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Scaling laws for robotic transmissions
Elias Saerens∗, Stein Crispel, Pablo López Garcı́a, Tom Verstraten, Vincent Ducastel, Bram Vanderborght and Dirk

Lefeber

Abstract—In robotic actuators, low speeds and high torques are
usually required. Small electric motors, which are more efficient
at high speeds and low torques, do not fit the requirements
directly. In order to transform the motor characteristics into the
desired output characteristics, a transmission system is needed.
Ideally, it should be optimally designed and adapted to the desired
characteristics and the available space. Scaling laws can provide
a way to design these desired output requirements as a function
of the size parameters. These are however not yet available for
transmission systems. To fill this gap, several scaling laws are
developed throughout this paper for some of the most important
robotic characteristics, i.e. maximum continuous output torque
and reflected inertia, in function of the number of stages, the
transmission ratio and the size parameters of different types of
transmissions. These laws show that diameter has a much bigger
influence on the characteristics of transmissions than length.
All derived laws show good comparison with catalog data of
manufacturers like Maxon, Moog, Neugart, Harmonic Driver,
Sumitomo and SKF.

Keywords—scaling laws, planetary gearbox, harmonic drive,
cycloid drive, ball screw

I. INTRODUCTION

In robotics, a new generation of actuators is needed to
fulfill the demands of the future. These actuators should have
characteristics such as high efficiency, high torque capacity,
high power density, high energy density, low weight, etc. In
terms of high energy density and power, hydraulic systems
are superior [1]. They however induce rather large losses
and often require external power sources, which makes the
design more space consuming and heavier. As a result,
their application potential is limited. In particular, these
drawbacks are unacceptable for the evolving fields of mobile
and wearable robots (e.g. exoskeletons), where efficiency and
low mass are crucial [2].

To overcome these issues, nowadays mainly electric (es-
pecially BLDC, PMSM and PMAC) are used due to their
favourable characteristics like high efficiency (when used in the
correct operation range), high bandwidth, high positioning ac-
curacy, etc. [3]. However, they lack a high torque density, due
to the fact that limited electromagnetic forces can be produced
at a small scale [4]. Because of this, transmission systems are
coupled to the electric motor output in order to convert the high
speed, low torque characteristics of the motor into the more
favourable low speed, high torque, which is needed for robotic

Robotics & Multibody Mechanics Research Group (R&MM), Department
of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make,
1050 Brussels, Belgium.
∗ Corresponding Author: elias.saerens@vub.be (Elias Saerens)
Preprint submitted to Mechanism & Machine Theory

actuators. The influence of such transmissions is however often
not well taken into account, which leads to a decrease of the
overall energy efficiency [5], [6].

Since robotics is a field in which high performance normally
needs to be combined with low weight and small volume,
a multi-parameter optimization is needed. This optimization
process can be facilitated using scaling laws.

Several works in literature already address the optimal
selection of transmissions and especially how they influence
the overall actuator.

Rezazadeh et al. [7] studied the efficiency of a geared motor,
with a focus on improving the energy efficiency of the motor
by selecting the optimal transmission ratio. By doing so, the
motor can work in its optimal range. This selection is done
analytically by considering a transmission that has a constant
efficiency for each load case and considers for the motor only
Joule losses.

Bartlett et al. [8] on the other hand, dug deeper into
multiple-stage gearboxes. Here, an analysis is performed on
how some design parameters, such as the number of stages
and stage ratios, influence the total mechanical efficiency,
mass and acceleration. This way, they aim to find the best
trade-off between conflicting gearbox characteristics [9].

Considering scaling laws for transmissions, one of the few
contributions was delivered by Pott [10], who derived how the
torque and mechanical power of gearboxes scale as a function
of a general dimensional unit ’s’. The downside of this method
is that in such a way no distinction can be made between the
effect of a diameter or length change, which can potentially
be important for certain applications.

A more extensive derivation was done by Radzevich [11].
He described a so-called ’Q-factor’ that scales the weight of a
spur gear pair or a planetary gear train for different load cases.
This Q-factor is a function of the transmission ratio and power
of the gearbox.

For scaling laws of almost each actuator component, and
hence also transmissions, Budinger et al. [12] can be consulted.
They provided among others the scaling laws for all the classic
transmissions. Their derivations are however not explained in-
depth, which makes it hard to verify the made assumptions.
They use torque/force as main scaling parameter and only
find a link with the outside dimensions through a component
integrator perspective, due to this different aim it is more
difficult to use this reference for volume-based scaling, which
is crucial in robotics.
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Many robots have two distinct operating modes:
1) Carrying the payload
2) Movement without payload
For the first, the maximum continuous output torque is often

the limiting factor. For the second, the mass of the robotic
arm and the inertial load of the actuators are the only load.
This implies that a maximum achievable output torque and a
minimal inertia are desired. However, often only limited space
is available, especially in the fields of wearable robotics. This
makes it interesting if the torque and inertia could be written
in function of dimensional parameters.

Hence, in this paper, we will derive scaling laws for maxi-
mum continuous output torque and reflected inertia, for most
transmissions: multi-stage parallel shaft and planetary gear
trains, harmonic drives, cycloid drives and ball screws. This
is especially important in dynamic robots or robots that ex-
perience intermittent contact with the environment. To enable
direct comparison with the load inertia, we will calculate the
reflected inertia from a load-side perspective.

To tackle the fact that none of the existing scaling laws
are given as a function of size parameters, which is crucial
for complex actuators that use multiple parallel motors and
transmissions like e.g. the +SPEA [13] and DMA [14], the
laws derived in this paper will be written as a function of the
main design parameters of transmissions, i.e. outer diameter,
outer length, number of stages and transmission ratio. The
derivations of these laws will be done thoroughly. This in
order to provide the reader a better insight in the failure
mechanisms of each transmission and to show how these laws
are constructed and which assumptions are made, which is
different from the current literature.

