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Scaling laws of compliant elements
for high energy storage capacity in robotics

Elias Saerens1,∗, Raphaël Furnémont1, Tom Verstraten1, Pablo López Garcı́a1,
Stein Crispel1, Vincent Ducastel1, Bram Vanderborght1 and Dirk Lefeber1

Abstract—The key component in compliant actuators is the
elastic element, typically a spring. Nevertheless, different types
of springs have different characteristics in terms of size, weight,
maximum allowable force, maximum allowable torque and max-
imum allowable deflection. It is however very important to
compare them on these requirements, since each application has
other demands. In this paper, the energy storage capacity of
different types of compliant elements are calculated using scaling
laws in order to easily derive the maximum achievable energy
capacity for a certain arrangement. These scaling laws are given
as a function of the structural parameters and are validated with
catalog data of spring manufacturers and distributors such as
Alcomex, Lesjöfors and Century Spring. As such, different types
of compliant elements can be compared in an easy way. To fully
exploit the capabilities of compliant elements, these scaling laws
are used to verify the effect of spring parallelization on mass
and/or enclosed volume, which is interesting regarding redundant
compliant actuation. From theoretical calculations and a case
study, it follows that parallelization is beneficial, especially for
mass reduction.

Keywords—Scaling laws, compliant actuation, parallel arrange-
ments, energy storage capacity

I. INTRODUCTION

The incorporation of compliant elements into actuators
has led to the development of compliant actuators [1]. They
demonstrate improved shock-resistance, torque-to-mass ratio,
power-to-mass ratio and energy efficiency in comparison
with stiff actuators. These last two properties are particularly
important in novel robotic applications, like exoskeletons,
prostheses or co-bots, which require actuators with high
efficiency, torque-to-mass ratio, power-to-mass ratio and a
safe Human-Robot-Interaction (HRI) [2].

Different types of springs are used in compliant actuators
in order to grant these characteristics. Some actuators use
springs that can easily be found in catalogs, like compression
springs [3], [4], tension springs [5] and torsion springs [6],
[7]. However, some actuators need custom-made springs, like
spiral springs [8] and torsion springs [9–11] to respond more
adequately to the needs of their design. Leaf springs are
also a type of springs that need to be custom-made [12–15].
This is due to the fact that there is so much variety that no
standard models are offered in catalogs of manufacturers. In

1 Robotics & Multibody Mechanics Research Group (R&MM), Department
of Mechanical Engineering, Vrije Universiteit Brussel (VUB) and Flanders
Make, 1050 Brussels, Belgium.
∗Corresponding Author: elias.saerens@vub.be (Elias Saerens)
Preprint submitted to Mechanism and Machine Theory

some cases also more exotic springs are used in the design of
actuators. Examples of this are e.g. disc springs [16], torsion
rods [17] and elastic bands [18].

Considering all these compliant elements, several studies
address the optimal selection of compliant elements. These
studies are generally based on constrained optimization, where
the spring is designed in order to minimize the mass, using
usually either genetic algorithms [19–21] or particle swarm
optimization [22]. For these methods only design parameters
were used. In [23] also dynamic parameters (e.g. natural fre-
quencies, dynamic response) were added to this optimization
process. In [24–27] the springs were also designed to match the
natural motion, but here to minimize the power consumption
instead of the mass.

These studies are however exclusively made for helical
(compression) springs and consider only one spring in their
design. Nevertheless, it is also possible to use several springs
in parallel, e.g. one big spring can be replaced by several
smaller ones in parallel that in total give the same output
characteristics. This principle of parallelization is used in
the Series Parallel Elastic Actuator (SPEA) [28]. This type
of actuator shows even better properties in terms of energy
efficiency [29] than standard compliant actuators, like e.g.
SEAs [1]. In these redundant actuators different types of
springs can be used. The first prototypes of the SPEA used
tension springs, but the latest developments include spiral
springs [30].

Investigating the properties of redundant systems is
interesting, but to see if these actuators are better in general,
a tool is needed to verify the influence of parallelization and
whether this is positive or not in terms of mass and/or volume
reduction.
In this paper, these problems will be tackled by the use of
scaling laws. This will be done by studying how the energy
storage capacity of compression and torsion springs (both
helical and spiral) scales with their principal dimensions and
mass. The energy storage capacity will be used as metric of
comparison, since it includes the influence of both torque,
force and elongation/deflection, which is needed for a fair
comparison. It also is shown in other works that this is an
important metric for compliant actuators [31], [32].

The structure of the paper is as follows. First, in section
II the scaling of the energy storage capacity for helical
springs, i.e. compression and helical torsion springs, will be
derived based on their design equations. All these scaling
models will be validated with catalog data. Afterwards, in
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section III, the derivation of the same characteristics will be
elaborated for flat springs. The laws derived in this section
will also be compared to existing catalog data. To address the
effectiveness of redundant systems, the theoretical influence of
parallelization for all mentioned springs will be investigated
in section IV in order to see if it is beneficial in terms of
volume and mass requirements. This influence will be more
elaborated in section V, where the practical design of a
compression spring arrangement will be tackled.

To conclude this analysis, a general discussion will be given
in section VI. This discussion will start by explaining why
some types of springs are not discussed in this paper and goes
further by comparing all treated springs. This section will be
closed by providing an overview table which provides some
guidelines for spring design/selection when the energy storage
capacity needs to be optimized. Then to finish, in section VII,
a conclusion will be given about what can be concluded from
the results and which will be the future work.

II. SCALING FOR HELICAL SPRINGS
A. Introduction

In this section the scaling of helical compliant elements will
be investigated based on the stress equations of springs. The
needed equations are based on the ones found in [33–35].
The parameters involved in these equations are summarized
in Table I. When the scaling laws are derived, they will be
validated, using spring catalog data from Alcomex, Lesjöfors
and Century Spring.

Symbol Explanation Unit

τmax Maximum shear stress Pa
σmax Maximum normal stress Pa
τc,zul Maximum allowed shear stress Pa
Rm Maximum tensile strength Pa
σc,zul Maximum allowed normal stress Pa
P Load applied on the spring N
ϕ Angular deflection of the spring rad
M Torque applied on the spring Nm
D Mean diameter of the spring m
d Wire diameter m
K Shear stress correction factor /
C Spring index (= D

d ) /
A,B Empirical coefficients /
δ Elongation of the spring m
G Module of rigidity N/m2

E Module of elasticity N/m2

V Enclosed volume of the spring m3

n Number of active coils /
U Energy stored in the spring J
nt Total number of coils /
ρ Density of the spring material kg/m3

m Mass of the spring kg
L0 Length of the spring at no-load m
N Number of springs /

TABLE I: Nomenclature of helical springs

B. Compression springs
A compression spring together with its symbols used to

describe them can be seen in Fig. 1. The specific equations
used in this for this type of springs are shown in Table. II.

There are additional equations that are used to check
whether the springs can buckle, but since most of the time
the theoretical approach will be combined with springs from
catalogs, these equations will not be taken into account.
Depending on the application it can also be required to check
if surge will appear. To prevent this, the resonance frequency
of the spring itself should be large enough with respect to that
of the load. The surge phenomenon is however not relevant,
since it only happens at high frequencies, which is not the
working range of compliant actuators.

d
L0

D

Fig. 1: Representation of compression springs and the symbols
used to describe them.

