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On-line Identification of the LC Product
in Coupled Resonant Circuits

Guido De Angelis, Alessio De Angelis, Antonio Moschitta, Paolo Carbone, Rik Pintelon

Abstract—We present an in-circuit approach for estimating the
LC parameter in coupled resonant circuits. The theoretical back-
ground is discussed by presenting the models and performing a
numerical sensitivity analysis. The method for estimating LC is
based on noisy frequency response function measurements of the
coupled resonant circuit. A practical implementation is presented
and employed to validate the proposed method. Experimental
results show that the proposed method provides an estimate of
LC with a deviation of less than 4% with respect to LCR meter
measurement results.

Index Terms—inductive coupling, magnetic fields, frequency
response function, frequency-domain system identification

I. INTRODUCTION

Resonant RLC circuits have gained more attention in the
last decade in many fields, such as power transfer [1],
Biomedical systems [2]-[4], and Magnetic Positioning Systems
(MPSs) [5]-[8]. In particular, MPSs are an interesting field
of application and often rely on inductively coupled sets
of high-Q resonant coils, as resonance can be exploited to
compensate for the distance-related attenuation and extend the
system range. These systems usually measure the Vrms of the
received signals and estimate ranges by inverting a suitable
magnetic field propagation model. The usage of an equivalent
circuit modeling the interaction between two coils allows
the inversion of the model that requires knowledge of the
parameters related to physical properties of the coupled coils.
Thus, a properly characterized equivalent model can support
improved accuracy, system deployment and tuning. In fact, due
to fabrication tolerances, the actual characteristics of a realized
coil will slightly differ from the nominal value. Consequently,
if nominal values are used in the propagation model, an
uncertainty source is introduced that adversely affects position
measurements. Hence, accurate parametric characterization of
a real system can be used as a calibration tool, improving
MPSs’ ranging and positioning accuracy. Moreover, since
these parameters can change over time due to aging and
other effects, calibration should be performed online without
modifying the system hardware.

The identification of the circuit parameters can often be
performed under simplifying assumptions. For instance, it was
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shown in [5] that the RLC circuit parameters, including the
mutual inductance between the coils, depend only on the
coils’ relative orientation and on the distance between the
coils’ centers. For the purpose of estimating the position in
an MPS, it was also shown that the information associated
with the circuit parameters can be summarized by a con-
stant, estimated in a preliminary calibration phase, and by
the mutual inductance between the coils. It is worth noting
that the estimation of the RLC circuit can be affected by
various sources of uncertainty, that include parasitic effects,
component tolerances, and environmental conditions [7].

In the literature, the problem of estimating offline the
values of lumped components, resonant frequency, and Q-
factor in RLC circuits is widely studied. In [9], the component
parameters are estimated using the vector fitting algorithm
based on a Least Squares approach. This algorithm processes a
set of impedance measurements at several frequencies, applies
vector fitting recursively, and identifies lumped component
parameters. In [10], the authors estimate the inductance as
a function of the physical coil parameters, i.e., diameter and
number of turns. Moreover, in [11], the authors use a network
analyzer to estimate the Q-factor for microwave applications.
In [12], the Q-factor, the resonance frequency and the coupling
coefficient of a single resonator are measured through an
inductively coupled sensor. Furthermore, in [13], a sensor
readout system based on impedance measurement is proposed.
The system performs the impedance measurement using a
capacitor discharge and a readout coil that is inductively
coupled with the LC sensor. However, none of the mentioned
references presents a procedure to perform an online paramet-
ric identification.

This paper is focused on the identification of the product
LC in an equivalent RLC circuit that models the interac-
tion between two inductively coupled coils. Extending the
preliminary results in [14], we employ input-output voltage
measurements to estimate the frequency response function
(FRF) of the circuit and identify the coefficients of its transfer
function using frequency-domain techniques.

The procedure described in this paper extends published
results by adopting a frequency-domain system identification
technique enabling estimation and monitoring of the RLC
parameters in an online and in-circuit fashion. Thus, discon-
nection of the measured circuit is not required when applying
the measurement procedure.

This paper is structured as follows: In Section II, the
considered circuit is described and the proposed parametric
identification procedure is illustrated, including a comparison
to related approaches from the literature. Next, the background
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Fig. 1. Picture of the hardware setup, showing two inductively coupled coils.
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Fig. 2. Equivalent circuit of the coupled resonating coils.

theory and the derivation of the proposed identification method
are introduced in Section III. Results of a numerical sensitivity
analysis are discussed in Section IV. Furthermore, an exper-
imental evaluation is presented in Section V and conclusions
are drawn in Section VI.