The layout of the paper is as follows. First, in section II,
derivations for the scaling laws of both maximum continuous
output torque and total reflected inertia will be performed
for different types of multi-stage gear trains (parallel shaft
and planetary). These laws will then be compared to existing
catalog data from gearbox-manufacturers like Maxon, Moog
and Neugart. In section III, the same approach will be used to
tackle the scaling of harmonic drives. There, the derived laws
will be compared to the CSG and CSF series of Harmonic
Driver. This same procedure will be repeated in both section
IV and V for respectively cycloid drives and ball screws.
The found scaling laws for cycloid drives will be compared
to catalog data from Sumitomo whereas data from SKF will
be used to verify the found laws of ball screws. Afterwards,
in section VI, an overview of the found laws will be given
together with a comparison of the different transmission types
based on catalog data. This comparison will be done among
the different discussed transmissions for characteristics such
as inertia vs. torque and torque vs mass. Furthermore, in
this section, typical motor inertia will be compared with the
inertia of the discussed transmissions. Finally, in section VII
a conclusion will be given.

General design parameters, which will appear throughout
the document, are summarized in Table I.

Symbol Explanation Unit

Tin,max Maximum allowed continuous input torque Nm
Tout,max Maximum allowed continuous output torque Nm
L Outer length of the transmission m
d Outer diameter of the transmission m
a Number of transmission stages /
i Transmission ratio (= ωin

ωout
) /

m Gear module m
σH,max Maximum Hertz/contact stress N

m2
σH,ut Maximum allowable contact stress N

m2
σF,max Maximum bending stress N

m2
σF,ut Maximum allowable bending stress N

m2

TABLE I: Nomenclature of general transmission parameters.

II. SCALING FOR MULTI-STAGE GEAR TRAINS
In this section, the scaling of multi-stage gear trains, i.e.

parallel shaft gear trains (PSGT) and epicyclic or planetary
gear trains (PGT), will be investigated.

Gear engineers normally use the earlier mentioned Q-factor
[11] if sizing for weight is needed. However, when other
parameters like torque are required, Pott [10] suggests to look
at the maximal bending moment. This section will start from
stress calculations, but will also include other types of stress,
like contact stress. The results will then also be compared to
catalog data from Maxon [15] for the parallel shaft gears and
both maxon [15], Moog [16] and Neugart [17] for the planetary
gears.

A. Parallel Shaft Gear Train (PSGT)
In this subsection, calculations are made regarding parallel

shaft gear trains. The parameters involved in the calculations
of this subsection, which are specific to the PSGT, are sum-
marized in Table II.

Symbol Explanation Unit

d1 Pitch diameter of the Pinion m
d2 Pitch diameter of the Gear m
ω1 Rotational speed of the Pinion m
ω2 Rotational speed of the Gear m
is Transmission ratio in one stage (= ωin

ωout
=

ω1
ω2

) /

JPSGT Mass moment of inertia of the parallel shaft gear train kgm2

b Effective teeth width m
bs Effective teeth width in one stage m
b f Effective gear face m

TABLE II: Nomenclature of PSGT specific parameters

There are also some empirical parameters involved in the
gear calculations (for both parallel shaft and planetary gears).
These are summarized in Table III.

Here, derivations are initially done for one stage and only
later expanded to multi-stage gearboxes. The lay-out of such
kind of gearboxes can be seen in Fig. 1. Hence, when the
calculations are only valid in one stage, the subscript ”s” will
be used to denote this.

Here, only parallel shaft gear trains with a cylindrical casing
will be investigated. This is done since these are the ones that
are most usefull in robotic transmissions.
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Symbol Explanation Unit

KH Gear contact load factor /
KF Gear bending load factor /
YFS Shape and stress concentration factor /
Yβ Tooth tilt angle factor /
Yε Teeth overlap factor /
ZE Material parameter factor /
ZH Gear teeth shape factor /
Zε Contact line correction factor /

TABLE III: Nomenclature of empirical gear design parameters

Motor

Load

Gearbox

d1,1

d2,1

d1,2

d2,2

d1,3

d2,3

d

L

Fig. 1: Overview of the structure of a multi-stage parallel shaft
gear train (PSGT) (here the number of stages a = 3). The
dashed lines represent the housing of the gearbox. Here the
notation di, j is used, where i indicates if it is the Pinion (1) or
Gear (2) and j denotes the stage number.

It should also be noted that in this subsection, the subscript
1 will refer to the Pinion and 2 to the Gear.

1) Maximum Torque:

One of the key factors in gear design are the stresses inside
the gears. In PSGTs there are two types of stresses that can
occur, namely contact or Hertz stress (σH ), which occurs at the
contact points (the tip) and bending stress (σF ), which occurs
at the root of the teeth.

According to [18] the maximum stresses, for respectively
contact and bending in gears, are given by:

σH,max = ZEZHZε

√
2000KH Tin(is±1)

d2
1 b f is

σF,max =
2000KF TinYFSYβ Yε

d1bm

(1)

Here a ”± ” is used, since the sign changes depending on
the gearing used. For external gears a ”+” is adopted, whereas
a ”−” is used for internal gears. Now, considering that both
b and b f represent the length of a meshing gear pair in one
stage (i.e. bs), Eq. (1) can be rewritten, such that the behaviour
of the maximum allowable output torque can be calculated:


Tin,max =

σ2
H,ut d

2
1 bsis

2000Z2
E Z2

H Z2
ε KH (is±1)

For contact stress

Tin,max =
σF,ut d1bsm

2000KFYFSYβ Yε
For bending stress

(2)

To write these equations in an easier manner, each term
needs to be investigated in order to see how they scale with
volume.

Parameters, like σH ,σF ,ZE ,ZH ,Zε ,KH ,KF and YFS can be
considered, for a given material and heat treatment, to be con-
stant in a first approximation. Consequently, for the derivation
of scaling laws, we can leave them out of the equation.

On the other hand, the transmission ratio cannot be left out,
since it cannot be written that is ≈ (is ± 1). This is due to
the fact that the ratios for parallel shaft spur gears are not
high enough. Theoretically this ratio is limited to 1 : 12.5 [11],
however the practical limit is 1 : 5. Maxon is even stricter:
transmission ratios only vary from 1 : 2.2 to 1 : 3.6 in each
stage [15].

