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Abstract

Subspace identification methods may produce unreliable model estimates when a small number of noisy mea-

surements are available. In such cases, the accuracy of the estimated parameters can be improved by using prior

knowledge about the system. The prior knowledge considered in this paper is constraints on the impulse response.

It is motivated by availability of information about the steady-state gain, overshoot, and rise time of the system,

which in turn can be expressed as constraints on the impulse response. The method proposed has two steps: 1) es-

timation of the impulse response with linear equality and inequality constraints, and 2) realization of the estimated

impulse response. The problem on step 1 is shown to be a convex quadratic programming problem. In the case

of prior knowledge expressed as equality constraints, the problem on step 1 admits a closed form solution. In the

general case of equality and inequality constraints, the solution is computed by standard numerical optimization

methods. We illustrate the performance of the method on a mass-spring-damper system.

Keywords: system identification, subspace methods, prior knowledge, behavioral approach.

1 Introduction

The main goal of this paper is to improve the efficiency of standard subspace algorithms when the user has prior

information about the process to be identified. This information may be obtained from the laws of physics governing

the system, preliminary experiments such as a step response or a response to a sinusoidal input signal, or from an
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expert knowledge. For example, the user may know the steady-state gain, the settling time, or the dominant time

constant of the system. The developed identification method is a generic modeling tool and is not limited to a specific

applications area. Indeed, any application can benefit from exploiting prior knowledge in the identification process,

provided that 1) such prior knowledge is available and 2) there is a method that can use it.

Prior knowledge about a system can be expressed naturally as constraints on its behavior, e.g., overshoot and rise

time are defined in terms of the step response [14]. In parametric identification, however, the model is represented

by a parameter vector—coefficients of a transfer function or a state space representation. The identification problem

then becomes a parameter estimation problem and inclusion of the prior knowledge requires its re-formulation as

constraints on the parameter vector. This may be nontrivial and leads to more complicated optimization problems.

Indeed, linear constraints on the system’s behavior often result in nonlinear constraints on the parameter vector [17].

When we deal with subspace identification, it is difficult to introduce such prior knowledge directly into the model

structure. Subspace identification does not resort to an explicit cost functions and uses a state space representation of

the system that is known up to a similarity transformation. Thus, introducing physically meaningful prior information

into a state space model to-be-estimated by a subspace identification algorithm seems to be a challenging problem.

In this paper, we bypass the difficulties related to inclusion of prior knowledge in parameter estimation by the

following a two-step method:

1. estimation of the impulse response, and

2. realization of the estimated impulse response.

The prior knowledge is imposed on the estimated impulse response in step 1. The method is based on a result from

[11], where it is shown that, for exact data, the impulse response of a linear time-invariant system can be computed

directly from data by solving an overdetermined system of linear equations. In case of noisy data, generically the

system has no solution. Then, a heuristic subspace approach is to estimate the impulse response by solving the system

approximately in the least squares sense. We refer to this approach as data-driven impulse response estimation.

As shown in the paper, imposing prior knowledge in the method of [11] leads to a convex quadratic programming

problem, for which fast and efficient methods exist (the active-set methods [9, Chapter 23], [3, Chapter 5], [5] and

the interior point methods [15, 4]). In the case of prior knowledge expressed as equality constraints, the data-driven

impulse response estimation problem is a constrained least squares problem and admits a closed form solution (see

Section 4.1).

Once the impulse response is estimated, computing the system’s parameters of a state-space representation is

a classical realization problem [6, 21]. We use Kung’s algorithm [8], which involves computation of the singular

value decomposition (SVD) and solution of a least squares problem. The overall method requires solution of a least

squares problem (in case of equality constraints) or a convex quadratic programming problem (in case of inequality

constraints), an SVD, and another least-squares problem. The overall computational cost of the method is comparable
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to that of classical subspace methods.