II. CONSIDERED CIRCUIT AND PARAMETER
IDENTIFICATION METHOD

The circuit model considered in this paper includes two
inductively coupled coils, like those shown in Fig 1. The
circuit parameters take into account the physical dimensions
of the coils (radius, height, thickness). The relative positions
of the coil centers and the coil orientations affect the value
of the mutual inductance. The coils are connected to lumped
capacitors thus implementing resonators.

In the general case, the resonant circuits may be connected
in four configurations: parallel-parallel (PP), series-series (SS),
series-parallel (SP), and parallel-series (PS). As an example,
the circuit in Fig. 2 is connected in the PP configuration, since
the equivalent circuit modeling the capacitor (C1,RC) is in
parallel with the equivalent circuit of the inductor at one of
the coils’ sides (L1, RL) and because the same applies to L2,
RL and C2, RC . The other configurations are presented and
analyzed in the following section, where the corresponding
schematic diagrams are also depicted in Fig. 7.

We make the simplifying assumption that both inductors
have the same value, i.e. L1 = L2 = L, and similarly for the
capacitors, i.e. C1 = C2 = C. If these values are different,
then the frequency response of the overall circuit may exhibit
two resonance peaks. However, the frequency response of the
circuit still exhibits a single resonance peak if the Q-factor
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Fig. 3. Numerical simulation results of the SP configuration. Behavior of
the transfer function for several values of the difference between the LC
products of the two coupled resonators in the series-parallel configuration.
When ∆LC = 0.4 and ∆LC = −0.4, the two resonance peaks are clearly
visible.

of the resonators is of the order of magnitude of 10 and the
difference between the product L1C1 and the product L2C2,
which we denote as ∆LC , is smaller than 20%, i.e.

|∆LC | , |(L1C1 − L2C2) /L1C1| < 0.2.

This behavior is illustrated by the numerical simulation results
shown in Figs. 3 and 4. The numerical simulations have been
performed in the SP configuration with the following values of
the circuit parameters: M = 50.0134 nH; L1 = 30.19 µH; C1

= 303.76 nF; RL1 = 0.8968 Ω; RC1 = 0.1851 Ω; C2 = 311.37
nF; RL2 = 0.9273 Ω; RC2 = 0.1777 Ω. Furthermore, the
simulations have been performed for different values of the L2

parameter, from 6 µH to 53 µH, resulting in a range of ∆LC

values from -0.8 to 0.8. The simulated values are consistent
with measurements performed on a realized prototype and
reported in Section V of the present paper. Since the overall
circuit exhibits a single resonance peak, it is reasonable to
assume equal values of the inductors and capacitors. Thus,
the presented simulation results show that the approximation
is valid.

In this paper, we derive the transfer function and the expres-
sion for the LC parameter for all four possible configurations.
We also report experimental estimates of the LC parameter
in the PP configuration, which is widely used for magnetic
positioning applications [8]. The proposed technique can be
adapted for the other configurations as well.

The novelty of this paper, with respect to the other ap-
proaches recalled in Section I, consists in the application of
an online frequency-domain system identification technique
to the problem at hand. Accordingly, it is possible to im-
plement online and in-circuit monitoring of the parameters
for fault detection applications. The proposed online and in-
circuit estimation procedure is applied while the system is
operational. Such a procedure is based on input-output voltage
measurements, which are performed without using external
instrumentation or disconnecting the components from the
circuit under test, as done for instance in [15].

The method proposed in this paper estimates the LC param-
eter of coupled resonant circuits using a multisine excitation.
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Fig. 4. Numerical simulation results of the SP configuration. Pseudo-color
representation of the behavior of the transfer function for ∆LC ranging from
-0.8 to 0.8, obtained by varying the value of L2 and keeping the other circuit
parameters constant. It is possible to notice that a single resonance peak is
present for |∆LC | < 0.2, whereas two resonance peaks can be obseved for
|∆LC | > 0.2.

Fig. 5. Block diagram of the considered system acquiring the input-output
voltage signals of a coupled-inductors resonant circuit.

Frequency-domain system identification techniques are used to
identify the coefficients of the transfer function and to relate
them to the LC parameter [16].

Since it is only based on input and output voltage measure-
ments, the proposed method does not require any hardware
modification of the considered RLC circuit, such as the in-
sertion of current-measurement shunt-resistors for impedance
evaluation [15], which cause Q-factor deterioration and perfor-
mance degradation of the resonant circuits. Therefore, since it
is an in-circuit measurement method, it can be used for on-
line monitoring of faults that cause deviation of the circuit
from its nominal characteristic, e.g. due to component aging
or environmental factors.

