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Abstract

Digital holograms fully encode the wavefield of light, thereby having many applications both
for 3D object measurements as well as for display purposes, accounting for all human visual
cues. Because the statistics and properties of holographic signals differ considerably from
natural imagery such as photographs, conventional coding solutions will be sub-optimal. In
this paper, we propose the integer Fresnel transform, which is – to our knowledge – the first
lossless transform tailored for hologram coding. By combining the proposed transform with
JPEG 2000, we report bit-rate savings from 0.12 up to 2.83 bits per channel on a collection
of 8 digital holograms obtained from 3 different databases.

Introduction

Holography can fully represent the plenoptic function of a three-dimensional (3D)
scene [1], and thereby has various applications in microscopy [2], tomography [3],
interferometry [4] and storage technology [5]. However, the primary application on
which we will focus is the use of digital holography for 3D display technology [6], [7].

Since holography encodes the wave field of light, it can account for all human visual
cues, including continuous parallax, stereopsis, occlusion and exhibits no vergence-
accommodation conflicts [8]. However, current holographic displays do not yet possess
the requisite display size and field-of-view for acceptable visual quality. Although
several technological obstacles remain, steady progress in photonics, microelectronics
and computer engineering indicate that high-quality holography displays are coming
within reach [9].

Because the working principle of holography differs fundamentally from conven-
tional imaging systems, they exhibit highly different signal statistics and properties as
well [10]. For example, holograms have much more high-frequency content, can have
strong directionality because of the interference fringes, often possess speckle noise,
and localised information in the 3D scene will diffract, spreading out and potentially
affect all pixels of the digital hologram. That is why conventional representation and
encoding algorithms, such as the standard JPEG and MPEG families of codecs, are
suboptimal for hologram coding. Furthermore, holograms for multi-user holographic
displays need resolutions of several Gigapixels [10], increasing the need for efficient
compression methodologies.

Hence, novel coding solutions and transforms are needed to compress holograms
more effectively. Several techniques have been proposed over recent years to tackle



this problem: Fresnelets [11], wavelet-bandelets [12], directional-adaptive wavelets
and arbitrary packet decompositions [13], vector quantisation lifting schemes [14],
wave atom transforms [15], mode dependent directional transform-based HEVC [16],
overcomplete Gabor wavelet dictionary [17] and nonlinear canonical transforms [18].

In particular, we will use the principle of object plane coding [19], [20]: by back-
propagating the hologram wavefield using e.g. the Fresnel transform to the object
plane, we effectively refocus the hologram to a representation resembling an image,
making it subsequently better compressible by conventional transforms and codecs.
This approach has been shown to be especially effective when the hologram’s depth
of focus is large.

However, no lossless transforms have been proposed specifically designed for holo-
graphic signals, to our knowledge. This is important for archival purposes, e.g. when
storing holographic measurements, especially biological samples; another application
is to store holograms intended for display at the highest possible quality settings.
In this paper, we propose the integer Fresnel transform, which is the first lossless
transform designed for hologram coding. In the remainder of this paper, we will first
introduce the basic principles of holography, lay out how to implement the lossless in-
teger variant of the Fresnel transform, and report increased compression performance
on a data set of holograms for display systems.

Holography

Holography is a 3D interference-based imaging methodology, which can capture and
reproduce the scalar complex-valued wavefield of light, i.e. both amplitude and phase.
Because the phase carries no energy, it cannot be measured directly. That is why in
digital holography, we capture wavefields indirectly through interference with a digi-
tal, lens-less camera [21]. This sampled wavefield can then be processed digitally to
extract 3D information from the imaged scene, or alternatively be fed to a Spatial
Light Modulator (SLM) to display the hologram for viewing. Digital holograms can
also be computer-generated by simulating numerical diffraction; this is often preferred
for display systems, because it is not bound by the limitations of holographic measure-
ment systems (camera resolutions, object size and placement limitations, aberrations,
complexity of building and operating holographic setups) and can display synthetic
content.

