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Abstract 

Purpose:  

To evaluate the overall survival prognostic value of preoperative 18F-

fluorodeoxyglucose positron emission tomography (PET) in breast cancer, as 

compared with the lymph node ratio (LNR). 

Methods: 

Data was abstracted at a median follow-up 14.7 years from a retrospective 

cohort of 104 patients who underwent PET imaging before curative surgery. 

PET-Axillary|Sternal was classified as PET-positive if hypermetabolism was 

visualized in ipsilateral nodal axillary and/or sternal region, else as PET-

negative. The differences of 15 years restricted mean survival time ∆RMST 

according to PET and LNR were computed from Kaplan-Meier overall survival. 

The effect of PET and other patients' characteristics was analyzed through 

rankit normalization, which provides with Cox regression the Royston-

Sauerbrei D measure of separation to compare the characteristics (0 indicating 

no prognostic value). Multivariate analysis of the normalized characteristics 

used stepwise selection with the Akaike information criterion. 

Results: 

In Kaplan-Meier analyses, LNR >0.20 versus ≤0.20 showed ∆RMST=3.4 years, 

P=0.003. PET-Axillary|Sternal positivity versus PET-negative showed a 

∆RMST=2.6 years, P=0.008. In Cox univariate analyses, LNR appeared as 
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topmost prognostic separator, D=1.50, P<0.001. PET ranked below but was 

also highly significant, D=1.02, P=0.009. In multivariate analyses, LNR and 

PET-Axillary|Sternal were colinear and mutually exclusive. PET-Axillary|Sternal 

improved as prognosticator in a model excluding lymph nodes, yielding a 

normalized-hazard ratio of 2.44, P=0.062.  

Conclusion: 

Pathological lymph node assessment remains the gold standard of prognosis. 

However, PET appears as a valuable surrogate in univariate analysis at 15 

years follow-up. There was a trend towards significance in multivariate analysis 

that warrants further investigation. 

Keywords 

Positron Emission Tomography; 18F-fluorodeoxyglucose; Predictive factor; D-

measure of prognostic separation; normalized hazard ratio; Prognostic ranking 

method; Lymph node ratio.  



5 

Breast preoperative PET  5/47 

Introduction 

 18F-fluorodeoxyglucose (18FDG) is a radiopharmaceutical positron emitter 

glucose analog that is taken up by cells through the glucose transport and 

metabolism [1]. Tissues with increased glycolytic activity can be detected and 

displayed by three-dimensional image reconstructed through positron emission 

tomography (PET). In breast cancer, high metabolism shown by 18FDG-PET 

relates with unfavorable surgical-pathological characteristics [2, 3]. Meta-

analyses evidenced that preoperative 18FDG-PET detected occult distant 

metastases in early breast cancer and could predict higher risks of recurrence 

or progression [4]. However, the value of 18FDG-PET with respect to prediction 

of overall survival has been contradictory, possibly due to short follow-up [5, 

6]. Out of 15 studies with 3574 patients [5], and 20 studies with 3115 patients 

[6], the pooled average follow-up were 48.7 and 39.6 months, respectively. 

Likewise, our previous study of preoperative PET found regional nodal 

hypermetabolism was significantly associated with a poorer disease-free 

survival but failed to show a difference in overall survival with a follow-up of 59 

months [3].  

 Demonstrating a long-term impact on overall survival is critical if the 

role of preoperative 18FDG-PET is to be firmly established. The present study 

primary objective is to re-assess patterns of 18FDG-PET before surgery as 

predictors of long-term overall survival. The second objective is to compare 

18FDG-PET with other prognostic markers, with special focus on the lymph 
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node ratio. A third objective is to evaluate the value of 18FDG-PET in very early 

breast cancer presenting with stage T1 (tumor size ≤ 20 mm). 
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Patients and Methods 

Context 

 This single center study was approved by the Ethics Committee of the 

Universitair Ziekenhuis Brussel (UZ Brussel; registration ISRCTN17962845). 

The protocol was designed to be compliant with the Reporting 

Recommendations for Tumor Marker Prognostic Studies (REMARK) . Patients 

treated in 2002-2008 were previously identified, representing a population 

cohort of 104 cases [3]. The patients selected had histologically confirmed 

non-metastatic primary breast cancer and had 18FDG-PET performed prior to 

surgery. Exclusion criteria were previous history of cancer, primary sarcoma of 

the breast, noninvasive carcinoma, palliative surgery for symptom control, and 

metastatic disease demonstrated by imaging modes other than 18FDG-PET.  

Data 

 Data collected for the study were age at diagnosis, sex, histological 

tumor type, pathological grade, hormone receptor status, Her2/neu status, 

lymphovascular invasion, tumor laterality, tumor location, stage, pathological 

tumor size, stage, number of examined axillary lymph nodes (nex), number of 

involved axillary lymph nodes (npos), neoadjuvant therapy, type of surgery, 

adjuvant chemotherapy, adjuvant hormone therapy, and adjuvant radiation 

therapy. Bilateral breast cancer retained only the side with more advanced 

tumor. The lymph node ratio was computed as npos/nex, and the log odds 
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positive nodes, aka empirical logistic transform, as Loge [(npos+0.5)/(nex–

npos+0.5)] [7]. Dichotomized lymph node ratio used a cut-point of 0.20 [8]. 

