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Weighted nonlinear least squares estimation of linear

differential equations with parameter-varying coefficients. ?

Jan Goos, John Lataire, Ebrahim Louarroudi, Rik Pintelon

ELEC, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

Abstract

This paper presents a frequency domain identification technique for estimating of Linear Parameter-Varying (LPV) differential
equations. In a band-limited setting, it is shown that the time derivatives of the input and output signals can be computed
exactly in the frequency domain, even for non-periodic inputs and parameter variations. The method operates in an errors-in-
variables framework (noisy input and output), but the scheduling signal is assumed to be known. Under these conditions, the
proposed estimator is proven to be consistent.

Key words: Linear Parameter-Varying systems; Identification methods

1 Introduction

A good example of an LPV system is a construction
crane, which is basically a pendulum of varying length
l(t). The cable length directly influences the poles of the
system, thereby determining its eigenfrequency. In the
linear parameter varying (LPV) framework [16,18], we
call variables like l(t) scheduling parameters, and denote
them as p(t). The dynamic relation between input u(t)
and output y(t) is still linear, but it depends on the (con-
tinuously varying) scheduling parameter.

There are two main classes of LPV identification tech-
niques: local and global approaches. In the local LPV
framework [2,3], a nonlinear or parameter-varying model
is linearized at different operating points. The result is
a set of LTI models, which are then interpolated over
the operating range. Here, we opt to directly estimate
an LPV model, from a single, global experiment, where
the scheduling parameter p(t) varies during the measure-
ment, covering its entire operating range. Amongst other
advantages, a global modeling approach captures tran-
sient dynamics, when the plant shifts from one operat-
ing point to another. Additionally, the rate of change of
the scheduling parameter can be directly accounted for.

? This paper was not presented at any IFAC meeting.
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rik.pintelon@vub.ac.be (Rik Pintelon).

In this paper we study parameter-varying differential
equations. During the past decade, a lot of research
has been dedicated to the identification of LPV input-
output equations, but mostly in discrete-time [9,19]. For
an overview, see [8]. In [10], the first steps are taken to-
wards direct identification of an LPV differential equa-
tion, using an instrumental variables approach. How-
ever, the input signals is assumed to be known, and the
time derivatives are approximated using filtering oper-
ations. The main contribution of this paper is the fre-
quency domain identification of continuous-time LPV
systems from input-output data without approximating
the time derivatives, and where both u(t) and y(t) can be
corrupted by colored noise. The proposed identification
algorithm is based on the Linear Time-Varying (LTV)
identification algorithm described in [7]. A first key dif-
ference is that the time-varying coefficients are now re-
placed by functions of the scheduling parameter p(t).

Na∑
n=0

an(p(t))
dny0(t)

dtn
=

Nb∑
n=0

bn(p(t))
dnu0(t)

dtn
(1)

where the subscript of x0 denotes a noiseless quan-
tity. The coefficients of the LPV Input-Output (IO)
model (1) are approximated by linear combinations of
known/chosen basis functions in p(t), viz.[

an(p(t))

bn(p(t))

]
=

Np∑
i=0

[
a[n,i]

b[n,i]

]
φi(p(t)) (2)
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The results in this paper also hold if the scheduling pa-
rameter is multivariable. As an alternative to (2), Sup-
port Vector Machines (SVMs) [11] or Gaussian Processes
(GPs) can be used to model the coefficient functions.

A second key difference with [7], is that the full covari-
ance matrix is used to weigh the residual errors, to en-
sure consistency. The consistency and correctness of the
proposed Linear Parameter-Varying Input-Output (IO)
estimator is proven, and illustrated on a simulation ex-
ample. The results hold for arbitrary non-steady-state,
non-periodic data. Even though the identification prob-
lem is considered in the frequency domain, the input u(t)
and scheduling p(t) do not have to be periodic.

2 The sampled LPV differential equation
in the frequency domain

The Fourier transform of (1) will be computed from the
measured time domain signals, which are sampled uni-
formly at a sample frequency fs = 1/Ts (Ts is the sample
time). A total of N samples of each signal is acquired.

Definition 1 The Discrete Fourier Transform (DFT),
at the angular frequencies ωk = 2πkf0 ∀k ∈ [0, N − 1],
with f0 = fs/N, is defined as

DFT {x(nTs)} = X(k) =

N−1∑
n=0

x(nTs)e
−jωknTs (3)

Definition 2 Similarly, the inverse Discrete Fourier
Transform (iDFT) is defined as

iDFT {X(k)} =
1

N

N−1∑
k=0

X(k)ejωknTs . (4)

We denote the DFTs of the input u(t) and the output
y(t) with U (k) and Y (k) respectively.

Assumption 3 Band-limited excitation: the Fourier
transforms of the true input and scheduling signals are
zero beyond the Nyquist freqency: |U0(jωk)| = 0 and
|P0(jωk)| = 0 for kf0 ≥ fnyq = fs/2. Furthermore, the
basis functions are band-limited w.r.t fnyq.

