
 

Vrije Universiteit Brussel

On the behavior of autonomous Wiener systems
Markovsky, Ivan

Published in:
Automatica

DOI:
10.1016/j.automatica.2019.108601

Publication date:
2019

Document Version:
Submitted manuscript

Link to publication

Citation for published version (APA):
Markovsky, I. (2019). On the behavior of autonomous Wiener systems. Automatica, 110, [108601].
https://doi.org/10.1016/j.automatica.2019.108601

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 10. Apr. 2024

https://doi.org/10.1016/j.automatica.2019.108601
https://cris.vub.be/en/publications/on-the-behavior-of-autonomous-wiener-systems(0b2e74ac-c46a-45a7-b3e1-7d15dae489df).html
https://doi.org/10.1016/j.automatica.2019.108601


On the behavior of autonomous Wiener systems

Ivan Markovsky

Department ELEC, Vrije Universiteit Brussel, 1050 Brussels, Belgium

Abstract

Wiener systems are nonlinear dynamical systems, consisting of a linear dynamical system and a static nonlinear system in a series
connection. Existing results for analysis and identification of Wiener systems assume zero initial conditions. In this paper, we consider
the response of a Wiener system to initial conditions only, i.e., we consider autonomous Wiener systems. Our main result is a proof that
the behavior of an autonomous Wiener system with a polynomial nonlinearity is included in the behavior of a finite-dimensional linear

system. The order of the embedding linear system is at most
(

n+d
d

)
— the number of combinations with repetitions of d elements out of n

elements — where n is the order of the linear subsystem and d is the degree of the nonlinearity. The relation between the eigenvalues of
the embedding linear system and the linear subsystem is given by a rank-1 factorization of a symmetric d-way tensor. As an application
of the result, we outline a procedure for exact (deterministic) identification of autonomous Wiener systems.

Key words: Block-oriented models; Wiener system; Behavioral approach, System realization, Nonlinear system identification.

1 Introduction

Interconnections of linear dynamic and nonlinear static sys-
tems is a popular class of nonlinear systems, refered to as
block-oriented models [4,1,15]. Block-oriented models are
simpler to identify from data and simpler to use for simula-
tion and control due to the restriction of the nonlinear sub-
systems to be static. Among the variety of block-oriented
models, the simplest special case is the Wiener system. A
Wiener system consists of a linear system followed by a non-
linear static system. Despite of its limited modeling power
in comparison to other block-oriented models, the Wiener
system is the natural first step in the study of the class of
block-oriented models and has practical applications.

A special case of an input-output system when the input
dimension is zero is the autonomous system. To the best
of our knowledge, currently there are no methods for au-
tonomous Wiener system identification. Existing methods
for input/output Wiener system identification [18,5,2] im-
pose as an assumption persistency of excitation of the input.
This makes them unsuitable for the autonomous case (where
the input is missing or, equivalently, it is a zero sequence).
In contrast, linear time-invariant identification methods such
as the prediction error and subspace methods can deal seam-
lessly with the autonomous case.

Our main result is that an autonomous Wiener system with a
polynomial nonlinearity is embedded in a finite-dimensional
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linear system. In order to outline the result, consider an au-
tonomous Wiener system Bw, that is a series connection of
an order-n linear time-invariant subsystem B and a degree-
d polynomial nonlinearity g. We prove that Bw is included

in a linear time-invariant system of order nw≤
(

n+d
d

)
— the

number of combinations with repetitions of d elements out
of n elements. Moreover, there is a relation between the
eigenvalues of the embedding system and the eigenvalues
of B: an eigenvalue of the embedding system is a product
of up to d eigenvalues of B. This relation is characterized
by a rank-1 factorization of a symmetric d-way tensor, con-
structed from the eigenvalues of the embedding system.

2 Notation

The notation used in the paper is standard: R is the set of
real values, C is the set of complex values, and N is the set of
natural numbers. The set of scalar real-valued signals over
N is denoted by RN. An autonomous linear time-invariant
system B admits a minimal state space representation

B = B(A,c) := {z ∈ R
N | there is x, such that

σx = Ax, z = cx, x(1) ∈ R
n }, (1)

where A ∈Rn×n and c ∈R1×n are parameters of the system
and σ is the shift operator (σx)(t) = x(t + 1). The eigen-
values λ1, . . . ,λn of A are invariant of the representation and
are, therefore, a property of the system B.