Scalar diffraction theory can model the propagation of light, mathematically de-
scribing how the complex-valued wavefield u(x, y, z) evolves over space [23]. To model
diffraction between parallel planes, we can use the Fresnel approximation:

u(x, y, z+d) =
exp(ikd)

iλd

∫∫
R2

u(x′, y′, z) exp

(
ik

2d

[
(x− x′)2 + (y − y′)2

])
dx′dy′ (1)

for a inter-planar propagation distance d along dimension z, for a hologram wave-
length λ and corresponding wave number k = 2π

λ
. This is represented on Fig. 1.

Contrary to the more physically accurate Angular spectrum method [23], the
Fresnel operator is separable, which will be useful later on. Henceforth, we will
describe all operations on one-dimensional signals for notational simplicity.
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Figure 1: Diagram depicting the scene geometry and coordinate system. The holo-
gram plane is centered at the origin, where |u(x, y, 0)| is drawn. This represents the
hologram at u(x, y, 0) that needs to be compressed. The propagation direction z is
perpendicular to the hologram plane. Using the Fresnel operator for a distance d,
u(x, y, d) can be computed. The object plane for the hologram “Dices 2” is shown
(source: EmergImg-HoloGrail v2 database [22]), where |u(x, y, d)| is in focus.

There are several techniques for calculating the Fresnel transform [24]. The diffrac-
tion operator is an all-pass filter, which can be written as a concatenation of Fourier
transforms and pure phase delay functions. For example, it can be written as a
convolution (operator ∗) with a quadratic phase delay filter [24]:

u(x, z + d) =
exp(ikd)

iλd
u(x, z) ∗ exp

(
iπ

λd
x2
)

(2)

We will consider the two most common numerical implementations, which we will
call the convolutional form and the Fourier form. The main difference between the
techniques is the relation between the pixel pitches of the source plane (ps) and des-
tination plane (pd): this is the physical sampling distance between successive pixel
centres of the regularly sampled hologram. Depending on the (virtual) object dimen-
sions, hologram placement and scene geometry, one method will often be preferable
to better visualise the reconstructed object.

The convolutional form Fd preserves the pixel pitch, i.e. ps = pd = p. It can be
written in matrix form:

Fd = c · F−1 ·D−λd/p2 · F (3)

where F is a (unitary) n × n DFT matrix (computed using the FFT), c = exp(ikd)
and D is a diagonal matrix with a quadratic phase profile and unit amplitude, defined
as

D = diag
(

exp
(
iπ(x

n
)2
) )

for x ∈
{
−n

2
,−n

2
+ 1, ...,

n

2
− 1
}

(4)



for a signal consisting of n samples. We omit the additional constant division of c by
iλd to obtain a unitary Fresnel transform, which is otherwise present in the typical
definition [24]; this is done to obtain a similar dynamic range in the object plane
w.r.t. the hologram plane for the coding efficiency of the integer Fresnel transforms.

The Fourier form Ψd will change the pixel pitch of the destination plane depending
on the wavelength and propagation distance, namely pd = ps

λd
:

Ψd = c ·Dp2d/λd · F ·Dp2s/λd (5)

As is, these numerical Fresnel transforms cannot be used for lossless coding, be-
cause they are not defined for integer implementations. This will be addressed in the
next section.

Methodology

For lossless coding, the aim is to transform the signal in a reversible manner as to
obtain a more compressible representation, leading to smaller file sizes. Formally,
suppose we have an discrete signal x consisting of 2n integer samples. We want to
construct a bijective f : Z2n → Z2n tailored to the statistical properties of the signal
under investigation.

