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Analysis and statistical interpretation of biaxial
material constants derived according to EN

17117-1:2018

Maarten Van Craenenbroecka,∗, Marijke Mollaerta, Lars De Laeta

aArchitectural Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

Abstract

Utilising fabrics as an engineering material allows for the creation of lightweight

structures, but poses some challenges when it comes to deriving material prop-

erties for use in numerical models due to the complex composite-like nature of

these coated fabrics.

Until recently, no international standard regarding testing these materials

and deriving their material properties existed. With the publication of EN

17117-1:2018, guidelines to biaxially test fabrics and derive material constants

are now available.

To evaluate the methodology presented in EN 17117-1:2018 an analysis of

the test results was carried out. A statistical interpretation allowed for the

evaluation of the data variability while verifying the feasibility of a stochastic

approach describing the derived material constants. This latter could be a

valuable addition in e.g. reliability analyses.

Results obtained from ten tests utilising the methodology suggested in EN

17117-1:2018 are discussed and evaluated. Next, a method to verify and evaluate

the statistical properties of the derived constants is proposed.

The obtained stress-strain results and material constants indicate a good

consistency between the conducted tests. The process of applying statistical

distributions showed to be relatively straightforward and yields compatible
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distributions describing the data. However, some limitations, mostly related to

the sample size, still exist.

Keywords: biaxial testing, coated fabrics, linear elastic orthotropic, EN

17117-1, statistical distributions, material characterisation

1. Introduction

Tensile fabric structures invoke a combination of material prestress and clever

geometric design to turn lightweight and flexible coated textiles into strong and

stable structures. Utilising a material with such a low selfweight, yet a relatively

high strength, allows for the building of structures with a large free span and a5

considerable load bearing capacity.

Due to their unique nature, designing and building fabric structures requires

experience and expertise. Most of this comes down to utilising a textile as

an engineering material and the unique challenges it poses to the designer.

Temporal effects, such as creep and relaxation, the highly anisotropic behaviour10

of the woven material, the inherently large displacements due to a high material

flexibility, etc. should all be taken into account during the design process to

ensure the structure can be considered “safe” during its lifetime. [1, 2]

The coated woven textiles that are used within these structures present us with

a very specific mechanical behaviour due to their composite-like composition.15

As the plastic-coated weave is typically asymmetric, consisting of two main

orthogonal directions called warp and weft, the strain response under load is

nonlinear and dependent on the direction. Applying a load at an angle to either

of these main fibre directions leads to a very low material strength and stiffness.

In addition do the two fibre directions interact strongly with each other (=20

“crimp interchange”), making the material’s behaviour also dependent on the

applied load ratio. Overall, fabrics present engineers with a nonlinear anisotropic

behaviour, making modelling the material behaviour accurately challenging and

still subject to ongoing research. [3, 4, 5]

While the establishment of numerical models is important to allow engineers25
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to simulate the textile’s material behaviour in depth, these models still require

experimental input data regarding the material’s response under loading. Up

until recently a standardised test procedure for coated textiles did however not

exist, resulting in the utilisation of different test approaches which can yield a

considerable variation on the material parameters derived from these different30

tests [6, 7, 8]. This, together with the natural variation that exists within a

woven material as a consequence of, amongst others, the manufacturing process

and intrinsic imperfections, means that there can be a considerable uncertainty

on the material parameters used in the computer simulations, even for relatively

simple models such as the linear elastic orthotropic model. [6, 9, 10]35

Considering the interaction between the material behaviour and the overall

structural response, as well as the continuing work by CEN/TC 248 WG 5 towards

a normative document regarding the design of tensile fabric structures, the ability

to capture and understand these material-based variations is important. While

some research exists applying a statistical approach to the tensile strength of40

fabric materials [11, 12], when it comes to interpreting the material’s mechanical

parameters existing studies are limited. Two main reasons for this are the lack

of a standardised test methodology and the lack of a reasonably large data set

which generates reliable statistical models.

In this paper, the consistency of the stress-strain results and derived material45

parameters obtained from the biaxial test profile proposed by the recently

published EN 17117-1:2018 [13] has been investigated. Next, a methodology is

outlined to describe the noted variability as stochastic distribution is proposed

and evaluated against the data obtained from the biaxial tests assessing the

method’s possibilities and limitations.50

In the next section, the test setup and methodology is explained as well as the

process used to derive the material constants. Next, the immediate stress-strain

results and derived material parameters are discussed, verifying consistency

between the various tests. Finally, a methodology to statistically describe the

linear elastic orthotropic material parameters and verify the goodness-of-fit of55

proposed stochastic distributions is explained and applied to the test data.
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2. Test setup and derivation methodology

2.1. Biaxial test environment and samples

To generate the data discussed in this paper, a Type II polyester-PVC coated

textile (Sioen T2103, [14]) was tested on the biaxial test bench available at the60

department of Mechanics of Materials and Constructions (MeMC) of the Vrije

Universiteit Brussel. The biaxial test bench at the Vrije Universiteit Brussel

consists of four hydraulic actuators mounted on a solid frame (figures 1 and 2,

[6]). The actuators are translationally fixed to the frame and each actuator is

equipped with a 100 kN-capacity load cell. These four load cells not only register65

the applied force for the respective actuator, but also allow the controller to

balance the applied load to ensure a symmetric load application and as such

avoid unwanted shear stresses as much as possible.