To see the possible output torque, the given input torque
needs to be transformed. Since the meshing efficiency for spur
gears is very high, the following approximation can be made:

Tin,max · is = Tout,max (3)

Also the gear module, which is written in the equation of
bending stress, needs to be rewritten. The gear module is a
parameter that indicates the size of the gear teeth. It is related
to the pitch diameter of the gear as follows:

m =
d1

z1
=

d2

z2
(4)

Inserting (3) and (4) into Eq. (2) gives:
Tout,max ∝

d2
1 bsi2s
is±1 For contact stress

Tout,max ∝ d2
1bsis For bending stress

(5)

Both of the laws displayed in Eq. (5) are proportional with
d2

1bs, combined with a factor that contains transmission ratios.
However, the inclusion of this factor will only give a spread
on the data. We are on the other hand only interested in the
maximum achievable torque, which will be achieved for a
certain stage ratio. Other ones will lead to scaling lines with
a lower maximum achievable torque Hence, to facilitate the
scaling law, this factor can be neglected. Because of this,
both contact stress and bending stress will lead to the same
conclusion, namely:

Tout,max ∝ bsd2
1 (6)

Now, for a PSGT, the outer diameter of the gearbox is related
to the pitch diameters of the individual gears as follows:

d ∝ d1 +d2 (7)
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Combining this with the fact that it can be assumed that each
stage has an equal width, i.e. bs =

L
a , where a is the number

of stages. The scaling law for the maximum achievable output
torque becomes:

T PSGT
out,max ∝

L ·d2

a
(8)

Hence, the torque is now represented by a volume divided
by the number of stages. So for a same volume the torque
capacity will lower if the number of stages increases. This
seems to be logical, since the amount of material that remains
for each stage decreases and hence each part is stressed more
and the torque capacity is reduced.

Fig. 2 shows a plot with catalog data of gearboxes from
Maxon in order to validate the scaling law in Eq. (8). In
that figure an orange line can be observed which gives the
optimal design solution according to the proposed scaling laws.
The slope of this line is made using the derived law. Here,
the intercept was made to match the points that achieved the
maximum possible torque for an x-axis value.

This was done in such a way, since only the law for the
maximum was calculated. Some points can also be below the
line because their design is suboptimal in terms of strength,
since a higher safety factor is taken and because the effect of
the transmission ratios is neglected as scaling factor.

10-8 10-6 10-4 10-2
10-4

10-2

100

102

Fig. 2: Visualisation of the maximum continuous output torque
of a multi-stage parallel shaft gear train (PSGT). The data is
extracted from the catalogs of Maxon [15] , which is displayed
in green. An orange trend line is plotted on these datapoints
to show how the maximum achievable torque scales for each
dimensional value.

2) Total reflected inertia to the load side:

For the dynamic character of a drive train, it is important
to account for the reflected inertia of the drive train. This is

important, since a low reflected inertia is the key to high-
bandwidth actuation. Moreover, it lowers the impedance of
the drive train, which is important when the actuator interacts
with its environment [19].

In this subsection the reflected inertia of a PSGT transmis-
sion will be derived [20]. All inertia calculations in this paper
will be reflected to the load side.

To determine JPSGT , we will first look in one stage (i.e.
JPSGT,s):

JPSGT,s = J1 ·
(

ω1

ω2

)2

+ J2 = J1 · i2s + J2 (9)

Now we only need to express J1 and J2 (inertia for respec-
tively the pinion and gear) as functions of known variables.
The mass moment of inertia of a cylinder around its axis of
rotation is given by:

Jcylinder =
ρπh(dout −din)

4

32
(10)

Where h is the length (height) of the cylinder, ρ is the
density, dout is the outer diameter and din is the inner diameter.
Thus, combining Eq. (9) and (10), leads to:

JPSGT,s =
ρπbs

2
·

[(
d1

2

)4

· i2s +
(

d2

2

)4
]

(11)

Now still d1 and d2 need to be filled in. Combining Eq. (7)
with the fact that is =

d2
d1

, it can be written that:
d1 ∝

d
1+is

d2 ∝
d·is
1+is

(12)

Implementing this in Eq. (11), gives:

JPSGT,s ∝ (ρπbs) ·
(

d
2(1+ is)

)4

· i2s (13)

When extending this to multiple stages, it should be taken
into account that each stage adds another multiplication with
the transmission ratio squared. Hence, when it is assumed that
each stage uses the same configuration, the reflected mass
moment of inertia of a PSGT is proportional to:

JPSGT ∝ JPSGT,s ·

(
a

∑
k=0

i2k
s

)
(14)

Applying this, making the assumption that each stage has
an equal length (i.e. bs =

L
a ) and that dr ∝ d, the transmission

inertia is given by:

JPSGT ∝
L ·d4

a
·
(

i2s
(1+ is)4

)
·

(
a

∑
k=0

i2k
s

)
(15)

Due to the influence of the transmission ratio, the effect
of each stage increases the further it is away from the output.
Hence, the total reflected inertia seen from the load side will be
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mainly determined by the input stage. However, since the other
stages still also have an influence, the following assumption
will be taken: (

i2s
(1+ is)4

)
·

(
a

∑
k=0

i2k
s

)
≈C · i2a

s (16)

Where C is a constant. This is assumption is valid, because
after verification it is seen that C ∈ [0.03;0.057] for the range
of possible transmission ratios. This shows that there is not
even a factor 2 between the minimal and maximal value.

Applying (16) into Eq. (15), knowing that is ≈ a
√

i, it can be
written that the reflected inertia is given by:

JPSGT ∝
L ·d4 · i2

a
(17)

In Fig. 3 it can be seen that the derived law (orange line)
follows the trend in gearbox inertia, based on catalog data from
Maxon. Here, the intercept of this law was done in such a way
that the line visually agrees with most of the data.
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100

Fig. 3: Visualisation of the scaling of the inertia of a parallel
shaft gearbox. The data is extracted from the catalogs of
Maxon [15] (in green). An orange trend line is plotted on
these data points to show how the transmission inertia scales
for each dimensional value.

B. Planetary Gear Train (PGT)
In this subsection, the previous equations and derivations

will be interpreted for planetary gear trains. The parameters
used here, which are specific to the PGT, can be seen in Table
IV.

1) Maximum Torque:

Compared to parallel shaft gears, the derivations for PGTs
follow a similar process, although Eq. (1) should be treated
with care. Since now there are two meshings, sun-planet and
planet-ring, for each stage we should first look which one of

Symbol Explanation Unit

ds Pitch diameter sun gear m
dr Pitch diameter ring gear m
dp Pitch diameter planet gear m
Fs Force on the sun gear N
Fc Force on the carrier N
Fr Force on the ring gear N
Ft Tangential force N
ωs Rotational speed of the sun gear rad

s
ωc Rotational speed of the carrier rad

s
is Transmission ratio in one stage (= ωin

ωout
= ωs

ωc
) /

JPGT Planetary gear inertia kgm2

b Effective teeth width m
bs Effective teeth width in one stage m
b f Effective gear face m

TABLE IV: Nomenclature of PGT specific parameters

the two is more restrictive to the output torque. Now, since
Ft = 2000 Tin

d1
Eq. (1) can be written as:

σH = ZEZHZε

√
KHFt(is±1)

b2d1is
(18)

In the most common planetary gear configuration, the sun
(input) is driving the planet gears connected to a carrier
(output) while the ring gear is grounded, as can be seen in
Fig. 4.