The continuous time signals are windowed, because only
the time frame [0, T ] is considered. If a rectangular win-
dow w(t) is used, the Fourier transform becomes

F
{
w(t)

dnx(t)

dtn

} ∣∣∣
jωk

= (jωk)nX(jωk)

+

n−1∑
r=0

(jωk)n−1−r
(
x(r)(T−)− x(r)(0+)

)
︸ ︷︷ ︸

=Tn
x (jωk)

(5)

where x(r) is the rth time derivative of x, X(jωk) is the
Fourier transform of x(t) and ωk = 2πkf0 is the angular
frequency ∀k ∈ [0, N − 1]. Equation (5) is proven in Ap-
pendix 5.B of [14] using integration by parts. Note that
the difference between the initial and end conditions of
the signal determine the polynomial Tnx (jωk). By includ-
ing the transient term Tnx (jωk) in (5), the derivatives of
arbitrary signals can be represented exactly in the fre-
quency domain.

2.1 Frequency domain model

Taking the affine approximation (2) into account, the
DFT of the sampled and windowed (1) equals

Na∑
n=0

Np∑
i=0

a[n,i]Φi{p} ∗
[
(jωk)

nY (k) + Tny (jωk)
]

=

Nb∑
n=0

Np∑
i=0

b[n,i]Φi{p} ∗ [(jωk)
nU (k) + Tnu (jωk)] (6)

where Φi{p} = DFT {φi(p(t))} are the DFT basis func-
tions of the scheduling parameter, and ∗ represents the
circular convolution product.

Assumption 4 Weierstrass approximation theorem:
the basis functions φ(p(t)) can be approximated by a poly-
nomial in t of degree m in the finite interval t ∈ [0, T ].

Assumption 5 The basis functions φ(p(t)) are periodic
in the time window T , and can therefore be represented
exactly by their Fourier series over the interval t ∈ [0, T ].

Theorem 6 Assumptions 4 and 5 are alternative. If ei-
ther one of them holds, the convolution of the basis func-
tions and the polynomials Φi{p} ∗ Tny (jωk) and Φi{p} ∗
Tnu (jωk) are also polynomials in jωk. For the proof, we
refer to Appendix A.

Corollary 7 The polynomials Tny (jωk) and Tnu (jωk) can
be extracted from the summation in (6), and grouped into

one transient polynomial TNT
uy (jωk) =

∑NT

i=0 γi (jωk)
i, of

order NT = max{Na, Nb} − 1.

TNT
uy (jωk) = −

Na∑
n=0

Np∑
i=0

a[n,i]Φi{p} ∗ Tny (jωk)

+

Nb∑
n=0

Np∑
i=0

b[n,i]Φi{p} ∗ Tnu (jωk) (7)

Computing derivatives of the signals is exact in the fre-
quency domain. On the other hand, the computationally
complex convolution can be avoided by multiplying the
signals in the time domain. This results in the following
computationally efficient frequency domain model:
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Na∑
n=0

Np∑
i=0

a[n,i] DFT {φi(p(t)) iDFT {(jωk)
nY (k)}}

=

Nb∑
n=0

Np∑
i=0

b[n,i] DFT {φi(p(t)) iDFT {(jωk)
nU (k)}}

+

NT∑
i=0

γi (jωk)
i (8)

where TNT
uy (jωk) is defined in (7). Note that the proposed

model (8) is linear in the parameters a[n,i] and b[n,i].

2.2 Aliasing in the LPV output spectrum

It is well-known that the steady state response of an
LTI system to a single sine wave sin(ωut), is a sine wave
at the same frequency, but with a changed magnitude
and phase [12,14]. In the output spectrum of an LPV
system, energy appears at frequencies that were not
directly excited. These extra spectral components, or
harmonic frequencies, appear at integer multiples of
the basic scheduling frequency ωp, around the excited
frequencies ωu: ωu + kωp. In theory, these skirt-like
shapes, shown in Figure 1, extend infinitely far. In fact,
Appendix B shows that they have a hyperbolic decay.
In practice, the skirts will eventually disappear below
the noise level, possibly beyond the Nyquist frequency
fnyq = fs/2. In the sampled frequency domain, this fre-
quency content will fold back and cause aliasing . Note
however, that the harmonic components decay smoothly
over the frequencies, as seen on the right of Figure 1.

Assumption 8 The aliasing contributions of the har-
monics can be approximated by a polynomial in jωk.

Remark 9 In case of aliasing, the equality in Corollary
7 becomes an inequality: NT ≥ max{Na, Nb} − 1.

Even more, windowing a non-periodic signal results in
leakage terms [13], which fold back over the Nyquist fre-
quency. If the highest excited frequency is too close to
fnyq, then this leakage can cause a significant aliasing ef-
fect, but it varies smoothly over the frequency. Again, by
increasing the degree NT of the additional polynomial
TNT
uy (jωk), this aliasing term can be captured.

0 0.5
−100

−50

0

frequency [Hz]

[dB]

Figure 1. Output spectrum ( ) from a sparsely excited LPV
model. The parameter variation creates spectral content
around the excited frequencies. These skirts theoretically ex-
tend beyond the Nyquist frequency, resulting in aliasing.