The cruciform samples used for these tests consist of a 30 cm by 30 cm central

area with four slitted arms ending in a welded loop to connect to the biaxial test70

bench. Two additional cut-outs are required to accommodate the bar connection

(figure 2, right). Their impact on the stress and strain fields was verified using

preliminary measurements as well as an inter-laboratory comparison showing

that these cut-outs did not impact the stress-strain results obtained from the

center of the sample to a significant degree. [6]75

The central area of the sample has been speckled with black paint, providing a

randomised reference pattern for the three dimensional Digital Image Correlation

(DIC) system utilised to determine the strain field. Two AVT Stingray F-504

cameras [15] were mounted 70 cm above the sample and were aligned so that the

analysis directions follow the main fibre directions of the sample. These cameras80

take pictures of the sample at regular time intervals of 5 s and load intervals of

100 N, which ever one occurs first, allowing the extraction of material strains

during the correlation process after the test. By routing the signal from the

load cells through the DIC system, stress and strain measurements are synced,

ensuring consistency in the results. The correlation of the DIC pictures was85

carried out using the commercial software package VIC 3D 2010 from Correlated
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Figure 1: The biaxial test bench of the Vrije Universiteit Brussel consists of four hydraulic

actuators translationally fixed on a steel frame. [6]
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Figure 2: A sample with a central area of 30 cm by 30 cm can be fixed in the test bench (left).

The used bar-loop system requires two cut-outs in each connection (right). [6]

Solutions [16]. To ensure consistency amongst the various tests, all results were

correlated using the same settings presented in table 1.

As mentioned in the introduction, all ten tests were carried out utilising

the load profile specified in EN 17117-1:2018 (Figure 3, top). This load profile90

cycles through four asymmetric load ratios, with a symmetric load ratio between

each asymmetric ratio to normalise the fabric’s strain state. EN 17117-1:2018

recommends an upper limit to the load of 25% UTS and a prestress level of

1% UTS. Due to limitations on the controller of the biaxial bench however,

the lower load limit during the tests needed to be set at 2.5% UTS. With a95

manufacturer-specified tensile strength of 80 kN/m for the T2103 material [14],

the theoretical stress at the centre of the sample should thus cycle between 2

kN/m and 20 kN/m. Taking into account the width of the sample (30 cm) the

theoretical applied load thus cycles between 0.6 kN and 6 kN. These values do

however not yet take into account the stress reduction effect present in biaxial100

samples [6, 17]. During preliminary research [6], the average stress reduction
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Parameter Value

Pre-filtering Gaussian 5

Subset size 29 pixels

Step size 7 pixels

Correlation criterion Zero-mean normalised sum of squared difference

Interpolation criterion Optimised 8-tap spline

Strain filter size 9

Table 1: For consistency, all tests were correlated in Vic 3D 2010 using the same DIC correlation

settings.

factor for the sample geometry used during this investigation has been established

to be 95%. The theoretical applied force thus has to be increased to take this

reduction into account, ensuring the appropriate stress is present in the center

of the sample. Hence, the applied force becomes 0.632 kN at prestress level105

and 6.316 kN at maximum load, which are the effective values noted on the

load profile shown on the bottom part of figure 3. From previous experience,

a single load/unload cycle is set to take 342 s ensuring an appropriate overall

displacement speed, resulting in an effective maximum load rate of 33 N/s during

this load-controlled test for a total test duration of little over 2h15.110

The registration of both the strains and applied loads us carried out by the

DIC system. During these tests, the DIC system is set up to take pictures and

register the load data of each individual actuator every 0.1 kN or every five

seconds, whichever one occurs first. The outcome consists of around 2700 data

points for both the applied forces (which are processed to material stresses) and115

strains, or an average of one picture every three seconds over the entire test

duration.

2.1.1. Strain measurement area

As the DIC system can extract strains using various measurement tools

(point-wise, according to a line, or averaged over a specific area), it should be120
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Figure 3: While EN 17117-1:2018 provides a suggested load profile (top, [13]), the prestress

level had to be increased from 1% to 2.5% for the presented tests (bottom).
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Figure 4: Averaging the DIC strain results over a 5 cm by 5 cm area around the sample’s

central point (“average”) resulted in outliers compared to the consistent results obtained from

strains extracted from the center point (“center point”).

clearly specified which area-of-interest was used for the results obtained in the

next sections. As EN 17117-1:2018 does not provide a clear guideline in this

regard and simply specifies that “strain measurement should be made within a

field of homogeneous strain” [13], different approaches could be considered.

Nonetheless, the requirement of a homogeneous strain field (variations <125

5% of the measured strain in both directions) does impose some restriction.

As shown above, the mounting solution currently used on the biaxial bench

requires that the sample’s loop comes with a pair of cut-outs on each arm.

Although previous experiments have shown that these cut-outs have a limited

effect on the central area of the sample [6, 10], they do still affect the stress130

and strain uniformity of the larger area around the center point. This effect

will become more important when asymmetries occur during the test due to e.g.

control inaccuracies. Hence, during the processing of the test results, strains

were extracted using 2 methods: (1) take the average result of a 5 cm by 5 cm

square area around the sample’s center point (“average”), and (2) extract the135

strains point-wise from the center of the sample (“center point”). While the first

method is less susceptible to local outliers as compared to the second method, it

can be affected by non-uniform strain fields potentially influencing the results of

the test.
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By comparing the derived material constants from both methods (figure 4),140

it turned out that the strains extracted from the central point yielded more

consistent results where the outcomes utilising the average strains led to some

notable outliers. Consequentially, all of the following data and results presented

in this paper were extracted using the strains from the center point rather than

the averaged area. Through a currently ongoing re-design of the clamps to145

remove the need for the aforementioned cut-outs, it will become possible in the

future to consider a bigger strain-measurement area.

