗h. Consequently M ⊗H (H⊗ ∗H) ∈M(Hop⊗
H)H

H2 , for every M ∈MH , and the fact that M ⊗ ∗H is naturally isomorphic to M ⊗H (H ⊗ ∗H),

entails that M ⊗ ∗H ∈M(Hop ⊗H)H
H2 . The structure maps are the following:

(m⊗ ∗h) · h = mh(2,1) ⊗ S(h(2,2))⇀
∗h↼h1,

ρ(m⊗ ∗h) = mx31X
1Y 2

1 ⊗
(
g1S(q2X2

2Y
2
(2,2))X

3Y 3⇀hi↼S(x1)q1x21Y
1
1

)
(
g2S(x32q

1X2
1Y

2
(2,1))⇀

∗h↼q2x22Y
1
2

)
⊗ hi,
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for all m ∈M , h ∈ H and ∗h ∈ ∗H.
3) k ∈ MH by restriction of scalars via ε, hence k ⊗ ∗H ∼= ∗H ∈ M(Hop ⊗H)H

H2 , with structure
maps

∗h / h = S(h2)⇀∗h↼h1(4.18)

ρ(∗h) = (g1S(q2Y 2
2 )Y 3⇀hi↼S(x1)q1x21Y

1
1 )(g2S(x3q1Y 2

1 )⇀∗h↼q2x22Y
1
2 )⊗ hi,(4.19)

for all ∗h ∈ ∗H and h ∈ H.
4) We have an isomorphism of categories F : YDH

H → M(Hop ⊗ H)H
H2 , see (4.1), and therefore

∗H ∈ YDH
H .

At this point, the proof is basically finished: ζ can be used to transport the Yetter-Drinfeld structure
on ∗H to Hµ. It remains to compute the explicit structure maps. The right H-action on ∗H
is (4.18). The right H-coaction can be computed from the action and coaction (4.18-4.19) on
∗H ∈M(Hop⊗H)H

H2 using (4.2). Using the fact that ∗H is an algebra in HMH and the equations

(1.12), (4.3) and (2.23), we find that this coaction is given by the formula

(4.20) ρ(∗h) = (g1S(q2Y 2
2 )Y 3⇀hi↼X1Y 1

1 )(g2S(X3q1Y 2
1 )⇀∗h↼X2Y 1

2 )⊗ hi,
where hi ⊗ hi ∈ H ⊗ ∗H is the finite dual basis of H.

Let us describe the structure on Hµ. The H-bimodule structure on Hµ (see Lemma 4.3) induces
the following right H-module structure on Hµ:

(4.21) ~ / h = µ(S(h1)1)S(h1)2~h2,

for all h, ~ ∈ H. The right H-coaction ρ : Hµ → Hµ ⊗H is given by the formula
(4.22)
ρ(~) = ~(0) ⊗ ~(1) := µ(S(Y 2

2 p
2X1)1f

1
1x

1)S(Y 2
2 p

2X1)2f
1
2x

2~1Y 3
1 X

2 ⊗ Y 1S(Y 2
1 p

1)f2x3~2Y 3
2 X

3,

for all ~ ∈ H. The proof is finished after we show that ζ is right H-linear and colinear with respect
to the structures (4.21, 4.22) and (4.18, 4.20). Since ζ : Hµ → ∗H is an H-bimodule map, it follows
immediately that it is also right H-linear. For all h ∈ H we have that

ρ(ζ(h))
(4.20)