2.3 Noise assumptions

Assumption 10 The input and output signals u(t) and
y(t) are noisy observations: x(t) = x0(t) + vx(t) with
x0(t) the true unknown value and vx(t) stationary (band-
limited) filtered white noise with finite mth order mo-
ments. Furthermore, let the noisy part vx(t) be uncorre-
lated with the true signal x0(t).

Corollary 11 From Assumption 10, it holds asymptot-
ically (N →∞) that the noise VU (k) and VY (k) on the in-
put and output spectra U (k) and Y (k) is circular complex,
normally distributed and uncorrelated over the frequency:

CU (k,l) = E
{
VU (k), VU (l)

}
= δk,lσ

2
U (k) (9)

CY (k,l) = E
{
VY (k), VY (l)

}
= δk,lσ

2
Y (k) (10)

CUY (k,l) = E
{
VU (k), VY (l)

}
= δk,lσ

2
UY (k) (11)

where δk,l = 1 only if k = l and is zero otherwise, and x
denotes the complex conjugate of x.

In some cases, the measurement covariances σ2
U (k) and

σ2
Y (k) are known on beforehand. Otherwise, they have

to be estimated from the data. A non-parametric noise
model in the frequency domain can be estimated easily if
multiple periods of the input and scheduling are observed
[15]. The extension to arbitrary inputs and smooth pa-
rameter variations is more involved [6].

Assumption 12 The scheduling parameters p(t) are
known exactly.

3 LPV model estimation

In this section we propose an estimator for the model
parameters a[n,i] and b[n,i] in the differential equation
(8). If the measured input and output signals are noisy,
the equation cannot hold exactly. A “good” model min-
imizes the residual error between both sides of the equa-
tion. Let us first recapitulate why the differential equa-
tion is treated in the frequency domain.

(1) In the band-limited setting of Assumption 3, the
time derivatives can be computed exactly.

(2) It is straightforward to select only the frequency
band of interest.

(3) It is possible to obtain a non-parametric noise
model, which can be used to weigh the residuals in
the cost function.

3.1 Equation error

The column vector θ stacks all the model parameters
a[n,i], b[n,i] and γi vertically:
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θ =
[
a[0,0], a[0,1], . . . , a[n,i], . . . , a[Na,Np], . . .

b[0,0], b[0,1], . . . , b[n,i], . . . , b[Nb,Np], . . . (12)

γ0, γ1, . . . γNT

]T
Now, for a given model with parameters θ and data Z,
the equation error e(θ,Z) is defined at each frequency
as the difference between the left and right side of the
differential equation in the frequency domain. If a set
of basis functions φ(p(t)) is chosen to model the varying
coefficients, (8) can be written as

K θ = e(θ,Z) ≈ 0 (13)

The regressor matrix K ∈ C[N×(Na+Nb+2)(Np+1)+NT+1]

gathers the convolved terms KY and KU , complemented
with the monomials from the transient term.

K =
[
KY −KU −Ω

]
(14)

KY (:,nNp+i+1) = DFT {φi(p(t)) iDFT {(jωk)
nY (k)}}

KU (:,nNp+i+1) = DFT {φi(p(t)) iDFT {(jωk)
nU (k)}}

Ω(k, :) =
[
1 (jωk) . . . (jωk)

NT

]
(15)

The indices follow the notation of the frequency domain
differential equation (8): i ∈ [0, Np], n ∈ [0, Na] in KY

and n ∈ [0, Nb] in KU . Each row k in K corresponds to
a frequency ωk = 2πkf0∀k ∈ [0, N − 1].

3.2 Weighted Nonlinear Least Squares Estimator

The Weighted Nonlinear Least Squares Estimator
(WNLSE) minimizes the magnitude of the squared
complex residuals in (13), weighted with its covari-
ance matrix Ce(θ). The latter can be computed from
the input-output noise covariances, as illustrated in
Appendix C.1.

Remark 13 The noise on the input and output is as-
sumed to be circular complex, normally distributed and
uncorrelated over the frequency (Corollary 11). In this
case, the equation error is also normally distributed,
but no longer circular complex. Additionally, the time-
variation introduces a correlation over the frequency.

To cope with Remark 13, the complex equation error
is decomposed in its real and imaginary part, and the
corresponding covariance matrix CRe(θ) is computed, as
discussed in Appendix C.2.

Xre =

[
Re {X}
Im {X}

]
, XRe =

[
Re {X} − Im {X}
Im {X} Re {X}

]
(16)

The Weighted Nonlinear Least Squares (WNLS) cost
function is now defined as

VWNLS(θ,Z) = ere(θ,Z)
TC−1Re (θ) ere(θ,Z) (17)

θ̂WNLS = argmin
θ

VWNLS(θ,Z) (18)

The equation error covariance matrix CRe(θ) is symmet-
ric and positive definite, which allows a decomposition
CRe(θ)

−1 = W (θ)
TW (θ), as explained in Appendix C.3.

The WNLS cost function (17) can thus be rewritten as

VWNLS(θ,Z) = ere(θ,Z)
TW (θ)

TW (θ) ere(θ,Z)

= ε(θ,Z)
T ε(θ,Z) (19)

where ε(θ,Z) denotes the weighted equation error, de-
composed in its real and imaginary components. In the
frequency domain representation (13), it is easy to con-
sider only a specific frequency band, by selecting only the
appropriate rows in the regressor matrix K. However,
unlike in the LTI case, the computation of the equation
error requires all frequencies where the spectrum might
contain signal energy.