PET 

 Whole-body 18FDG-PET images were acquired 60 minutes after 370–536 

MBq (average 464 ± 56 MBq) tracer injection using the Siemens ECAT Accel 

PET scanner [9]. PET reports were visually assessed for the presence or 

absence of increased metabolism in different regions of interest: ipsilateral 

breast (PET-Breast), ipsilateral axillary and/or supraclavicular region (PET-

Axillary), and sternal-mediastinal region (PET-Sternal). We also considered the 

Axillary and Sternal regions jointly as a single combined region of interest 

(PET-Axillary|Sternal). We recorded positivity/negativity in each region as the 

presence/absence of increased activity in the region, regardless of activity 

elsewhere.  

Restricted mean survival time 

 Overall survival was analyzed by the time from diagnosis to censoring at 

last date known alive or to death from any cause. The proportion of survivors 

over time was estimated using the Kaplan-Meier method [10]. The log-rank 

test was used to compare the survivals. The expectation of life limited to n 

years, aka restricted mean survival time (RMST) were computed to 15 years 

using the Irwin method [11]. The RMST equates the area under a survival 

curve [12]. The difference ∆RMST between two survival curves is the area 

between the curves, providing a Kaplan-Meier based measure of separation 
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that indicates how widely the curves differ. The two-sided z-test was used to 

compare the RMST's. 

Rankit transform, normalized hazard ratio, D measure 

 Next to the ∆RMST, we considered the Royston-Sauerbrei D measure of 

prognostic separation. The variables representing the measurements of 

patient's characteristics were transformed into expected values of the standard 

normal order statistics (rankits), which were then scaled by kappa, where 

kappa=sqrt(8/PI) ≃ 1.60 [13]. Rankit substitution converts data into its 

equivalent standard normal distribution. The mean of a half-normal standard 

distribution is sqrt(2/PI) = sqrt(8/PI)/2 = kappa/2. Dividing the rankits by 

kappa ascertains that the mean of the scaled half normal values is 0.5 for 

positive rankits, and –0.5 for negative rankits. Hence, a regression on the 

scaled rankits is comparable to a regression on data dichotomized into two 

equal sized groups. Cox regression applied to the scaled rankits provides the 

normalized hazard ratios (nHR) of the variables. The absolute of the log of the 

normalized hazard ratio is Royston-Sauerbrei's D measure of prognostic 

separation [13]. Test of D null (no prognostic value) is based on its standard 

error derived from the Cox regression. 

Multivariate selection 

 The joint effect of variables transformed into scaled rankits was 

analyzed in multivariate Cox regression models. Stepwise regression used the 

Akaike Information Criterion (AIC) to select variables. The AIC is computed as 
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twice the model's number of parameters, minus twice the model's log 

likelihood [14]. A variable is considered informative and is included if the 

penalty of adding a parameter is offset by a sufficient increase of log 

likelihood. We ran alternative AIC stepwise regressions that included or 

excluded pathology lymph node data. Bootstrap resampling was applied to 

verify the stability of models [15]. 

Software 

 All analyses used R version 3.6.3 [16]. Missing variables in over 20% of 

the records were excluded (Supplementary Figure SF1). Multiple imputation by 

chained equations was used for the remaining missing variables [17]. PET data 

were not imputed. The software packages used were survival (logrank, Kaplan-

Meier, Cox regression) [18], survRM2 (restricted mean survival time) , 

survminer (survival curves) with ggplot2 (general plotting) , bootStepAIC with 

MASS (stepwise AIC) [15], and mice (multiple imputation) [17]. Variables 

transform into rankits used an in-house function, rnktt, shared with the study 

data, reproduced in Supplementary Material, Appendix A.   
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Results 

Patient characteristics 

 At the cutoff date of January 31, 2020, the median follow-up of the 104 

patients was 14.7 years, range 0–16.9. The patient characteristics are 

summarized in Table 1. Median age of the patients was 58 years, range 33–83. 

Bilateral breast cancer was diagnosed in 5 (4.8%) patients. Histology was 

predominantly invasive ductal in 84 (80.8%) patients, Neu score was 2+ 

versus 0-1 or unknown in 47 (45.6%). Primary systemic therapy was given to 

19 (18.3%) patients, radiotherapy to 96 (92.3%), adjuvant hormone therapy 

to 88 (84.6%). These characteristics did not differ between the two patient 

groups classified by tumor size ≤ 20mm vs > 20 mm. Other clinical 

characteristics that differed significantly, as listed in Table 1, reflect expected 

associations with tumor size, including advanced stage, lymph node 

involvement, receptor status, grade, lympho-vascular invasion, mastectomy, 

nodal examination. Likewise, PET positivity was more frequent in patients with 

tumors > 20 mm (Table 2). 

Overall survival 

 A total of 28 (26.9%) patients died (Supplementary Table ST1); death 

was associated with metastatic disease in 22 patients, and disease status was 

unknown in 6. The estimated 15-years overall survival of the whole patients' 
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population was 69.7% [95%CI: 60.8–80.0]. The restricted mean survival time 

at 15 years was 12.4 years [11.5–13.3]. 