In the context of subspace system identification, prior knowledge about stability and passivity of the model is

considered in [10, 7]. The approach used in [10, 7] consists in including a regularization term in the least-squares

cost function for the estimation of the model parameters. The main result is that, for sufficiently large values of the

regularization parameter, the identified model is stable and passive. More recently subspace identification with prior

knowledge was considered in [18, 2, 1]. In [2, 1], prior knowledge about the steady-state gain of the system is taken

into account by a modified PO-MOESP algorithm, where a constrained least squares problem is solved. The approach

of [18] generalizes the regularization approach of [10, 7] to a Bayesian framework for including prior knowledge

about the parameter vector. The method however involves a solution of a nonconvex optimization problem, which

makes it comparable to the prediction error methods.

The two-step method proposed in this paper is similar to the method of Alenany et al. [1]. The latter is also based

on estimation of the impulse response by a subspace algorithm, however, it involves a truncation of an infinite sum,

which results in approximate impulse response estimate. In contrast, the method proposed here yields exact results

when the data is exact under standard identifiability assumptions: persistency of excitation and controllability (Section

3).

Other advantages of the method proposed are the computational cost and simplicity of implementation. The least

squares problem in our approach (see (3)) is smaller dimensional than the least squares problem in the method of

Alenani et al., see equation (21) in [1]. This is due to the lower block triangular Toeplitz structure of the estimated

parameter matrix. In order to take into account the structure Alenani et al. vectorize the system of equations. This

is at the price of multiplication of the problem dimensions and complicated (Kronecker) structure of the resulting

coefficients matrices. In contrast, equation (3) is an unstructured least squares problem that can be solved without

vectorization. Our method is implemented in Matlab and is publicly available. The core part of the code is based on

the formula of the analytical solution (6) and is listed in the appendix. The implementation of the method of Alenany

for general equality constraint (equation (28) in [1]) seems nontrivial. The authors informed us that it is currently

implemented only for prior knowledge in the form of a steady-state gain.

2 Preliminaries and notation

The set of real numbers is denoted by R and the set of natural numbers by N. R
m×n is the set of m× n real-valued

matrices. 0m×n denotes the m×n zero matrix and A+ denotes the Moore-Penrose pseudoinverse of the matrix A. The

set of infinite vector-valued time series with q variables is denoted by (Rq)N.

We use the behavioral notion of a dynamical system. A discrete-time dynamical system B with q variables is

a subset of the signal space (Rq)N, see [16]. The notation B|[t1,t2] stands for the restriction of the behavior on the
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interval [t1, t2], i.e.,

B|[t1,t2]:= {w ∈ (Rq)t2−t1 | there are wp and wf, such that wp ∧w∧wf ∈ B },

where wp ∧w is the concatenation of the trajectories wp and w.

We assume that a trajectory w of B has an input/output partition w = [ u
y ], with m inputs and p outputs, where

q = p+m. In general, a permutation Πw of the variables is needed in order to have all inputs as the first variables.

A finite dimensional linear time-invariant system B is a closed shift-invariant subspace of (Rq)N. The in-

put/state/output representation of a linear time-invariant system B is denoted by

Bi/s/o(A,B,C,D) := {(u,y) | there is x such that ẋ = Ax+Bu and y =Cx+Du}.

The order of the system is the smallest state dimension n = rowdim(x). The lag of a linear time-invariant system is

the observability index of the system [13].

The Hankel matrix with t block rows, composed of the sequence w ∈ (Rq)T is denoted by

Ht(w) :=




w(1) w(2) · · · w(T − t +1)

w(2) w(3) · · · w(T − t +2)

w(3) w(4) · · · w(T − t +3)
...

...
...

w(t) w(t +1) · · · w(T )




.

The time series u =
(
u(1), . . . ,u(T )

)
is persistently exciting of order L if the Hankel matrix HL(u) is of full row rank.

In general, quantities marked with bar (e.g., h̄) refer to noise free or true values. Quantities marked with hat

(e.g., ĥ) refer to estimates of the true values, and quantities marked with tilde (e.g., h̃) refer to estimation errors, or

perturbation on the true value due to noise.