2.2. Material parameter derivation

The stress-strain data obtained from the biaxial tests should then be post-

processed to fit material constants to this data. The material constants that150

would be fitted depend on the desired numerical material model. Following the

EN 17117-1:2018 document, this research has been limited to the linear elastic

orthotropic material model consisting of two Young’s moduli and two Poisson’s

coefficients.

Applied to fabrics, assuming a plane stress state, the linear elastic orthotropic155

material model is formulated by equation 1. Within this equation we note two

Young’s moduli Ewarp and Eweft, one for each main fibre direction, as well as

two Poisson’s coefficients νwf and νfw. Shear strains, while included in the

consecutive equation below, are typically disregarded while studying a fabric’s

biaxial behaviour as its contribution is assumed small considering the idealised160

orthotropic stress state generated by the biaxial test equipment.


εwarp

εweft

2εG

 =


1

Ewarp
− νfw

Eweft
0

− νwf

Ewarp

1
Eweft

0

0 0 1
G



σwarp

σweft

σG

 (1)

Due to the symmetry requirement of the compliance matrix, we know that

the four main parameters are not fully independent. Through rewriting the

symmetry equation we find that the ratio of the Young’s moduli Ewarp/Eweft

should be equal to the ratio of the respective Poisson’s coefficients νwf/νfw.165
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This relation is referred to in literature as the “reciprocal relation”. This relation

imposes an additional constraint on the linear elastic material model but the

observed behaviour of fabrics often seems to violate this equality. Due to the

non-homogeneity of the material and the presence of imperfections such as

non-orthogonal fibre alignment or a imperfect coating adhesion, experimental170

results often differ from predictions made using the reciprocal relation. [18]

To obtain the linear elastic material parameters, the stress-strain data from

the biaxial tests has been processed as specified in annex E of EN 17117-1:2018,

detailing the methodology to derive comparative elastic constants. This means

all unloading cycles were removed from the test results, only the last of the three175

cycles for each asymmetric load ratio was considered, as well as the last of the

three first cycles of the symmetric 1:1 load ratio (see section 3.2). In addition,

permanent strains were removed by normalising the stress-strain results at the

start of each individual load cycle.

As specified by the same annex, estimated material parameters have been180

fitted to the experimental data using the least-squares method. During the fitting

process the reciprocal constraint has not been explicitly enforced and best-fit

parameters were derived by either minimising the stress difference or the strain

difference [13, 19]. The outcome consists of two sets of material parameters

for each of the conducted tests, providing us with a total of 20 sets for further185

analysis and discussion in the next sections.

3. Interpreting biaxial test results

Before proceeding to the statistical analysis, the direct results from the

biaxial tests were evaluated to better comprehend the consistency/variability we

can expect from running multiple tests using the load profile proposed by EN190

17117-1:2018. During this evaluation, direct strain measurements were compared

as well as the stress-strain curves of the various load ratios. The goal of this

interpretation of raw test data is to verify the immediate consistency of the

10 tests that were carried out as it will provide a first estimate of what we

11
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Figure 5: All tests showed comparable time-strain results, with the exception of Test 3 where

the sample was wrongly oriented within the test bench.

can expect of the material properties and their statistical properties. After195

the comparison of the raw test data, the linear elastic material constants were

derived and shortly discussed.

3.1. Time-strain results

Observing the direct strain output obtained from the DIC system in function

of the time, which is recorded simultaneously with the DIC pictures, the majority200

of the measurements look consistent. The outcome of one test however, namely

test 3, deviates from the bulk of results (figure 5). This is due to a misalignment

of the sample before the tests, effectively switching the warp en weft direction

of the sample. Consequentially, the test’s asymmetric load ratios for this test

are switched around which can be clearly noted on the graph. To what extent205

this affects the derived material constants will be evaluated in the next section,

but previous studies have already indicated that switching around only the

asymmetric load ratios does not impact the derived material constants to a

significant degree when the test profile contains intermittent 1:1 load ratios to

normalise the fabric [20].210
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Important to note here is that differences in the time-strain graphs do not

necessarily lead to a difference in the derived material constants. Since the

presented strains are measured by the DIC system by comparing the stressed

state to a chosen reference state, slight changes in the reference state tend to

cause notable differences in the presented strains. During the derivation of the215

material parameters however, strains are normalised by observing the strains

relative to the start of the relevant loading cycle. In the graph above, this

corresponds to the relative height of the peaks rather than the absolute location

of the strain graph. To better compare the obtained measurements, stress-strain

graphs provide a much clearer insight in how the conducted tests compare to220

each other.

3.2. Stress-strain data

When it comes to estimating how the different material constants derived

from the various tests relate, stress-strain diagrams provide more comprehensive

information than the time-strain data. For the graphs presented below, the load225

cycles that were used during the parameter derivation were extracted (figures

6), the unloading curve was removed, and stresses and strains were normalised

at the prestress level. The result is a set of stress-strain curves showing the

variation on the experimentally measured stress-strain behaviour between the

different tests (figure 7).230

These normalised stress-strain curves show that all ten tests provide relatively

consistent results, with only minor variations which are not uncommon for a

coated textile’s biaxial behaviour. As a consequence, we can expect the derived

material constants to reflect a similar consistency although some variation

between the different test results will likely still exist.235

4. Derived material parameters

While the established stress-strain relations already show how the various

tests relate to each other in terms of consistency, these results are typically

13
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Figure 6: For the derivation of the material constants, five load ratios were selected.

further processed for use in Finite Element Models to model the behaviour of

tensile fabric structures. While the exact methodology differs in function of the240

type of material model used for these simulations, the methodology used for this

particular research comes from EN 17117-1:2018.