=
(
g1S(q2Y 2

2 )Y 3⇀hi↼X1Y 1
1

) (
g2S(hX3q1Y 2

1 )⇀λ↼X2Y 1
2

)
⊗ hi

(4.3)
= 〈λ,X2(Y 1hiS(X3

1Y
2))2U

2S(h)〉 hi ⊗X1(Y 1hiS(X3
1Y

2))1U
2X3

2Y
3

(3.23)
= 〈λ,X2(Y 1hiS(h1X

3
1Y

2))2U
2〉 hi ⊗X1(Y 1hiS(h1X

3
1Y

2))1U
2h2X

3
2Y

3

(4.17)
= 〈µ, x1〉 〈λ, S−1(f1)X2

2p
2Y 1hiS(x2h1X

3
1Y

2)〉 hi ⊗X1S(X2
1p

1)f2x3h2X
3
2Y

3

= 〈µ, x1〉S(x2h1X
3
1Y

2)⇀λ↼S−1(f1)X2
2p

2Y 1 ⊗X1S(X2
1p

1)f2x3h2X
3
2Y

3

(3.18)
= 〈µ, S(X2

2p
2Y 1)1f

1
1x

1〉 S(X2
2p

2Y 1)2f
1
2x

2h1X
3
1Y

2⇀λ⊗X1S(X2
1p

1)f2x3h2X
3
2Y

3

(4.22)
= ζ(h(0))⊗ h(1),

proving that ζ is right H-colinear. �

Theorem 4.9. For a finite dimensional quasi-Hopf algebra H, the following assertions are equiv-
alent:

(i) The forgetful functor F : YDH
H →MH is separable;

(ii) H is coseparable as a coalgebra in HMH ;
(iii) H is unimodular and cosemisimple.

Proof. (ii)⇒ (i). If H is a coseparable coalgebra in HMH , then the forgetful functor M(Hop ⊗
H)H

H2 → MH is separable, by Proposition 2.6. It follows that F is separable since the categories

YDH
H and M(Hop ⊗H)H

H2 are isomorphic.



28 D. BULACU, S. CAENEPEEL, AND B. TORRECILLAS

(i)⇒ (iii). If F : YDH
H → MH is separable, then the forgetful functor M(Hop ⊗ H)H

H2 → MH

is separable, and it follows from Proposition 2.5 (v) that there exists a left H-linear morphism

Λ : H⊗H → H⊗∗H, Λ(1⊗h) = Λ
1
(h)⊗Λ

2
(h) ∈ H⊗∗H, that is also a morphism inM(Hop⊗H)H

H2

and, a fortiori, in YDH
H , satisfying

ε(h)1 = Λ
2
(S(x1)f2h2x

3
(2,2)X

3Y 3)
(
S(x2Y 1Λ

1
(S(x1)f2h2x

3
(2,2)X

3Y 3)1y
1p1)f1h1x

3
(2,1)X

2Y 2
2

×Λ
1
(S(x1)f2h2x

3
(2,2)X

3Y 3)(2,2)y
2
2p

2S(y3)
)
x31X

1Y 2
1 Λ

1
(S(x1)f2h2x

3
(2,2)X

3Y 3)(2,1)y
2
1p

1p2,(4.23)

for all h ∈ H. For any M ∈MH , the map ΛM : M ⊗H →M ⊗ ∗H given by

ΛM (m⊗ h) = mΛ
1
(h)⊗ Λ

2
(h),

for all m ∈ M and h ∈ H, is a morphism in YDH
H . The Yetter-Drinfeld structure on M ⊗ ∗H is

described explicitly in the proof Lemma 4.8; the structure on M ⊗H is similar, and is given by the
formulas

(m⊗ ~) · h = m · h(2,1) ⊗ S(h1)~h(2,2);
ρ(m⊗ ~) = m · x31X1Y 2

1 (p21)(2,1) ⊗ S(x2Y 1(p21)1)f1~1x3(2,1)X
2Y 2

2 (p21)(2,2)

⊗S(x1p1)f2~2x3(2,2)X
3Y 3p22 ∈M ⊗H ⊗H,

for all m ∈M and ~, h ∈ H. Taking M = k as a right H-module by restriction of scalars via ε, we

obtain a morphism Λk : H → ∗H, Λk(h) = ε(Λ
1
(h))Λ

2
(h), in YDH

H . The structure of ∗H in YDH
H

is given by the formulas (4.18, 4.20). H ∈ YDH
H with structure

~ / h = S(h1)~h2 ; ρ(~) = S(x2Y 1p2(1,1))f
1~1x31Y 2p2(1,2) ⊗ S(x1p1)f2~2x32Y 3p22.

Recall from Lemma 4.8 that we have an isomorphism ζ : Hµ → ∗H in YDH
H , and consider the

composition χ = ζ−1 ◦ Λk : H → Hµ in YDH
H . The right H-linearity of χ is expressed by the

formula

χ(S(h1)~h2) = µ(S(h1)1)S(h1)2χ(~)h2.