τmax = K
8PD
πd3 (1)

τc,zul = 0.56Rm (2)

U =
1
2

Pδ (3)

m≈ ρ(πDn)(π
d2

4
) (4)

L0 = nd +δ (5)

K = KW =
4C−1
4C−4

+
0.615

C
(6)

Rm = Am−Bm logd (7)

δ =
8PC3n

Gd

(
1+

0.5
C2

)
(8)

V ≈ L0π(D+d)2

4
(9)

TABLE II: Equations of helical compression springs.

Some remarks can be made regarding the equations pre-
sented in Table II:
• The volume of the spring wire (needed to calculate

the mass) is approximated by the volume of n tori of
diameter d where the mean diameter of the spring D
becomes the distance from the center of the torus to the
center of the tube.

• The number of active and total coils will be assumed
to be the same, hence n = nt . In practice, the difference
between the number of active and total coils is comprised
between one and two, depending on the type of ending
of the springs (e.g. grounded, grounded and closed for
compression springs, etc...).

• K is the Wahl’s stress correction factor (KW = 4C−1
4C−4 +

0.615
C ). Another correction factor, defined by Bergsträsser

(KB = C+0.5
C−0.75 ), can also be used.

• The term
(

1+ 0.5
C2

)
in (8) is generally close to 1 and will

thus be neglected. In standards, it is not even accounted.
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Now, for compression springs the shear stress on the coils
needs to be lower or equal to the maximum allowable shear
stress of the material, since otherwise they will be damaged
and break. Hence:

τmax ≤ τc,zul = 0.56Rm (10)

The maximum allowable shear stress is given by (2) and (7).
This is almost half of the maximum tensile strength in order
to incorporate the effect of fatigue. Eq. (7) is an empirical
law, where the coefficients Am and Bm depend on the material.
These coefficients can be found in standards such as EN 1270-
1. The logarithmic law provided is difficult to handle and thus
the first step of this work, in order to ease the theoretical
approach, is to replace the logarithm in (7) by a power law,
such that (2) becomes:

τc,zul = AdB (11)

A comparison is made between a logarithmic and power law
in Fig. 2.

0 5 10 15 20
d (mm)

1000

1500

2000

2500

3000

3500

R
m

 (
M

P
a)

Maximum tensile strength (DIN EN 10270)

Exponential law: AdB

Fig. 2: The red area gives the limit of the maximum tensile
strength for cold drawn unalloyed spring steel wire according
to the norm EN 1270-1. An exponential law (dark dashed line)
provides a good approximation of the upper/lower bound of the
tensile strength. Note that the coefficients of the exponential
law (A,B) can be adapted depending on the range of d in order
to have a better approximation.

The coefficients of the power and logarithmic laws (the
coefficients B) are negative, indicating that the maximum shear
stress that can be applied on a coil increases as the coil
diameter d decreases. The limit, given by (7) from standards
(as DIN EN 10270), serves as a guideline for manufacturers.
Generally, the maximum tensile stress for springs following
this standard is lower, but follows a logarithmic/exponential
trend. This means that the development proposed here is
coherent. A table of the different coefficients A and B for
compression springs of different catalogs is given in Table III.

Catalog Power law: AdB
R2

A/1e6 B
Alcomex [36] 229.1 -0.2528 0.998
Lesjöfors [37] EN 10270-1-SM 132.6 -0.2137 0.985

EN 10270-3-4310 144.5 -0.1888 0.972
Swedish standard 155 -0.2291 0.949
DIN 2098 207.7 -0.242 0.998

Century Spring [38] Music Wire 145.5 -0.2733 0.958
Spring Steel 89.85 -0.3071 0.936
Hard Drawn 1.161 -0.2529 0.85
Stainless Steel 71.45 -0.3248 0.961

TABLE III: Coefficients A and B for different compression
springs proposed in catalogs.

1) Energy storage capacity vs. Mass:

In this section, it will be assumed that the springs are
designed in such a way that they can withstand the highest
shear stress possible. Hence, τmax = τc,zul . Following this
assumption, first an expression for the load on the spring (P)
needs to be found using Eq. (1).

τmax = K
8PD
πd3 = AdB→ P =

πAd3+B

8KD
(12)

Knowing that the energy stored in a spring (U) is calculated
by U = 1

2 Pδ and combining it with (8) and (12) (neglecting
the term in brackets as mentioned before), the stored energy
for compression springs can be expressed as follows:

U =
1
4

A2d2B

ρK2G
m (13)

By using Eq. (4), the wire diameter can be written as a
function of the mass:

d = 3

√
4m

ρπ2Cn
(14)

By inserting Eq. (14) into (13) one gets:

U =
1
4

A2

ρGK2

(
4

ρπ2

) 2B
3
(Cn)

−2B
3 m

2B+3
3 (15)

If we now want to see the maximum energy density as a
function of the mass, the limitations of some parameters in Eq.
(13) need to be checked.

Regarding the spring index C, it can be noted that it is
limited in practice to C ∈ [4;22]. This is also reflected in
different standards, e.g. C∈ [3;12] for ISO 11891:2012. Also, a
small spring index can result in excessive local stresses, while
a high spring index leads to springs that are flimsy and tangle
more easily. As a result, the shear stress correction factor (K)
is also bounded:

K ∈ [1,06;1,40]→ K−2 ∈ [0,51;0,88]

To achieve a maximal energy capacity, it can be seen in
Eq. (15) that K should be minimal.
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Due to limitations in the manufacturing process the number
of coils n is also limited.

Following the aforementioned remarks, it is clear that the
term K−2 (Cn)

−2B
3 is bounded, meaning that the maximum

energy capacity as a function of the mass will be found by
taking the maximum of K−2 (Cn)

−2B
3 . This is achieved by

taking the maximum number of coils (n) and the maximum
spring index (C). This has also an extra influence due to the
K-factor, since that needs to be minimized, which is exactly
what happens when maximizing C.

From Eq. (13), it can be concluded that the maximum
gravimetric energy density is achieved by having a minimal
wire diameter d (since B in the exponent is always negative).
Hence, for a certain mass m, the maximum possible energy
capacity can be achieved using a minimal wire diameter d,
which is given by:

dmin =
3

√
4m

ρπ2Cmaxnmax
(16)

As the mass increases, the minimum value of d also in-
creases. Knowing all this, Eq. (15) can be used to see how
the energy capacity evolves as a function of the mass. This
behaviour is depicted in Fig. 3.

0 0.5 1 1.5 2 2.5 3 3.5
0

100

200

300

400

500

Fig. 3: The red dots represent the energy storage capacity of
compression springs as a function of their mass. This data is
extracted from the catalog data of Alcomex [36]. The blue line
represents the maximum energy capacity as a function of the
mass according to Eq. (15). The maximum number of coils
and maximum spring index in the catalog were taken for C
and n.