Restricted mean survival time, PET 

 Patients presenting with PET-Breast positivity had no significantly 

different mortality as compared with PET-Breast negativity, log-rank P=0.678 

(Figure 1, top left panel). Patients presenting with PET-Axillary or PET-Sternal 

positivity had a significantly increased mortality, P=0.027 and P=0.005, 

respectively (Figure 1, top right and bottom left panel). The 15-years survival 

estimates by PET-Axillary positive was 56.9% [42.1–77.0] versus PET-Axillary 

negative 77.2% [66.9–89.2], and by PET-Sternal positive 33.3% [10.8–100] 

versus PET-Sternal negative 72.1% [63.1–82.5]. By PET-Axillary|Sternal 

positivity, the 15-years survival was 54.8% [40.5–74.3], versus 79.6% [69.4–

91.3] when PET-Axillary and PET-Sternal were both negative, P=0.006 (Figure 

1, bottom right panel). 

 The 15-years RMST's according to PET-Breast status did not differ 

significantly between PET-Breast positive and PET-Breast negative patients, 

∆RMST=–1.2 years (RMST PET negative – RMST PET positive), P=0.428. The 

RMST's differed significantly according to PET-Axillary status, 11.1 years 

among PET-Axillary positive, versus 13.2 years among PET-Axillary negative 

patients, ∆RMST=2.2 years, P=0.033. The RMST's also differed significantly 

according to PET-Sternal status and according to combined PET-

Axillary|Sternal status: RMST by PET-Sternal positive was 7.6 years versus 
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negative 12.7 years, ∆RMST=5.1 years, P=0.033, and RMST by PET-

Axillary|Sternal positive was 10.9 years versus negative 13.5 years, ∆RMST=2.6 

years, P=0.008. 

Restricted mean survival time, lymph node ratio 

 By comparison, a lymph node ratio higher than 0.20 (> 20% positive 

nodes) was associated with a 15-years RMST of 10.0 years, whereas a lymph 

node ratio ≤ 0.20 was associated with a RMST of 13.4 years, ∆RMST=3.4 years, 

P=0.003. This corresponds to a separation according to the lymph node ratio 

wider than the separation according to PET-Axillary|Sternal status. However, 

the ∆RMST by lymph node ratio and the ∆RMST by PET-Axillary|Sternal did not 

differ significantly, P=0.598. Figure 2 overlays the lymph node ratio survival 

curves with the PET-Axillary|Sternal survival curves previously computed 

(Figure 1, bottom right). In keeping with the non-significant difference in ∆RMST, 

Figure 2's pairwise comparisons show that low-risk lymph node ratio had 

survival comparable with negative PET-Axillary|Sternal, and high-risk lymph 

node ratio had survival comparable with positive PET. 

Subgroup analysis by tumor size 

 By subgroup analysis among patients with tumor size >20 mm, the PET 

mortality separation was wide with ∆RMST=3.0 years, P=0.015, comparable to 

the lymph node ratio ∆RMST=3.7 years, P=0.012, both concordantly with the 

logrank P-values (Supplementary Figure SF2, top panels). Among patients with 

tumor ≤20 mm, the PET separation was narrow and non-significant, ∆RMST=1.6 
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years and P=0.376, concordantly with the non-significant logrank P=0.390 

(Supplementary Figure SF2, bottom left panel). The lymph node ratio 

separation appeared wider, ∆RMST=4.6 years, however it was not significant 

P=0.124, in contrast with the significant logrank P=0.034 (Supplementary 

Figure SF2, bottom right panel).  

Normalized hazard ratio and D measure 

 The univariate Cox analysis of overall mortality is presented in Table 3, 

with the normalized hazard ratios (column nHR) computed from the rankit 

transformed variables, and the untransformed hazard ratios (column HR1), 

computed from untransformed variables. The ordering of Table 3 follows that 

of Table 1-2. The normalized hazard ratios and the untransformed hazard 

ratios are comparable, except with the continuous variables for which HR1 is 

affected by the unit scales used, but not nHR, and with two binary variables, 

Sex and PET-Sternal, which were associated with highly unbalanced 

distribution. All pathology indicators of lymph node involvement, notably stage, 

which is stratified by lymph nodes, were statistically significant. All three PET 

indicators of regional involvement, PET-Axillary, PET-Sternal, and combined 

PET-Axillary|Sternal, were also significant and were concordant with the 

logrank tests (Figure 1). 

 The D measures of prognostic separation were directly obtained from 

the absolute of the Log of Table 3's normalized hazard ratios. These are 

presented as forest plot in Figure 3, ordered from top to bottom, from the 
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largest D-measure to the smallest. The variables in the top half included all 

lymph node indicators (lymph node ratio topmost with D=log(4.46)=1.50, 

P<0.001), the 3 PET regional indicators (of which PET-Axillary|Sternal 

D=log(2.77)=1.02, P=0.009), pathology lymphovascular invasion, sex male, 

progesterone status, and age, which were all significant. 

Multivariate selection 

 Multivariate analyses were conducted on the normalized variables, 

excluding Sex because of the imbalance, 2 males vs 102 females, and 

excluding the PET-Axillary and PET-Sternal status which were combined into a 

single PET-Axillary|Sternal variable. Consequently, the starting model jointly 

evaluated 22 variables (Table 4). With 104 patients, that is an uninterpretable 

bloated model, yielding inconsistencies such as the number of positive nodes 

"significantly" associated with a reduced risk of death, normalized hazard ratio 

of 0.09 (Table 4). Pruning is required, which was done by stepwise regression. 