M dc dr

dp

ds

Fs

Fc

Fr

Fig. 4: Overview of the structure of one stage of a planetary
gearbox together with the forces acting in this stage on a planet
gear.

In order to find the meshing with the highest stress, the
tangential forces acting on the planet due to the sun gear (Fs)
and ring gear (Fr), which can be seen in Fig. 4, should be
expressed as a function of the output torque (Tout ). This can
be done by expressing static equilibrium of the planet gear,
and hence the following relation can be found:

|Fs|= |Fr|=
|Fc|
2

=

∣∣∣∣ Tout

ds +dp

∣∣∣∣ (19)

Knowing this, the term Ft in Eq. (18), can be replaced by
Eq. (19). Hence, the expression for the maximum contact stress
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in the gears, for respectively the ring-planet interface and the
sun-planet interface, becomes:

σH,max,pr = Z′
√

Tout
ds+dp

dr
dp
−1

bsdr

σH,max,sp = Z′
√

Tout
ds+dp

dp
ds

+1
bsdp

(20)

Where Z′ = ZEZHZε

√
KH .

It can also be noted that dr > dp for each configuration,
which means that the square root will always be real.

However, the individual diameters of the different gears are
not provided in the catalog of the manufacturers. In order to
find the scaling of torque in PGTs, a closer look into their
layout will allow us to find an expression for equation (20).
For this particular PGT configuration the gear ratio, for one
stage is ≈ a

√
i, is equal to:

is = 2
(

dp

ds
+1
)

(21)

In this equation it can be seen that is has a practical lower
limit (i.e. is > 2). Furthermore, we can derive the following
relation from Fig. 4:

dr = ds +2dp (22)

Inserting equations (21) and (22) into (20), we obtain:
σH,max,pr = Z′

√
2Tout (is−1)
bsd2

r (is−2)

σH,max,sp = Z′
√

2Tout (is−1)2

bsd2
r (is−2)

(23)

By filling in the maximum allowable stress for the used
material, the maximum output torque becomes:Tout,max,pr =

(
σH,max,allowable

Z′

)2
·
(

(is−2)
2·(is−1)

)
·d2

r bs

Tout,max,sp =
(

σH,max,allowable
Z′

)2
·
(

(is−2)
2(is−1)2

)
·d2

r bs

(24)

Here, it can be seen that the output torque will always
be limited by the meshing between the sun and planet gear
[21], since is > 2 for each configuration (as mentioned before).
Hence, the scaling law for the torque, based on the contact
stress, is approximated by:

Tout,max ∝

(
(is−2)
(is−1)2

)
·d2

r bs (25)

For multi-stage gearboxes the same scaling can be applied,
since only the last stage will determine how much torque the
entire gearbox can handle. Hence, by assuming that dr ∝ d in
combination with the fact that equal width is assumed for each
stage, i.e. bs =

L
a , the scaling law becomes:

Tout,max ∝
L ·d2

a
· (is−2)
(is−1)2 ≈

L ·d2 · ( a
√

i−2)
a( a
√

i−1)2
(26)

Including the number of stages (a) in this scaling is interest-
ing, especially for efficiency purposes, since the more stages,
the lower the energy efficiency. This law can be simplified
into:

T PGT
out,max ∝

L ·d2

a
(27)

In this equation the influence of the transmission ratio is left
out. By doing this, the maximum torque line can still be seen
for configurations with minimal stage ratios. Configurations
with higher ratios will lead to lines that are parallel to the
maximum achievable torque line as can be seen in Fig. 5.

This figure shows a plot with catalog data of gearboxes from
Maxon, Moog and Neugart in order to validate the scaling law
in Eq. (27). An orange line can be observed which gives the
optimal design solution according to the proposed scaling laws.
Note that some points are not only below the line because of
the higher stage ratios that are used, but also because their
design is suboptimal in terms of strength, since a higher safety
factor is taken.
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10-4

10-2

100

102

104

Fig. 5: Visualisation of the maximum continuous output torque
of a planetary gearbox. The data is extracted from the catalogs
of Maxon [15] (in green), Moog [16] (in blue), and Neugart
[17] (in red). An orange trend line is plotted on these datapoints
to show how the maximum achievable torque scales for each
dimensional value.

2) Total reflected inertia to the load side:

To determine the reflected moment of inertia of a PGT ,
JPGT , we will first look in one stage (i.e. JPGT,s):

JPGT,s = Js ·
(

ωs

ωc

)2

+ Jc +3Jp ·
(

ωp

ωc

)2

(28)

Combining Eqs. (10) and (28), applying either the graphical
Kutzbach method [22] or the analytical Willis equation [23],
it can be written that:
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JPGT,s =
ρπbs

32
·

[
d4

s · i2s +d4
c +3d4

p ·
(

is
is−2

)2
]

(29)

Furthermore, from Eqs. (21) and (22) and after some small
geometric calculations, we find following expressions for the
diameter of the sun, planets and carrier:

ds = dr
is−1

dp = dr ·(is−2)
2(is−1)

dc = dr ·is
2(is−1)

(30)

Implementing (30) in (29), gives that:

JPGT,s =
ρπbsd4

r i2s
128(is−1)4 ·

(
i2s −3is +7

)
(31)

To extend these equations to multiple stages, the same
method can be applied as for the spur gears. Assuming again
that bs =

L
a and that dr ∝ d, the total reflected mass moment

of inertia of the PGT can be written as:

JPGT ∝
L ·d4

a
·
(

i2s · (i2s −3is +7)
(is−1)4

)
·

(
a

∑
k=0

i2k
s

)
(32)

Now again, similar to what was done for the PSGTs, the
terms that contain the stage ratios are approximated by their
highest term (i.e. the first stage after the motor). Thus the
approximation is made that:(

i2s · (i2s −3is +7)
(is−1)4

)
·

(
a

∑
k=0

i2k
s

)
≈C · i2a

s (33)

Also here the assumption can be made, cause after verifica-
tion it is seen that C ∈ [1.185;1.73] for the range of possible
transmission ratios. This range is even smaller than for the
PSGT.