This shows the potential of a configuration using springs
placed in parallel. A spring with a given mass can be replaced
by a combination of several springs, for the same extension
and stiffness (thus the same energy stored), but with a total
mass that is reduced. How the springs are integrated into the
mechatronic design largely depends on the system, but we
propose corrective factors, based on development presented
in section V, to give a rough idea on how it influences the
total mass.

2) Energy storage capacity vs. Volume:

In this subsection, the energy storage capacity will be
compared with the volume. This volume represents the en-
closed volume, i.e. the total volume the spring takes when in
uncompressed condition and hence not just the volume of the
wire.

To write the energy capacity as a function of the enclosed
volume, first the full expression of the volume should be
derived. By combining Eqs. (5), (9) and (12), it can be found
that the volume is given by:

V =

[
KG+πAdBC2

]
(1+C)2 d3πn

4KG
(17)

By doing some small calculations, similarly to what was
done for the energy calculation in function of the mass, it can
be found that, using Eq. (17), the energy capacity as a function
of the enclosed volume is given by:

U =

(
πA2d2BC

4K (1+C)2 [KG+πAdBC2]

)
V (18)

Now normally the wire diameter in this equation should be
replaced, using Eq. (17), so it can be written as a function
of the enclosed volume. It can however be seen that it is not
possible to do this, since ’d’ can not be filtered out in Eq. (17).
To cope with this problem, an approximation will be made.

It can be found that (KG) and (πAdBC2) have a similar
magnitude, but with a small factor between them. For the
small wire diameters they can be considered equal (i.e. a factor
w = 1). For the biggest wire diameters this ratio becomes
approximately 9. Due to this, (KG) can be replaced by the
other term and the wire diameter can be written as a function
of the volume as follows:

d = 3+B

√
4KGV

(w+1)π2AC2(1+C)2n
(19)

By inserting Eq. (19) into (18) (replacing again (KG)) one
gets:

U=( A
4K )

3
3+B

(
G

nπ2

) B
3+B (C)

−3−3B
3+B ((w+1)(1+C)2)

−3−2B
3+B V

3+2B
3+B (20)

Now, regarding Eq. (20), it can be seen that in order to
maximize the energy capacity as a function of the volume,
two different things have to be done. The spring index should
be minimized and, since the coefficient B is always negative,
the number of coils should be maximized.

When looking at Eq. (18) it can be seen that the same claims
hold true together with the fact that the wire diameter should
be minimized. However, when looking to Eq. (19) it can be
noted that, in order to minimize the wire diameter, the spring
index should now be maximized. Having to take the spring
index (C) maximal is in contrast with what is derived from
(18), but due to the interdependency between d, n and C, no
uniform decision can be taken about which C is needed to
achieve the maximal energy capacity.
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Hence, due to practicalities, a trade off between d and C
should be made in the design of the spring, based on the shape
and available space.

It can be seen that this holds true in Fig. 4, since for low
volumes (where small wire diameters are used) the maximal
energy capacity can indeed be predicted using the factor w = 1
in Eq. (20). On the other hand, the maximal energy capacity
for the biggest volume in the catalog (which needs a bigger
wire diameter) can, on the other hand, be predicted using the
maximal factor w = 9.

0 0.005 0.01 0.015
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 4: The red dots represent the energy storage capacity of
compression springs as a function of their enclosed volume.
This data is extracted from the catalog data of Alcomex [36].
The full blue line represents the maximum energy capacity
according to (20), when using a minimal spring index C, a
maximal number of coils n and a factor w = 1. The dotted
blue line is the same, but now uses a factor w = 9. It can be
observed that, as expected, the maximum energy capacity for
low volumes is best approximated with the line made using
w = 1 and for high volumes w has to increase till a maximum
of 9.

C. Torsion springs
Together with compression and tension springs, torsion

springs also fit in the helical spring category due to their
intrinsic shape. The difference with the previous two is the way
the load is applied. For torsion springs, the load is applied on
the end of the wire, which goes outside the helical shape like
a leg. Due to this, the spring may be subject to torque around
the coil axis. As a consequence,the primary stress is flexural
while, in contrast with compression springs, the primary stress
is torsional.

A torsion spring together with the nomenclature used to
describe it can be seen in Fig. 5. The equations used in this
section are shown in Table. IV.

Due to helical shape, the derivations for torsion springs will
be similar and the same assumptions can be taken as in section
II-B.

R 2

R 1 P

M

φ

D

L
0

d

Fig. 5: Representation of torsion springs and the used nomen-
clature.

σmax = K
32M
πd3 (21)

σzul = 0.70Rm (22)

U =
1
2

Mϕ (23)

m≈ ρ(πDn)(π
d2

4
) (24)

K = KT =
4C2−C−1
4C(C−1)

(25)

Rm = Am−Bm logd (26)

ϕ =
64MDn

Ed4 (27)

V ≈ πnd(D+d)2

4
(28)

TABLE IV: Equations of helical torsion springs

Again, in order to ease the theoretical approach, the log-
arithm in (26) is replaced by a power law, such that (22)
becomes:

σzul = AdB (29)

A table of the different coefficients A and B for springs of
different catalogs is given in Table V.

Catalog Power law: AdB
R2

A/1e6 B
Alcomex [36] 550.4 -0.121 0.976
Century Spring [38] Music Wire 439.1 -0.1681 0.895

Stainless Steel 1265 -0.165 0.888

TABLE V: Coefficients A and B for different torsion springs
proposed in catalogs.

1) Energy storage capacity vs. Mass:

To start, again an expression should be found to describe
the load in function of the wire diameter. This can be done
knowing that, for helical torsion springs, the assumption can
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also be made that its maximum tensile strength can be written
as a power law. Hence, by combining Eqs. (21), (22) and (26),
the following relation can be found:

σmax = K
32M
πd3 = AdB→M =

πAd3+B

32K
(30)

Knowing that U = 1
2 Mϕ , combined with Eqs. (30) and (27),

it can be derived that the energy capacity inside a torsion spring
is given by:

U =
A2d2B

8ρK2E
m (31)

By inserting Eq. (24) into (31), one gets:

U =
A2

8ρK2E
·
(

4
ρnCπ2

) 2B
3

m
2B+3

3 (32)

Following the same procedure as for compression springs,
it is clear that the term (Cn)

−2B
3 is bounded, meaning that

the maximum gravimetric energy density as a function of
the mass will be found by taking the maximum of (Cn)

−2B
3 .

So both the number of coils and the maximum spring index
should be maximized.

Remembering that the spring index C is limited in practice
to C ∈ [4;22], it can be seen that K is again bounded:

K ∈ [1.04;1.23]→ K−2 ∈ [0.66;0.93]

Knowing all this, Eq. (32) can be used to see how the energy
capacity evolves as a function of the mass. This behaviour is
depicted in Fig. 6.

2) Energy storage capacity vs. Volume:

After some small calculations it can be found that the energy
capacity, as a function of the volume, is given by:

U =
πA2C
8K2E

(
4

nπ

) 2B
3
(1+C)

−4B−6
3 V

2B+3
3 (33)

It can be seen that in order to find the maximum energy
storage capacity as a function of the volume, the number
of coils again needs to be maximized. However, the choice
of the spring index is less obvious due to the fact that C
appears in several factors (i.e. C, (1+C)

−4B−6
3 and 1/K2).