3.3 Nonlinear optimization problem

The WNLS cost function (18) is nonlinear in the model
parameters. To this end, an iterative Gauss-Newton
method is employed, which requires the Jacobian

J (θ,Z) = ∂ε(θ,Z)
∂θ of the weighted equation error (19) to

the model coefficients θ, given the data Z. At each iter-
ation i, a correction term ∆θ(i) is given by solving the
overdetermined set of equations

J
(
θ(i−1),Z

)
∆θ(i) = −ε(θ(i−1),Z) (20)

in least square sense. For details, we refer to Chapter
9.4 in [14]. Solving the iterative minimization step (20)
requires an assumption on the system, the input and the
scheduling trajectory.

Assumption 14 Persistency of excitation and schedul-
ing condition: the rank of the Jacobian matrix J should
be (Na +Nb + 2)(Np + 1) +NT , which is the number of
effective parameters.

Because the identification problem is nonlinear in the
parameters, a good initial estimate is needed. For exam-
ple, in [7], the Total Least Squares estimator [20] is used
for initialization. To expand the convergence region of
the Newton-Gauss method, a Levenberg-Marquard [4]
method is used in the parameter update step (20).

3.4 Statistical properties of the WNLSE

Because of the weighting with the covariance of the equa-
tion error, the Weighted Nonlinear Least Squares Esti-
mator (18) is consistent, which is proven in this section
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for an increasing number of independent experiments
Nexp → ∞. This consistency definition differs from the
usual LTI interpretation, because of the conflict with
Assumption 4, stating that the measurement of an arbi-
trary (but smooth) parameter-varying system must hap-
pen over a finite time interval t ∈ [0, T ].

Assumption 15 The true model is in the model class
(1), covering the dynamical order nx = max{Na, Nb} of
the system, and the proposed basis functions φi(p(t)).

Assumption 16 The cost function VWNLS(θ,Z) in (17)
and its derivative are continuous in a compact set around
the true model parameters θ0.

Assumption 17 Multiple experiments are available,
where each experiment has similar experimental condi-
tions, satisfying Assumption 14.

(1) the RMS of each input lies in a specified range.
(2) the excited frequency band of the input is similar for

all experiments
(3) the scheduling trajectory is limited between a given

minimal and maximal value.

In this framework, it becomes possible to add some mea-
surements, where the scheduling parameter is fixed to
a constant value, effectively adding an LTI experiment.
Whether or not this is practically feasibly, depends on
the application at hand.

Theorem 18 Under Assumptions 3, 10 (m = 4), 12,
14, 15, 16 and 17, the WNLS estimator (18) is strongly
consistent (for Nexp → ∞). If in addition Assumption
10 (m =∞) holds, then (18) is asymptotically normally
distributed.

Each independent experiment has different initial condi-
tions, which are not consistently estimated. However, fol-
lowing Theorem 18, it follows that this does not affect the
consistency of a[n,i] and b[n,i]. The practical limit of the
WNLS estimator (18) is determined by the inversion of
the equation error covariance matrix Ce(θ)

−1 ∈ CN×N ,
suggesting the use of short data records. However, un-
der Assumptions 4 and 5, Ce(θ) is band-dominant (and
Hermitian positive definite), and the inverse can still be
computed for moderately sized measurements.

As discussed in Appendix E.3, in the periodic case, it
is also possible to prove consistency for an increasing
measurement time. Additional periods allows to average
out the noise, increasing the accuracy of the estimate.

4 Simulation results

To demonstrate the properties of the proposed identifi-
cation algorithm, let us study a fourth order simulation
example. The LPV differential equation is given by

y(4) + 0.220y(3) + (33.561 + 11.310p+ p2)y(2)

+ (0.955 + 0.226p+ 0.020p2)y(1)

+ (50.494 + 17.8591p+ 50.494p2)y

= u(2) + 0.020u(1) + (5.565 + p)u (21)

Both the input and output dynamics are dependent on p
and p2. Figure 2 shows some frozen frequency response
functions (FRFs), where the scheduling signal is kept
constant p(t) = p. The system has two resonance peaks,
and one antiresonance. The second resonance moves to
a higher frequency as p is increased.

A single experiment was used to identify the coefficients
of the given model structure (21). The sampling fre-
quency is fs = 3 Hz, and N = 2000 samples are taken.
Therefore, the frequency resolution is f0 = 0.0015 Hz,
and the time window T =' 666.66 s. The experiment
is global, in the sense that the scheduling parameter is
varying during the experiment, as shown in Figure 2.

p(t) =
3

5
π cos(2πf0t) +

2

5
π sin(4πf0t) (22)

0 0.5 1 1.5

-60

0

frequency [Hz]

[dB]

0 100 200 300

−2
0

2

time [s]

p(t)

Figure 2. (left) Frozen LTI frequency response functions for
low, mid and high values of the scheduling signal. (right)
Scheduling trajectory in the identification experiment.

