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Abstract

We propose and study STKTOKENS: a new calling convention that provably enforces well-bracketed
control flow and local state encapsulation on a capability machine. The calling convention is based
on linear capabilities: a type of capabilities that are prevented from being duplicated by the hard-
ware. In addition to designing and formalizing this new calling convention, we also contribute a new
way to formalize and prove that it effectively enforces well-bracketed control flow and local state
encapsulation using what we call a fully abstract overlay semantics.

1 Introduction

Secure compilation is an active topic of research (see, e.g., Devriese et al., 2017; Patrignani
& Garg, 2017; Abate et al., 2018; New et al., 2016; Juglaret et al., 2016; Patrignani et al.,
2019; Barthe et al., 2019), but real secure compilers are still a rare sight. Secure compil-
ers preserve source-language (security-relevant) properties even when the compiled code
interacts with arbitrary target-language components. Generally, properties that hold in the
source language but not in the target language need to be somehow enforced by the com-
piler. Two properties that hold in many high-level source languages are well-bracketed
control flow and encapsulation of local state, but they are usually not enforced after
compilation to assembly.

Well-bracketed control flow (WBCF) expresses that invoked functions must either return
to their callers, invoke other functions themselves or diverge, and generally holds in
programming languages that do not offer a primitive form of continuations (or related
features). At the assembly level, this property does not hold. Invoked functions get direct

1 Research performed while the author was affiliated with Aarhus University.
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access to return pointers that they are supposed to jump to a single time at the end of
their execution. There is, however, no guarantee that untrusted assembly code respects
this intended usage. In particular, adversarial code may invoke return pointers that were
intended to be called from other stack frames than theirs: either from frames higher in the
call stack or from ones that no longer exist as they have already returned.

Local state encapsulation (LSE) is the guarantee that when a function invokes another
function, its local variables (saved on its stack frame) will not be read or modified until the
invoked function returns. At the assembly level, this property also does not hold. The call-
ing function’s local variables are stored on the stack during the invocation, and functions
are not supposed to touch stack frames other than their own. However, untrusted assembly
code is free to ignore this requirement and read or overwrite the local state of other stack
frames.

To enforce these properties, target language security primitives are needed to prevent
untrusted code from misbehaving without imposing too much overhead on well-behaved
code. The security primitives based on virtual memory on commodity processors do not
seem sufficiently fine-grained to efficiently support this. More suitable security primitives
are offered by a type of CPUs known as capability machines (Levy, 1984; Watson et al.,
2015a). These processors use tagged memory to enforce a strict distinction between inte-
gers and capabilities: pointers that carry authority. Capabilities come in different flavours.
Memory capabilities allow reading from and writing to a block of memory. Additionally,
capability machines offer some form of object capabilities that represent low-level encap-
sulated closures, i.e. a piece of code coupled with private state that it gains access to upon
invocation. The concrete mechanics of object capabilities vary between different capability
machines. For example, on a recent capability machine called CHERI they take the form
of pairs of capabilities that represent the code and data parts of the closure. Both capa-
bilities are sealed with a common seal. This makes them opaque and unusable until they
are invoked. When they are invoked, the hardware, or a special OS-provided exception
handler, transparently unseals the pair (Watson et al., 2015b, 2016).

To enforce WBCF and LSE on a capability machine, there are essentially two
approaches. The first is to use separate stacks for mutually distrusting components, and
a central, trusted stack manager that mediates cross-component invocations. This idea has
been applied in CheriBSD (an operating system built on CHERI) (Watson et al., 2015b),
but it is not without downsides. First, it requires reserving separate stack space for all com-
ponents, which scales poorly to large amounts of components. Also, in the presence of
higher-order values (e.g., function pointers, objects), the stack manager needs to be able
to decide which component a higher-order value belongs to in order to provide it the right
stack pointer upon invocation. It is not clear how it can do this efficiently in the pres-
ence of large amounts of components. Finally, this approach does not allow passing stack
references between components.