Applying (33) into Eq. (32), knowing that is ≈ a
√

i, it can be
written that the reflected inertia is given by:

JPGT ∝
L ·d4 · i2

a
(34)

In Fig. 6 it can be seen that the orange line, which represents
the derived law (i.e. Eq. (34)), follows rather accurately the
inertia values of different gearboxes, which are extracted from
the catalogs of Maxon, Moog and Neugart.

III. SCALING FOR HARMONIC DRIVES (HD)

In this section, calculations are made regarding harmonic
drives (HDs). The parameters involved in these calculations
are summarized in TABLE V.

10-10 10-5 100
10-10

10-5

100

Fig. 6: Visualisation of the scaling of the inertia of a planetary
gearbox. The data is extracted from the catalogs of Maxon [15]
(in green), Moog [16] (in blue) and Neugart [17] (in red). An
orange trend line is plotted on these data points to show how
the transmission inertia scales for each dimensional value.

Symbol Explanation Unit

hml Rim tooth thickness flexspline m
d f Pitch diameter of the flexspline m
σF0 Endurance limit N

m2

i Transmission ratio of the harmonic drive (= ωin
ωout

) /

d Outer diameter of the harmonic drive m
L Length of the harmonic drive (m)
Tout,max Maximum allowable continuous output torque Nm
JHD Mass moment of inertia of the harmonic drive kgm2

JWG Mass moment of inertia of the wave generator kgm2

JFS Mass moment of inertia of the flexspline kgm2

JCS Mass moment of inertia of the circular spline kgm2

ωWG Rotational speed of the wave generator rad
s

ωFS Rotational speed of the flexspline rad
s

ωCS Rotational speed of the circular spline rad
s

TABLE V: Nomenclature of harmonic drives

A. Stress Calculations

1) Maximum Torque:

Harmonic drives, which can be seen in Fig. 7, consist of
three parts:
• Elliptical wave generator (WG)
• Flexspline (FS)
• Circular spline (CS)

In harmonic drives, the wave generator is generally used as
input. It is a cam with an elliptical shape which is fitted into a
bearing. This wave generator is then mounted inside a flexible
hub (the flexspline). The flexspline has an outer gearing which
is pressed into rigid circular spline, which has internal gearing
and is usually grounded. Due to the fact that the flexspline is
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Circular Spline

Flexspline

Wave generator

Circular Spline

Flexspline

Wave generator

df

Fig. 7: Exploded view of the different parts of a harmonic
drive (top) and a detailed cross-section view of it (bottom).

flexible it has a higher loading capacity, since up to 30% of
the teeth are constantly in contact [24].

However, it is constantly subjected to deformation. These
periodic deformations make that the flexspline is the weakest
part of a harmonic drive and hence will determine its torque
capacity [25], [26]. Due to the periodic nature of the deforma-
tion, the main failure mechanism is fatigue. Because of this, the
endurance limit (σF0), and not the tensile or yield strength will
be used in the calculation of the maximum allowable output
torque. The endurance limit is a fatigue parameter that defines
the maximum amount of cycles a material can withstand under
bending stress, without experiencing failure due to fatigue.

According to [27], the relationship between the maximum
output torque and the endurance limit is given by:

hml =

(
10600 ·Tout,max

σF0 ·d3
f

+7 ·10−3

)
·d f (35)

Hence, the maximum allowable output torque is given by:

Tout,max =
σF0 ·d2

f

10600
·
(
hml−7 ·10−3 ·d f

)
(36)

It is also indicated in [27] that hml has a maximum allowable
value of 0.018d f . This indicates that there is a relationship
between hml and d f , since manufacturers usually try to maxi-
mize torque. By implementing this assumption in Eq. (36), the

output torque (and more specifically the maximum continuous
output torque if it is assumed that σF0 reaches the value of
σmax) scales like:

Tout,max ∝ d3
f (37)

Because the flexspline is the largest part of the HD, it is
reasonable to assume that the pitch diameter of the flexspline,
i.e. d f , is proportional to the output diameter d of the harmonic
drive. Eq. (37) can thus be simplified to:

T HD
out,max ∝ d3 (38)

When comparing this formula to catalog data from Har-
monic Driver [28], see Fig. 8, it can be seen that this trend
is indeed visible.
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Fig. 8: Visualisation of the maximum continuous output torque
of a harmonic drive. The data is extracted from the catalogs
of Harmonic Driver [28] for both the CSG-series (in blue),
and the CSF-series (in red). An orange trend line is plotted
on these data points to show how the maximum continuous
output torque scales for each dimensional value.

2) Total reflected inertia to the load side:

In this subsection, the total reflected mass moment of inertia
of a harmonic drive will be derived looking from the load side.
In its most general form, the total moment of inertia of the
harmonic drive, JHD, can be written as:

JHD =

(
ωWG

ωout

)2

·JWG +

(
ωFS

ωout

)2

·JFS +

(
ωCS

ωout

)2

·JCS (39)

Since usually the wave generator is used as input, the
flexspline as output and the circular spline as fixed element,
Eq. (39) can be rewritten as:

JHD = i2 · JWG + JFS (40)
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All these parts can be approximated as cylinders. Now, when
looking to Eq. (10), it can be seen that dout ≈ din, since the
flexspline is very thin. Due to this, in combination with the fact
that the inertia of the flexspline does not need to be transformed
to the outside, the assumption can be made that the influence of
the flexspline inertia is negligible in the total reflected inertia.

Hence, we can apply Eq. (10), where again h is assumed to
be proportional to the outer length L and dout is assumed to
be proportional to the outer diameter of the harmonic drive d.
Consequently, the total reflected moment of inertia seen from
the load side is given by:

JHD ∝ L ·d4 · i2 (41)

Comparing Eq. (41) to catalog data from Harmonic Driver
[28], see Fig. 9, it can be seen that this trend is indeed visible.
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Fig. 9: Visualisation of the reflected inertia of a harmonic drive.
The data is extracted from the catalogs of Harmonic Driver
[28] for both the CSG-series (in blue), and the CSF-series
(in red). An orange trend line is plotted on these data points
to show how the reflected inertia scales for each dimensional
value.