Another possible application is the automatic tuning of
coupled resonators, which could be especially beneficial for
optimizing the operational range and performance of magnetic
positioning or wireless power transfer systems.

Furthermore, the proposed method provides the following
novelties compared with the existing in-circuit identification

VI Z1

Z2

Z3

Z4

Z5 Vrx

Fig. 6. Equivalent T circuit of the coupled resonating coils, showing the
branch impedances Zi.

techniques: (i) the identification model includes noise effects
on both the input and output voltage measurements, and (ii)
detection and quantification of the nonlinear distortions is
enabled by the usage of multisine excitations and system-
identification techniques. This latter feature allows setting the
validity limits of the linear approximation in the analysis of
the tested circuit [16].

A block diagram illustrating the architecture of the proposed
measurement system is depicted in Fig. 5. The input signal
provided by a signal generator to one of the two inductively-
coupled resonant circuits is digitized by a data acquisition
system. Simultaneously, the output signal at the other resonator
is amplified by an instrumentation amplifier and digitized by a
second channel of the acquisition system. The digitized signals
are then transferred to a PC for further processing. In the
following section, the theoretical measurement principles are
described in detail.

III. THEORETICAL MEASUREMENT PRINCIPLES

In this section, we derive the transfer function of the equiva-
lent circuit considered, in all four configurations. Furthermore,
we derive an expression of the LC parameter.

A. Analysis of the Equivalent Circuit

A schematic of the RLC circuit in the PP configuration is
shown in Fig. 2. As discussed in Section II, the circuit can
be analyzed under the simplifying assumptions C = C1 = C2

and L = L1 = L2 as in [5]. In particular, we can define:

Z1(s) = Z5(s) = RC +
1

sC
Z4(s) = Z2(s) = RL + s(L−M)

Z3(s) = sM,

(1)

where Zi, with i = 1 . . . 5, is the impedance of each circuit
branch of the equivalent T circuit depicted in Fig. 6. The
parasitic resistances of the coils and the capacitors are shown
as RL and RC , respectively. The resistor denoted as RC is
the equivalent series resistor (ESR), which is widely used in
the literature to represent the losses of a capacitor.

To analyze this circuit, we derived analytical expressions
and validated them using the ac analysis tool of SPICE, the
widely used circuit simulator. The SPICE schematic used in
the simulations, which contains resistors, capacitors, inductors,
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(a) PP circuit configuration. (b) SS circuit configuration.

(c) SP circuit configuration. (d) PS circuit configuration.

Fig. 7. SPICE schematics of the considered circuit configurations.

mutual inductance and independent voltage sources, is shown
in Fig. 7 for all circuit configurations, i.e. PP, SS, SP, and PS.

Our research is aimed at applications in the tens of kilohertz
frequency range. Since parasitic capacitive effects in the
inductance are often negligible at these frequencies, they are
not included in the schematics shown in Fig. 7. The estimation
of the parasitic effect in the inductance was discussed in [17],
[18]. It is shown that the inductor behavior at very high fre-
quencies is dominated by the parasitic capacitance effect and
by other non-ideal factors [19], [20]. Simple calculations based
on the model in Fig. 7 show that a parallel parasitic capacitance
of a few picofarad, such as that estimated in [18], affects the
inductance value by about 0.5%, when a nominal frequency of
51.5 kHz is used. The relative difference between the transfer
function without parasitic capacitive effects and that obtained
by considering the parasitic capacitive effects is shown in Fig.
8. It can be seen that the effect of the parasitic capacitance is
negligible at the considered frequencies. Specifically, accord-
ing to the curve in Fig. 8, this effect is smaller than -30 dB in
the range from 2× 105 rad/s to 4× 105 rad/s, which contains
the resonance frequency of interest of approximately 50 kHz.
Furthermore, the difference between the resonance frequency
with and without the parasitic capacitance is approximately
0.6% of the nominal value. The problem of estimating parasitic
elements is partly addressed in Section V, whereas a more in-
depth characterization of parasitics is out of the scope of this
paper.

For the circuit in Fig. 6, the transfer function from VI to
Vrx, which we denote as H(s), is given by

H(s) =
Z3Z5

Z4Z2 + Z3Z2 + Z5Z2 + Z4Z3 + Z5Z3
. (2)

By substituting (1) in (2), we obtain

H(s) = − RCCMs2 +Ms

a1s3 + a2s2 + a3s−RL
, (3)
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Fig. 8. Relative difference between the transfer function of the PP circuit
with parasitic effect and the transfer function without parasitic effect.

where a1 = CM2 − CL2, a2 = (−2RL −RC)CL, a3 =(
−R2

L −RCRL
)
C − L. We compared the analytical results

(3) with those provided by SPICE. This comparison is shown
in Section III-C.