To that end, we can use the lifting scheme [25]. In its general form, it will partition
the input signal x in two parts a0 and b0. Then, a cascade of reversible functions Pj

(prediction) and Uj (update) are applied alternatingly on all elements of aj and bj:

bj+1 = Pj(aj, bj) and aj+1 = Uj(aj, bj+1) (6)

where Pj(aj, · ) and Uj( · , bj+1) must be bijections for any integer signal aj or bj+1,
∀j ∈ {0, 1, ...,m}. Typically, the following implementation is used for lossless coding:

Pj(aj, bj) = [Πj(aj)]± bj and Uj(aj, bj+1) = [Υj(bj+1)]± aj (7)

with Πj and Υj being (potentially non-linear) functions, and [ · ] is the rounding
operator. When Πj and Υj are linear, and aj, bj ∈ Zn are vectors of equal length, we
can rewrite them in matrix form:(

aj
bj+1

)
=

[(
In 0n
Πj In

)(
aj
bj

)]
and

(
aj+1

bj+1

)
=

[(
In Υj

0n In

)(
aj
bj+1

)]
(8)

where 0n is a n× n matrix of zeros, In is a n× n identity matrix and Πj, Υj can be
any n× n matrix. We will call this particular matrix form a lifting matrix. The goal
is to factor the sought transform into a product of lifting matrices, thereby obtaining
an integer approximation of a transform defined on R (or C).

In [26], the authors propose the following lifting matrix decomposition applicable
for any invertible matrix M :(

M 0n
0n M−1

)
=

(
−In 0n
M−1 In

)(
In −M
0n In

)(
0n In
In M−1

)
(9)
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Figure 2: Graphical representation of the lifting scheme used for the convolutional
integer Fresnel transform. The lifting is applied on the odd (xo) and even (xe)
rows/columns of the hologram.

Thus, half of the signal will be transformed by M , and the other half by M−1.
This property is useful because the Fresnel operators are unitary. We can redefine

the inverse Fresnel transform as a function of the forward Fresnel transform. For the
convolutional form, we have that

F−1d =
(
c F−1 D−λd/p2 F

)−1
= c F−1 Dλd/p2 F = F−d = F d (10)

where z is the complex conjugate operator on some z ∈ C. This means that after
the lifting procedure, the first part of the signal will be transformed by Fd, and the
second part by F d. We can thus take the complex conjugate on the second signal
part to apply a convolutional Fresnel transform with distance d on both signals, cf.
Fig. 2. For the Fourier form case, we can use the following decomposition:

Ψd = c D(p2d−p
2
s )/λd

(
Dp2s/λd F Dp2s/λd

)
= c D(p2d−p

2
s )/λd Φd (11)

where we have

Φ−1d =
(
Dp2s/λd F Dp2s/λd

)−1
= D−p

2
s/λd F−1 D−p2s/λd = Φ−d = Φd (12)

We can transform the signal for Φd with lifting using the same approach as for the
convolutional case Fd. However, we still need to do a point-wise multiplication with
a pure phase delay function c D(p2d−p

2
s )/λd. For this, we can use the invertible integer

lifting approximation of a Givens rotation [26]: since exp(iϕ) = cos(ϕ) + i sin(ϕ), we
apply (

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
=

(
1 cos(ϕ)−1

sin(ϕ)

0 1

)(
1 0

sin(ϕ) 1

)(
1 cos(ϕ)−1

sin(ϕ)

0 1

)
(13)

on the real and imaginary components of every sample, given the specific needed
phase delay ϕ at that position.

Since the Fresnel transform is separable, we apply the transform both along the
rows and along the columns. For every pair of consecutive rows (or columns), the odd
rows xo will predict the even rows xe, and the even rows will update the odd rows in
the lifting procedure (see Fig. 3).
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Figure 3: Because Fresnel diffraction is separable, we can apply the transform once
on the rows (a) and once on the columns (b). The lifting is applied independently on
pairs of rows/columns as shown in the diagrams.

Table 1: Tested digital holograms and their properties. The “Form” column indi-
cates which numerical Fresnel diffraction operator is needed. The last three columns
indicate the wavelength (λ), pixel pitch (p) and used propagation distance (d).