As mentioned before, the derived material constants, namely two Young’s

moduli and two Poisson’s coefficients, describe a linear elastic orthotropic material

model. As specified in annex E of EN 17117-1:2018 the derived constants only245

use the loading part of the five selected load cycles, with each curve being

normalised before deriving the constants, utilising the least squares method to fit

the model’s parameters to the experimental results. During the data processing,

the measured forces are divided by the sample’s width (0.3 m) and multiplied

with the stress reduction factor (0.95) to convert forces applied at the ends of the250

sample to membrane stresses in the center of the sample. All data processing has

been carried out in MATLAB R2015a [21] utilising the built-in patternsearch()

function to carry out the least square minimisation.

Note that, as specified in EN 17117-1:2018, the reciprocal relation has not

been enforced which means that the derived material constants will likely not255

adhere to the reciprocal relation. While this means that the derived constants are

not directly applicable in the linear elastic material model, the statistical analysis
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Figure 7: The normalised stress-strain curves of each relevant load ratio of all ten tests show a

reasonable consistency between the different tests. For increased readability, the dominant

stress direction was used to represent both fibre direction graphs.
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we will be describing and carrying out in the next section would inherently break

the reciprocal relation as well. Considering that fabrics do not adhere to this

relation [18, 22], the specifications laid out in EN 17117-1:2018, and the effect260

further analysis has on the material constants, it makes sense to disregard the

reciprocal relation from the described material parameter derivation and further

analysis at this stage of the research.

4.1. Discussing the derived material parameters

Running the derivation process for all ten biaxial tests, using both stress and265

strain minimisation methods, leads to the 20 sets of material constants presented

in table 2.

Drawing these sets on two graphs, one containing both Young’s moduli (figure

8, left) and one containing both Poisson’s coefficients (figure 8, right), clearly

shows the variability of the results. When it comes to the Young’s moduli, Ewarp270

shows a relatively large variation of around 150 kN/m while the variation on

Eweft is relatively small spanning below 50 kN/m. By comparison, the variation

on both Poisson’s coefficients is fairly similar with both νwf and νfw showing a

variation of around 0.1, with the average value of νfw lying slightly higher than

the average of νwf . This latter is typical for sets of material parameters derived275

without enforcing the reciprocal relation [6, 10].

These results show that even when a singular material of the same batch is

tested on the same setup utilising the same load profile for all tests, a certain

level of variation can still be expected due to the complex nature of coated

woven textiles. Small variations such as the relative orientation of the main fibre280

directions, minor defects in the sample and/or coating, etc. affect the outcome

of each test leading to a variation on the derived material parameters. While

the exact magnitude of this variation will depend on the textile that was tested,

and the fitted material model, a certain degree of variation is inherent to the

nonlinear anisotropic textile material.285
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Ewarp Eweft νwf νfw

[kN/m] [kN/m] [−] [−]

Test 1 stress min. 688.23 590.79 0.3382 0.4366

strain min. 736.36 591.75 0.4326 0.3784

Test 2 stress min. 679.74 592.51 0.3090 0.4181

strain min. 731.22 592.42 0.3501 0.4034

Test 3 stress min. 629.92 601.06 0.3155 0.4982

strain min. 668.73 600.56 0.3457 0.4822

Test 4 stress min. 683.45 582.68 0.3203 0.4423

strain min. 733.27 581.90 0.3650 0.4306

Test 5 stress min. 704.02 622.58 0.3064 0.4171

strain min. 747.91 622.67 0.3452 0.4086

Test 6 stress min. 657.88 605.54 0.3010 0.4963

strain min. 714.29 605.41 0.3488 0.4815

Test 7 stress min. 705.88 622.59 0.3240 0.4347

strain min. 748.98 624.15 0.3629 0.4286

Test 8 stress min. 698.08 610.08 0.3265 0.4454

strain min. 755.46 610.35 0.3674 0.4272

Test 9 stress min. 685.45 612.51 0.3365 0.4579

strain min. 740.52 614.64 0.3828 0.4478

Test 10 stress min. 722.05 606.51 0.3691 0.4141

strain min. 772.15 608.22 0.4094 0.4037

Table 2: Overview of the derived sets of material parameters from the 10 conducted biaxial

tests.
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Figure 8: The resulting 20 sets of material parameters do show a relatively large variation

of almost 150 kN/m for Ewarp, but are otherwise reasonably consistent for each of the 4

parameters.