Note that when L � M we can use the approximation
L−M ' L , as in [5], thus obtaining

H(s) ∼=
RCCs

2 + s

b1s3 + b2s2 + b3s+RL
·M, (4)

where b1 = CL2, b2 = (2RL + RC)CL, b3 = (R2
L +

RCRL)C + L.

This transfer function has two zeros and three poles, since
it may be written in the following form

H(s) ∼= k · s2 + as+ b

s3 + cs2 + ds+ e
, (5)



5

where

k =
MRC
L2

(6)

a =
1

CRC
(7)

b = 0 (8)

c =
2RL +RC

L
(9)

d =

(
R2
L +RCRL

)
C + L

CL2
(10)

e =
RL
CL2

. (11)

B. Analytical solution for the product LC

We may write (5) in a more convenient form by factoring
the denominator as follows

H(s) ∼= k · s2 + as

(s+ α) (s2 + βs+ γ)
, (12)

where

α =
RL
L

(13)

β =
RC +RL

L
(14)

γ =
1

LC
. (15)

Notice that this model is not identifiable, i.e., it is not
possible to univocally calculate the parameters M , L, C, RC ,
and RL by estimating the coefficients of the transfer function
in (12). In fact, the nonlinear system of equations given by
(6), (7), (13), (14), and (15), where M , L, C, RC , and RL
are the unknowns, admits an infinite set of solutions, given
by {ξM0, ξL0, C0/ξ, ξRC0, ξRL0}, for any ξ ∈ R and ξ 6= 0.
Here, M0, L0, C0, RC0, and RL0 are the nominal values of
the circuit parameters.

In addition to the identifiability issue, another problem is
the presence of strongly nonlinear functions in the expressions
of the coefficients of (12). Even if the model was identifiable,
solving for the unknowns would require a numerical approach,
with close-to-the-solution initial values, to avoid local minima.

However, the product LC is identifiable. In fact, by mea-
suring the FRF of the circuit and performing a parametric
identification of the coefficients of (12), the product LC can
be estimated by direct inversion of the γ coefficient in (15).

C. Transfer functions for the SS, SP, and PS configurations

In this section, we provide the analytical expressions of the
transfer functions and the formulas for calculating the LC
parameter for the SS, SP, and PS configurations. These transfer
functions were obtained using the ABCD matrix method [21].
Detailed derivations are provided in the Appendix. The transfer
function of the SS circuit is given by

HSS(s) =
MCs2

s2CL+ sC(RL +RC) + 1
. (16)

In this configuration, LC is given directly by the denominator
coefficient of s2.
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Fig. 9. Transfer function of the PS, SP, PP, and SS circuits. The color lines
denote the analytical expressions, while the black lines indicate the results of
the circuit simulation (SPICE).

Moreover, the SP circuit has the following transfer function

HSP (s) = − g3s
3 + g2s

2

f4s4 + f3s3 + f2s2 + f1s− 1
, (17)

where g3 = C2MRC , g2 = CM , f4 = C2M2 −C2L2, f3 =
−2C2LRL−2C2LRC , f2 = −C2R2

L−2C2RCRL−C2R2
C−

2CL and f1 = −2CRL−2CRC . In the SP configuration, the
parameter LC is given by LC =

√
g22 − f4.

Finally, the transfer function of the PS circuit is given by

HPS(s) =
Ms

Ls+RL
. (18)

Notice that it is impossible to estimate the LC product in
the PS configuration, since C does not appear in the transfer
function expression. In this configuration, resonance does not
occur.

By numerically evaluating the above transfer functions, we
obtain the plots shown in Fig. 9. Note that, at least around the
resonance frequency, the behavior of the SS and PP circuits is
similar. Moreover, from Fig. 9 it can be observed that the PS
circuit is not resonant, thus validating the theoretical derivation
in (18). Finally, a good agreement between the curves obtained
by circuit simulation and those obtained by the analytical
expressions can be noticed. The small differences between
those curves are due to the fact that the circuit simulations
were performed with the parameter values shown in Fig. 7,
whereas the analytical expressions use the simplifying assump-
tions L1 = L2 = L and C1 = C2 = C.

In the remainder of the paper, we focus on the PP circuit,
which is widely used in MPS applications [5]. For this
configuration, we provide a numerical sensitivity analysis and
experimental results in the following sections.