Taking ~ = α, we find that ε(h)χ(α) = µ(S(h1)1)S(h1)2χ(α)h2, for all h ∈ H. Applying ε to both
sides of this equation, we find that

(4.24) ε(h)ϑ(α) = µ(S(h))ϑ(α),

for all h ∈ H, with ϑ = ε ◦ χ. The right H-colinearity of χ comes out as

χ(S(x2Y 1p2(1,1))f
1~1x31Y 2p2(1,2))⊗ S(x1p1)f2~2x32Y 3p22

= µ(S(Y 2
2 p

2X1)1f
1
1x

1)S(Y 2
2 p

2X1)2f
1
2x

2χ(~)1Y
3
1 X

2 ⊗ Y 1S(Y 2
1 p

1)f2x3χ(~)2Y
3
2 X

3,

for all ~ ∈ H. Applying ε⊗H to this equality we obtain that

(4.25) µ(S(Y 2
2 p

2)f1)Y 1S(Y 2
1 p

1)f2χ(~)Y 3 = ϑ(S(x2Y 1p2(1,1))f
1~1x31Y 2p2(1,2))S(x1p1)f2~2x32Y 3p22,

for all ~ ∈ H. Let ~ = S(q21)~q22 in (4.25), and multiply both sides of it to the left by q1. Using the
formulas Y 2

1 p
1S−1(Y 1)⊗ Y 2

2 p
2⊗ Y 3 = y1p1⊗ y2p21⊗ y3p22, (1.12), (1.17) and (2.23) we deduce that

µ(S(y2)f1)S(y1)f2χ(~)y3 = ϑ(S(x2Y 1)f1~1x31Y 2)S(x1)f2~2x32Y 3,

for all ~ ∈ H, or, equivalently,

χ(~) = µ(g1S(Z2))ϑ(S(x2Y 1)f1~1x31Y 2)g2S(x1Z1)f2~2x32Y 3Z3.

In particular,

χ(α)
(1.20)

= µ(g1S(Z2))ϑ(S(x2Y 1)γ1x31Y
2)g2S(x1Z1)γ2x32Y

3Z3(1.18)= µ(g1S(Z2))g2S(Z1)αZ3,
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which implies that ϑ(α) = εχ(α) = ε(α) 6= 0. Therefore, (4.24) is equivalent to ε(h) = µ(S(h)), for
all h ∈ H, and this is clearly equivalent to µ = ε. Thus we have shown that H is unimodular, and,
in particular, that χ(α) = α. Applying ε to (4.23) we find that

Λ
2
(S(x1)f2h2x

3
2Y

3)(βS(x2Y 1Λ
1
(S(x1)f2h2x

3
2Y

3)1p
1)f1h1x

3
1Y

2Λ
1
(S(x1)f2h2x

3
2Y

3)2p
2) = ε(h),

for all h ∈ H. Take h = α; using (1.20) and (1.18), a similar computation shows that

ε(α) = Λ
2
(α)(βS(Λ

1
(α)1p

1)αΛ
1
(α)2p

2) = ε(Λ
1
(α))Λ

2
(α)(βS(p1)αp2)

(1.16)
= Λk(α)(β).

Now Λk = ζχ and χ(α) = α, so 0 6= ε(α) = Λk(α)(β) = ζ(α)(β) = λ(βS(α))
(3.19)

= λ(S−1(α)β),
which implies that H is cosemisimple.
(ii)⇔ (iii) follows from Proposition 3.6. �

Remark 4.10. Replacing H by Hop, we obtain necessary and sufficient conditions for the Frobenius
property and separability of the forgetful functor F : HYDH → HM. Unimodularity (resp. uni-

modularity and cosemisimplicity) of H and Hop are equivalent, and therefore F : HYDH → HM
is Frobenius (resp. separable) if and only if H is unimodular (resp. unimodular and cosemisimple).

If H is finite dimensional, then HYDH ∼= D(H)M, where D(H) is the quantum double of H, see
[17]. So our results imply that the algebra extension H ↪→ D(H) is Frobenius (resp. separable) if
and only if H is unimodular (resp. unimodular and cosemisimple).
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E-mail address: btorreci@ual.es