5. Statistical interpretation of material constants

With CEN/TC 248 working on the standardisation of the use of coated

textiles in engineering, being able to describe the variability and uncertainty that

exists on derived material parameters is important to assess structural safety

and carry out reliability analyses on tensile fabric structures [11, 23]. In this290

section, a general approach is laid out to describe the derived material constants

statistically, ensuring the established distributions are indeed compatible with the

derived material constants. While this seems relatively straightforward, the main

challenge in this regard is the fact that typical statistical normality tests such

as the Kolmogorov-Smirnov (KS) and the Anderson-Darling (AD) test assume295

an independence between the data and the proposed distribution [24]. However,

since we will derive a distribution from the data using the Maximum Likelihood

Estimate (MLE) method, the approach below requires some additional steps to

remove statistical bias due to the resulting dependency between the data and the

proposed distribution. Applying this methodology on the data described above300

will then not only provide an idea of the statistical properties of the results

obtained from the conducted tests, but also illustrate the possibilities as well as

limitations of the utilised approach.
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5.1. Method to establish and verify distributions

The first step of the analysis method consists of deriving the Maximum305

Likelihood Estimate (MLE) for each of the four material parameters and deriving

the Cumulative Density Function (CDF) of the resulting distribution. In general,

the MLE is defined as follows:

θ̂MLE = max
θ∈Ω

f(x|θ) (2)

The equation above estimates the value for the vector θ, within a parameter

space Ω, so that the probability of the observed dataset x being generated by310

the proposed probability distribution is maximised. During this study Matlab’s

mle() function was utilised to estimate the respective distribution parameters

for each distribution family from the obtained material constants.

As mentioned before, doing this means that the derived distribution is not

independent from the studied data set which is one of the main requirements to315

verify the goodness of fit using the KS or AD test. Both of these tests rely on so

called test statistics which are compared to tabulated values to verify whether

or not we can reject the null hypothesis that the distribution is compatible with

the data. For both the KS and AD test when the test statistic, respectively D̄n

and Ā2
n, is smaller than the appropriate tabulated value the null hypothesis can320

not be rejected, making it plausible that the proposed distribution is indeed

compatible with the data. The test statistics D̄n and Ā2
n are derived as follows:

D̄n = max
1≤i≤n

|F (xi)−
i− 1

n
,
i

n
− F (xi)| (3)

Ā2
n = −n− 1

n

n∑
i=1

(2i− 1)[ln(F (xi)) + ln(1− F (xn+1−i))] (4)

where F is the proposed cumulative density distribution, and n the length

of the data set. Note that, the data xi should be ordered from low to high for

these tests to work properly. The equations above show a clear difference in the325

approach each test takes. Where the Kolmogorov-Smirnov test evaluates the

largest vertical difference (i.e. the largest difference in cumulative probability
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for a specific data value), the Anderson-Darling takes a more weighted approach

by considering the sum of the difference in natural logarithms. Despite their

differences, both tests assume independence between the proposed distribution330

and the tested data set [24] which, as mentioned above, is not the case when

using the MLE method.

A possible solution to counteract this data-distribution bias is to generate

B (∈ N) re-sampled bootstrap sets from the derived distribution function, each

the same size as the original dataset (n) [25]. The generated samples B are, by335

definition, compatible with the proposed distribution. Knowing this, we can

derive the MLE as well as the corresponding KS and AD test statistics. These

new values allow us to estimate the variability that is to be expected on the

MLE distributions and test statistics when the data and proposed distribution

are compatible. We can thus set a level of significance α and select the 1− α340

quantile of the found test statistics, respectively D̄∗1−α and Ā2∗
1−α. These values

will then serve as new critical values instead of the tabulated values to verify

whether or not we can reject the null hypothesis. Hence during the upcoming

analysis we will consider the derived distribution compatible under the KS and

AD test respectively when:345

D̄n < D̄∗1−α

or

Ā2
n < Ā2∗

1−α

(5)

For the analysis described in this paper, the significance level α was set to 0.05

and a total of 1000 bootstrap samples were generated to obtain a good estimate

for the critical values. The bootstrap samples were generated utilising Matlab’s

bootstrap() function, utilising three distribution families: normal, lognormal and

Generalised Extreme Value (GEV). This latter is a generalised function containing350

three subcategories, namely, the Gumbel, Fréchet, and Weibull distributions

(respectively a “type I”, “type II”, and “type III” GEV distribution).
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5.2. Step-wise data processing

The methodology utilised during this research thus comes down to various

steps, starting from the processed test data up to the evaluation of the proposed355

statistical distributions to describe the properties of the obtained material

constants.

1. Derive the Maximum Likelihood Estimate parameters for each of the three

distribution families, for each of the four material constants.

2. Calculate the respective test statistic for each parameter-distribution com-360

bination under both the Kolmogorov-Smirnov and Anderson-Darling test.

3. Account for bias by re-sampling B sets from the estimated distribution by

bootstrapping, derive the MLE for each of the samples and derive their

test statistics.

4. Calculate the 1− α quantile value for each respective test statistic, setting365

α to the desired level of significance (in this case α = 0.05).

5. Use the resulting values as the new respective critical values to assess

compatibility with the respective distribution and material parameter at

the significance level α. Compare the derived statistics from step 1 to the

new critical values and reject the distribution if the derived value exceeds370

the critical value.

The result of this approach consists of a compatibility assessment for three

distribution families for each of the four individual material constants. As a

consequence, any potential correlation between the four material parameters is

removed from the equation. While this is not directly relevant to the scope of this375

paper, it should be kept in mind when e.g. deriving least-advantageous parameters

from the statistical distributions as one might end up with a non-representative

set of material parameters [6].