When plotting the product of these factors, it can be seen
clearly that (considering the practical limit) C should always be
minimized in order to reach a maximal energy storage capacity
This behaviour is depicted in Fig. 7.

III. SCALING FOR FLAT SPRINGS
A. Introduction

Flat spring is the generic term given to springs that are
made of a flat strip of metal, i.e. material with a high
width-to-thickness ratio. Unlike helical springs, flat springs
can be used to combine several functions, since different
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Fig. 6: The red dots represent the energy storage capacity
of torsion springs as a function of their mass. This data is
extracted from catalog data (Century Spring - Music Wire)
[38]. The blue line represents the maximum energy storage
capacity according to Eq. (32). The maximum number of coils
and maximum spring index in the catalog were taken for C
and n. For the stress correction coefficient K, the minimum is
taken.
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Fig. 7: The red dots represent the energy storage capacity of
torsion springs as a function of their enclosed volume. This
data is taken from a catalog (Century Spring - Music Wire)
[38]. The blue line represents the maximum energy storage
capacity according to Eq. (33). The maximum number of coils
and minimum spring index in the catalog were taken for n and
C.

shapes can easily be made. Due to this variety, the number
of flat springs that will be discussed in this section will be
limited to the most general ones from which catalog values
exist, i.e. spiral springs and constant force springs.
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In this section, the scaling of flat compliant elements will
be investigated based on the stress equations of springs. The
equations used here are based on the ones found in [33]
and [34]. The parameters that are used in the calculations of
flat springs are summarized in Table VI. At the end of each
subsection, the scaling laws will be compared to spring catalog
data from Lesjöfors.

Symbol Explanation Unit

σmax Maximum normal stress Pa
σc,zul Maximum allowed normal stress Pa
Rm Maximum tensile strength Pa
b Width of the spring strip m
t Thickness of the spring strip m
L Length of the spring strip m
ϕ Angular deflection of the spring rad
M Torque applied on the spring Nm
P Load applied on the spring N
E Module of elasticity N/m2

a Inter-coil distance m
Ri Inner radius of the spring m
Ro Outer radius of the spring m
V Enclosed volume of the spring m3

U Energy stored in the spring J
m Mass of the spring kg
N Number of springs /
n Number of active coils /
nt Total number of coils /
ρ Density of the spring kg/m3

Kb Curvature correction factor /
A,B,α,γ Empirical coefficients Pa

TABLE VI: Nomenclature of flat springs

B. Spiral torsion springs
A spiral torsion spring (also sometimes called ’Hair spring’

or ’Clock spring’) is a flat strip of metal that is wound up in a
spiral shape. For this type of springs, the loads are applied to
the inner and outer end of the spiral, and the produced torque
is determined by the angular change between both extremities.
Due to the fact that the load is applied on the entire width of
the flat strip, which is normally a lot higher than the thickness,
the connection contact stresses are relatively low compared
with helical torsion springs. Because of this, backlash and
deformation on the outer ends is usually reduced [39]. Since
none of the coils normally come in contact with each other,
friction losses do not occur. Due to this, spiral springs provide
a linear torque profile.

A spiral spring together with the nomenclature used to
describe it can be seen in Fig. 8. The equations used for this
type of springs are shown in Table VII.

σmax = Kb
6M
bt2 (34)

σzul = 0.75Rm (35)

ϕ =
12ML
Ebt3 (36)

m≈ ρπnbt(Ri +Ro) (37)

Rm = Am−Bm log t (38)

U =
1
2

Mϕ (39)

V ≈ πR2
ob (40)

L = nπ(Ri +Ro) (41)

TABLE VII: Equations of flat spiral springs

t

P

M

R
i

b

φ

R
o

a

Fig. 8: Representation of spiral springs and the used nomen-
clature.

To start the derivations it should be noted that again the
assumption is made that n = nt .

To continue, the logarithm in (38) is again replaced by a
power law, such that (35) becomes:

σzul = AtB (42)

A table of the different coefficients A and B for springs of
different catalogs is given in Table VIII.

Catalog Power law: AdB
R2

A/1e6 B
Lesjöfors [37] Lifetime = 10.000 cycles 763.1 -0.09675 0.971

Lifetime = 100.000 cycles 611.5 -0.09648 0.970

TABLE VIII: Coefficients A and B for different spiral torsion
springs proposed in catalogs.

1) Energy storage capacity vs. Mass:

We start by deriving an equation which describes the load as
a function of the wire diameter. The maximum tensile strength
of helical torsion springs can be written as a power law. Hence,
by combining Eqs. (34), (35) and (38), the following relation
can be found:

σmax = Kb
6M
bt2 = AtB→M =

Abt2+B

6Kb
(43)

Knowing that U = 1
2 Mϕ , combined with Eqs. (36) and (43),

it can be derived that the energy capacity inside a spiral spring
is given by:

U =
A2t2B

6ρK2
b E

m (44)
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By implementing the influence of the spring thickness (t),
using Eq. (37), Eq. (44) can be written as:

U =
A2

6K2
b E

ρ
−2B−1 (πnb(Ri +Ro))

−2B m2B+1 (45)

Hence, in order to maximize the energy capacity as a
function of the volume, the number of coils, the strip width and
the inner and outer diameter of the coil should be maximized.

With this knowledge, Eq. (45) can be used to see how the
energy storage capacity evolves as a function of the mass. This
behaviour is depicted in Fig. 9.
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Fig. 9: The red dots represent the energy storage capacity of
spiral springs as a function of their mass. This data is extracted
from the Lesjöfors catalog [37]. The blue line represents
the maximum energy storage capacity according to Eq. (45).
The maximum number of coils, maximum spring width and
maximum spring index in the catalog were taken for C, b and
n.

2) Energy storage capacity vs. Volume:

To find the volumetric energy density, again the same
procedure will be followed. However, the problem is now that
Eq. (40) does not give a relationship between the thickness t
and the volume V . Hence, to solve this, the width b will be
used to insert the volume into the equation. Thus, by inserting
Eqs. (36), (40) and (43) into Eq. (39), it can be found that
the energy capacity inside a spiral spring as a function of its
volume, is given by:

U =
A2nt2B+1(Ri +Ro)

6K2
b ER2

o
V (46)

This equation maximal when both n, t and (Ri+Ro)/R2
o are

maximized. It is however noted in Fig. 10 that the manufacturer
from which the data was taken, only maximized the factor
Ri +Ro. This is most likely due to the fact that in the industry
a preference is given to maximize the energy density as a
function of its mass and for that purpose indeed the factor
Ri +Ro needs to be maximized. Taking this into account, it

can be noted that applications where the volume is limited,
catalog springs will not provide the best solutions.
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Fig. 10: The red dots represent the energy storage capacity
of spiral springs as a function of their enclosed volume. This
data is extracted from the Lesjöfors catalog [37]. The blue line
represents the maximum energy storage capacity according to
Eq. (46). The maximum number of coils and maximum spring
index in the catalog were taken for C and n.