A more scalable approach retains a single stack shared between components. Enforcing
WBCF and LSE in this approach requires a way to temporarily provide stack and return
capabilities to an untrusted component and to revoke them after it returns. While capa-
bility revocation is expensive in general, some capability machines offer restricted forms
of revocation that can be implemented efficiently. For example, CHERI offers a form of
local capabilities that can only be stored in registers or on the stack but not in other parts
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of memory. Skorstengaard et al. (2018a) have demonstrated that by making the stack and
return pointer local, and by introducing a number of security checks and measures, the two
properties can be guaranteed. In fact, a similar system was envisioned in earlier work on
CHERI (Watson et al., 2012). However, a problem with this approach is that revoking the
local stack and return capabilities on every security boundary crossing requires clearing the
entire unused part of the stack, an operation that may be prohibitively expensive (although
the hardware could optimize the clearing to a significant extent (Joannou et al., 2017)).

In this work, we propose and study STKTOKENS: an alternative calling convention that
enforces WBCF and LSE with a single shared stack. Instead of CHERI’s local capabili-
ties, it builds on linear capabilities; a new form of capabilities that has not previously been
described in the published literature, although related ideas have been described by Szabo
(1997, 2004, “scarce objects”) and in technical documents. Concurrently with our work,
Watson et al. have developed a (more realistic) design for linear capabilities in CHERI that
is detailed in the latest CHERI ISA reference (Watson et al., 2020). The hardware prevents
these capabilities from being duplicated. We propose to make stack and return pointers
linear and make components hand them out in cross-component invocations and require
them back on return. The non-duplicability of linear capabilities together with some secu-
rity checks allows us to guarantee WBCF and LSE without large overhead on boundary
crossings and in particular without the need for clearing large blocks of memory. To avoid
confusion, it is worth pointing out that our linear capabilities are really affine rather than
linear: erasing them is allowed. However, we have chosen to use the term “linear” to align
with common usage in the world of linear type systems.

A second contribution of this work is the way in which we formulate these two prop-
erties. Although the terms “well-bracketed control flow” and “local state encapsulation”
sound precise, it is actually far from clear what they mean, and how best to formalize
them. Existing formulations are either partial and not suitable for reasoning (Abadi et al.,
2005a) or lack evidence of generality (Skorstengaard et al., 2018a). We propose a new
formulation using a technique we call fully abstract overlay semantics. It starts from the
premise that security results for a calling convention should be reusable as part of a larger
proof of a secure compiler. To this end, we define two operational semantics for our tar-
get language: the first one is unsurprising with just a register bank and a linear memory,
but the second features a native well-bracketed call stack and primitive ways to do calls
and returns. This second, well-behaved semantics guarantees WBCF and LSE natively for
components using our calling convention. As such, these components can be sure that they
will only ever interact with other well-behaved components that respect our desired proper-
ties. To express security of our calling convention, we then show that considering the same
components in the original semantics does not give adversaries additional ways to interact
with them. More formally, we show that mapping a component in the well-behaved seman-
tics to the same component in the original semantics is fully abstract (Abadi, 1999), i.e.
components are indistinguishable to arbitrary adversaries in the well-behaved language iff
they are indistinguishable to arbitrary adversaries in the original language.

Compared to Skorstengaard et al. (2018a) that prove LSE and WBCF for a handful of
examples, this approach expresses what it means to enforce the desirable properties in
a general way and makes it clear that we can support a very general class of programs.
Additionally, formulating security of a calling convention in this way makes it potentially
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4 STKTOKENS: Enforcing WBCF and LSE Using Linear Capabilities

reusable in a larger security proof of a full compiler. The idea is that such a compiler
could be proven fully abstract with respect to the well-behaved semantics of the target
language, so that the proof could rely on native well-bracketedness and local stack frame
encapsulation. Such an independent result could then be composed with ours to obtain
security of the compiler targeting the real target language, by transitivity of full abstraction.