IV. SENSITIVITY ANALYSIS

In this section, the sensitivity of the mathematical model
in (3) is analyzed by analytical derivations and by numerical
simulation. This analysis is useful, since it may consent to
assess the tolerance requirement on the lumped components
that realize the MPS’s beacons and mobile nodes.

We recall that the sensitivity to the parameters is defined
as the ratio between the percentage change in the transfer
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function H and the percentage change in the parameter α,
where α denotes any of the circuit parameters, i.e. α ∈
{M, C, L, RC , RL}. Therefore, the formula for the sensi-
tivity of H to the parameter α, denoted as SHα , is [22]:

SHα =
∂H

∂α

α

H

∣∣∣∣
α0

, (19)

with α0 the nominal value of the parameter α, in our case the
true value of the circuit parameter used in the simulation.

By applying (19) to the expression of H(·) in (3), the
sensitivity associated with the M parameter is:

SHM =
∂H

∂M

M

H

∣∣∣∣
M0

=
SHM,1

SHM,2

, (20)

where

SHM,1 =−
(
CM2 + C L2

)
s3 − (2CLRL + CLRC) s2

−
(
C RL

2 + C RCRL + L
)
s−RL

SHM,2 =
(
CM2 − C L2

)
s3 + (−2CLRL − CLRC) s2

+
(
−C RL2 − C RCRL − L

)
s−RL.

Furthermore, for the L parameter, we have that

SHL =
SHL,1
SHL,2

, (21)

where

SHL,1 =2C L2 s3 + (2CLRL + CLRC) s2 + Ls

SHL,2 =
(
CM2 − C L2

)
s3 + (−2CLRL − CLRC) s2

+
(
−C RL2 − C RCRL − L

)
s−RL.

For the C parameter, the following expression applies

SHC =
SHC,1
SHC,2

(22)

where

SHC,1 =−
(
CM2 − C L2

)
s3 + 2CLRLs

2 − C RL2s

SHC,2 =
(
C2M2 − C2 L2

)
RCs

4

+
(
−2C2LRCRL − C2LRC

2 + CM2 − C L2
)
s3

−
(
C2RCRL

2+
(
C2RC

2+2CL
)
RL + 2CLRC

)
s2

+
(
−C RL2 − 2C RCRL − L

)
s−RL.

Furthermore, for the RL parameter we obtain

SHRL
=
SHRL,1

SHRL,2

, (23)

where

SHRL,1 =2CLRLs
2 +

(
2C RL

2 + C RCRL
)
s+RL

SHRL,2 =
(
CM2 − C L2

)
s3 + (−2CLRL − CLRC) s2

+
(
−C RL2 − C RCRL − L

)
s−RL.

Finally, the expression for the RC parameter is

SHRC
=
SHRC ,1

SHRC ,2

, (24)
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Fig. 10. Sensitivity analysis of the model in (3) to the circuit parameters.

where

SHRC ,1 =
(
C2M2 − C2 L2

)
RCs

4

− 2C2LRCRLs
3 − C2RCRL

2s2

SHRC ,2 =
(
C2M2 − C2 L2

)
RCs

4

+
(
−2C2LRCRL − C2LRC

2 + CM2 − C L2
)
s3

−
(
C2RCRL

2+
(
C2RC

2+2CL
)
RL + 2CLRC

)
s2

+
(
−C RL2 − 2C RCRL − L

)
s−RL.

The plots shown in Fig. 10 are obtained by numerical
evaluation of (20)-(24) based on the following reference
values: L = 30.887 µH, C = 307.54 nF, RL = 0.9119 Ω,
RC = 0.1814 Ω and a mutual inductance M = 50.0134 nH.
It can be inferred that the largest sensitivities are associated
with the circuit inductance and capacitance, with a reduced
sensitivity to parasitic resistances.

V. EXPERIMENTAL EVALUATION

To validate the proposed strategy for identifying the product
LC, experiments were performed on a realized circuit. Such
circuit consisted of the two coupled inductors depicted in
Fig. 1, each connected in parallel with a lumped capacitor,
according to the schematic in Fig. 2. The two air-core coils
were realized by winding 20 turns of 0.25 mm diameter wire
on cylindrical holders having a radius of 20 mm and a height
of 3.5 mm. The resulting nominal inductance of the coils
was L1 = L2 = L = 29 µH, calculated using Wheeler’s
formula [23]. The nominal value of the lumped capacitors was
C1 = C2 = C = 330 nF. Therefore, the resonant frequency
of the realized circuit was approximately 53 kHz.