Out of the 22 variables, 5 were retained by AIC (Table 4, Model A): age, lymph 

node ratio, primary systemic therapy, adjuvant chemotherapy, and adjuvant 

hormone therapy, of which the lymph node ratio showed the highest reliability 

with 95% of bootstrap iterations testing significant, followed by adjuvant 

hormone therapy, reliability 71%, and age, reliability 60%. The stepwise 

regression was repeated on the same initial set of covariates but excluding the 

lymph node pathology variables from start (Table 4, Model B). The regression 
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also retained 5 variables, of which the most reliable were age (78%), 

progesterone receptor status (72%), and PET-Axillary|Sternal positivity (52%).  
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Discussion 

Main finding 

 This study adds to the evidence of an invaluable role of preoperative 

18FDG-PET in breast cancer [5, 6]. The most important predictor of mortality in 

breast cancer is nodal involvement as measured by the lymph node ratio [8, 

19]. To our knowledge, this is the first time that a head to head comparison 

with a marker shows a non-negligible prognostic value as compared with nodal 

ratios . Regional axillary or sternal PET positivity versus negativity was 

associated at 15 years with a ∆RMST of 2.6 years, i.e. a difference in prognosis 

of 2.6/15=17.3%. In comparison, a lymph node ratio of ≤0.20 (low risk) 

versus >0.20 (intermediate-high risk group) was associated with a ∆RMST of 3.4 

years, i.e. a difference in prognosis of 3.4/15=22.7%.  

 The lymph node ratio was superior to PET by all criteria, by D-measure, 

by univariate survival, by predicted time-lost, by multivariate stepwise 

regression, and by tumor size subgroups. The long duration of the lymph node 

ratio prognosis to 15 years also warrants a special note: it contrasts starkly 

with biomarkers such as IHC4 or Mammostrat, whose prognostic performances 

are limited to the first 5 years [20]. However, the lymph node ratio superiority 

margins compared to PET appears small. Moreover, the prognostic impact of 

PET is maintained at long term, survival curves continue to separate at over 15 

years (Figure 2). Balancing effectiveness for the purpose of prognostication 

would have to weigh optimal surgical-pathological staging, with the morbidity 
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of axillary exploration, versus PET which might allow preoperative treatment 

and dynamic monitoring [21], without the axillary surgical morbidity. 

Normalized hazard ratios 

 Rankits were introduced in 1944 as a statistical tool for the analysis of 

experiments, much like the probit transforms and normal probability plots 

[22]. The Royston-Sauerbrei approach provides at once a scaled normalized 

hazard ratio. Its absolute log, which they called D, is a measure of how widely 

prognostic groups are separated [13]. The 1.60 scaling provides an elegant 

interpretation of the normalized hazard ratios as variables virtually 

dichotomized into two equal-size groups, even when the variable is not so. The 

rankit transform assumes normal distribution, but the authors noted 

reasonable robustness against departures from normality [13]. The normalized 

hazard ratios are more easily interpretable than conventional hazard ratios. 

The normalized hazard ratios adjust for imbalances in binary variables (for 

example Table 3, Sex male unadjusted hazard ratio 8.28, was normalized 

4.10), and are not affected by change of scale in continuous variables (for 

example Table 3, the lymph node ratio hazard ratio 14.8 applies to a 

proportion range from 0 to 1, converted to percentage it would have been 

1.03=exp(log(14.8)/100) per 1% unit, yet the normalized hazard ratio would 

remain the same 4.46). The normalized hazard ratio facilitates a clinically 

meaningful direct comparison of prognostic markers, without affecting 
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significance test results (Table 3, columns P-nHR and P-HR1, identical values 

with binary variables, minor differences with continuous variables). 

A note on low frequency cases 

 Male breast cancer is often excluded from clinical trials. Authors have 

drawn attention to 18FDG-PET in men [3, 23]. Synchronous bilateral breast 

cancer likewise has often been excluded from preoperative PET studies. Two 

studies included bilateral cases, 1 of 59 patients,[24], and 5 of 194 patients 

[25]. Cases were counted twice, providing 60 and 199 breast cancers, 

respectively. Our patients included 5 bilateral cases, each counted only once to 

avoid duplicating the survival outcomes. Male breast cancer and bilaterality are 

of low frequency, we cannot make inferences, but we believe these should be 

reported to allow data accrual when studies will be pooled. 

Models' dependencies; false negatives 

 There are many dependencies between covariates (Table 1). Lymph 

node involvement and PET regional nodes positivity strongly correlate (Figure 

SF3). When two variables match one-on-one, both cannot appear in the same 

model. Removing the lymph node information from Model A uncovered the PET 

information in Model B. Interestingly, the literature counterpart of our models' 

what-if simulations can be found in a study that compared the prognostic 

utility of preoperative and immediate-postoperative PET [26]. Among 149 

patients who underwent 18FDG-PET before neoadjuvant therapy, PET positivity 

outside the primary tumor was associated with worse overall survival, 
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P=0.063, and worse disease-free survival, P<0.001. But among 126 patients 

who underwent 18FDG-PET after surgery and before any adjuvant therapy, no 

prognostic survival differences. Our study rejoins in the preoperative 

prognostic utility of 18FDG-PET; postoperatively, the prognostic value is 

superseded by the lymph node assessments. 