In this paper, we make the following contributions:

• We present LCM: A formalization of a simple CHERI-like capability machine with
linear capabilities (Section 2).

• We present a new calling convention STKTOKENS that provably guarantees LSE and
WBCF on LCM (Section 3).

• We present a new way to formalize these guarantees based on a novel technique
called fully-abstract overlay semantics and we prove LSE and WBCF claims. This
includes:

– OLCM: an overlay semantics for LCM with built-in LSE and WBCF
(Section 4)

– proving full-abstraction for the embedding of OLCM into LCM (Section 5) by
– using and defining a cross-language, step-indexed, Kripke logical relation with

recursive worlds (Section 5).

This text is an extended version of a paper that was presented at POPL
2019 (Skorstengaard et al., 2019b). Compared to the earlier text, this version adds
and explains aspects of our work that were left out in the conference version due to
space restrictions. The added details include a better motivation of sealing (Section 2.1),
the requirements of well-formedness (Section 4.2) and reasonability of components
(Section 4.3). The section on proving full-abstraction (Section 5) has been rewritten to
better explain the method used for the full-abstraction proof. This includes a description
and motivation of the Kripke worlds (Section 5.1) and logical relation (Section 5.3) that
we use to do this. This paper is accompanied by a technical report (Skorstengaard et al.,
2018b) with technical details and proofs.

Generally, we have only added material that we believe is valuable to some readers,
and we have worked hard to explain the more technical material and make it digestible.
Additionally, while Sections 2, 3, 4, 6 and 7 are intended for all readers, we have kept
the more technical sections about the proof of full abstraction separate in Sections 5 and
particularly 5.2, so that it can be easily skipped by readers who prefer to do so.

2 A Capability Machine with Sealing and Linear Capabilities

In this section, we introduce a simple but representative capability machine with linear
capabilities, which we call LCM (Linear Capability Machine). LCM is mainly inspired by
CHERI (Watson et al., 2015a) with linear capabilities as the main addition. For simplicity,
LCM assumes an infinite address space and unbounded integers.1

1 Although we have not thoroughly investigated, we do not believe our results depend heavily on these
assumptions and we expect they could be lifted without a great impact on the proofs.



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

Journal of Functional Programming 5

The concept of a capability is the cornerstone of any capability machine. In its simplest
form, a (memory) capability is a permission and a range of authority. The former dictates
the operations the capability can be used for, and the latter specifies the range of memory it
can act upon. Memory capabilities on LCM are of the form ((perm, lin), base, end, addr)
(defined in Figure 2 with the rest of the syntax of LCM). Here perm is the permission,
and [base, end] is the range of authority. The available permissions are read-write-execute
(RWX), read-write (RW), read-execute (RX), read-only (R), and null-permission (0) ordered
by ≤ as illustrated in Figure 1. In addition to the permission and range, capabilities also
have a current address addr and a linearity lin. The current address is a CHERI design
choice that makes it easier to implement pointers as capabilities in C-like languages
Woodruff et al. (2014). The linearity is either normal for traditional capabilities or linear
for linear ones. A linear capability is a capability that cannot be duplicated. This is enforced
dynamically on the capability machine, so when a linear capability is moved between reg-
isters or memory, the source is cleared. The non-duplicability of linear capabilities means
that a linear capability cannot become aliased if it wasn’t to begin with.