IV. INFLUENCE OF PARALLELIZATION
A. Introduction

In this section, the influence of parallelization will be inves-
tigated again based on the stress equations of each respective
spring. To quantify the reduction in mass and enclosed volume
with the number of parallel springs, it will be assumed in the
equations that a single spring is replaced by N identical springs
in parallel. In a parallel arrangement all springs have the
same extension δ or angular deflection ϕ as the single spring
they replace (dependent on how they are loaded). However,
respectively the load and the torque on each spring is divided
by N.

B. Compression springs
When more than one compression spring is coupled in

parallel, the load on each spring is divided by the number
of springs. Using this, one can find by equaling Eq. (1) and
Eq. (11) that, for a given load, the coil diameter as a function
of number of springs is given by:

τc,zul = AdB

= K
8 P

N Cd
πd3

= τmax

(47)

From which it follows that:

d =

(
8KPC

Aπ

) 1
B+2

N
−1

B+2 (48)
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By setting the desired extension, it is possible to find the
number of active coils required.

δ =
8 P

N C3n
Gd

n =
δGdN
8PC3

=
δG

8PC3

(
8KPC

Aπ

) 1
B+2

N
B+1
B+2

(49)

The mass can thus be computed multiplying Eq. (4) with
N. After some small calculations, we find that:

m ≈
ρπ2δG
32PC2

(
8KPC

Aπ

) 4
B+2

N
B−2
B+2 (50)

The reduction of mass given by the parallel arrangement is
denoted by O(m) and is given by:

O(m) =
m(N)

m(N = 1)
= N

B−2
B+2 (51)

Another question regarding the parallel configuration is the
space required in comparison with a single spring (and this in
term of the height and diameter). The height hparallel and the
volume Vparallel can be approximated by:{

hparallel ∝ nd
Vparallel ≈ Nhparallelπ(D+d)2/4

(52)

By using this, also O(h) and O(V ) can be computed:

O(h) = N
B

B+2 (53)

O(V ) = N
2B

B+2 (54)

It is hard to make a fair comparison between the 2 configura-
tions, because there are several ways to replace a single spring
by multiple, which often depend on the available space. A
possible way to replace one spring by multiple is for example
‘circle packing’. This is a method where circles of small
diameters (parallel arrangement) are placed inside a circle
of bigger diameter (single spring being replaced) is possible.
Another method, already used for long time, consists of placing
compression springs inside of each other. This method is called
”spring nesting”. Nonetheless, the conclusion is that a parallel
arrangement of springs can be used to increase the energy
storage capacity, both as a function of mass and volume.

C. Torsion springs

When more than one torsion spring is coupled in parallel,
the torque on each spring is divided by the number of springs.
Using this, one can find by equaling Eq. (21) and Eq. (29) that
for a given torque, the coil diameter as a function of number
of springs is given by:

σzul = AdB

= K
32 M

N
πd3

= σmax

(55)

From which it follows that:

d =

(
32M
Aπ

) 1
B+3

N
−1

B+3 (56)

By setting the desired angular deflection, it is possible to
find the number of active coils required.

ϕ =
64 M

N Cn
Ed3

n =
ϕEd3N
64MC

=
ϕE

64MC

(
32M
Aπ

) 3
B+3

N
B

B+3

(57)

The mass can thus be computed multiplying Eq. (24) with
N. After some small calculations, we find that:

m ≈
ρπ2ϕE
256M

(
32M
Aπ

) 6
B+3

N
2B

B+3 (58)

The reduction of mass given by the parallel arrangement is
denoted by O(m) and is given by:

O(m) =
m(N)

m(N = 1)
= N

2B
B+3 (59)

Now we can again calculate the influence on the height and
volume: {

hparallel ≈ nd
Vparallel ≈ Nhparallelπ(D+d)2/4

(60)

By using the previous derivations, one finds that:

O(h) = N
B−1
B+3 (61)

O(V ) = N
2B

B+3 (62)

The fact that B has a small negative value, i.e. −1 < B < 0
(see Table V), indicates that applying multiple parallel springs
is very beneficial in terms of size reduction. Especially height
is affected positively.

D. Spiral torsion springs
When more than one torsion spring is coupled in parallel,

the torque on each spring is divided by the number of springs.
Using this, one can find by equaling Eq. (34) and Eq. (42) that
for a given torque, the coil diameter as a function of number
of springs is given by:
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σzul = AtB

= Kb
6 M

N
bt2

= σmax

(63)

From which it follows that (if we consider Kb = 1):

t =
(

6M
Ab

) 1
B+2

N
−1

B+2 (64)

This is however not the only thing that needs to be used
to do a good analysis. Eq. (64) implies actually that when
one big spring is replaced, the width (b) is kept fixed to the
original one, i.e. only t,Ri and Ro can change when applying
parallelization. To avoid this, it can be noted that there is
actually a connection between the thickness (t) and width
of the spring (b). It is recommended that the ratio b

t used
by manufacturers is limited. In this paper this ratio will be
denoted by Q. This is reflected in standards, e.g. Q= b

t ∈ [1;15]
for DIN 2090 and DIN 10132-4. It can be seen that this
recommendation is followed, since the spiral springs made by
Lesjöfors are also bounded (Q ∈ [5.5;10]).

By implementing this, Eq. (64) becomes:

t =
(

6M
AQ

) 1
B+3

N
−1

B+3 (65)

By setting the desired angular deflection, it is possible to
find the number of active coils required.

ϕ =

(
12 M

N nπ(Ri +Ro)

Ebt3

)

n =
ϕEQt4N

12πM(Ri +Ro)

=
ϕEQ

12πM(Ri +Ro)

(
6M
AQ

) 4
B+3

N
B−1
B+3

(66)

The mass can thus be computed by multiplying Eq. (37)
with N, i.e. :

m≈ Nρπnbt(Ri +Ro) (67)

Here it can be seen that the influence of the inner and outer
radius also plays a role and that this is also a factor that can
change when parallelization is applied.

First, a look can be given to Ro, since this will also play
a role in the volume scaling. Ro can be approximated by
assuming first the case where there is no spacing between
all the coils. In this case, it can easily be seen that Ro ∝ nt.
However, in order to not have friction, spiral springs do have
a fixed spacing between each of the coils. To implement this
behaviour, which will be different for each manufacturer, a
coefficient γ will be used to adjust to the correct design, i.e. :

Ro = α (nt)γ (68)

Since Ri = Ro−n(t +a) (a can be written as a multiple of
the thickness (t)), the same power law can be applied for both
Ro and (Ri +Ro). This will only result in a small change of
the coefficients α and γ , since Ri is rather small, as can be
seen in Table IX.

Catalog Power law: α (n · t)γ

R2
α γ

Lesjöfors [37] Ro 1.84 0.839 0.991
Ri +Ro 1.98 0.765 0.995

TABLE IX: Coefficients α and γ for different spiral torsion
springs proposed in catalogs.

Implementing this in Eq. (67) gives that the reduction of
mass given by the parallel arrangement is given by:

O(m) =
m(N)

m(N = 1)
= N

2B
B+3 (69)

Now we can again calculate the influence of the volume:

Vparallel ≈ NπR2
ob (70)

After some straightforward calculations (assuming that α1
and γ1 are used to represent the power law of Ro and α2 and
γ2 to represent the power law of Ri +Ro, in order to make
a proper distinction between them), it can be found that the
reduction of the enclosed volume is given by:

O(V ) = N
2γ1(B−2)+(B+2)(1+γ2)

(B+3)(1+γ2) (71)

E. Overview
Since now the influence of parallelization for every spring

is derived, they can be plotted against each other based on
catalog data.