 Model A and B are likely overfitted, as shown by the bootstrap 

percentage significance. Each model included 2 variables that were significant 

in less than half of the iterations; they cannot be used for prediction. 

Nevertheless, the models can be informative for hypothesis building. We 

hypothesize that stage, lymph nodes and PET might be considered as 

expressions of tumor burden. We have previously modeled the effect of the 

percentage of involved nodes on the mortality in breast cancer as a random 

walk, arguing that the mortality observed with a given percentage is the result 

of accumulated effects of preceding nodal involvements [27]. Quantitative PET, 

not available in this study, could provide a dynamic information in future 

studies [21, 28]. 

 PET does not detect all sites of disease. In the breast, positivity was 

observed in 87 of 104 (83.7%) patients; there was no visualizable 

hypermetabolism in the other 17 (16.3%) patients (Table 2). The false 

negative rate is concordant with other observations [29]. PET is known to have 

poor spatial resolution [30]. We did not compare PET with MRI or ultrasound 

which excel for high precision imaging [31-34]. These modalities can detect 
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high risk disease [35-37]; there is no doubt on their prognostic value. We 

believe that medical imaging are not mutually exclusive [28, 29, 34, 38]. 

Spatial imaging was missing in the present study. We expect further advances 

in prognostic information with the increased availability of dedicated combined 

PET/MR equipment [39]. 

Other limitations 

 Besides the retrospective nature of the study, affected by recollection 

bias and a posteriori characterization of patients' data, limitations include the 

small number of patients, the coarse categorization of PET without blind 

assessment, using outdated screen printout. Quantitative imaging analysis of 

PET is likely more efficient than dichotomization, which is subject to error, to 

lack of precision, to observers' variability, and, inherently, causes loss of 

information. However, standardized uptake value (SUV) measurements were 

available in only 36 patients among whom 9 events were observed. The 

analysis of the SUVs was not retained for the present report, but the data is 

available in the shared data file. 

 The study was not designed to evaluate how PET affected the 

management of the patients. PET-Breast status was not associated with 

survival. We questioned if that was attributable to confounding by the type of 

surgery. In an unplanned analysis, we noted that PET-Breast positive patients 

had a high rate of mastectomy and high rate of adjuvant radiotherapy. 

Patients who underwent mastectomy represented 72 among 87 (82.8%) PET-
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Breast positive patients, versus 6 among 17 (35.3%) PET-Breast negative 

patients, P=0.0001. However, there was no significant interaction between 

mastectomy and PET-Breast status on survival, which did not support 

confounding by the type of surgery. Another potential confounding is the 

spread of ductal carcinoma in situ which could have affected the breast 

positivity rate [30, 40]. We did not collect that data. However, we noted one 

case who presented with invasive carcinoma at initial biopsy. At surgery only in 

situ carcinoma was found. PET was positive in the breast. At 15 years she is 

alive without recurrence. That observation raises the question that PET 

positivity in the breast might not have the same impact as PET positivity in 

regional areas. 

 The size of the study was small, able to detect only large effects. The 

interpretation of results such as the survival curves of Figure 1-2 or the D 

measures of Figure 3 has to be mitigated by the large overlapping confidence 

intervals. The multivariate analysis already commented that the cohort of only 

104 patients cannot sustain a full analysis of all variables. By the rule of 

thumbs of 10 events per variable, the data is insufficient to explore 

relationship between variables. The results indicate the preponderance of 

prognosis by lymph node ratio over PET or other variables, but uncertainty 

must be acknowledged. 
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Strengths 

 Strengths include the long follow-up; 15 years represent a substantial 

part of patients' lifeline. Three times more events than previously reported 

were counted [3], allowing a reasonably powered analysis for up to 3-5 

variables. PET-Axillary|Sternal positivity displayed hazard proportionality for 

overall survival over time, in contrast with disease-free survival that lost 

proportionality by 10-15 years (Justine Perrin, personal communication). The 

present results will be the basis for a prospective comparison with a new 

cohort of patients who have been diagnosed more recently. 

 This study identifies the importance of metabolic imaging in initial 

staging, for the patient to avoid non-necessary and potentially health 

debilitating axillary procedures, yet also not to miss critical information on life 

expectancy, for the choice of therapy. For survival, the long-term prognostic 

impact of PET needs to be considered when other markers are evaluated. In 

clinical studies with the aim of long-term outcome, metabolic information 

might be required to avoid confounding results in patients with widely differing 

prognoses.  
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Conclusion 

 Pathological lymph node assessment remains the gold standard among 

prognostic factors. However, along with age and progesterone receptor status, 

PET is a topmost alternate long-term predictor of breast cancer overall 

survival. Considering the comparable lifeline prediction, non-invasiveness, and 

potential for dynamic monitoring, metabolic imaging for therapy decision 

should be weighed against surgical axillary exploration.   
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Tables 

Table 1. Patient characteristics by tumor size. 