5.3. Application to the test data

By applying the described procedure to the derived linear elastic orthotropic380

non-reciprocal material parameters, the potential as well as the limitations
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Normal Lognormal

µ σ µlog σlog

Ewarp 710.1798 35.6311 6.5642 0.0507

Eweft 604.9467 12.7932 6.4049 0.0212

νwf 0.3450 0.0278 -1.0674 0.0801

νfw 0.4399 0.0287 -0.8232 0.0639

Generalised Extreme Value

shape k scale σGEV location µGEV

Ewarp -0.4645 38.1434 700.8004

Eweft -0.5868 14.4158 602.3928

νwf -0.1604 0.0254 0.3337

νfw 0.1334 0.0204 0.4253

Table 3: Overview of the MLE parameters for each material constant and distribution family.

of the aforementioned methodology can be assessed. In this part each step

of the process is documented. Further discussion regarding the outcome and

observations made during this analyses can then be found in the next part.

5.3.1. Deriving the MLE parameters385

Applying Matlab’s mle() function to each of the four sets of material constants

provides us with three candidate distributions for each material constant. The

respective distribution parameters are listed in Table 3.

While compatibility of the derived distributions is yet to be verified, the

values presented in table 3 do give some insight in the underlying data. For390

one, the notable difference in variation between Ewarp and Eweft appears clearly

in the standard deviations of both the normal and lognormal distributions,

σ and σlog respectively. Looking at the results of the GEV distributions, all

proposed distributions except the one for νfw correspond to a Type III, or

Weibull, distribution since the shape factor k < 0. The proposed distribution for395

νfw on the other hand corresponds to a Type II, or Fréchet, distribution since
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Normal Lognormal GEV

D̄n Ā2
n D̄n Ā2

n D̄n Ā2
n

Ewarp 0.1226 0.2021 0.1261 0.2233 0.0931 0.1526

Eweft 0.1345 0.3749 0.1339 0.3806 0.1485 0.5423

νwf 0.0971 0.2010 0.0945 0.1902 0.1053 0.1961

νfw 0.1466 0.7047 0.1349 0.6017 0.1089 0.2131

Table 4: The (biased) test statistics of each distribution family for each of the four material

constants.

k > 0.

5.3.2. Calculating the biased test statistics

With the derived distributions established, their compatibility with the data

should be verified. As mentioned before, both the Kolmogorov-Smirnov and400

Anderson-Darling tests will be used. For each parameter and derived distribution,

both Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) test statistics were

derived (Table 4).

Typically, when the proposed distribution is not derived from the related

dataset, the critical values for these test statistics are listed in function of the405

size of the data set and the significance level in published tables [24, 26]. For

this data set of 20 elements at a significance level of 0.05, the critical KS statistic

D̄crit = 0.2941 and the critical AD statistic Ā2
crit = 2.5019. However, due to

the dependence of the proposed distributions on the underlying data set, these

standard critical values are inappropriately large for this case. As a result, all410

the derived test statistics fall below these two critical values. In the next step,

we will generate bootstrapped samples which will allow us to derive appropriate

critical values at the chosen level of significance for both the KS and AD test

statistics.
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Normal Lognormal GEV

D̄0.95 Ā2
0.95 D̄0.95 Ā2

0.95 D̄0.95 Ā2
0.95

Ewarp 0.1916 0.7228 0.1916 0.7284 0.1850 1.8425

Eweft 0.1934 0.7550 0.1969 0.7625 0.1933 2.1348

νwf 0.1954 0.7547 0.1913 0.7080 0.1706 0.5978

νfw 0.1883 0.7150 0.1885 0.7067 0.1714 0.5617

Table 5: Test statistics of each distribution family for each material constant after the

bootstrapping process which removes bias.

5.3.3. Determine the bootstrapped test statistics415

To determine the effective critical values for the test statistics for the biased

case, the data is bootstrapped/re-sampled using the estimated distribution. For

each re-sampled set, a maximum likelihood estimate distribution is derived

after which the test statistics are calculated. The end result is a set of test

statistics from which we can select the n-th percentile value at a chosen level420

of significance. As mentioned before, for the research presented in this paper

we set the level of significance at 0.05. As such we accept a 5% chance that

a compatible distribution is rejected. Note that the higher we set the level of

significance (e.g. 0.1 or 0.15), the more restrictive our critical value becomes

and more compatible solutions will end up being rejected (respectively 10% and425

15%).

Utilising 1000 bootstrapped samples, the resulting quantiles D̄0.95 and Ā2
0.95

of the test statistics for each material parameter and distribution type are

presented in table 5.

As expected, these new critical values are significantly lower than the tabu-430

lated values for D̄crit and Ā2
crit, 0.2941 and 2.5019 respectively, illustrating how

this methodology takes into account the bias due to data-distribution dependency

by reducing the critical test statistic values accordingly.
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Normal Lognormal GEV

PKS PAD PKS PAD PKS PAD

Ewarp 0.5800 0.8810 0.5670 0.8370 0.8990 0.9700

Eweft 0.4330 0.4120 0.4660 0.4100 0.2640 0.2520

νwf 0.8970 0.8850 0.8650 0.9240 0.7050 0.8000

νfw 0.2890 0.0540 0.4640 0.1140 0.6350 0.7390

Table 6: Interpreting the test outcomes as P-values, a quantitative comparison can be conducted,

looking for the highest P-value for each test and parameter (bold).

5.3.4. Compare the initial values to the newly-established critical values

Comparing the test statistics presented in table 4 to the derived critical values435

presented in table 5 allows us to evaluate the effective compatibility between

the established maximum likelihood estimated distributions for each of the four

material parameters and the data from the biaxial tests. Doing so, we should

bear in mind that we are not proving compatibility through this method, but

rather can not rule out compatibility when the test statistic is smaller than the440

critical value.