RWX

RXRW

R

0

Fig. 1: Permission hierar-
chy

Any reasonable capability machine needs a way to set
up boundaries between security domains with different
authorities. It also must have a way to cross these bound-
aries such that (1) the security domain we move from
can encapsulate itself and later regain its authority and
(2) the security domain we move to regains all of its
authority. On LCM we have CHERI-like sealed capabili-
ties to achieve this (Watson et al., 2015a, 2016). A sealed
capability sealed(σ , sc) is a pair of a seal σ (represented
simply as a natural number) and a capability sc. A sealed
capability makes an underlying capability opaque which
means that the underlying capability cannot be changed
or used for the operations it normally gives permission to. In other words, the authority the
underlying capability represents is encapsulated under the seal. In order to seal a capabil-
ity with a seal σ , it is necessary to have the authority to do so. The permission to make
sealed capabilities is represented by a second form of capability (in addition to the memory
capabilities we saw above): a set-of-seals capability seal(σbase, σend, σcurrent). Such a capa-
bility represents the authority to seal other capabilities with seals in the range [σbase, σend].
In the spirit of memory capabilities, a set-of-seals capability has a current seal σcurrent that
is selected for use in the next seal operation. As we will see later, sealed capabilities get
unsealed when they are invoked using an xjmp, an operation that operates on a pair of
capabilities sealed with the same seal. The instruction will be explained in more detail
below, but essentially, it unseals the pair of capabilities, transfers control to one of them
(the code part of the pair) and makes the other one (the data part) available to the invoked
code. The combination of sealed capabilities and xjmp gives us the properties (1) and (2)
mentioned above: encapsulation of components’ authority such that authority is restored
upon invocation.

Words on LCM are either capabilities or data (represented by integers Z). We assume
a finite set of register names RegName containing at least the registers pc, rrdata, rrcode,
rstk, rdata, rt1, and rt2. We define register files as functions from register names to words.
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a, base∈ Addr def
= N

end ∈ Addr∪ {∞}
perm∈ Perm ::= RWX | RX | RW | R | 0

l ::= linear | normal
σbase, σ ∈ Seal def

= N
σend ∈ Seal∪ {∞}
sc∈ Sealables ::= ((perm, l), base, end, a) | seal(σbase, σend, σ)

c∈ Cap ::= Sealables | sealed(σ , sc)
w∈ Word def

= Z]Cap
r ∈ RegName ::= pc | rrdata | rrcode | rstk | rdata | rt1 | rt2 | . . .

reg∈ RegFile def
= RegName→Word

mem∈ Memory def
= Addr→Word

ms∈ MemFrag def
= Addr ⇀ Word

Φ∈ ExecConf def
= Memory×RegFile

Conf def
= ExecConf∪ {failed} ∪ {halted}

r ∈RegisterName rn ::= r |N
Instr ::= jmp r | jnz r rn | move r rn | load r r | store r r | plus r rn rn | minus r rn rn |

lt r rn rn | gettype r r | getp r r | getl r r | getb r r | gete r r | geta r r |
cca r nrn | seta2b r | restrict r rn | cseal r r | xjmp r r | split r r r rn |
splice r r r | fail | halt

Fig. 2: The syntax of our capability machine with seals and linear capabilities.

Complete memories map all addresses to words and memory fragments map some
addresses to words (i.e. they are partial functions). LCM has two terminated configura-
tions halted and failed that respectively signify a successful execution and an execution
where something went wrong, e.g., an out-of-bounds memory access. An executable
configuration is a register file and memory pair.

LCM’s instruction set is somewhat basic with the instructions one expects on most
low-level machines as well as capability-related instructions. The standard instructions
are: unconditional and conditional jump (jmp and jnz), copy between registers (move),
instructions that load from memory and store to memory (load and store), and arith-
metic operations (plus, minus, and lt). The simplest of the capability instructions inspect
the properties of capabilities: type (gettype), linearity (getl), range (getb and gete),
current address or seal (geta) or permission (getp). The current address (or seal) of a
capability (or set-of-seals) can be shifted by an offset (cca) or set to the base address
(seta2b). The restrict instruction reduces the permission of a capability according to
the permission order ≤. Generally speaking, a capability machine needs an instruction for
reducing the range of authority of a capability. Because LCM has linear capabilities, the
instruction for this splits the capability in two (split) rather than reducing the range of
authority. The reverse is possible using splice. Sealables can be sealed using cseal and
pairs of sealed capabilities can be unsealed by crossing security boundaries (xjmp, see
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Φ(pc) = ((p, ), b, e, a)
b≤ a≤ e p∈ {RWX, RX}