Characteristic All Tumor ≤ 20 mm Tumor > 20 mm P-value 

 N = 104 N = 37 N = 67 (*)  

Age, years    0.685 
Mean (SD)     58.2 (12.5)         58.8 (11.2)         57.8 (13.3)      

Sex    0.055 
Male 2 (1.9%) 2 (5.4%) 0 (0.0%)  
Female 102 (98.1%) 35 (94.6%) 67 (100.0%)  

Tumor location    0.632 
Central 14 (13.5%)   3 (8.1%) 11 (16.4%)   
Inner quadrants 16 (15.4%)   6 (16.2%)  10 (14.9%)   
Outer quadrants 64 (61.5%)  25 (67.6%)  39 (58.2%)   
Else  10 (9.6%)   3 (8.1%)  7 (10.4%)   

Tumor laterality    0.408 
Bilateral  5 (4.8%)  3 (8.1%)  2 (3.0%)  
Left 45 (43.3%)  17 (45.9%)  28 (41.8%)   
Right 54 (51.9%)  17 (45.9%)  37 (55.2%)   

Stage    <0.001 
Missing 2 1 1  
I 18 (17.6%) 18 (50.0%) 0 (0.0%)  
IIA 28 (27.5%) 12 (33.3%) 16 (24.2%)  
IIB 18 (17.6%) 0 (0.0%) 18 (27.3%)  
III 34 (33.3%) 4 (11.1%) 30 (45.5%)  
IV 4 (3.9%) 2 (5.6%) 2 (3.0%)  

Pathological tumor size, mm    < 0.001 

Mean (SD) 28.2 (16.7) 14.0 (4.9) 36.0 (15.7)  

Number of positive nodes, N    0.103 
Missing 5 2 3  

Mean (SD) 3.4 (5.2) 2.2 (5.5) 4.0 (5.0)  
Number of nodes examined, N     0.001 

Missing (§) 1 (§) 0 (§) 1 (§)  
Mean (SD) 14.3 (9.1) 10.5 (8.8) 16.5 (8.6)  

Lymph node ratio, fraction    0.046 
Missing 5 2 3  
Mean (SD) 0.19 (0.27) 0.12 (0.25) 0.23 (0.27)  

Lymph node ratio dichotomized    0.010 
> 0.20 30 (30.3%) 5 (14.3%) 25 (39.1%)  
≤ 0.20 69 (69.7%) 30 (85.7%) 39 (60.9%)  

Log odds positive nodes 0 0 0 0.451 
Missing 2 3 5  
Mean (SD)     -1.7 (1.5)          -1.5 (1.5)          -1.6 (1.5)       
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Estrogen-progesterone receptors    0.010 
Both positive ER+ PR+ 67 (64.4%) 30 (81.1%) 37 (55.2%)  

Both negative ER- PR- 20 (19.2%) 6 (16.2%) 14 (20.9%)  

Else 17 (16.3%) 1 (2.7%) 16 (23.9%)  

Neu score                                                             0.437 
Missing 1 0 1          
< 2 56 (54.4%)  22 (59.5%)  34 (51.5%)           
≥ 2 47 (45.6%)  15 (40.5%)  32 (48.5%)           

Grade    0.013 
Missing 4 1 3  
≤ 2 71 (71.0%) 31 (86.1%) 40 (62.5%)  

> 2 29 (29.0%) 5 (13.9%) 24 (37.5%)  

Lymphovascular invasion    0.008 
Missing 20 5 15  
Absent 45 (53.6%) 23 (71.9%) 22 (42.3%)  

Present 39 (46.4%) 9 (28.1%) 30 (57.7%)  

Ductal histology    0.562 
No 20 (19.2%)   6 (16.2%)  14 (20.9%)   
Yes 84 (80.8%)  31 (83.8%)  53 (79.1%)   

Primary systemic therapy    0.144 
No 85 (81.7%)  33 (89.2%)  52 (77.6%)   
Yes 19 (18.3%)   4 (10.8%)  15 (22.4%)   

Surgery (‡)    0.001 
Breast conserving 26 (25.0%) 16 (43.2%) 10 (14.9%)  
Mastectomy 78 (75.0%) 21 (56.8%) 57 (85.1%)  

Radiotherapy    0.862 
No  8 (7.7%)  3 (8.1%)  5 (7.5%)  
Postoperative 93 (89.4%)  33 (89.2%)  60 (89.6%)   
Preoperative  2 (1.9%)  1 (2.7%)  1 (1.5%)  
Radiosurgery  1 (1.0%)  0 (0.0%)  1 (1.5%)  

Adjuvant chemotherapy    0.001 
No 51 (49.0%) 26 (70.3%) 25 (37.3%)  
Yes 53 (51.0%) 11 (29.7%) 42 (62.7%)  

Adjuvant hormone therapy       0.861 
No 16 (15.4%)   6 (16.2%)  10 (14.9%)   
Yes 88 (84.6%)  31 (83.8%)  57 (85.1%)   

(*) One case tumor size missing imputed as 30 mm. (‡) One case no surgery, 

high dose radiotherapy, assimilated to lumpectomy. (§) Two cases in each 

tumor size subgroup had no pathology nodal examination = 0 nodes examined.  
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Table 2. PET area of hypermetabolism (positivity). 