Fig. 11 visualizes the gain in (a) mass and (b) enclosed
volume when one spring is replaced by N smaller ones. Here,
it can clearly be seen that compression springs are superior for
both metrics. In terms of parallelization, spiral springs are seen
to be the worst, since they tend to have a comparable mass
and enclosed volume when a big unit is replaced by several
smaller ones.

V. PRACTICAL CASE STUDY
A. Introduction

Compression springs are the most common type of springs
used in actuator design and they are also the ones that show the
most promising results for parallelization. A case study will
therefore be done to demonstrate the effects of parallelization
for the practical design of a compression spring.

Initially, a theoretical derivation will be given to see how
each of the mechanical sub-components, necessary for the
complete construction, will scale with the parallelization. Af-
terwards, this theoretical derivation will be tested by selecting
one specific spring from the Alcomex catalog and replacing
it by multiple smaller ones that overall provide the same
characteristics.
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(a) Effect of parallelization in terms of mass for compression-, spiral- and
torsion springs.
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(b) Effect of parallelization in terms of enclosed volume for compression-,
spiral- and torsion springs.

Fig. 11: Representation of the gain in (a) mass and (b) enclosed
volume when one spring is replaced by N smaller ones. The
effect of parallelization is shown for all discussed types of
springs, i.e. compression-, spiral- and torsion springs and the
found behaviour is based on catalog data. From these graphs
it can clearly be seen that compression springs are superior
and that spiral springs have the smallest benefit in terms of
parallelization.

B. Theoretical derivation
In a practical case there are different possible arrangements,

depending on the application. In this case study we will use
the particular design depicted in Fig. 12.

Fig. 12 contains four variables, which are given by:
D1 = (D+d)

(
1+ 1

sin( π
N )

)
H1 = constant
D2 = D−d
H2 = L0

5

(72)

In this design, springs are placed to minimize the required
space/volume. The topology used in these derivations is de-
picted in Fig. 13. This topology does not take some clearance
into account between the springs (which is normally necessary,
since springs expand laterally when compressed) in order to

D1

H1

H2

D2

Fig. 12: Representation of the compression spring arrangement
with all the size parameters.

Fig. 13: Representation of the topology of the compression
springs (black) and the holding disc (blue) as a function of the
used parallelization number.

simplify the derivations. According to these design rules, the
diameter of the supporting disc, D1, can be calculated by the
formula displayed in Eq. (72). This formula is however only
valid starting from N = 2, but this is no problem, since N = 1
is the reference.

The thickness H1 of the supporting discs is typically constant
for a given applied load. Hence, if the parallelization is applied,
the total load on the disc will remain the same. Due to this,
there is no effect on the thickness of the supporting discs, when
one big spring is replaced by multiple smaller ones.

Each of the springs also needs a small pin on both ends
that guides the coil to avoid buckling and sliding away. This
pin can have a theoretical maximum diameter of D2 = D−d.
In practice there must be a clearance of a few mm, but
since this will not affect the scaling (since this clearance
stays approximately constant), the theoretical value will not
be changed. Note that since these pins only have a guiding
function, they can be made hollow. For simplicity and due to
the fact that this will not affect the scaling, this will however
not be done.

The height of the pins, H2, is proportional to the free length
of the spring L0, since the pins are necessary to avoid buckling.
Hence, the higher the free length, the higher the height of the
pins. In this case it is chosen to take approximately 1/5th of
the total free length.



12

C. Energy storage capacity vs Mass

When looking to the different components, displayed in Fig.
12, the total mass can be written as:

mtotal = msprings +mdiscs +mpins (73)

By filling in everything, this can be approximated by:

mtotal≈N ρπ2δG
32PC2 (

8KPC
Aπ )

4
B+2 N

B−2
B+2 +2ρ

D2
1π

4 H1+2Nρ
D2

2π

4 H2 (74)

From this equation, it can be noted that the three separate
terms cannot be combined. A way to still see the influence of
parallelization on a practical set-up, the scaling laws of each
separate part should be derived:

msprings ≈ ρπ2δG
32PC2

( 8KPC
Aπ

) 4
B+2 N

2B
B+2

mdiscs = ρπ

2

[
(D+d)

(
1+ 1

sin( π
N )

)]2
H1

mpins = Nρπ

10 (D−d)2 L0

(75)

By filling in Eqs. (48) and (49) together with the assumption
that H1 is constant and L0 ∝ nd, it can be written that the
masses scale like:

O(m)springs = N
2B

B+2

O(m)discs = N
−2

B+2

(
1+ 1

sin( π
N )

)2

O(m)pins = N
2B

B+2

(76)

The curve that shows the scaling law of each of these parts,
is depicted in Fig. 14. This graph shows that parallelization is
beneficial for each of the components, except for the holding
discs.

D. Energy storage capacity vs Volume

The total enclosed volume is given by:

Vtotal = (hspring +2H1)
D2

1π

4
(77)

Hence, this has to be written again into several parts,
namely the contribution of the springs and the contribution
of the holding discs. Since H1 is constant, both volumes are
proportional to:Vsprings ∝ nd

[
(D+d)

(
1+ 1

sin( π
N )

)]2

Vdiscs =
[
(D+d)

(
1+ 1

sin( π
N )

)]2 (78)

Filling in Eqs. (48) and (49), makes that the practical volume
scales like:

0 2 4 6 8 10
0.5

1

1.5

2

Fig. 14: Representation of the gain in mass of a practical
compression spring arrangement when one spring is replaced
by N smaller ones. Here, the red line represents the scaling
of the spring mass, the blue line represents the scaling of
the holding discs mass and the green line represents the
scaling of the mass of the guiding pins. The dotted black
line represents the reference mass for each of the components
when only 1 spring is used. In this graph, it is visualized
that in the complete arrangement of a compression spring,
both the springs and guiding pins always benefit from the
parallelization. The holding discs will however never have
benefit from this.

O(V )springs = N
B−2
B+2

(
1+ 1

sin( π
N )

)2

O(V )discs = N
−2

B+2

(
1+ 1

sin( π
N )

)2 (79)

The curve that shows this scaling law is depicted in Fig.
15. This graph shows that the used topology technique of the
springs (see Fig. 13) is no longer optimal after N = 6.

The conclusion can also be made that the gain for energy
storage capacity as a function of the volume is rather limited.

E. Practical application

Now, for the practical application, a compression spring is
chosen from the Alcomex catalog. The characteristics of this
spring are shown in Table X.

d = 5 mm Fmax = 1021.12 N
D = 32 mm k = 19.03 N

mm

C = 6.40 / D2 = 26 mm
n = 8.5 / L0 = 110 mm
m = 130.87 g Ln = 57.5 mm

TABLE X: Characteristics of the selected big spring (Alcomex
compression spring, part number DR3850 [36]).
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Fig. 15: Representation of the gain in enclosed volume of a
practical compression spring arrangement when one spring is
replaced by N smaller ones. Here, the red line represents the
scaling of the enclosed volume of the spring and the blue line
represents the scaling of the holding discs. The dotted black
line represents the enclosed volume of a spring arrangement
that uses only 1 spring.