3 Impulse response estimation

In this section, we consider the problem of computing the first η + 1 samples
(
h(0),h(1), . . . ,h(η)

)
of the impulse

response

h =
(
h(0),h(1),h(2), . . .

)
, where h(t) ∈ R

p×m

of a linear time-invariant system B from a finite trajectory

wd :=
(
wd(1), . . . ,wd(T )

)

of the system.

Lemma 1 ([20]). Let B be a linear time-invariant system of order n with lag ℓ. Under the following assumptions:

4



1. the data wd is exact, i.e., wd ∈ B,

2. the system is B is controllable, and

3. the input component ud of the trajectory wd is persistently exciting of order n+ ℓ+1,

the image of the Hankel matrix Ht(wd) is the space B|[1,t] of all t-samples long trajectories of the system B, i.e.,

image
(
Ht(wd)

)
= B|[1,t].

Let ei be the i-th unit vector, δ be discrete-time unit pulse, and hi be the i-th column of the impulse response h.

Then,

(0, . . . ,0)︸ ︷︷ ︸
ℓ

∧(eiδ ,hi), for i = 1, . . . ,m,

are trajectories of B. The prefix of ℓ leading zero samples to the trajectories (eiδ ,hi) fixes the zero initial conditions,

see [12, Lemma 1]. Then, by Lemma 1, there exist vectors g1, . . . ,gm, such that

Hℓ+η+1(wd)gi =




0qℓ×1
 ei

hi(0)





0m×1

hi(1)




...
 0m×1

hi(η)







, for i = 1, . . . ,m. (1)

Selecting the block-rows in (1) that correspond to the hi’s in the right-hand-side of the equations, we have

Hη+1(yd)︸ ︷︷ ︸
Yf

gi =




hi(0)

hi(1)
...

hi(η)




︸ ︷︷ ︸
Hi

, for i = 1, . . . ,m

or with

G :=
[
g1 · · · gm

]
and H :=

[
H1 · · · Hm

]
,

we have the matrix equation

YfG = H. (2)

Therefore, the problem of computing the first η + 1 samples of the impulse response h from the data wd reduces to

the one of finding the matrix G in (2).
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We aim to compute the unknown impulse response samples hi(0),hi(1), . . . ,hi(η) in the right-hand-side of (1).

Let V be the matrix formed by the block-rows of the right-hand-side of (1) that are specified and A be the matrix

formed by the corresponding block-rows of the left-hand-side in (1). We obtain a system of linear equations for G

A G =V. (3)

Under the conditions of Lemma 1, (3) has a solution. Moreover, by (2), for any solution G of (3), the matrix YfG

contains the first η + 1 samples of the impulse response of B. Equations (3) and (2) lead to an algorithm (see

Algorithm 1) for the computation of the impulse response from a general trajectory of the system.

Algorithm 1 Impulse response estimation. uy2h

Input: Trajectory wd, system lag ℓ, and number of impulse response samples η .

1: Solve the system of equations (3) and let G be the computed solution.

2: Let H = YfG.

Output: H .

Note 2 (Parameters ℓ and η .). The algorithm has two user defined parameters:

• the lag ℓ, which is a natural number reflecting prior knowledge about the model complexity, and

• the number η +1 of the estimated samples of the impulse response.

The parameters ℓ and η can be chosen independently, however, Assumption 3 of Lemma 1 imposes an upper bound

on them.

Note 3 (Recursive computation of the impulse response). Algorithm 1 finds the first η + 1 samples of the impulse

response; however, the persistency of excitation condition imposes a limitation on how big η can be. This limitation

can be avoided by a modification of the algorithm that computes iteratively overlapping blocks of ℓ+ 1 consecutive

samples of h and reconstructs the full sequence h =
(
h(0),h(1),h(2), . . .

)
from them.