A. Stepped sine excitation for FRF measurement

In order to measure the FRF of the realized circuit, a stepped
sine excitation was initially used. Specifically, one of the two
coils was connected to an an Agilent 33220A signal gener-
ator. This generator was configured to provide a sinusoidal
waveform at a set of 81 frequencies. For each frequency, a
measurement of the RMS value of the induced voltage on
the other coil was performed, after amplifying the voltage at
the coil by means of an AD8421 instrumentation amplifier
with a gain of 40 dB. These RMS voltage measurements were
performed using a Fluke 8845A Digital Multimeter.
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Fig. 11. Experimental results. Magnitude of the measured FRF, that simulated
by Spice, that estimated using the elis 2/3 method and the elis 5/6 method.

The record of measurement results, of length 81, was subse-
quently resampled by interpolation, using the Matlab function
resample, to obtain a record of 1000 values that was used for
subsequent identification. During the measurement procedure,
the two coils were placed on the same plane, and the distance
between their centers was 10 cm. The experimental results
of the FRF measurement procedure are shown in Fig. 11,
where an FRF obtained by the circuit simulator Spice using
the nominal values of the components is also shown.

Furthermore, the measured frequency response function data
was fed to the elis (estimation of linear systems) algorithm
for parametric system identification, which is implemented
in the frequency-domain identification Matlab toolbox fdident
[24]. The elis algorithm is commonly used in the literature
for system identification. It solves least squares estimation
problems employing the errors-in-variables model. Such a
model accounts for measurement errors in both the input and
the ouput of the system under test [16]. The elis algorithm
was configured for performing a model scan, i.e. identifying
a set of models differing by number of poles and zeros. The
scanned numbers of zeros are from 2 to 6, whereas the scanned
numbers of poles are from 3 to 6. In the following, we present
results for two of the scanned models. The first model, denoted
as elis 2/3, is defined by two zeros and three poles, which
corresponds to the number of poles and zeros of the ideal
model of the physical circuit in (3). The second model, denoted
as elis 5/6, has five zeros and six poles, corresponding to the
model with the smallest error within the scanned set.

The results of the identification process are presented in
Fig. 11, Fig. 12, and Fig. 13. From these plots, a good
agreement can be observed between the experimental data and
the fitted curves, especially in the vicinity of the resonance
frequency. Specifically, Fig. 12 shows a difference of less
than 1.5 dB between the measured FRF and that estimated
using the elis 2/3 method and the elis 5/6 method. For the
purpose of shape comparison, here the maximum magnitude of
all the FRF curves was normalized to 1. Similar observations
can be obtained by the empirical cumulative density function
in Fig. 13. Therefore, the feasibility of the proposed fitting
strategy is validated.
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Fig. 12. Experimental results. Difference between the magnitude of the
measured FRF, that simulated by Spice, that estimated using the elis 2/3
method and the elis 5/6 method.
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Fig. 13. Empirical CDF of the difference between the magnitude of the
measured FRF, that simulated by Spice, that estimated using the elis 2/3
method and the elis 5/6 method.

B. Multisine excitation for FRF measurement

The stepped sine excitation used in the previous subsection
for measuring the FRF has the main drawback of requiring
a relatively long measurement time. In fact, for each of
the frequency steps desired, it is necessary to perform the
entire measurement procedure and sufficient time should be
employed to allow for transients to vanish. To overcome this
drawback, broadband excitations are often employed in prac-
tical scenarios. In particular, periodic random-phase multisine
signals provide benefits such as the possibility of estimating
the variance and the capability of detecting nonlinear distor-
tions in the system [16].

For these reasons, an additional experimental test was
performed, where the FRF was measured using a full random-
phase multisine. The same circuit used in the previous subsec-
tion, depicted in Fig. 1, was connected to a Keysight U2331A
multifunction data acquisition board, according to the block
diagram of Fig. 5. The multisine excitation was generated by
the on-board 12-bit DAC and two acquisition channels were
used, for digitizing the input and output. Each channel was
acquired with a resolution of 12 bits and a sampling rate
Fs = 300 kSa/s, using coherent sampling with the acquisition
clock synchronized with the signal generation clock.

The input signal consisted of 300 periods of a random-phase
multisine synthesized using the Matlab fdident toolbox [24],
with 1000 samples per period, containing all harmonics of the
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fundamental frequency, which was equal to 300 Hz. The root-
mean-square value of the input signal was 0.3 V. The effect
of the transient was removed by discarding the first period of
the acquired signals. For each of the remaining periods, the
discrete Fourier transform (DFT) was computed. Then, the
obtained DFT sequences were averaged and used to obtain an
estimate of the FRF using the maximum likelihood estimator
described in [16, chapter 2]. Such DFT sequences, which are
related to repeated multisine measurements, were also used to
obtain an estimate of the standard deviation of the FRF .