When we do this for the obtained results, it turns out we can not rule

out any of the proposed distribution based on either the KS and AD test

statistics. Listing the corresponding P-values for each test (table 6), allows us

to compare the different distributions qualitatively. Higher P-values indicate445

a closer correspondence between the proposed distribution and the underlying

data. Note that this latter isn’t a typical interpretation, and P-value analysis of

these tests usually limit themselves to rejecting or not rejecting the distribution

based on whether or not the value lies below the chosen level of significance.

With all proposed distributions compatible however, it does allow us to assess450

the relative distance between the data and the proposed distribution.

Observing the P-values shows that although we couldn’t rule out any of the

proposed distributions, there are some differences visible: for Ewarp and νfw

the higher P-value is obtained for the GEV distribution, and the outcomes for
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Eweft and νwf show the values for the normal and lognormal distribution close455

to each other and exceeding the outcome for the GEV distribution. The results

above however indicate that capturing all four individual parameters through

one distribution family might not be feasible.

Utilising the methodology described above, it thus becomes possible to char-

acterise the four linear elastic orthotropic material constants using a statistical460

description rather than simple test averages. This allows us to e.g. use their

intrinsic variability in reliability analyses or try and compose a set of least-

favourable parameters. When doing this latter, which lies outside the scope of

this paper, attention should be paid to ensure the obtained set respect possible

correlations that exist between the different material parameters.465

5.4. Remarks and discussion

The methodology outlined above illustrates how a fabric’s material parameters

can be described by statistical distributions. These distributions can be useful

from various points of view, being for manufacturers specifying ranges for their

materials, to implementing the material’s mechanical behaviour as an uncertain470

parameter in reliability analysis.

The presented research is however still somewhat limited on various of points.

In this section a reflection is made on some of these limitations, such as the

limited amount of data points and the convergence of the bootstrapped results,

as well as the impact of the removal of the reciprocal constraint during the475

derivation of the material parameters.

5.4.1. The effect of the reciprocal relation

As mentioned before, the analysis above was conducted without applying the

reciprocal relation between the ratio of the Young’s moduli and Poisson’s ratios

according to the recommendations presented in EN 17117-1:2018. Removing480

this restriction however leads to physical meaningless sets of material constants

and shifts certain values. But what does applying this restriction mean for the

analysis presented above?
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Figure 9: When enforcing the reciprocal constraint during material parameter derivation, the

values of νwf become notably higher while the values for νfw decrease as compared to the

non-reciprocal values.

Comparing the general scatter plots of the material parameters with and

without the reciprocal relation applied, immediately shows the difference between485

these two data sets (figure 9). In terms of Ewarp, the variation increases slightly

with a distinct gap around 740 kN/m. This gap presents a notable discontinuity

in the data leading to both an increase in the standard deviation and an increased

difficulty to describe the data using a continuous function. While the Poisson’s

ratios do not show such discontinuities, the values of both νwf and νfw do490

decrease significantly when applying the reciprocal constraint to the data.

Running the same statistical analysis on the reciprocal material constants,

leads to the MLE distributions detailed in table 7.

Comparing the biased KS and AD test statistics (table 8, top) to the boot-

strapped critical values (table 8, bottom), clearly illustrates the difference between495

this data set and the previous one. Where none of the tests failed before, all

but the GEV distribution end up being rejected for Ewarp, as we expected. The

GEV distributions that can’t be rejected only differ from the critical value by a

small margin, making it likely to be rejected at higher levels of significance.

Applying the reciprocal constraint thus not only forces the derived sets500

to adhere to behaviour that is not observed in practice for this material, but

also possibly introduces data gaps making the fitting of statistical distributions
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Normal Lognormal

µ σ µlog σlog

Ewarp 719.0521 61.3360 6.5742 0.0868

Eweft 589.6416 16.0676 6.3791 0.0273

νwf 0.4451 0.0252 -0.8111 0.0565

νfw 0.3665 0.0259 -1.0061 0.0693

Generalised Extreme Value

shape k scale σGEV location µGEV

Ewarp -1.0343 80.4339 720.2372

Eweft -0.4388 16.9990 585.2082

νwf -0.3200 0.0250 0.4367

νfw -0.0421 0.0213 0.3550

Table 7: Overview of the MLE parameters for each material constant and distribution family

utilising reciprocal sets of material parameters.

Normal Lognormal GEV

D̄n Ā2
n D̄n Ā2

n D̄n Ā2
n

Ewarp 0.2195 0.8396 0.2221 0.8211 0.2204 2.3422

Eweft 0.1309 0.2803 0.1300 0.2905 0.1286 0.2501

νwf 0.1920 0.6758 0.1816 0.6467 0.1938 0.6791

νfw 0.1310 0.3423 0.1194 0.2666 0.0944 0.1724

D̄0.95 Ā2
0.95 D̄0.95 Ā2

0.95 D̄0.95 Ā2
0.95

Ewarp 0.1900 0.7282 0.1924 0.7156 0.2343 2.7923

Eweft 0.1893 0.7149 0.1955 0.7573 0.1790 1.9580

νwf 0.1933 0.7733 0.1953 0.7093 0.1751 0.7212

νfw 0.1940 0.7563 0.1880 0.7076 0.1702 0.5614

Table 8: Overview of the biased (top) and unbiased (bottom) test statistics for the reciprocal

sets of material parameters.
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difficult, if not impossible.