Figure 3 shows the input and output signals in the time
domain. The model (21) is excited with a sum of ran-
dom phase sines. Only half of the available frequency
band (fnyq = fs/2 = 1.5 Hz) is excited, as illustrated in
Figure 4. Recall from Section 3.2 that a frequency band
of interest can be selected in the WNLS cost function
(17). Also, the further the exited frequencies are from
the Nyquist frequency fnyq, the smoother the contribu-
tion of the hyperbolic skirts due to the aliasing effect
becomes, as discussed in Section 2.2.

In this simulation setup, the model structure is assumed
to be known. The dynamic orders (1) are Na = 3, Nb =
2, the polynomial dependency on the scheduling (2) is
of degree Np = 2. As stated in Assumption 10, both the
input and output measurements are disturbed by addi-
tive stationary filtered white noise, as shown in Figure 4.
The signal-to-noise ratio of the measured input and out-
put RMS is 10 dB. The covariances are estimated from
the periodic, but non-steady-state data [15].
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0 100 200 300
−20

−10

0

10

20

time [s]

u(t)

0 100 200 300

−5

0

5

time [s]

y(t)

Figure 3. Input u(t) and output y(t) of the identification
experiment. From the difference ( ) between a second and
the first period of the output y(t), we can see that the system
is not in steady state. Therefore, a transient term will be
needed in the frequency domain representation (8).

0.5 1

−60

−40

−20

0

frequency [Hz]

U (jωk) [dB]

0.5 1

frequency [Hz]

Y (jωk) [dB]

Figure 4. Input U (jωk) and output Y (jωk) spectra ( ) of the
identification experiment. Only a limited frequency band
is excited at the input U (jωk), where the system dynamics
are important. Transient and alias effects are present at the
output Y (jωk), but they are hidden below the noise ( ), or
mixed with the output signal.

0 0.2 0.4 0.6 0.8 1

−20

0

frequency [Hz]

e(θ,Z) [dB]

Figure 5. The left ( ) and right ( ) hand sides of the differ-
ential equation (8) lie on top of each other. The equation
residuals e ( ), and the predicted standard deviation ( ) are
shown at each frequency. Since e ( ) is comparable to the ex-
pected noise standard deviation ( ), no bias can be detected.

The order NT of the additional polynomial has to be
estimated from even if Na, Nb and Np are known. In
practice, Na, Nb and Np should be determined from the
data, which is an order selection problem. In the given
simulation setup, NT = 5 captures the transient and
alias effect well. A higher degree does not decrease the
cost function (17), and a lower degree introduces larger
modeling errors e(θ,Z). If the residual equation error e is
normally distributed (Theorem 18), a confidence inter-
val can be constructed using the equation error covari-

ance matrix Ce computed in Appendix C. If e does not
coincide with the confidence interval, there may be some
unmodeled dynamics, or the order of the transient is not
high enough. In Figure 5, the 63% confidence bound cor-
responds well to the residual equation error (36% lies be-
yond the confidence range), so no bias can be detected,
which suggests the estimate is consistent.

4.1 Monte Carlo simulations

To further illustrate the consistency properties of the
proposed estimator, two Monte Carlo runs are per-
formed. In each dataset, the same experimental condi-
tions are used, as explained earlier in Section 4. Every
simulation has a different noise realization. The results
are compared by studying an invariant of the model. In
this case, the frozen Frequency Response Function is
chosen, which was used in Figure 2 to give an impression
of the varying dynamics. Given the different identified

frozen FRF[i]s, the Mean Squared Error (MSE) can be
computed as follows:

MSE(f,t) = 1
Nexp

Nexp∑
i=1

∣∣FRF[i] − FRF0}
∣∣2 (23)

In the first set of Monte Carlo simulations, Nexp = 10
different realizations are identified independently. In the
second Monte Carlo run, Nexp = 40 different realiza-
tions are identified, but they are gathered in groups of
four simulations. The four corresponding cost functions
are combined, by stacking the weighted equation errors
(E.11). The following table shows the RMS value of the
errors on the resulting frozen FRFs.

Nexp = 10 Nexp = 40 (grouped per 4)

RMS 3.73e-6 1.61e-6

Because the amount of data was increased by a factor
four, the RMS on the estimated frozen FRFs drops by
a factor two (6 dB). This indicates that the (Na +Nb +
2)(Np + 1) = 24 dynamic coefficients are estimated con-
sistently, even when 4(NT + 1) = 24 transient coeffi-
cients have to be identified simultaneously. The latter
estimates are inconsistent. Therefore, the Monte Carlo
simulations validate the presented proof of consistency:
adding additional measurement records improves the
identification of the LPV model parameters.

5 Conclusion

In this paper, a consistent estimator for Linear
Parameter-Varying differential equations is presented.
Both arbitrary and periodic variations of the scheduling
parameters are handled. As with most LPV identifica-
tion tools, the choice in basis functions is important in
the model selection step. It is possible to incorporate
prior knowledge, like known dynamic effects on the

6



scheduling signal, in the basis φ(p(t)). Consistency is
proven for an increasing number of similar (but not iden-
tical) experiments. From the proof, it follows that the
full covariance matrix of the equation error is needed.
The latter depends on the input-output covariances,
that can be estimated non-parametrically from the data.
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A Extracting the polynomial transient term

A.1 The basis functions are polynomials in t

Following Assumption 4, the coefficient functions
an(p(t)) and bn(p(t)) can be approximated with a poly-
nomial in t. Multiplying a signal x(t) by tn corresponds
to an nth order derivative in the frequency domain.

