The benthic foraminiferal response to the mid-Maastrichtian event in the Maastrichtian-type area
Vancoppenolle, Iris; Vellekoop, Johannes; Doubrawa, Monika; Kaskes, Pim; Sinnesael, Matthias; Jagt, John W.M.; Claeys, Philippe; Speijer, Robert

Published in:
EGU General Assembly 2021 Conference Abstracts

Publication date:
2021

Document Version:
Final published version

Citation for published version (APA):

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 31. Oct. 2023
The benthic foraminiferal response to the mid-Maastrichtian event in the Maastrichtian-type area

Iris Vancoppenolle1, Johan Vellekoop1,2, Monika Doubrawa1, Pim Kaskes2, Matthias Sinnesael2,3, John Jagt4, Philippe Claey2, and Robert P. Speijer1

1Division of Geology, KU Leuven, Heverlee, Belgium
2Analytical and Environmental Geochemistry, VUB, Brussels, Belgium
3Department of Earth Sciences, Durham University, Durham, United Kingdom
4Natural History Museum Maastricht, Maastricht, Netherlands

The mid-Maastrichtian event (MME), ~69 Ma, represents a global negative δ^{13}C excursion which is linked to the extinction of inoceramid bivalves and latitudinal migration of planktonic foraminifera. While the actual extinction of inoceramids was diachronous across the globe, the decline of this important fossil group is generally linked to environmental changes across the mid-Maastrichtian interval. The MME is potentially related to changes in oceanic circulation. While the MME, and associated decline of inoceramids, has been recorded from a variety of deep-sea sites, little is known about the MME signature in shallow epicontinental environments.

Recently, the MME has been recorded for the first time from the type-Maastrichtian, in the Maastricht-Liège region (The Netherlands and Belgium), in newly generated bulk carbonate carbon isotope records from the Hallembaye quarry (NE Belgium) and former ENCI quarry (SE Netherlands). These quarries are approximately 8 km apart. The type-Maastrichtian succession was deposited in a shallow subtropical sea during the Late Cretaceous. As the stratigraphic position of the MME is now constrained in the type-Maastrichtian record, this succession presents an interesting opportunity for studying the signature of this event in a relatively shallow epicontinental basin. Therefore, we are generating high-resolution benthic foraminiferal assemblage data and species-specific carbon and oxygen stable isotope records across the MME interval at these two quarries, in order to unravel biotic and environmental expressions of the MME in the Maastrichtian type area. This is done using the high-resolution sample set acquired in the context of the Maastrichtian Geoheritage Project. Our preliminary data show a distinctive acme of the benthic foraminifer \textit{Cuneus trigona} in the interval that roughly that corresponds to the MME, potentially caused by a change in quality of the organic matter that reached the sea bottom, highlighting local environmental and oceanographic perturbations across this event.