Φ→ Jdecode(Φ.mem(a))K (Φ)

∀Φ′ 6= failed. Φ 9 Φ′

Φ→ failed

updPc(Φ) =

{
Φ[reg.pc 7→w] Φ(pc) = ((p, l), b, e, a)∧w = ((p, l), b, e, a + 1)

Φ otherwise

linClear(w) =

{
0 isLinear(w)

w otherwise

xjmpRes(c1, c2, Φ) =

{
Φ[reg.pc 7→ c1][reg.rdata 7→ c2] nonExec(c2)

failed otherwise

Fig. 3: An excerpt of the operational semantics of LCM (part 1/2).

below). Finally, LCM has instructions to signal whether an execution was successful or
not (halt and fail).

The operational semantics of LCM is displayed in Figures 3 and 4. The operational
semantics is defined in terms of a step relation that executes the next instruction in an
executable configuration Φ which results in a new executable configuration or one of the
two terminated configurations. The executed instruction is determined by the capability
in the pc register, i.e. Φ(pc) (we write Φ(r) to mean Φ.reg(r)). In order for the machine
to take a step, the capability in the pc must have a permission that allows execution, and
the current address of the capability must be within the capability’s range of authority. If
both conditions are satisfied, then the word pointed to by the capability is decoded to an
instruction which is interpreted relative to Φ. The interpretations of some of the instructions
are displayed in Figure 3 and 4. In order to step through a program in memory, most of
the interpretations use the function updPc which simply updates the capability in the pc to
point to the next memory address. The instructions that stop execution or change the flow
of execution do not use updPc. For instance, the halt and fail instructions are simply
interpreted as the halted and failed configurations, respectively, and they do not use updPc.

The move instruction simply moves a word from one register to another. It is, however,
complicated slightly by the presence of the non-duplicable linear capabilities. When a
linear capability is moved, the source register must be cleared to prevent duplication of
the capability. This is done uniformly in the semantics using the function linClear that
returns 0 for linear capabilities and is the identity for all other words. When a word w is
transferred on the machine, then the source of w is overwritten with linClear(w) which
clears the source if w was linear and leaves it unchanged otherwise. In the case of move,
the source register rn is overwritten with linClear(Φ(rn)).

The store and load instructions are fairly standard. They require a capability with
permission to write or read (respectively), they check that the capability points within
the range of authority. Linear capabilities introduce one extra complication for load as it
needs to clear the loaded memory address when it contains a linear capability in order to
not duplicate the capability. In this case, we require that the memory capability used for
loading also has write-permission.
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i∈ Instr JiK (Φ) Conditions
halt halted
fail failed

move r rn updPc(
Φ[reg.rn 7→w2]

[reg.r 7→w1])

rn∈RegName and w1 = Φ(rn) and
w2 = linClear(Φ(rn))

load r1 r2 updPc(
Φ[reg.r1 7→w1]

[mem.a 7→wa])

Φ(r2) = ((p, ), b, e, a) and b≤ a≤ e and
p∈ {RWX, RW, RX, R} and
w1 = Φ.mem(a) and
isLinear(w1)⇒ p∈ {RWX, RW} and
wa = linClear(w1)

store r1 r2 updPc(
Φ[reg.r2 7→w2]

[mem.a 7→Φ(r2)])

Φ(r1) = ((p, ), b, e, a) and
p∈ {RWX, RW} and b≤ a≤ e and
w2 = linClear(Φ(r2))

geta r1 r2 updPc(
Φ[reg.r1 7→w])