Two tests were performed: the first one was carried out
without adding the instrumentation amplifier (INA) at the
output of the system, therefore connecting the output of the
receiving resonator to the acquisition board directly. The
second test was performed by connecting the AD8421 INA
with a gain of 40 dB to the output, thus acquiring the signal at
the output of the INA. The results are shown in Fig. 14, where
both the average and the standard deviation of the estimated
FRF are depicted. In the figure, the nominal gain value of
40 dB is subtracted from the curve related to the INA results.

The purpose of the test carried out without the INA is
to show which results can be achieved when an INA is
not available in the intended application, e.g. due to low-
power requirements. It follows that even in this case it is
possible to estimate the transfer function in the vicinity of
the resonance frequency, albeit with a degraded performance
in terms of signal-to-noise ratio. Specifically, from Fig. 14, it
can be seen that the two curves obtained with and without the
INA are in good agreement with each other in the frequency
band corresponding to the resonance peak of the system.
However, the standard deviation obtained without the INA is
approximately 30 dB higher than that obtained using the INA.
Furthermore, the average FRF is noisy outside the resonance
region, thus preventing an accurate estimation outside such
region.

The FRF measurement results obtained using the multisine
excitation were processed using the elis algorithm, obtaining
the results shown in Fig. 15 and Fig. 16, for the cases without
and with the INA, respectively. It is possible to notice, from
Fig. 16, that the 2-zero, 3-pole model corresponding to the
ideal circuit in (3) cannot accurately describe the FRF outside
of the resonance region. Therefore, a more complex model is
needed, with additional poles and zeros.

Such additional poles and zeros account for the effect
of those parasitic components that are not included in the
ideal circuit model in (3). By increasing the model order, a
better fit of the experimental data is obtained, as shown by
Fig. 16. This means that the parasitic components result in
a non-negligible contribution in those frequency ranges that
are outside of the resonance range. However, the presented
experimental results prove that the simple ideal model is still
usable to identify the LC parameter without a significant loss
of accuracy, because the transfer function in the resonance
region is correctly described even by the 2-zero, 3-pole model
corresponding to the ideal circuit of (3).
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Fig. 14. Experimental results. FRF measured using a multisine excitation.
The average and standard deviation are obtained by considering 300 records
of the acquired signals.

C. Evaluation of the analytical expression for the product LC

The denominator of the 2-zero, 3-pole model identified in
the previous subsection was factored in the form of (12), thus
obtaining

H̃(s) =
253.56s(s+ 6.859 · 105)

(s+ 5.693 · 104)(s2 + 3.142 · 104s+ 1.049 · 1011)
.

(25)

Therefore, an estimate of LC is obtained as L̂C =
1/1.049 · 1011 = 9.5329 · 10−12.

To obtain an independent validation of this result, the
lumped circuit components, i.e. capacitors and inductors, were
disconnected from the circuit and measured separately using
an LCR meter, the Iso-Tech LCR 821, with an uncertainty
of 0.05% [25]. The measurement procedure was performed at
50 kHz. The measured values are shown in Table I. It may
be noticed that the measured value of C1 differs by 7.61 nF
from the measured value of C2, while the difference between
the measured values of L1 and L2 is 1.41 µH. Therefore, the
simplifying assumptions of equal capacitance and inductance
that we made in Section III-A are valid, in the experimental
setup, within an approximation error of 2.4% for C and 4.46%
for L. Table I also presents the comparison between the value
of the product LC estimated by the proposed method and that
measured using the LCR meter considering the product L1C1
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Fig. 15. Results of the parametric system identification using a multisine excitation without the INA. (a) 2-zero, 3-pole model; (b) 5-zero, 6-pole model.
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Fig. 16. Results of the parametric system identification using a multisine excitation with the INA. (a) 2-zero, 3-pole model; (b) 5-zero, 6-pole model.

and the product L2C2. In both cases the proposed method
results in a relative error of less than 3.95%.

D. Discussion of the results

The presented experimental results prove that the proposed
in-circuit identification method is feasible in a practical sce-
nario. In particular, the results show that the LC parameter
of coupled resonating circuits is estimated within an error of
approximately 4% with respect to an independent validation
procedure, which is performed using external instrumentation
and disconnecting the individual components from the circuit.
This independent validation procedure does not take into
account the parasitic behaviors that arise when the circuit
components are connected together during normal operation
of the circuit. This fact partly explains the deviation in the
estimate of the LC parameter. Moreover, with respect to
this independent validation procedure, the proposed online

method has the advantage of increased flexibility and possible
widespread adoption in fault diagnosis scenarios.