Name Database Form Resolution (pixels) λ (nm) p (µm) d(mm)
Ball Interfere-II Conv. 8192× 8192 633.0 1.0 140.0
Dragon Interfere-II Conv. 8192× 8192 633.0 1.0 140.0
Venus Interfere-II Conv. 8192× 8192 633.0 1.0 145.0
Dices 1 b-com repository Conv. 7680× 4320 640.0 4.8 11.40
Diffuse Car b-com repository Conv. 8192× 8192 532.0 4.0 23.16
Astronauts EmergImg-HoloGrail Fourier 2588× 1940 632.8 2.2 172.1
Dices 2 EmergImg-HoloGrail Fourier 2588× 1940 632.8 2.2 159.5
Skull EmergImg-HoloGrail Fourier 2588× 1940 632.8 2.2 168.9

Experiments

For the experiments, we utilised 8 holograms taken from 3 different databases: The
b-com hologram repository [27], the Interfere-II database [28] and the EmergImg-
HoloGrail v2 database [22]. We reported all the main hologram parameters in Table 1,
namely the resolution, wavelength, pixel pitch and chosen propagation distance. To
obtain a uniform data representation for all holograms, both the real and imaginary
channels were quantized to a dynamic range of 8 bits per channel (bpc).

We compressed the holograms with JPEG 2000 in lossless mode, using a 4-level
Mallat CDF53 integer wavelet decomposition and 32×32-sized codeblocks. We tested
two different configurations: (1) only JPEG 2000, and (2) JPEG 2000 after the
application of the integer Fresnel transform. For the latter, we used 16-bit for the
input channels because the integer Fresnel transform can modify the dynamic range



Table 2: Bit-rates of the lossless hologram compression, comparing default JPEG
2000 with the proposed integer Fresnel transform + JPEG 2000.

Hologram JPEG 2000 (bpc) Proposed (bpc) Gain (bpc)
Ball 6.24 3.87 2.37
Dragon 5.72 2.89 2.83
Venus 5.84 3.12 2.72
Dices 1 4.76 4.64 0.12
Diffuse Car 6.81 5.35 1.46
Astronauts 5.86 5.47 0.39
Dices 2 6.16 5.92 0.24
Skull 5.99 5.45 0.54

of the integer values.
The resulting bit-rates for both configurations are shown in Table 2. We report

bit-rate gains ranging from 0.12 up to 2.83 bpc. We observe that on average, the
gains for the computer-generated holograms from the b-com hologram repository
and the Interfere-II database are larger than the optically acquired ones from the
EmergImg-HoloGrail v2 database. One possible reason for this difference could be
due to phenomena such as speckle noise or slight optical aberrations. The transform
is also less effective on the “Dice 1” hologram; this is likely because the hologram
plane very close to the scene objects, so the scene will have much less defocus and
spread signal to begin with.

The computational complexity of the proposed transform is mainly determined
by the FFTs in the Fresnel transform, which has O(n log n) complexity. The Fresnel
transform is applied 3 times on half the data, so the total calculation cost will roughly
be about 150% as much as the conventional floating-point base implementation.

Conclusion

We developed an integer variant of the Fresnel transform for the lossless encoding
of digital holograms. By integrating the integer Fresnel transform with JPEG 2000,
we obtain bit-rate savings ranging from 0.12 up to 2.83 bpc over the default lossless
JPEG 2000 implementation. Avenues for future research include evaluating the in-
teger Fresnel transform on a broader set of holograms (such as data for microscopic
holography), combining it with more advanced transforms and codecs, and general-
izing the lifting scheme to other linear canonical transforms.
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[4] Florian Charrière, Jonas Kühn, Tristan Colomb, Frédéric Montfort, Etienne Cuche,
Yves Emery, Kenneth Weible, Pierre Marquet, and Christian Depeursinge, “Charac-
terization of microlenses by digital holographic microscopy,” Appl. Opt., vol. 45, no.
5, pp. 829–835, Feb 2006.

[5] Hans J Coufal, Demetri Psaltis, Glenn T Sincerbox, et al., Holographic data storage,
vol. 8, Springer, 2000.
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