In this paper, we consider a single output Wiener system
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and assume that the eigenvalues of its linear subsystem are
distinct. In this case, the linear time-invariant subsystem
admits a sum-of-damped-exponentials representation

B = B(λ ) :=
{

z ∈ R
N | z =

n

∑
i=1

αi expλi
, α ∈C

n
}
, (2)

where expλi
(t) := λ t

i and λ is the vector of the system’s

eigenvalues λ =
[
λ1 · · · λn

]⊤
∈ Cn.

Restricting ourselves to the single output case with distinct
eigenvalues simplifies the notation. The results in the paper
can be generalized mutatis mutandis to the case of multi-
output systems. Dealing with repeated eigenvalues requires a
generalization of the sum-of-damped-exponentials represen-
tation, which complicates the analysis but does not change
our main results.

The static nonlinearity g is a dth order polynomial, repre-
sented by a given monomial basis v

y= g(z) := θ⊤v(z), where v(z)=
[
z0 z1 · · · zd

]⊤
∈R

d+1.

(3)
Putting together (2) and (3), we obtain the autonomous
Wiener system

Bw(λ ,θ ) := {y ∈ R
N | (2,3) hold for α ∈ C

n},

parameterized by the vector of the coefficients θ =[
θ0 θ1 · · · θd

]⊤
∈ Rd+1 of the nonlinear part and the

eigenvalues λ of the linear part.

The choice of polynomial nonlinearity is motivated by the
fact that any smooth function can be approximated arbitrarily
well over a finite interval by a polynomial of sufficiently
high degree. In this paper, we assume that the degree d of
the nonlinearity is a priori given. In practice, however, the
question of how to choose it is a relevant (and difficult)
one. A general way to estimate this hyper-parameter is to
use cross-validation. Computational and sensitivity issues
however restrict us to relatively low degree polynomials.

3 Main result

Theorem 1 Consider an autonomous Wiener system
Bw(λ ,θ ) with order-n linear subsystem and a degree-d
nonlinear subsystem. Assume that the eigenvalues λ are
distinct and 1 is not an eigenvalue of B(λ ). Then, there
is an autonomous linear time-invariant system B(λw) with
eigenvalues λw ∈Cnw , where

nw≤ n̄w :=

(
n+ d

d

)
=

(n+ 1)(n+ 2) · · ·(n+ d)

d!
, (4)

such that
Bw(λ ,θ )⊆B(λw). (5)

The eigenvalues λw of the embedding system B(λw) are
products of d elements of the set {λ0,λ1 . . . ,λn}, where
λ0 := 1, i.e., there are indices ki,1, . . . ,ki,d ∈ {0,1, . . . ,n},
such that

λw,i =
d

∏
j=1

λki, j
, for i = 1, . . . ,nw. (6)

PROOF. By definition

B(λw) :=
{

y ∈ R
N | y =

nw

∑
i=1

βi expλw,i
, β ∈ C

nw

}
. (7)

In order to prove the relation (5), we compare the output
of (7) with the expression for the output of the autonomous
Wiener system Bw(λ ,θ ).

Consider a general basis element

v j

(
z(t)

)
=
(
z(t)

) j
=

(
n

∑
i=1

αiλ
t
i

) j

.

For j = 0 and 1, v0 = 1 and v1 = y are of the form of sum-
of-damped-exponentials with n0 = 1 and n1 = n exponents,
respectively. For j > 1, v j is also of the form of a sum-of-
damped-exponentials with exponents that are products of j
elements of the set λ , i.e.,

v j

(
z(t)

)
=

n j

∑
i=1

γiµ
t
i, j, where µ t

i, j =
j

∏
ℓ=1

λki, j,ℓ

for some indices ki, j,ℓ ∈ {1, . . . ,n}. The number of terms n j

is equal to the number of combinations with repetitions of
j elements out of the n elements of λ . Therefore,

n j =

(
n+ j− 1

j

)
=

(n+ j− 1) · · ·n

j!
.

Consider now the output

y(t) = g
(
z(t)

)
= θ⊤v

(
z(t)

)
.

It is also of the form of a sum-of-damped-exponentials

y(t) =
nw

∑
i=1

ζiλ
t
w,i, where {λw,1, . . . ,λw,nw }=

j⋃

i=0

d⋃

j=0

µi, j.

(8)
The elements of λw are products of d elements of the set
{1,λ1, . . . ,λn }. The number of such products is

n̄w =
d

∑
j=0

n j =

(
n+ d

d

)
=

(n+ 1)(n+ 2) · · ·(n+ d)

d!
.
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The number of distinct elements nw, which is the order of
B(λw), is therefore upper bounded by n̄w.