PET area of hypermetabolism All Tumor ≤ 20 mm Tumor > 20 mm P-value 

 N = 104 N = 37 N = 67 (*)  

PET-Breast positive    < 0.001 
Yes 87 (83.7%) 25 (67.6%) 62 (92.5%)  
No 17 (16.3%) 12 (32.4%) 5 (7.5%)  

PET-Axillary positive    0.006 
Yes 41 (39.4%) 8 (21.6%) 33 (49.3%)  
No 63 (60.6%) 29 (78.4%) 34 (50.7%)  

PET-Sternal positive    0.906 
Yes 6 (5.8%) 2 (5.4%) 4 (6.0%)  
No 98 (94.2%) 35 (94.6%) 63 (94.0%)  

PET-Axillary|Sternal positive    0.019 
Yes 44 (42.3%) 10 (27.0%) 34 (50.7%)  
No 60 (57.7%) 27 (73.0%) 33 (49.3%)  

(*) One case tumor size missing imputed as 30 mm.  
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Table 3. Univariate Cox analysis of overall survival, normalized (nHR) 

and untransformed (HR1) hazard ratios. 

Characteristic Coding nHR P-nHR HR1 P-HR1 

Age (years) Continuous 2.31 0.010 1.05 0.005 

Sex male Binary 4.10 0.046 8.28 0.046 

Upper Outer Quadrant Binary 0.87 0.718 0.87 0.718 

Left laterality2 Binary 1.56 0.245 1.56 0.245 

Pathological stage¹ Ordinal 5 levels 3.64 0.001 2.79 0.000 

Tumor size (mm) Continuous 1.64 0.130 1.02 0.070 

Number positive nodes (N) Continuous 2.98 0.001 1.09 0.002 

Lymph node ratio (proportion) Continuous 4.46 0.000 14.8 0.000 

Node ratio dichotomized Binary 3.09 0.002 3.17 0.002 

Log odds positive nodes Continuous 3.47 0.001 1.69 0.001 

Estrogen receptor negative Binary 1.32 0.517 1.35 0.517 

Progesterone receptor negative Binary 3.00 0.003 3.05 0.003 

Neu ≥ 2 Binary 1.38 0.404 1.38 0.404 

Grade > 2 Binary 1.45 0.329 1.47 0.329 

Lymphovascular invasion Binary 2.45 0.028 2.44 0.028 

Ductal histology Binary 0.87 0.744 0.86 0.744 

Primary systemic therapy Binary 2.02 0.066 2.17 0.066 

Mastectomy Binary 0.99 0.988 0.99 0.988 

Adjuvant radiotherapy Binary 0.88 0.795 0.85 0.795 

Adjuvant chemotherapy Binary 0.91 0.803 0.91 0.803 

Adjuvant hormone therapy Binary 0.60 0.204 0.56 0.204 

PET positive Breast Binary 0.83 0.679 0.82 0.679 

PET positive Axillary Binary 2.26 0.032 2.26 0.032 

PET positive Sternal Binary 2.94 0.010 4.08 0.010 

PET Axillary and/or Sternal Binary 2.77 0.009 2.76 0.009 

¹Stage coded continuous, IIA/B coded 2/2.5. 2Includes bilateral. Hazard ratio 

>1 indicates increased risk of death, <1 decreased risk.  
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Table 4. Multivariate Cox regression on rankit variables. 

Starting model with 22 variables, rankit transformed. Model A: variables 

retained after stepwise elimination of weaker ones from the Starting model. 

Model B: same stepwise regression, except lymph node pathology variables 

excluded from starting (grey shaded, Omitted). Normalized hazard ratio (nHR) 

>1, increased risk of death from any cause; <1, reduced risk. Reliability: 

percentage of 1000 bootstraps iterations significant at P<0.017 (=0.05 

significance by Bonferroni correction), 100% best, 0% worst. ¹Stage coded 

continuous. 2Includes bilateral. "—", variable not informative by Akaike 

information criterion, rejected by stepwise regression. 

Characteristic Starting model  Model A  Model B 

 nHR P-value  nHR P-value Reliability  nHR P-value Reliability 

Age (years) 2.02 0.168  1.89 0.089 60%  2.91 0.003 78% 

Upper Outer Quadrant 1.04 0.938  — — —  — — — 

Left laterality2 2.82 0.099  — — —  1.85 0.126 38% 

• Pathological stage¹ 8.92 0.005  — — —  Omitted 

Tumor size (mm) 1.11 0.842  — — —  — — — 

• Number positive nodes (N) 0.09 0.040  — — —  Omitted 

• Lymph node ratio (proportion) 7.39 0.063  5.22 0.000 95%  Omitted 

• Node ratio dichotomized 0.46 0.392  — — —  Omitted 

• Log odds positive nodes 1.86 0.510  — — —  Omitted 

Estrogen receptor negative 0.28 0.262  — — —  — — — 

Progesterone receptor negative 4.72 0.043  — — —  3.05 0.015 72% 

Neu ≥ 2 1.18 0.760  — — —  — — — 

Grade > 2 0.69 0.545  — — —  — — — 

Lymphovascular invasion 0.91 0.891  — — —  — — — 

Ductal histology 1.75 0.325  — — —  — — — 

Primary systemic therapy 0.86 0.785  2.00 0.093 45%  — — — 

Mastectomy 0.57 0.489  — — —  — — — 

Adjuvant radiotherapy 0.31 0.082  — — —  — — — 

Adjuvant chemotherapy 0.68 0.590  0.50 0.143 48%  — — — 

Adjuvant hormone therapy 0.24 0.099  0.28 0.005 71%  — — — 

PET positive Breast 0.34 0.157  — — —  0.47 0.116 47% 

PET Axillary and/or Sternal 2.79 0.113  — — —  2.44 0.062 52% 
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Figures. 