The analysis provided in this paper assumes that only
input and ouput voltages are measured. If other quantities
are measured, such as input current, output current, or volt-
age across the individual reactive elements, then a different
analysis should be carried out and possibly other circuit
parameters may be identified. However, measuring currents
typically requires the usage of resistive shunts that degrade the
performance of the coupled circuits. Furthermore, measuring
the voltage across the individual reactive elements requires
additional circuitry that increases the complexity and may
prevent online operation.

Potentially, the proposed in-circuit measurement method can
be implemented in real time for on-line fault detection. In
this context, it could be used to monitor the behavior of the
LC parameter over time and measure its deviation from the
nominal value. Furthermore, the method could be applied to
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TABLE I
EXPERIMENTAL RESULTS. COMPARISON BETWEEN VALUES ESTIMATED

ACCORDING TO THE ANALYTICAL METHOD IN SECTION III-B AND
VALUES MEASURED USING AN LCR METER

measured estimated error
C1 [nF] 303.76 - -
RC1 [Ω] 0.1851 - -
L1 [µH] 30.19 - -
RL1 [Ω] 0.8968 - -
C2 [nF] 311.37 - -
RC2 [Ω] 0.1777 - -
L2 [µH] 31.60 - -
RL2 [Ω] 0.9273 - -
L1C1 [H·F] 9.1705E-12 9.5329E-12 3.6240E-13 (3.95 %)
L2C2 [H·F] 9.8393E-12 9.5329E-12 -3.0640E-13 (-3.11 %)

resonance-based magnetic positioning systems to calibrate the
circuit parameters automatically, thus enhancing positioning
accuracy. Another possible application of the proposed method
is the automatic tuning of coupled resonators, which could be
especially beneficial for optimizing the operational range and
performance of wireless power transfer systems.

VI. CONCLUSION

In this paper, we considered a model of an RLC tuned-
resonators equivalent circuit that has numerous practical ap-
plications in the engineering field. We proposed an analytical
method for identifying the product LC based on the parametric
identification of the input-output voltage transfer function,
which can be performed in-circuit without the need for ex-
ternal instrumentation. The proposed method was applied to
experimental data resulting in a relative deviation of less than
4% with respect to the values measured using an LCR meter,
thus demonstrating its feasibility in a practical scenario.

APPENDIX

The equivalent electrical network of two coupled resonant
circuits is shown in Fig. 6 for the PP configuration. In the
general case, the network modeling the two resonant circuits is
decomposed into three blocks. The first block is the capacitive
impedance in series or parallel with the second block, i.e., the
central block, which represents the inductive impedance and
the mutual inductance (modeled by a T-network). Finally, there
is a third block, consisting of another capacitive impedance,
which can be connected in series or parallel with the central
block. In this way, it is possible to obtain diagrams that are
similar to that of Fig. 6 for all four configurations. After
performing such a decomposition, the circuit can be analyzed
in a simple fashion by using ABCD-parameters [21].

The ABCD-parameters, which are also known as chain
parameters, are usually employed for representing cascades
of two-port networks. For a generic two-port network, shown
in Fig. 17, the ABCD parameters are defined as follows:[

V1
I1

]
=

[
A B
C D

] [
V2
−I2

]
,

where V1 is the voltage at the input port, V2 is the voltage at
the output port, I1 is the current at the input port, and I2 is
the current at the output port.

Fig. 17. Diagram of a generic two-port network, showing the convention used
for defining the ABCD parameters.

The cascade of our network is resulting in the following
expressions

• PS circuit: FPS =

[
1 0
1
Z1

1

] [
A B
C D

] [
1 Z5

0 1

]
;

• SP circuit: FSP =

[
1 Z1

0 1

] [
A B
C D

] [
1 0
1
Z5

1

]
;

• SS circuit: FSS =

[
1 Z1

0 1

] [
A B
C D

] [
1 Z5

0 1

]
;

• PP circuit: FPP =

[
1 0
1
Z1

1

] [
A B
C D

] [
1 0
1
Z5

1

]
;

where FXX denotes the ABCD matrix of the XX circuit, with
XX={PS, SP, SS, PP}. Further, in a T-network, the elements
of the ABCD matrix are given as follows: A = 1 + Z2/Z3,
B = Z2 + Z4 + (Z2 · Z4/Z3), C = 1/Z3 and D = 1 +
Z4/Z3. Using the definitions in (1) of the Zi blocks, with
i = 1 . . . 5, each transfer function HXX can be obtained by
inverting the first element of the corresponding FXX matrix,
i.e., HXX(s) = 1/FXX(1, 1) [21].
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