F {tnx(t)} = (−1)n
d

d jωk
F {x(t)} (A.1)

The nth derivative of a polynomial of degree N remains
a polynomial, but with degree max{N −n, 0}. The total
sum of polynomials in (8), therefore, results in a tran-
sient polynomial TNT

yu of degree max{Na, Nb} − 1.

A.2 The basis functions are periodic in t

Because the Fourier transform is linear, we only consider
the convolution with a single sinusoidal signal. It is well
known that such a signal consists of two complex conju-
gate Dirac impulses in the frequency domain:

F {a sin(ωkt+ ψ)}
 (α+jβ)δ(ω−ωk)+(α−jβ)δ(ω+ωk).

Denote the Laplace variable s = jω. Convolving the
Dirac impulses with a transient polynomial Tnx (s) yields
two shifted polynomials, and the sum of both terms
yields a polynomial of order n with real coefficients. Us-
ing the binomial of Newton, the convolution becomes

[(α+ jβ)δ(ω−ωk) + (α− jβ)δ(ω+ωk)] ∗ γnsn (A.2)

= (α+ jβ)γn(s− jωk)n + (α− jβ)γn(s+ jωk)n

=

n∑
r=0

(
n

r

)
γnω

r
ks
n−r2 Re

{
(−j)rα+ j(−j)rβ

}
For all values of r ∈ N+, the coefficients are real, and
the degree of the resulting polynomial in s is of degree
n, which concludes the proof.

B Smooth harmonics at high frequencies

This section proves that the harmonics are smooth func-
tions of the frequency, specifically beyond the Nyquist
frequency fs/2. Because of the sampling, this alias contri-
bution folds back in the observed frequency range. Since
the alias error is smooth over the frequency, it can be
modeled by a polynomial in jωk, justifying Assumption
8. We consider both polynomial and periodic basis func-
tions φi(p(t)), as discussed in Assumptions 4 and 5. The
basic idea is the same for both cases. The response of the
parameter-varying system, for a specific trajectory p(t),
is first rewritten as a general convolution integral [17]

y(t) =

∫ ∞
0

g(t, τ)u(t) dτ, (B.1)

The convolution model (B.1) is then approximated with
a parallel structure, obtained via a specific series expan-
sion of the Time-Variant Transfer Function (TV-TF),
which is the Fourier transform of the time-variant im-
pulse response.

G(jω,t) =

∫ ∞
0

g(t, t− τ)e−jωτ dτ (B.2)

=

∞∑
i=0

Gi(jω)ψi(t) t ∈ [0, T ] (B.3)

with ψi(t) a complete set of basis functions, e.g. polyno-
mials (arbitrary time-variation) or sines and cosines (pe-
riodic time-variation). In practice, a finite number Nh of
branches is used, and the output is computed as a sum
of time-weighted LTI responses

y(t) '
Nh∑
i=0

F−1 {Gi(jω)U (jω)}ψi(t) (B.4)

=

Nh∑
i=0

yi(t)ψi(t) (B.5)

B.1 Parallel structure using polynomial basis functions

In the case of (smooth) arbitrary time variations, a poly-
nomial basis is used, and (B.6) corresponds to a trun-
cated Taylor series of the TV-TF (B.2).

y(t) =

Nh∑
i=0

F−1 {Gi(jω)U (jω)} ti t ∈ [0, T ] (B.6)

The Fourier transform of a windowed monomial tr yields
a sum of hyperbolas in the frequency domain.

F {trw(t)}
∣∣
jωk

=

{
−∑r

n=1
1

(jωk)
n
r! T r−n+1

(r−n+1)! ∀k 6= 0

T r+1

r+1 k = 0

7



Because the input signal is band-limited (Assumption
3), Gi(jω)U (jω) will be band-limited as well. The mul-
tiplication with the basis functions in (B.6) becomes a
convolution in the frequency domain, resulting in hyper-
bolas, centered around the excited frequencies. For suf-
ficiently large frequencies f > fs/2, the contributions of
these hyperbolas are all smooth 1 , and can be approxi-
mated well by a polynomial in jωk.

Assumption 19 The output of the parameter-varying
system can, for the considered trajectory of p(t), be ap-
proximated by the truncated Taylor series (B.6).

The sum of a finite amount of shifted and scaled hyper-
bolas is smooth for sufficiently large frequencies. There-
fore, the alias error can be approximated arbitrarily well
by a polynomial TNT

uy (jωk). Note that the degree of this
polynomial can be higher than the degree of the polyno-
mial, required to model the transient behavior in Corol-
lary 7, which leads to Remark 9:NT ≥ max{Na, Nb}−1.

B.2 Parallel structure using periodic basis functions

For periodic parameter variations, (B.1) is approximated
using the Fourier series expansion of the TV-TF (B.2).