Figure 1. Overall survival according to PET status. 

The prognostic effect of PET positivity (red) vs. negativity (blue) differs 

according to the region where positivity is detected: no effect in the Breast, 

significantly decreased survival in Axillary or Sternal regions. Combining 

Axillary and Sternal regions provides more robust prognostic separation as 

shown by the smaller overlap of the 95% confidence dashed bands. 
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Figure 2. Overlayed survival according to risk group defined by Lymph 

node ratio (LNR) or by PET Axillary|Sternal status. 

P-values refer to pairwise comparisons, LNR ≤ 0.2 vs. PET negative (PET 0), 

and LNR > 0.2 vs. PET positive (PET +). 
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Figure 3. D measure of prognostic separation, computed by the absolute 

of the Log normalized Hazard Ratio. 

¹ Stage coded continuous; IIA/B coded 2/2.5. 2 Includes bilateral. • PET 

variables. Horizontal bar, 95% confidence interval. Vertical bar at D = 0, no 

prognostic separation. 

   



42 

Breast preoperative PET  42/47 

Supplementary Materials 

Supplementary Material, Appendix A. R function rnktt. 

Description: 

Read vector, x 
Work on a copy, wx 

Get the order, ox 
Order the working copy, rx 

Compute the rankits, scale them on the fly 
If duplicates, get the corresponding mean rankits 
Order the rankits according to the original vector 

Return the rankits corresponding to the original vector. 
 

Remark: the function ignores missing values, returns missing as-is. 
 
######### 

# 
# rnktt 

# 
######### 
# Description: 

# transforms vector x to rankits scaled by sqrt(8/pi) 
# Usage: 

# rnktt(x) 
# Arguments: 
# x numeric vector 

# Details 
# requires function normOrder 

# Value: 
# returns vector of expected standard Normal order statistics, i.e. rankits 
# divided by sqrt(8/pi) 

# Author(s) 
# Vincent Vinh-Hung, 15 Nov 2020 

# References 
# Markus S Schröder, Aedín C Culhane, John Quackenbush, Benjamin Haibe-
Kains. 

# survcomp, Bioinformatics. 2011 Nov 15; 27(22): 3206–8. 
# Patick Royston, Willi Sauerbrei. 

# A new measure of prognostic separation in survival data,  
# Stat Med. 2004 Mar 15;23(5):723-48 

# Bob Wheeler. 
# Package ‘SuppDists’, CRAN. January 18, 2020 
######### 
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rnktt <- function(x) { 

 kap <- sqrt(8/pi) 
 wx <- x[!is.na(x)] 
 ox <- order(wx) 

 rx <- wx[ox] 
 rk <- SuppDists::normOrder(N=length(wx)) / kap 

 u <- unique(wx[duplicated(wx)]) 
 for (v in u) { rk[rx==v] <- mean(rk[rx==v]) } 
 rr <- x 

 rr[!is.na(rr)] <- rk[order(ox)] 
 rr 

} 
 
#########  
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Supplementary Table ST1. Outcomes. 

Outcome All Tumor ≤ 20 mm Tumor > 20 mm P-value 
 N = 104 N = 37 N = 67 (*)  

Local-regional recurrence    0.652 
Yes 4 (3.8%) 1 (2.7%) 3 (4.5%)  
No 100 (96.2%) 36 (97.3%) 64 (95.5%)  

New primary tumor    0.759 
Yes 10 (9.6%) 4 (10.8%) 6 (9.0%)  
No 94 (90.4%) 33 (89.2%) 61 (91.0%)  

Metastases    0.645 
Yes 31 (29.8%) 10 (27.0%) 21 (31.3%)  
No 73 (70.2%) 27 (73.0%) 46 (68.7%)  

Death    0.365 
Yes 28 (26.9%) 8 (21.6%) 20 (29.9%)  
No 76 (73.1%) 29 (78.4%) 47 (70.1%)  

(*) One case tumor size missing imputed as 30 mm.  
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Supplementary Figure SF1. Map of missing-data patterns. 

Bottom row = number of records missing for the corresponding variable shown 

on the top row; example, neurecod missing 1 record. Left column = number of 

records having the same missing pattern. Right column = number of missing 

variables; example 35 records (left column) had 1 variable (right column) 

missing shown in red, ki67. HER2 Fish ratio, HER2 Fish, HER2 Cen17 and Ki67 

were missing in 51, 53, 53 and 101 cases; these variables were not considered 

for analyses. Non-missing variables are not shown. 
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Supplementary Figure SF2. Survival according to PET status or Lymph 

node ratio (LNR) and according to tumor size. 
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Supplementary Figure SF3. PET-Axillary|Sternal positivity as a function 

of the Lymph node ratio. 

White curve: logistic regression. Grey band: 95% confidence. Histograms: red, 

PET positive; blue, PET negative. 
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