Looking to the theoretical derivations in the previous sub-
section, it is chosen to replace the chosen spring by 5 smaller
ones, i.e. N = 5, since this is a value for which already some
differences should be seen.

These smaller springs should have the same behaviour and
hence should provide the same deflection, a spring constant
which is approximately 1/5th of the big one, a maximum force
which is approximately 1/5th of the original one and a similar
spring index. In order to find the correct smaller springs, some
of the theoretical scaling laws can be used, namely Eqs. (48)
and (49).

dsmall = dbigN
−1

B+2 = 5mm ·5 −1
1.7472 = 1.99mm

Dsmall =Cbigdsmall = 6.40 ·1.99mm = 12.74mm
Fmax,small =

Fmax,big
N = 1021.12N

5 = 204.2240N

ksmall =
kbig
N =

19.03 N
mm

5 = 3.806 N
mm

nsmall = nbigN
B+1
B+2 = 8.5 ·5 0.7472

1.7472 = 16.92

(80)

According to these calculations, a spring was found with
similar characteristics. The characteristics of this spring are
shown in Table XI.

d = 2 mm Fmax = 211.57 N
D = 12.5 mm k = 3.77 N

mm

C = 6.25 / D2 = 9.9 mm
n = 18.5 / L0 = 105 mm
m = 17.80 g Ln = 47.2 mm

TABLE XI: Characteristics of the selected small springs (Al-
comex compression spring, part number DR2690 [36]).

Since now the replacement springs are found, the size
and mass of the springs and their sub-components can be
calculated.

1) Compression springs:

When comparing the big spring with the 5 small springs in
terms of mass, it can immediately be calculated that there is
indeed a mass decrease when parallelization is applied:

O(m)springs =
5 ·17.80g
130.87g

= 0.68 (81)

This is close to the theoretical law, which predicted that
O(m)springs = 0.63 (see Fig. 14).

To see the contribution of the spring arrangement on the
enclosed volume, the volume needs to be calculated for both
N = 1 and N = 5. For the one big spring, the enclosed volume
is given by:

Vspring,big =
π
(
Dbig +dbig

)2

4
L0,big = 1.1827 ·10−4m3 (82)

Using Eq. 72, the enclosed volume of the 5 small springs
can be calculated:

Vsprings,small =
π

[
(Dsmall +dsmall)

(
1+ 1

sin( π
N )

)]2

4
L0,small

= 1.2652 ·10−4m3

(83)

Now the parallelization effect of the springs on the enclosed
volume can be calculated:

O(V )springs =
1.2652 ·10−4m3

1.1827 ·10−4m3 = 1.07 (84)

This value is larger than the predicted 0.92, which can be
seen in Fig. 15. This is most likely due to the high L0 of the
small springs. Normally, replacement springs should be chosen
with the following characteristic:(

L0

nd

)
big
≈
(

L0

nd

)
small

(85)

However, there was no spring available in the catalog that
had all the previous requirements and also a correct L0. If a
correct spring could have been found for which Eq. (85) is
valid, its L0 would have to be around 95mm. Filling in this
length in the volume calculations would have resulted in an
enclosed volume of the springs, which is 1.1447 · 10−4m3,
Calculating the parallelization effect of this volume would
result in O(V )springs = 0.96, which is a lot closer to the
theoretical value.
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2) Holding discs:

In order to calculate the mass and enclosed volume of the
discs, its size parameters need to be determined. The diameter
of the discs is completely determined by the number and size
of the springs:

D1,big =
(
Dbig +dbig

)
= 37.00mm

D1,small = (Dsmall +dsmall)
(

1+ 1
sin( π

N )

)
= 39.17mm

(86)

The thickness on the other hand, is completely determined
by the load. In this case study it is assumed that the load will go
to the maximum allowable force of the springs. After applying
some stress simulations it was found out that a thickness of
H1 = 5mm was enough when an aluminum plate (ρ = 2700 kg

m3 )
was used as holding disc.

Hence, the mass of the holding discs for the one big spring
and for the multiple small springs, is given by:

mdiscs,big = 2
(

ρπD2
1,big

4

)
H1

= 29.03g

mdiscs,small = 2
(

ρπD2
1,small
4

)
H1

= 32.53g

(87)

When comparing both cases, it can immediately be calcu-
lated that there is indeed a mass increase when parallelization
is applied:

O(m)discs =
32.53g
29.03g

= 1.12 (88)

This is close to the theoretical law, which predicted that
O(m)discs = 1.16 (see Fig. 14).

To find the enclosed volume of the discs, again both cases
need to be calculated. For this it can intuitively be seen that
O(v)discs = O(m)discs, since they use the same scaling law.

However, the volume still needs to be calculated exactly for
both the cases, since the relative contribution of each part will
need to be calculated at the end. The volume of each of the
cases is: 

Vdiscs,big = 2
(

πD2
1,big
4

)
H1

= 1.0752 ·10−5m3

Vdiscs,small = 2
(

πD2
1,small
4

)
H1

= 1.2050 ·10−5m3

(89)

3) Guiding pins:

The last part remaining are the guiding pins. They do not
contribute to the enclosed volume calculations, since they are
internal parts. Hence, only there mass needs to be calculated.
Considering that H2, the height of the pins, is given by L0/5

and that D2 is given in the datasheet (see Tables X and XI),
the total mass of all pins can be calculated for both cases:

mpins,big = ρπ

10 D2
2,bigL0

= 63.07g
mpins,small = Nρπ

10 D2
2,smallL0

= 43.64g

(90)

When comparing both cases, it can immediately be calcu-
lated that there is indeed a mass decrease when parallelization
is applied:

O(m)pins =
43.64g
63.07g

= 0.69 (91)

This is close to the theoretical law, which predicted that
O(m)pins = 0.63 (see Fig. 14).

4) Complete arrangement:

In order to see the influence of parallelization on the total
arrangement, all separate terms need to be added:

O(m)total =
msprings,small +mdiscs,small +mpins,small

mspring,big +mdiscs,big +mpins,big

=
89g+32.53g+43.64g

130.87g+29.03g+63.07g
= 0.74

(92)

This means that parallelization is indeed useful for mass
reduction. It can also be calculated if the same can be said
about volume scaling.

O(V )total =
Vsprings,small +Vdiscs,small

Vspring,big +Vdiscs,big

=
1.2652 ·10−4m3 +1.2050 ·10−5m3

1.1827 ·10−4m3 +1.0752 ·10−5m3

= 1.07

(93)

This result indicates that there would be an increase in
volume when parallelization is applied. However, when
O(V )total would be calculated with the adapted springs (the
one with L0 = 95mm), O(V )total would become 0.98.

It can be concluded that, as the theoretical development
predicted, parallelization is indeed useful for mass reduction.
It has however a very limited effect on the volume. Better
topologies (e.g. spring nesting) and/or more parallel springs
could potentially provide better solutions.