GNh
(jω,t) =

Nh∑
k=−Nh

Gk(jω)e
jωkt (B.7)

Provided that the time-variant impulse response g(t, τ)
has a uniform exponential decay and is a smooth func-
tion of order L, it is proven in [1] that the Gk(jω)s are
hyperbolas in the frequency domain.

Gk(jω) =

na∑
r=1

Nh∑
n=−Nh

αr,n
jω − (λr − j2πnf0)

+D

In the frequency domain, the multiplication with the pe-
riodic basis functions ejωkt only shift the transfer func-
tions. For sufficiently large frequencies f > fs/2, the fi-
nite sum of hyperbolas yields a smooth function. There-
fore, the alias error can be approximated arbitrarily well
by a polynomial in jωk.

C Computing the equation error covariance
matrix from input-output noise

C.1 The complex equation error covariance matrix

The differential equation in the frequency domain (8)
can be rewritten as

e = AY −BU − TNT
uy (C.1)

1 A finite sum of smooth functions remains smooth.

where Y and U are the DFT spectra of the output and
input, and A and B ∈ CN×N are complex matrices:

A =

Na∑
n=0

Np∑
i=0

a[n,i] DFT φi(p) iDFT (jωk)
n (C.2)

B =

Nb∑
n=0

Np∑
i=0

b[n,i] DFT φi(p) iDFT (jωk)
n (C.3)

The boxes represent matrices of dimension N ×N . In-
deed, the DFT and iDFT operators can be written as
multiplication by a square, complex matrix. The matri-
ces containing the basis functions φ(t) and the powers
(jωk)

n are diagonal.

Then, the covariance matrix of the equation errorCe(θ) ∈
CN×N can be computed as follows:

Ce(θ) =
[
A −B

] [ CY CY U

CHY U CU

][
AH

−BH

]
(C.4)

or

Ce(θ) = ACY AH + BCUBH − 2 Herm
{
ACY UBH

}
with the Hermitian operator defined as Herm{X} =
X+XH

2 . The transient term does not appear in (C.4),
because it does not contain the measured signals. The
equation error e, and therefore Ce, depends directly on
the model parameters a[n,i] and b[n,i]. The diagonal of
the covariance matrix is interpreted as the variance of
the equation error, at each individual frequency kf0. The
non-diagonal elements of Ce represent the covariance of
the equation error e over different frequencies. Note that
these elements are non-zero, even if the disturbing noise
is uncorrelated over the frequency. This is because, in
the general case, the matrices A and B are full. Thus,
for time-varying systems, the equation error is correlated
over the frequency.

C.2 The real-imaginary equation error covariance

To cope with the fact that the equation error e is not
circular complex (Remark 13), it is decomposed into its
real and imaginary part. This approach ensures that the
model parameters are real-valued as well. Using the de-
composition (16), the equation error (C.3) becomes

ere = AReYre −BReUre −ΩReθpoly (C.5)

The covariance matrix CRe(θ) ∈ R2N×2N of these real
and imaginary parts can be computed as in (C.4).

CRe(θ) =
1

2

[
ARe −BRe

] [ CYRe CY URe

CHY URe CURe

][
AH

Re

−BH
Re

]
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Assumption 10, and subsequently Corollary 11, state
that the measurement noise is circular complex, which
implies that the real and imaginary components have
the same real and diagonal covariance matrix. The cross-
correlation matrix CY U is complex, so it does have a real
and imaginary blocks, as in (16). The resulting covari-
ance matrix of the real and imaginary equation error de-
pends on the parameter variation p(t), but it is generally
block band dominant. In case of a periodic scheduling
trajectory, CRe(θ) becomes block band diagonal.

C.3 Inverting a covariance matrix

In the WNLS cost function (17), the inverse of the co-
variance matrix is needed. Since the covariance matri-
ces Ce(θ) and CRe(θ) are Hermitian and positive definite,
they can therefore be factorized by a Cholesky decompo-
sition RHR, with R an upper triangular matrix, which
can be inverted efficiently.

When the real and imaginary part of the equation er-
ror are separated (Appendix C.2), the resulting covari-
ance matrix is block band dominant. By using a uni-
tary transformation TTT = TTT = I, this CRe can
be transformed into a band dominant form. Then, the
(possibly sparse) band structure remains intact through
the Cholesky decomposition. The cost function (19) can
then be rewritten as follows

VWNLS = eTreC
−1
Re ere = eTreT

(
TTCReT

)−1
TT ere

= eTreT
(
RTR

)−1
TT ere = eTreW

T Were

= εT ε (C.6)

D Removing the additional polynomial from
the equation error

Recall that the model parameter vector θ contains the
coefficients a[n,i] and b[n,i] of the original differential
equation (1) with affine dependence (2), as well as the
coefficients of a polynomial in jωk. The first partition is
denoted with θdyn, and the latter with θpoly. The contri-
bution of the polynomial on the equation error in (13) is
then given by −Ω θpoly, where Ω is the polynomial re-
gressor from (15), stacking the powers of jωk. Using the
variable projection method [5], the effect of a polyno-
mial in jωk, like TNT

uy (jωk) in (8) can be projected away.
It is then possible to compute the weighted residuals as