5.4.2. Convergence study

The accuracy of the conclusions made in the previous parts strongly depends505

on the reliability of the derived critical test statistics and distributions. As

part of the bootstrapping routine involves sampling random data, the effective

outcome (in our case D̄0.95 and Ā2
0.95) of the process is always slightly different.

Hence, we need to ensure the amount of bootstrap samples we use is sufficient

to avoid unintentionally skewing the outcome.510

A convergence study was thus carried out, simulating 100 runs of bootstrap-

ping for different amounts of samples, ranging from 10 samples up to 1500

samples. For each set of 100 bootstrap runs, the statistical properties of the

resulting 0.95 test statistics for each of the three distributions was verified for

Ewarp. Ideally, the mean of these values should converge towards a specific515

value while the standard deviation σ becomes as small as possible to reduce the

variance between different bootstrap runs.

Observing the effect of increasing the amount of bootstrapped samples on

the test statistics D̄0.95 and Ā2
0.95, and the standard deviation σ, clearly shows

convergence (figure 10). While for the KS test statistic D̄0.95 the mean value520

remains relatively constant while the standard deviations decreases quickly

(figure 10, left), the AD test statistic Ā2
0.95 takes longer to converge (figure

10, right). In both cases however, the 1000 bootstrapped samples used in the

previous parts showed to be sufficient to reach accurate results. An increase to

1500 samples could slightly increase the accuracy of the results, but it would525

only have a limited effect while increasing calculation time notably.

5.4.3. Influence of the sample size

Aside from the amount of bootstrap samples, the size of the actual data set

will also be important. The investigation described above utilises data obtained

from ten biaxial tests. Through deriving material parameters using both stress530

and strain minimisation leads to a set containing 20 data points. As the reliability
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Figure 10: Observing the standard deviation and 0.95 confidence interval for the amount of

bootstrap samples shows than 1000 samples was sufficient to obtain an accurate result.
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of the fitted statistical models depends greatly on the sample size, some attention

should be spend to this.

The main challenge with limited datasets is the potential of bias and inaccu-

rate estimations of the underlying distribution. In our specific case, this might535

mean that the established variability and standard deviation are potentially

smaller than they should be to properly describe the material’s statistical prop-

erties. However, this bias can be removed by increasing the amount of conducted

tests, possibly expanding to an international study where additional parameters

such as different test conditions can be taken into account when describing the540

resulting parameters’ variability.

Another effect of relying on a small dataset, is a relatively large variability

in bootstrapped statistics. As each bootstrapped sample has the same size

as the original data sample, the distributions derived from each of the 1000

re-sampled datasets tend to show a relatively large variation (figure 11, left).545

Increasing the size of the initial dataset would allow for an increase in the size

of the sampled data during bootstrapping which would not only lead to a more

accurate estimation of the initial distribution, but also reduce the variation of the

bootstrapped distribution, effectively increasing the accuracy of the derived test

statistics. This effect was artificially simulated by increasing the bootstrapped550

data points in figure 11 (right), but in reality this would also require the amount

of effective data points (i.e. test results) to increase.

Given the only recent emergence of a standard regarding carrying out biaxial

tests on coated textiles and deriving linear elastic orthotropic material param-

eters, there are very limited sources we can draw on the expand our data set555

at this point. Nonetheless, as statistical data representation is of primordial

importance in normative documents, and a strong interaction between a fabric’s

mechanical properties and the overall structural behaviour exists, an interna-

tional standardised benchmark generating the required data would be extremely

useful to produce further insights into how we can integrate material parameters560

in statistics-dependent reliability analysis.
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Figure 11: Increasing the sample count of the underlying data set from 20 (left) to 100 (right)

would greatly reduce the variability on the bootstrapped distributions and thus increase the

accuracy of the conducted normality tests.

6. Conclusions

This paper describes the test results obtained from ten biaxial tests on a

Type II polyester-PVC fabric and conducted according the suggestions provided

in the recently published EN 17117-1:2018 document. Linear elastic orthotropic565

material constants were derived and compared after which a stochastic analysis

methodology has been laid out. This latter allows to describe each of the

four material constants using its stochastic properties, taking into account the

variability/uncertainty on each individual parameter.

The stress-strain curves obtained from the tests show only limited differences570

between each of the ten conducted tests. Similarly, the derived material constants

are comparable. The biggest variation turned out to exist for the warp stiffness

Ewarp equalling to 150 kN/m.

To describe the stochastic properties of each parameter, a process known as

bootstrapping has to be employed as for typical lab conditions the proposed575

distributions will usually be derived from the initial dataset using the Maximum

Likelihood Estimates, thus introducing bias in the proposed distributions. Gen-

erating 1000 bootstrapped samples, and testing their compatibility using both

the Kolmogorov-Smirnov and Anderson-Darling tests, allowed us to construct
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compatible statistical distributions for each of the four material constants.580

While the limited data set comprising only 20 sets of material parameters

(two for each test) suggested all proposed distributions are compatible, artificially

increasing the data size showed a clear decrease in uncertainty boundaries. Hence,

the authors strongly encourage to carry out more tests according to the method

published in EN 17117-1:2018 to increase the amount of data available as well585

as the accuracy of the derived stochastic distributions.

The methodology described in this paper thus allows to generate the basis

required to incorporate the uncertainty on the material constants in e.g. reliability

analysis, not only for fabric materials but various materials presenting a relatively

large variability on test results. Alternatively, it could allow manufacturers to590

report more elaborate information regarding their materials while including the

natural uncertainty that exists due to intrinsic material variations due to e.g.

the manufacturing process.
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