We’ve shown that both the output (7) of the autonomous
Wiener system Bw(λ ,θ ) and the output (8) of the linear sys-
tem B(λw) are of the form of sum-of-damped-exponentials
with the same exponents. The coefficients βi in (7) however
are restricted only by the condition of being in complex con-
jugate pairs (since the signal is real), while the coefficients
ζi in (8) range over an n-dimensional manifold of Cnw . This
proves (5).

Note 1 The generalization of Theorem 1 to multi-output sys-
tems can be done by considering each output separately and
including polynomial factors in (7). Another approach is to
use a state space representation, in which case the sum-of-
exponentials expression in (7) becomes y(t) =CAtx(0).

Next, we give an alternative characterization of the relation
(6) between the eigenvalues of λ and λw, using the notation
"◦" for the vector outer product.

Corollary 2 (Link between λw and λ ) The symmetric,
rank-1, d-way tensor T := λ ◦λ ◦ · · · ◦λ︸ ︷︷ ︸

d times

, has as unique

elements λw,1, . . . ,λw,nw .

4 Application of the result in system identification

The problem considered in this section is: Given a mono-
mial basis v, a finite trajectory yd =

(
yd(1), . . . ,yd(T )

)
of an

autonomous Wiener system Bw(λ ,θ ), and the order n of its

linear part, find parameters λ̂ , θ̂ , such that

Bw(λ ,θ ) = Bw(λ̂ , θ̂ ).

Theorem 1 suggests the following solution method:

(1) identify the embedding system B(λw) from yd,
(2) compute the linear subsystem B(λ ) from B(λw), and
(3) compute the nonlinear subsystem from B(λw), B(λ ).

Assuming that the given trajectory yd is persistently exciting
of order nw, the embedding system B(λw) is identifiable
from yd [19]. The remaining problems, resolved in steps 2
and 3, are to find from the identified system B(λw), the
linear and nonlinear subsystems of the autonomous Wiener
system. Note that due to exchange of gain, between B and g,
the linear and nonlinear subsystems are not identifiable from
the data alone. As shown next, however, the eigenvalues of
B can be determined uniquely and g can be determined up
to a scaling factor.

Note 2 Classical identifiability conditions, see, e.g.,
[10,9,19], require persistency of excitation of the input se-
quence. They are not applicable to autonomous systems. In

this paper, the persistency of excitation assumption is on
the output sequence. Similar assumption is used in dynamic
measurement [16,11,12], where the data is also a response
of an autonomous system.

4.1 Identification of B(λw) from the given output data

The identification of an autonomous linear time-invariant
system Bw(λ ,θ ) from the finite trajectory yd ∈Bw(λ ,θ ) is
a classical problem, see for example, [7,6] and [13, Section
5.1.3]. One possible solution [6] is to form the Hankel matrix

Hnw+1(yd) :=




yd(1) yd(2) · · · yd(T − nw)

yd(2) yd(3) · · · yd(T − nw+ 1)
...

...
...

yd(nw + 1) yd(nw + 2) · · · yd(T )




and compute its left kernel (which can be shown to be one
dimensional)

pHnw+1(yd) = 0.

The roots of the polynomial p(s) = p0 + p1s+ · · ·+ pnwsnw

are the eigenvalues of the embedding system. Another so-
lution (called Kung’s method [7]) is based on realization
theory: 1) compute the rank revealing factorization

Hnw+1(yd) = OC , with O ∈ R
L×nw and C

nw×(T−L)

of the Hankel matrix HL(yd), where L is a design parameter,
satisfying the constraints nw +1 ≤ L ≤ T −nw and 2) solve

the system of linear equations OÂ = O, for Â, where O is
the matrix O with the first row removed and O is the matrix

O with the last row removed. The eigenvalues of Â are the
eigenvalues of the embedding system.

The minimal number of samples needed for the identifica-
tion of the system B(λw) is Tmin = 2nw + 1. The identifi-
cation data, however, can be collected from nw experiments
with nw+1 samples instead of a single experiment with Tmin

samples. Let y1
d, . . . ,y

nw
d be the data of the multiple experi-

ments of length nw + 1. Then, the identification procedure
is modified by replacing the Hankel matrix Hnw+1(yd) by

the matrix
[
yd

1 · · · yd
nw

]
of the stacked next to each other

responses. More generally, using date from multiple exper-
iments of length T1, . . . ,Tnw > nw, the identification method
is based on the computation of the left kernel or rank re-
vealing factorization of the mosaic Hankel matrix [14]

Hnw+1(y
1
d, . . . ,y

nw
d ) :=

[
Hnw+1(yd

1) · · · Hnw+1(yd
nw)

]
.