4 Imposing prior knowledge

Next, we consider prior knowledge about the impulse response in the form of equality

EH = F (4)

and inequality

E ′H ≤ F ′
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constraints. For example with E =
[
1 · · · 1

]
, EH is an approximation of the steady-state gain of the system, and

with

E =




1 0 · · · 0 0 · · · 0

1 1
. . .

...
...

...

...
...

. . . 0
...

...

1 1 · · · 1 0 · · · 0




∈R
i×(η+1), (5)

EH contains the first i samples of the step response of the system.

4.1 Impulse response estimation with equality constraints

All solutions of (4) are a particular solution, e.g., the least-norm solution (EYf)
+F , plus a vector in the null space of

EYf. Therefore, G is of the form

G = (EYf)
+F +NZ, for some Z,

where the columns of N form a basis for the null space of EYf. From (3), we have

A
(
(EYf)

+F +NZ
)
=V.

Therefore,

Z = (A N)+
(
V −A (EYf)

+F
)
.

Finally, for the impulse response, we have

H = Yf
(
(EYf)

+F +N(A N)+
(
V −A (EYf)

+F
))

. (6)

4.2 Impulse response estimation with equality and inequality constraints

In the case of equality and inequality constraints, the problem is a quadratic program

minimize over g ‖A G−V‖

subject to EYfG = F and E ′YfG ≤ F ′.

(7)

It does not admit an analytical solution but due to convexity it can be solved globally and efficiently. We use an

active-set algorithm [5], which is implemented in the function lsqlin of Matlab. The resulting method for impulse

response estimation with linear equality/inequality constraints is summarized in Algorithm 2.

4.3 Impulse response realization h 7→ (Â, B̂,Ĉ, D̂)

After the estimation of the impulse response h from the input/output data w, we obtain a state space representa-

tion B(Â, B̂,Ĉ,D̂) of the identified model, using Kung’s method [8]. The resulting method proposed is outlined in

Algorithm 3. A MATLAB implementation of the method is available from:
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Algorithm 2 Impulse response estimation with linear equality/inequality constraints. uy2h_pk

Input: Trajectory wd, system lag ℓ, equality (E,F) and inequality (E ′,F ′) constraints, and number of impulse re-

sponse samples η .

1: if there are equality constraints only then

2: Compute H via (6).

3: else

4: Solve the quadratic program (7).

5: Let H = YfG

6: end if

Output: H .

Algorithm 3 Subspace identification with prior knowledge on the impulse response. uy2ss_pk

Input: Trajectory wd, equality (E,F) and inequality (E ′,F ′) prior knowledge, and system order n.

1: (wd,(E,F),(E ′,F ′)) 7→ Ĥ using Algorithm 2, compute an estimate ĥ of the impulse response.

2: (ĥ,n) 7→ (Â, B̂,Ĉ,D̂) using Kung’s method, compute the parameters of a state space representation of the system.

Output: Identified model Bi/s/o(Â, B̂,Ĉ,D̂).

http://homepages.vub.ac.be/~imarkovs/software/detss_pk.tar

Note 4. The final model identified by Algorithm 3 may not satisfy the constraints due to approximate realization on

step 2. In case of noisy data, the estimated impulse response ĥ on step 1 of Algorithm 3 is generically not exactly

realizable by a linear time-invariant system with order less than or equal to n. Then, step 2 involves an approximation.

The impulse response of the model B̂ := Bi/s/o(Â, B̂,Ĉ,D̂) is as a result generically not equal to ĥ and may not

satisfy the prior knowledge. In Section 5, we show the effect of Step 2 on the constraint satisfaction. The empirical

study shows that although the constraints are not exactly satisfied they are much better satisfied by the approximated

model computed by Algorithm 3 than they are by models computed by alternative methods that do not use the prior

knowledge. Moreover, taking into account the constraints on step one leads to a better estimation of the true data

generating system (measured in the H2-norm sense).