VI. DISCUSSION
A. Non-treated Springs

In this work, we have covered scaling laws for compression,
torsion and spiral springs. There are, however, a wide range
of different spring designs, which are not treated in this work
for a variety of reasons. A few examples are given below.
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1) Tension Springs:

Tension springs, just like compression springs, are helical
springs and rely on the same design principles. Basically
the only difference is that the forces on them are applied
in different directions. This, in turn, leads to two different
mechanical properties:
• The end coils: Tension springs generally end with a

hook. The stresses in this hook can be high due to its
curvature. This limits the load that can be applied to the
spring. Consequently, unlike compression springs, the
coils of extension springs are not loaded to their limit.

• The initial tension: Before tension springs start to de-
form, an initial tension must be applied to the springs.
This manifests itself as a dead zone in the force-
extension characteristic. Compression springs do not
exhibit this behaviour.

This implies that the derivation of the scaling laws for
tension springs should be done with the stress equations of the
hooks, since these will be the places where failure will occur
if used correctly. Consequently, a lot of information is needed
about the shape of these hooks to calculate these stresses. This
is however commonly not known in catalogs. Combined with
the fact that a lot of hook shapes exist, it becomes impossible
to validate a theoretical law, since not all needed data can be
retrieved.

2) Leaf Springs:

Leaf springs are flat sections of springs that are either
clamped on one end and loaded on the other or clamped at
both extremities and loaded in the middle. These leaf springs
can be stacked in one or multiple layers.

With so many possible arrangements and shapes of the strip
of metal itself, this type of springs is usually custom-made.

As a result, no catalog data can be found to verify a
theoretical law. Hence, verification of any developed scaling
law would be tedious, which is why we decided not to tackle
them for this type of spring.

3) Constant Force Springs:

A constant force spring is a pre-stressed flat strip of spring
material which is formed into an almost constant radius that
can be coiled around itself (with a inner bearing) or around a
drum. When the spring is extended, i.e. deflected, the extended
material straightens. This straightening causes internal stresses,
since the spring tries to resist the applied load in order to
restore its natural radius. This behaviour can be compared to a
normal extension spring, but with a nearly constant (zero) rate,
so constant force, since the natural radius is almost constant.

The rated force of the spring is reached after the deflection
has reached a length equal to 1.25 times its diameter. After this,
the force stays relatively constant regardless of the extension
length. The rated force is determined by the thickness and
width of the material and the diameter of the coil.

The problem for applying scaling laws on constant force
springs is the fact that each manufacturer takes different safety
factors into account for each spring, even within the same

catalog. As a result, no clear scaling can be found between
the thickness of the springs and the maximum stress inside,
whereas for other types of springs this scaling is normally
found with at least 90% accuracy.

For this reason a theoretical law can be derived, but no A
and B factor can be determined for the constant force springs.
Since this is the basis of the entire analysis, this can not be
verified with catalog data, which is the reason why it is not
included in this paper.

B. Comparison of different types of springs
To compare the maximum achievable energy storage capac-

ity of different springs as a function of their mass and their
enclosed volume, a plot is depicted in Fig. 16.
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(a) Energy storage capacity as a function of the mass.

0 0.2 0.4 0.6 0.8 1

10-3

0

100

200

300

400

(b) Energy storage capacity as a function of the volume.

Fig. 16: Representation of the maximum achievable energy
storage capacity as a function of (a) their mass and (b) their
enclosed volume. These lines are plotted for all discussed types
of springs, i.e. compression-, spiral- and torsion springs. These
optimal lines are based on catalog data. From these graphs it
can be seen that compression springs are superior when mass is
the metric, but that spiral springs are slightly better for energy
storage capacity as a function of the enclosed volume. This
difference would however increase for bigger volumes, since
spiral springs follow a linear law.
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Here, it can be seen that compression springs perform
better for energy storage capacity as a function of its mass.
Regarding the energy capacity as a function of the enclosed
volume, they are however not anymore the best, except for
the region of small volumes where they are approximately
equal to torsion springs and slightly better than spiral springs.
For bigger volumes spiral springs are the best, which is due
to their linear correlation with the enclosed volume. Torsion
springs can be considered to be the worst for both metrics.

Taking this into account, in addition to the conclusions
made for parallelization, it can be said that in terms of energy
storage capacity both for the use of one big spring or several
smaller ones in parallel, compression springs are usually the
best choice, however, the application matters too.

C. Design guidelines
In order to design and/or select a spring for an application,

when a maximized energy storage capacity is wanted (either as
a function of its mass or as a function of its enclosed volume),
some spring parameters need to be optimized. In Table XII an
overview can be found of whether a certain parameter needs
to be minimized or maximized in order to achieve maximal
energy storage capacity. This overview is given for each of
the discussed springs.

From this table it can be concluded that for each application,
a maximal number of coils is advisable.

Energy storage vs. Mass vs. Volume
capacity Maximize Minimize Maximize Minimize

Compression spring C, n / n C

Torsion spring C, n / n C
Spiral spring n, Ri, Ro, b / n, t, Ri+Ro

R2o
/

TABLE XII: Overview of the parameters that need to be
maximized and minimized for different types of springs in
order to attain a maximal energy storage capacity, either as a
function of their mass, either as a function of their enclosed
volume.

VII. CONCLUSION
In this paper, scaling laws are derived for different types

of springs with a special focus on their energy capacity and
the influence of parallelization. The paper gives insights
into the type of spring that provides the most benefits in
terms of enclosed volume in rest condition and weight. By
implementing the derived scaling laws on catalog data, it
was shown that compression springs have the highest energy
capacity as a function of its mass and spiral springs as a
function of its enclosed volume. All these scaling laws can
help to facilitate the design process, since it is now shown
which parameters should be either maximized or minimized
in the spring design/selection process, in order to obtain a
maximal energy storage capacity as a function of either the
mass or enclosed volume. To enhance the clarity of these

findings, a table is made to summarize these design guidelines
for when springs with optimized energy storage capacity need
to be made or selected.

In this manuscript, it is also demonstrated that compression
springs are the best in terms of parallelization, even without the
influence of volume reducing methods, like e.g. spring nesting,
which is not possible for other types of springs. This paper
also shows that parallelization is in general better, which is an
incentive to proceed with work regarding complex actuators,
more specifically with a focus on compression springs.

This is especially relevant for redundant actuators with
multiple motors and gearboxes, such as the +SPEA [30],
developed in our group.

For this purpose also a practical case study was done in
this paper to demonstrate how the parallelization effects a
complete design with all its mechanical sub-components.
This case study treated the effect of parallelization for a
compression spring lay-out. The case study showed that when
the sub-components are taken into account, parallelization
proves to be very beneficial in terms of mass reduction, but
that there is almost no effect for the volume.

Together with the known scaling laws for motors and
the scaling laws for gearboxes (which are currently under
investigation), future work will strive towards the development
of scaling laws and design rules for a complete compliant
actuator in order to optimize the design of these innovative
actuators. The development of these scaling laws will also
allow to develop a framework which will be able to compare
all types of actuators among each other. This in order to
assess the potential of complex actuators with respect to more
conventional designs.
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