4.2 Computation of the subsystem B(λ ) from B(λw)

After finding B(λw), the next step is the computation of the
linear subsystem. We are interested in the transition from
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λw to λ , i.e., extracting the linear subsystem B(λ ) from
B(λw). Using Corollary 2, we can find λ by computing
a rank-1 factorization of a symmetric tensor T constructed
from λw. Checking whether T has rank equal to one can be
done by checking the rank of the d unfoldings of the tensor:
T is rank-1 if and only if all unfoldings of T are rank-1 [3].

Another characterization of (6) that leads to a more efficient
method is given in terms of the "frequencies" ωi :=∠λi and
ωw,i := ∠λw,i of B(λ ) and B(λw), respectively. From (6),
we have the following linear relation among ωw,i’s and ωi’s

ωw,i =
d

∑
j=1

ωki, j
(mod 2π).

Therefore, there is an nw × n matrix K, such that

ωw = Kω (mod 2π). (9)

Relation (9) shows that the problem of extracting B(λ )
from B(λw) can be solved by computing the frequencies of
B(λw) and solving a system of linear equations. The order-
ing of the ωw’s however is unknown, so that all permuta-
tions of the ωw’s should be tested for existence of an exact
solution. (The order of the to-be-found frequencies ω is not
important.) This method requires the same number of sub-
problems to-be-solved as in the procedure using Corollary 2.
The subproblem (9) however is a linear system, which is
simpler and faster to solve than the rank-1 factorization of
a symmetric tensor.

4.3 Computation of the subsystem g from B(λw), B(λ )

Finally computing the nonlinear function g requires a simul-
taneous rank-1 factorization of d tensors. General theory and
methods, called structured data fusion, for solving simulta-
neous tensor factorization problems is developed in [17]. In
general, the structured data fusion problem has no analytical
solution and requires iterative solution methods. Applied to
the autonomous Wiener system identification problem, how-
ever, when g contains a first and/or second order terms the
structured data fusion problem has a trivial solution. When
g has a first order term, the coefficients θ can be obtained
directly from the coefficients γ in (8) without extra compu-
tations. When g has a second order term, the coefficients θ
can be obtained from the coefficients γ in (8) by a Cholesky
factorization of a symmetric matrix constructed from the γ’s.

Note 3 The method presented in this section is for exact
identification. In order to show its performance in the case
of measurement noise, in Section 5 we show results of a
Monte-Carlo simulation. Another issue for practical appli-
cation of the method is robustness to modeling errors. Al-
though this is a difficult problem to analyze theoretically,
there are empirical tests that can indicate the presence of
modeling errors in an identified model, e.g., assuming that

the measurement noise is white, colored residuals indicate
the presence of modeling errors, see [8, Ch. 16, page 512].

5 Numerical example

The autonomous Wiener system Bw(λ ,θ ) used in the sim-
ulation example consists of a second order linear subsystem
with eigenvalues λ1,2 =−0.5±0.7i and a (dead zone) non-
linear subsystem defined by the third order polynomial

g(z) = θ0 +θ1z+θ2z2 +θ3z3,

with coefficients θ =
[
1 1 1 1

]⊤
.

According to Theorem 1, Bw(λ ,θ ) is included in a linear
time-invariant system of order

nw ≤

(
n+ d

d

)
=

(
5

3

)
= 10. (10)

In order to verify this property empirically, we gener-
ate a T = 25 samples long trajectory yd of the system
Bw(λ ,θ ) due to a random initial condition and check the
rank of the square Hankel matrix H13(yd). The fact that
rank

(
H13(yd)

)
= 10 confirms (10).

Next, we verify (6), namely the statement that the eigen-
values λw of the embedding system are products of up to
d eigenvalues λ of the linear subsystem. First, using an ex-
act identification method, e.g., Kung’s method described in
Section 4, we obtain the linear time-invariant system B(λw)
that contains Bw(λ ,θ ). Then, we form the set

{
λk0

λk1
· · ·λkd

| λ0 := 1 and k0,k1, . . . ,kd ∈ { 0,1 . . . ,n}
}

(11)
of all products of up to d eigenvalues of B. Finally, we
compare the identified eigenvalues λw and the theoretically
predicted ones (11). For the simulation example, described
above, we confirm that they coincide, see Figure 1.