IV. SCALING FOR CYCLOID DRIVES (CYCLO)
In this section, calculations are made regarding cycloid

drives. The parameters involved in these calculations are
summarized in TABLE VI.

A. Stress Calculations
1) Maximum Torque:

Cycloid drives, which can be seen in Fig. 10, consist of four
parts:
• Input shaft with eccentric cam (EC)
• Cycloid disc (CD)

Symbol Explanation Unit

σF,max Maximum allowable bending stress N
m2

M Bending moment on the output pins Nm
c Distance from the neutral fiber to the point of max. stress m
I Area moment of inertia of the cross-section m4

Fs Force acting between cycloid disc and output pins N
x Lever arm from output disc to where force is applied m
d′p Diameter of the output pins m
dp Diameter of the output rollers m
dh Diameter of output holes m
t Thickness of the cycloid disc m
rw Radius of roller pin circle m
r2 Radius of output pin circle m
zw Number of output holes /
e Eccentricity of the input cam m
m Gear module m
i Transmission ratio of the cycloid drive (= ωin

ωout
) /

d Outer diameter of the harmonic drive m
L Length of the harmonic drive m
Tout,max Maximum allowable continuous output torque Nm
JCyclo Mass moment of inertia of the cycloid drive kgm2

Jsha f t,in Mass moment of inertia of the input shaft kgm2

JBB Mass moment of inertia of the ball bearing kg
Jcam Mass moment of inertia of the wave generator kgm2

JCD Mass moment of inertia of the cycloid disc kgm2

JOD Mass moment of inertia of the output disc kgm2

mcam Mass of the eccentric cam kg
mBB Mass of the ball bearing kg
mCD Mass of the cycloid disc kg
ωEC Rotational speed of the eccentric cam with input shaft rad

s
ωCD Rotational speed of the cycloid disc rad

s
ωRR Rotational speed of the ring gear and ring rollers rad

s
ωOD Rotational speed of the output disc rad

s

TABLE VI: Nomenclature of Cycloid Drives

• Ring rollers with ring gear (RR)
• Output disc (OD)

In cycloid drives, the eccentric cam, which is rigidly con-
nected to the input shaft, is used as input. This cam induces a
cycloid motion that lets the cycloid disc roll over the rollers,
which are fixed inside a grounded ring. These rollers can be
either free or fused to the ring [29]. The pins of the output
disc are inserted into holes in the cycloid disc. As a result,
the output disc moves in the opposite way as the cycloid disc
during the eccentric movement.

Due to the fact that the lobes of the cycloid disc roll on
the rollers, only compressive force is created [30]. This means
that failure will happen either due to bending stress or contact
stress, which is similar to the failure mode of the PSGT and
PGT.

Of all parts of the cycloid drive, the output pins undergo
the highest forces [31] and are therefore the most critical com-
ponents. Consequently, their dimensioning will determine the
scaling law. Since a cycloid drive is sensitive to misalignment,
bending stresses will be more critical than contact stresses.

The maximum allowed bending stress in these pins can be
calculated using the bending beam equations:

σF,ut =
M · c

I
(42)



10

Output pins Output roller

dh

dp

Ring gear

Ring roller

Cycloid disk

Output Disc Cycloid Disc
Ring gear

Input shaft

Eccentric cam

Ring rollers

Output rollers

rw

r2

d'p

Fig. 10: Exploded view of the different parts of a cycloid drive
(top) and a detailed cross-section view of the cycloid drive
(bottom) together with all the parameters needed to describe
it.

Referring to Fig. 10, these parameters can be written as:
M = Fs · x

I =
πd
′4
p

64

c =
d′p
2

(43)

According to [32], Fs and x are given by:{
Fs = 4.8Tout

zwrw

x = t
2

(44)

From substitution of Eqs. (43) and (44) into (42), it follows
that the maximum allowed bending stress is given by:

σF,ut =
76.8Tout · t

πd ′3p · zw · rw
(45)

In order to find a scaling law as a function of the outer
parameters, i.e. length and diameter, the relation of each of
the parameters in Eq. (45) with these outer parameters should
be found.

The width of the cycloid disc (t) has to be the same as
the one of static rollers, the same as the eccentric cam and
approximately the same as the output pins. An increase of
t leads to proportional increase in the overall length, because

other parts that define the length - the output disc and the shafts
- adapt accordingly. Note that usually a double or triple cycloid
disc is placed (all with the same thickness) for balancing
purposes. Placing two or three cycloid discs however does
not change the proportionality link with the total length L.
Furthermore, the radial distance to the center of the output
pins (rw) can be related to an output parameter. According to
[32], the ratio between the radial distance of the center of the
output pins and that of the center of the ring rollers (r2) is
given by:

rw

r2
=

2e
m

(46)

Now, it can be assumed that the pitch radius is proportional
to the outer diameter, since the outer ring is the only distance
in between. It follows that also rw ∝ d.

For the last parameter, d′p, it should first be noted that
the diameter of the output pin and the output roller (dp) are
proportional [32]. There is also a linear relationship between
the diameter of the output hole (dw) and the diameter of the
output roller. This relationship is given by [33]:

dh = dp +2e (47)

Referring to the bottom picture of Fig. 10, it can easily be
seen that, for a given shaft, the outer diameter of the cycloid
drive has to increase if the output hole increases. Hence, the
assumption can be made that dw ∝ d.

In summary, it can be written that:
d′p ∝ d
rw ∝ d
t ∝ L

(48)

Inserting (48) into Eq. (45), we find that the maximum
allowable output torque of a cycloid drive scales as:

TCyclo
out,max ∝

d4

L
(49)

A comparison with catalog data from Sumitomo [34], shown
in Fig. 11, confirms this trend.