5 Numerical experiments

5.1 Simulation setup

In the numerical examples we use a mass-spring-damper system

m
d2

dt2 y+d
d
dt

y+ ky = u,

where the model parameters are chosen as m = 1, d = 1, and k = 10. The data is regularly sampled with a sampling

period 0.2sec from the continuous-time system. We denote with B̄ by discretized true data generating model. The
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identification data wd is obtained in the errors-in-variables setting:

wd = w̄+ w̃, where w̄ ∈ B̄, and w̃ is zero mean,white Gaussian process with covariance s2I.

Here w̄ is the “true value” of the trajectory wd. The input ū is a zero mean, white, random process with uniform

distribution in the interval [0,1]. The data consists of T = 50 samples and the noise standard deviation is s = 0.01.

5.2 A single equality constraint

In this subsection, we consider that prior knowledge is in the form of a single equality constraint (4), with E :=
[
1 · · · 1

]
and F := EH̄, with H̄ being the matrix of the first η +1 impulse response samples of the data generating

system B̄. Note that EH = ∑
η
t=0 h(t) is the η-th sample of the step response and for η → ∞, EH converges to the

steady-state gain of the system. Therefore, for large η , the equality constraint EH = F can be used to impose prior

knowledge of the steady-state gain.

Using the data wd and the prior knowledge specified by the pair (E,F), we estimate the model B̂ with Algorithm

3 (uy2ss_pk). For comparison, we also estimate models using two alternative methods:

• uy2ss — the two-stage method that is not using the prior knowledge, and

• n4sid— the N4SID method [19], implemented in the Identification Toolbox of Matlab, called with the default

parameters.

The experiment is repeated N = 100 times with different noise realizations (Monte-Carlo simulation). Let B̂(k) be the

identified model in the kth repetition of the experiment and let ĥ(k) be the estimated impulse response. Denote with

‖B‖ the 2-norm of the system B. We compare the average relative estimation errors

εB =
1
N

N

∑
k=1

‖B̄− B̂(k)‖

‖B̄‖
and εh =

1
N

N

∑
k=1

‖H̄ − Ĥ(k)‖

‖H̄‖F

of, respectively, the identified system and the identified first η +1 = 10 samples of the impulse response. In addition,

we show the satisfaction of the constraint EĤ = F by the Frobenius norm of the residual errors

ε ′
B =

1
N

N

∑
k=1

‖EĤ
(k)
B

−F‖F and ε ′
h =

1
N

N

∑
k=1

‖EĤ(k)−F‖F,

where Ĥ
(k)
B

is the impulse response of the identified model B̂(k). As pointed out in Note 4, with noisy data, in general,

Ĥ(k) 6= Ĥ
(k)
B

due to approximation in the computation of the state space realization of the model.

The results are reported in Table 1. In the performance measures εB and εh, the proposed Algorithm 1

(uy2ss_pk) improves the results of Algorithm 2 (uy2ss). However, using a single equality constraints, in this

simulation example n4sid produces a better result than uy2ss_pk. In the next section, we show that with two or

more equality constraints uy2ss_pk outperforms n4sid.
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The equality constraints are satisfied exactly by the estimated impulse response obtained with Algorithm 1 but

not by the estimated impulse response obtained with Algorithm 2. Furthermore, the estimated model of Algorithm 3

(uy2ss_pk) approximates the equality constraint better than the alternative methods (uy2ss and n4sid) that are

not taking into account the prior knowledge.

uy2ss_pk uy2ss n4sid

εB 0.1385 0.1572 0.1031

εh 0.1358 0.1565 —

ε ′
B

0.0025 0.0069 0.0034

ε ′
h 0.0000 0.0068 —

Table 1: Average relative estimation errors εB and εh and absolute residual errors ε ′
B

and ε ′
h for the subspace method

using one equality constraint as a prior knowledge uy2ss_pk, not using the prior knowledge uy2ss, and for the

N4SID method n4sid.