WReere = WRe (AReYre −BReUre −ΩReθpoly)

=
[
I −WReΩRe

[
ΩT

ReC
−1
Re ΩRe

]−1
ΩT

ReW
T
Re

]
×

WRe [AReYre −BReUre] (D.1)

= Π r (D.2)

Π is a symmetrical idempotent matrix (Π Π = Π), and
r represents the weighted equation error from which the
polynomial influence has been removed. The WNLS cost
function (C.6) can now be rewritten as

VWNLS = rTΠ r (D.3)

E Proof of the strong consistency of the WNLS
estimator

Appendix D showed that the polynomial can be removed
from the equation error, resulting in a new WNLS cost
function (D.3). Now, Appendix E.1 proves that this new
WNLS cost function is minimal in the true parameters.
Next, Appendix E.2 shows that it converges uniformly
with probability 1 to the expected value. These are suf-
ficient conditions for strong consistency.

E.1 The WNLS cost function without the additional
polynomial is minimal in the true parameters

Since the expected value of the cost function is a real
number, observe the trace of the result:

E {VWNLS} = E
{

trace
[
rTΠ r

]}
(E.1)

= trace
[
ΠE

{
r rT

}]
(E.2)

The residual r can be decomposed into a deterministic
part r0, and a noisy part ∆r.

r(θdyn,Z) = r0(θdyn,Z) + ∆r(θdyn,Z) (E.3)

If we substitute these residuals in the projected WNLS
cost function (E.2), we find the expected value

E
{
r rT

}
= E

{
r0r

T
0

}
+ E

{
∆r∆rT

}
(E.4)

+������E
{
r0∆rT

}
+�����E

{
∆r rT0

}
= r0r

T
0 +WCReW

T (E.5)

= r0r
T
0 +W

[
WTW

]−1
WT

= r0r
T
0 + IN (E.6)

The first term in (E.4) is minimal only in the true model
parameters θ0. Following Assumption 10, the cross-
terms disappear. We end up with an N × N identity
matrix IN , but only if we use the full covariance matrix
CRe in the weighting. Substituting the residual in the
trace of the cost function (E.2), yields

E {VWNLS} = trace
(
Π r0r

T
0

)
+ trace(Π) (E.7)

= rT0 Π r0 +
{

2N − (NT + 1)
}

(E.8)

By removing the polynomial in jωk, less model param-
eters are used, and thus the trace of the symmetrical
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idempotent projection matrix Π becomes 2N−(NT +1),
the effective number of parameters. Now, in the absence
of model errors (Assumption 15), it can be found that

r0 = WRe [AReYre −BReUre]

= WRe ΩRe θpoly (E.9)

Combining the latter with (D.1) and (D.2) leads to the
following result:

Π r0 = ΠWRe ΩRe θpoly = 0 (E.10)

The projected residuals are zero in the true parameters
θ0, which means that the expected value of the cost func-
tion (E.2) is minimal in θ0.

E.2 Convergence of the WNLS cost function

Suppose multiple (Nexp) independent experiments are
conducted. Then, by the strong law of large numbers,
the WNLS cost function VWNLS(θ) in (17) converges
(Nexp → ∞) uniformly (in θ) with probability 1 to the
expected value E {VWNLS(θ)}. The input signal u(t) and
the scheduling trajectory p(t) can change over the exper-
iments, resulting in different regressors Km for each ex-
periment. The model structure (13) remains the same,
and the model coefficients θ (12) (containing the model
coefficients a[n,i] and b[n,i]) are identical. The multiple
experiments can be described by one big cost function,
that is built from smaller, single experiment blocks.

Kexp θ = eexp (E.11)
K1

...

KNexp

 θ =


e1
...

eNexp

 (E.12)

The regressor matrix Kexp grows linearly with the
amount of experiments. It is not required that the mea-
surements have the same amount of samples N .

Note that the equation error e is correlated over the fre-
quencies for a single experiment via the covariance ma-
trix Ce(θ) in (C.4), but it is uncorrelated over the experi-
ments. The covariance matrix of the combined equation
errors Ce then becomes block diagonal.

Ce =



Ce[1] 0 . . . 0

0 Ce[2]
. . .

...

. . .
. . .

. . . 0

0 0 . . . Ce[Nexp]


(E.13)

The equation error of the combined experiments is cu-
mulant mixing of order∞, and the results of Chapter 17
in [14] apply; the variance of the cost functions converges
to zero. This result can be interpreted as follows: sev-
eral independent measurements give more information
about the system, reducing the influence of the noise.

E.3 Consistency for periodic parameter variations

In the case of periodic parameter-variation, an addi-
tional interpretation for consistency is possible. Because
the Fourier series expansion in (B.7) is truncated, there
is a possibly large, but finite correlation length of the
weighted equation error ε over the frequency. This means
that ε is cumulant mixing of order ∞, and the results
of Chapter 17 in [14] apply. It is easy to see that, in the
periodic case, a longer measurement N →∞ gives more
information about the system, by allowing to average
out the influence of the noise.
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