2) Total reflected inertia to the load side:

In this subsection, the total reflected mass moment of inertia
of a cycloid drive will be derived, looking from the load side.
To determine JCyclo, we first start again with the most general
form:

Jcyclo=
(

ωEC
ωout

)2
JEC+

(
ωCD
ωout

)2
JCD+

(
ωRR
ωout

)2
JRR+

(
ωOD
ωout

)2
JOD (50)

Due to the eccentric cam, the center of mass of the input
shaft and the eccentric cam with ball bearing does not coincide
with the central axis of the harmonic drive. The parallel axis
theorem (J′ = J +me2) must therefore be applied to calculate
the moment of inertia of those parts. Combined with the fact
that the ring gear and ring rollers are static, we find:

JCyclo=i2[Jsha f t,in+Jcam+JBB+JCD+e2(mcam+mBB+mCD)]+JOD (51)

In this equation, the influence of the output disc can be
neglected, since it is already turning at the output side and
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Fig. 11: Visualisation of the maximum continuous output
torque of a cycloid drive. The data is extracted from the
Fine Cyclo catalogs of Sumitomo [34] for both the A-series
(in blue), and the T-series (in red). For the A-series, there
are several different subseries based on the used bearing for
the output flange, but here the standard variant is taken. An
orange trend line is plotted on these data points to show
how the maximum continuous output torque scales for each
dimensional value.

hence has no influence from the transmission ratio, which
makes its contribution to the reflected inertia very small in
comparison to the other parts.

For the rest of the cycloid drive, all parts are (roughly)
cylindrical, so it can be assumed that their masses also scale
with L ·d2. It can also be said that the eccentricity (e) depends
on the available diameter. This combined with Eq. (10),
assuming again that h ∝ L and dout ∝ d, gives:

JCyclo ∝ L ·d4 · i2 (52)

Comparing Eq. (52) to catalog data from Sumitomo [34], see
Fig. 12, it can be seen that this trend is indeed visible. Only the
FA-series deviate slightly from this trend line, but this is due
to the fact that they use a slightly different internal design. It
can however be noted that this does not impose great changes
to the predicted behaviour.

V. SCALING FOR BALL SCREWS (BS)

In this section, calculations are made regarding ball screws
(BS). These calculations are made according to the equations
found in [35] and [36]. The parameters involved in these
calculations are summarized in TABLE VII.
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Fig. 12: Visualisation of the reflected inertia of a cycloid
drive. The data is extracted from the Fine Cyclo catalogs of
Sumitomo [34] for both the A-series (in blue), and the T-series
(in red). For the A-series, there are several different subseries
based on the used bearing for the output flange, but here the
standard variant is taken. An orange trend line is plotted on
these data points to show how the reflected inertia for each
dimensional value.

Symbol Explanation Unit

FL Ball screw feed force N
σeq Equivalent stress of combined load N

m2
T Ball screw torque Nm
Tmax Maximum allowed ball screw torque Nm
η Ball screw efficiency /
d Output diameter of the screw m
dr Minor diameter of the screw m
p Thread lead of the screw m
L Length of the screw m
mscrew Screw mass kg
mnut Nut mass kg
nt Number of engaged threads /
lnut Length of the nut m
JBS Mass moment of inertia of the complete ball screw kgm2

Jscrew Mass moment of inertia of the screw kgm2

Jnut Mass moment of inertia of the nut kgm2

TABLE VII: Nomenclature of ball screws

A. Stress Calculations
1) Maximum Torque:

Ball screws, depicted in Fig. 13, are subject to different
kinds of loads, which result in different types of stresses. The
most prominent ones are:
• Maximum bending stress at root of the thread: σb
• Maximum bearing stress at the nut and screw: σbr
• Maximum compressive stress in screw body: σc
• Maximum torsional shear stress: τ

These stresses are given by:
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σc = 4FL

πd2
r

τ = 16T
πd3

r

σb = 6FL
πdrnt p

σbr = 3FL
πdr lnut

(53)
d d r

p

lnut

Fig. 13: Overview of the structure of a complete ball screw
(top) and of the detailed view of the screw itself (bottom)
together with all the parameters needed to describe it.

According to [37], the main failure mechanism in ball
screws is fatigue in the screw due to the repeated compressive
stress. This often leads to flaking, a fatigue fracture that causes
the grooves of the screw to exfoliate due to the compressive
stress. The surface of the screw is also subject to non-negligible
shear stresses, which need to be taken into account.

From the above, it can be concluded that the first two
stresses of (53), i.e. σc and τ , will be the limiting factor
and hence will define the scaling law. The maximum allowed
equivalent stress is calculated from the Von Mises stress
criterion [36]:

σeq =
√

σ2
c +3τ2

=

√(
4FL

πd2
r

)2

+3
(

16T
πd3

r

)2 (54)

To transform the torque T into the feed force FL, the
following equation can be used [15]:

T =
pFL

2πη
(55)

In this equation, the lead p is defined as the axial distance
travelled by the screw in one complete revolution of the shaft

[38]. This distance, which is equal to the pitch for single-start
screws, is dependent on the diameter of the screw. Because the
pitch increases for screws with a higher diameter, so will the
lead. So, to facilitate the derivation of Eq. (54), the following
assumptions are made: {

dr ∝ d
p ∝ d

(56)

If now Eq. (55) is implemented in Eq. (54), together with
the above assumptions, the scaling law of the maximum
continuous torque of a spindle can be found:

σeq ∝

√(
8ηT
d3

)2

+3
(

16T
πd3

)2

∝
T
d3 ·

√
(8η)2 +3

(
16
π

)2
(57)

Replacing the equivalent stress σeq by the maximum allow-
able stress of the screw material, it is found that the torque
scales as:

Tmax ∝
d3√

η2 +
(

12
π2

) (58)

Efficiencies of ball screws vary little among different sizes,
with typical efficiencies around 90%. As a result, the denom-
inator of (58) can be treated as a constant. Hence, the max.
cont. torque will scale as:

T BS
max ∝ d3 (59)

Fig. 14 confirms this assumption, as the orange line accord-
ing to Eq. (59) follows the trend in the plotted catalog data.

10-8 10-6 10-4 10-2

100

102

104

Fig. 14: Visualisation of the maximum continuous output
torque of a ball screw, extracted from SKF [39] (in blue). An
orange line is plotted on these datapoints to indicate the scaling
of the maximum achievable torque for each dimensional value.
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2) Total reflected inertia to the load side:

In this subsection, the total reflected mass moment of inertia
of a ball screw will be derived. To determine JBS, we can use
the following formula [39]:

JBS = Jscrew + Jnut =
mscrew ·d2

8
+mnut

( p
2π

)2
(60)

Due to the fact that the inertia of the screw is larger than the
one of the nut (due to a large difference in size), the assumption
can be made that Jnut is negligible in comparison with Jscrew.
Combined with the fact that the mass of the screw scales with
d2 ·L, the mass moment of inertia of the ball screw scales as:

JBS ∝ L ·d4 (61)

This behaviour can be seen in Fig. 15. In this figure the
SKF catalog values of the ball screw inertia are plotted (in
blue) as a function of the found scaling law. The scaling law
nicely predicts the inertia, except for some points in the low
dimensions. This is due to the fact that for small values of
the screw, the relative value of Jnut increases and cannot be
neglected anymore. This is however only true for a limited
range.