5.3 Multiple equality constraints

The results of the Monte-Carlo simulation in Section 5.2 show that prior knowledge in the form of a single equality

constraint improves the estimation accuracy of both the impulse response as well as the identified system. In this

section, we show the estimation errors as a function of the number of equality constraints. We use the simulation

setup described in Section 5.1 with the matrix E now chosen as (5). In this case, F = EH̄ is the vector of the first i

samples of the step response of the true data generating system B̄.

The results in Figure 1 show that the estimation error for the subspace method using the prior knowledge reduces

to zero as the number of equality constraints become i = 10. Indeed, in the case i ≥ η + 1, H̄ can be computed by

solving the system of linear equations EH = F , without using the (noisy) data wd. In general, the approximation

error of Algorithm 3 (uy2ss_pk) decreases when more constraints are used, while the approximation error of the

alternative methods that are not using the prior information is independent of the number of constraints.

Figure 2 shows the satisfaction of the equality constraint EH = F in terms of the absolute residual errors ε ′
h and

ε ′
B

. As in the case of a single equality constraint, the results show that the equality constraints are satisfied exactly on

the first step of Algorithm 3 (uy2ss_pk) and although they are only approximately satisfied by the estimated model

of Algorithm 3 (see Note 4), the residual error is smaller than that of the alternative methods.

5.4 Inequality constraints

In this section, we consider prior knowledge in the form of upper and lower bounds on the impulse response. The

simulation setup is as described in Section 5.1, however, now η = 20 samples of the impulse response are estimated
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Figure 1: The approximation error of Algorithm 3 (uy2ss_pk) decreases when more constraints are used. In

contrast, the approximation error of the alternative methods that are not using the prior information is independent of

the number of constraints.
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Figure 2: Left: the equality constraints are satisfied exactly on the first step of Algorithm 3 (uy2ss_pk). Right: The

equality constraints are better satisfied by the estimated model of Algorithm 3 then they are by the alternative methods

(uy2ss and n4sid).

and the trajectory wd has T = 100 samples. The prior knowledge about the impulse response and the true impulse

response h̄ are shown in Figure 3, left. On the same plot are superimposed the estimated impulse responses by

Algorithms 2 (uy2h) and 3 (uy2h_pk). Figure 3, right shows the true impulse response and the impulse responses

of the models identified by the three methods compared: uy2ss_pk, uy2ss, and n4sid. The numerical values of

the average relative estimation errors εB and εh are given in Table 2. The results empirically confirm the advantage of

using the given prior knowledge on the impulse response for the overall identification problem.
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Figure 3: Estimation with inequality constraints. Left — true impulse response (solid line), prior knowledge (dotted

lines), and estimates by Algorithm 3 with (uy2h_pk) and without (uy2h) prior knowledge; Right — estimated

impulse responses. The constraints are satisfied by the model identified with Algorithm 3 but they are violated by the

model identified with the N4SID method.

uy2ss_pk uy2ss n4sid

εB 0.2291 0.2611 1.4984

εh 0.2022 0.3235 —

Table 2: Average relative estimation errors εB and εh for the methods using inequality constraints as a prior knowledge

(uy2ss_pk), and not using the prior knowledge (uy2ss and n4sid).

6 Conclusions

We considered prior knowledge about the to-be-identified model in the form of linear equality and inequality con-

straints on the impulse response. The method proposed has two steps: 1) estimation of the impulse response, and

2) realization of the estimated impulse response. Using the data-driven method for impulse response estimation of

[11], incorporating prior knowledge involves solution of a convex quadratic programming problem. In case of equal-

ity constraints only, the problem allows an analytic solution. In the more general case of equality and inequality

constraints, the problem can be solved globally and efficiently by existing optimization methods. The resulting algo-

rithm has computational complexity that is comparable to that of classical subspace algorithms. Numerical examples

show the improved estimation accuracy as a result of using the prior knowledge. Statistical analysis of the proposed

computational method (consistency, uncertainty bound, etc.) is a topic of future work.
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