Fig. 1. The eigenvalues λw (plotted as red ×’s) of the embedding
system coincide with the products (plotted as blue ◦’s) of up to d
eigenvalues of the linear subsystem B(λ ). + — eigenvalues λ ,
dotted line — unit circle.

For higher values of n and d it is possible to obtain after
identification from data only a subset of the eigenvalues of
Bw. This is due to ill-conditioning of the identification prob-
lem and the finite precision arithmetic used in the numerical
computations. The problem can be partially resolved using
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data of multiple experiments generated by properly selected
initial conditions (design of the experiments). However, the
ill-conditioning of the system identification problem remains
an important practical issue that will be addressed elsewhere.

In order to study the robustness of λ̂w to measurement noise,
next, we add to the exact output y white Gaussian noise with
standard deviation s = 0.25. Figure 2 shows the exact eigen-
values of the embedding system (◦) and the computed ones
(×) by Kung’s method for 25 different noise realizations.
The scatter plots of the estimated eigenvalues indicates the

sensitivity of λ̂w to the noise. Eigenvalues close to the unit
circle seem to more difficult to estimate as their estimates
have large variances.

Particularly difficult to estimate is the eigenvalue at 1, which
comes from the constant term in the static nonlinearity.

Fig. 2. ◦—true λw, ×—25 estimates λ̂w, obtained with Kung’s
method. Eigenvalues that are close to the unit circle are more
sensitive to additive noisy in the output data. The poorly estimated
poles are the ones for λw,i = 1.

We define the relative parameter estimation error

e = ‖θ̄ − θ̂‖/‖θ̄‖,

where θ̄ = [ 1 1 1 1 ]⊤ is the true system’s parameter vec-

tor and θ̂ is the normalized estimated parameter vector by

Kung’s method. (In order to avoid the nonuniqueness of θ̂ ,

we impose the normalization θ̂0 = 1.)

Figure 3 shows the averaged over 500 Monte-Carlo repeti-
tions parameter estimation error as a function of the noise-
to-signal ratio (= 1/SNR). The result shows a typical for
subspace methods gradual increase of the error. After a
threshold noise level, the increase of the error is faster. The
subspace method "works well" up this threshold value. In
the numerical example shown in Figure 3 the threshold is
around SNR= 77dB, which is achieved only in high-quality
measurement environments. The result suggests that the sub-
space approach is sensitive to disturbances making it im-
practical for real-life applications.

The high sensitivity of the estimated model to noise is due
to the fact that the system is of high order (nw = 10) relative
to the length of the data (T = 25). Since the data is collected
from a transient response, archiving better results by measur-
ing longer is not an option. This leads to an ill-conditioning
of the problem, an issue that is independent of a particular
method being used for solving the problem. As explained in
Section 4.1, one way to avoid the ill-conditioning issue is to
measure data from multiple experiments. Also, the sensitiv-
ity of the subspace method can be reduced by using extra
prior knowledge about the spectrum of the true system, in
particular the fixed eigenvalue at 1.

0 0.5 1

10
-4

0

0.1

0.2

0.3

0.4

0.5

1 / SNR

e

Fig. 3. The method delivers exact result for noise-free data. The
estimation error increases as a function of the noise-to-signal ratio.
After a threshold SNR, the increase is faster. The method "works
well" up this threshold value. Without using extra prior knowledge
about the spectrum the threshold is around 77dB.

6 Conclusion

We showed that the behavior of an autonomous Wiener sys-
tem with polynomial nonlinearity is included in the behav-
ior of a finite-dimensional linear time-invariant system. The
order of the embedding linear system depends combinatori-
ally on the order of the linear subsystem and the degree of
the static nonlinearity. The relation between the eigenvalues
of the embedding system and the linear subsystem is given
by a rank-1 factorization of a symmetric tensor: the unique
elements of the tensor are the eigenvalues of the embedding
system and the factors contain the eigenvalues of the lin-
ear subsystem. The result suggests an autonomous Wiener
system identification procedure that is based on linear time-
invariant system identification followed by solution of a sys-
tem of linear equations.

Challenges that need to be addressed in order to make this
procedure practically useful are ill-conditioning of the linear
identification step and combinatorial number of systems that
have to be solved for the computation of the eigenvalues of
the linear subsystem from the eigenvalues of the identified
system. Future work includes modification and extension
of the method to approximate identification of autonomous
Wiener systems, statistical analysis of the resulting method
in the output error setup, and generalization of the results to
Wiener systems with inputs as well as initial conditions.
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