VI. DISCUSSION

In this paper, the scaling laws of maximum continuous
output torque and reflected inertia (to the load side) have been
derived. A summary of these laws can be seen in Table VIII.

In this section, the found laws will be discussed based on the
impact they have on the design of transmissions. Here also the
different technologies will be compared among each other in
an absolute way with the catalog data and the reflected inertia
will be compared with the reflected inertia of commercial
BLDC motors.

10-6 10-4 10-2 100
10-6

10-4

10-2

100

Fig. 15: Visualisation of the mass moment of inertia of a ball
screw, extracted from SKF [39] (in blue). An orange line is
plotted on these datapoints to indicate the scaling of the inertia
for each dimensional value.

A. Maximum continuous output torque

Looking at Table VIII, it can immediately be seen that
there is a great dependency between the outer diameter of
a transmission and the maximum continuous output torque
it can withstand. This in contrast with the length, which
appears to have a minimal or negative influence. For PGTs
and PSGTs, an increase in length still contributes to a higher
torque, but in the scaling laws for the harmonic drive and
ball screw the length has no effect. For cycloid drives, an
increase in length even has a negative impact on the maximum
continuous output torque. This is most likely due to the fact
that for longer cycloid drives, the lever arm of the output pins
increases, which in return increases the bending stresses.

From the above, we can conclude that it is advisable for
transmissions in robotics to be disc-shaped and not cylinder-

Maximum continuous output torque Reflected inertia (to load side)

Parallel Shaft Gear Train (PSGT) L·d2
a

L·d4 ·i2
a

Planetary Gear Train (PGT) L·d2
a

L·d4 ·i2
a

Harmonic Drive d3 L ·d4 · i2

Cycloid Drive d4
L L ·d4 · i2

Ball Screw d3 L ·d4

TABLE VIII: Overview of the scaling laws for maximum continuous output torque and reflected inertia (to load side) for different
transmission types. These laws are made with the outer parameters of the transmission (i.e. diameter (d) and length (L), their
transmission ratio (i) and number of stages (a).
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shaped when high torque is desired.

B. Reflected inertia

Looking at the reflected inertia it can again be said that the
outer diameter has the largest influence, since all laws contain
the factor d4 while only L1 for the length. In robotics, a small
reflected inertia is often desirable because it allows the robot
the react faster. Furthermore, reflected inertia is a crucial
parameter in human-robot interaction. Here, the actuator’s
impedance - for a large part determined by reflected inertia
- should be lowered as much as possible to guarantee safe
interaction.

Now, since the torque and inertia have conflicting demands
for the outer diameter of the transmission, it should be in-
vestigated whether the inertia of the transmission is relevant
with respect to the one of the motor. To do so, the relative
influence of the reflected motor inertia and transmission inertia
for a motor-transmission couple should be compared against
each other as a function of the allowed torque. Since it is
not known with which transmission the motor is coupled, the
total output torque and reflected inertia seen from the load
side cannot be calculated for the motor. To solve this, the
inertia will be given for both motor and reducer on the motor
side. This will be as a function of the maximum allowable
torque for the motor, and the maximum allowable input torque
for the transmission. This data is depicted in Fig. 16, where
two different BLDC motor constructions (Maxon EC-flat and
Maxon EC [15]) are compared to the three most used reducers,
i.e. a PGT, a harmonic drive and a cycloid drive.

10-6 10-4 10-2 100 102
10-10

10-8

10-6

10-4

10-2

100

Fig. 16: Comparison between magnitude of motor inertia
and transmission inertia, done for two different BLDC motor
constructions (Maxon EC-flat and Maxon EC [15]) and three
types of transmissions (a PGT, a harmonic drive and a cycloid
drive). For these transmissions, the catalogs from Maxon [15],
Moog [16], Neugart [17], Sumitomo [34] and Harmonic Drive
[28] are used. Both inertia and torque are seen from motor
side to provide a correct comparison.

From this figure, it can not only be concluded that harmonic
drives have a rather high inertia in comparison with cycloid
drives and PGTs, but also that the motor inertia will usually
be higher (especially for Maxon EC-flat). It can also be noted
that the spread of the PGT’s inertia is very large, which is
due to their broad range of possible constructions. This allows
them to have options with rather low inertia as well.

Hence, for most configurations the motor inertia will be
higher than the transmission inertia. In terms of design this
can give some insight for the trade-off between high torque/low
reflected inertia, since they have conflicting demands for the
outer diameter. Due to the fact that it is less crucial to have a
minimal output diameter, since its relevance for the total drive
train inertia is usually lower than that of the motor, one can
lean more into a design with an increased diameter.

VII. CONCLUSION

In this paper, scaling laws are derived for parallel shaft
gears, planetary gears, harmonic drives, cycloid drives and
ball screws in function of their diameter, length, number of
stages and transmission ratio. The proposed scaling laws for
transmissions were shown to follow catalog in a satisfactory
manner. The derived scaling laws show that from the two
dimensional parameters (the length L and the diameter d), the
diameter has the most influence on torque and inertia. It was
also found that in terms of torque optimization, a disc-shaped
transmission is preferred over a cylinder-shaped one. The same
cannot be said for inertia, since it has conflicting demands
in terms of diameter selection. It was however shown that a
minimal diameter for the inertia is not always crucial, since
the inertia of the motor to which it is coupled, is usually more
important for the overall drive-train inertia.

All these scaling laws can help to facilitate the design
process, since the output characteristics can now be directly
coupled to the dimensional parameters. This is especially
relevant for complex actuators with multiple motors and gear-
boxes, such as the +SPEA [13] and DMA [14] developed in
our group.

Because compliant elements are present in the +SPEA de-
sign, future work will first focus on the development of scaling
laws for springs. Along with the known scaling laws for motors
and the laws for gearboxes derived in this work, these will
be used to optimize the design of these innovative actuators
and assess their potential with respect to more conventional
designs.
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