If Φ(r2) = (( , ), , , a) or
Φ(r2) = seal( , , a), then w = a and
otherwise w =−1

cca r rn updPc(
Φ[reg.r 7→w])

Φ(rn) = n∈Z and either
Φ(r) = ((p, l), b, e, a) or
Φ(r) = seal(σb, σe, σ) and
w = ((p, l), b, e, a + n) or
w = seal(σb, σe, σ + n), respectively

jmp r Φ[reg.r 7→w]
[reg.pc 7→Φ(r)]

w = linClear(Φ(r))

xjmp r1 r2 Φ′ Φ(r1) = sealed(σ , c1) and
Φ(r2) = sealed(σ , c2) and
w1 = linClear(c1) and w2 = linClear(c2)

and Φ′ = xjmpRes(c1, c2, Φ[reg.r1, r2 7→
w1, w2])

split r1 r2 r3 rn updPc(Φ[reg.r3 7→w]
[reg.r1 7→ c1]

[reg.r2 7→ c2])

Φ(r3) = ((p, l), b, e, a) and Φ(rn) = n∈N
and b≤ n < e and c1 = ((p, l), b, n, a) and
c2 = ((p, l), n + 1, e, a) and
w = linClear(Φ(r3))

splice r1 r2 r3 updPc(Φ[reg.r2 7→w2]

[reg.r3 7→w3]

[reg.r1 7→ c])

Φ(r2) = ((p, l), b, n, ) and
Φ(r3) = ((p, l), n + 1, e, a) and b≤ n < e
and c = ((p, l), b, e, a) and
w2, w3 = linClear(Φ(r2), Φ(r3))

cseal r1 r2 updPc(
Φ[reg.r1 7→ sc])

Φ(r1)∈ Sealables and
Φ(r2) = seal(σb, σe, σ) and σb ≤ σ ≤ σe

and sc = sealed(σ , Φ(r1))

. . .
failed otherwise

Fig. 4: An excerpt of the operational semantics of LCM (part 2 of 2).
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The instruction geta projects the current address (or seal) from a capability (or set-
of-seals), and returns −1 for data and sealed capabilities. cca (change current address)
changes the current address or seal of a capability or set-of-seals, respectively, by a given
offset. Note that this instruction does not need to use linClear like the previous ones,
because it modifies the capability in-place, i.e. the source register is also the target register.
The jmp instruction is a simple jump that just sets register pc.

Two instructions manipulate seals in LCM: cseal for sealing a capability and xjmp for
unsealing a pair of capabilities. Given a sealable sc and a set-of-seals where the current seal
σ is within the range of available seals, the cseal instruction seals sc with σ . Apart from
dealing with linearity, xjmp takes a pair of sealed capabilities, unseals them, and puts one
in the pc register and the other in the rdata register, but only if they are sealed with the same
seal and the data capability (the one placed in rdata) is non-executable. A pair of sealed
capabilities can be seen as a closure where the code capability (the capability placed in pc)
is the program and the data capability is the local environment. Because of the opacity of
sealed capabilities, the creator of the closure can be sure that execution will start where the
code capability points and only in an environment with the related data, i.e. with access
to a data capability sealed with the same seal. This makes xjmp the mechanism on LCM
that transfers control between security domains. Opaque sealed capabilities encapsulate a
security domain’s local state and authority, and they only become accessible again when
control is transferred to the security domain. Some care should be taken for sealing because
reusing the same seal for multiple closures makes it possible to jump to the code of one
closure with the environment of another. LCM does not have an instruction for unsealing
capabilities directly, but we will explain below how it can be (partially) simulated using
xjmp.

Instructions for reducing the authority of capabilities are commonplace on capability
machines as they allow us to limit a capability’s authority before passing it to other code.
For normal capabilities, reduction of authority can be done without actually giving up any
authority by duplicating the capability first. With linear capabilities, authority cannot be
preserved in this fashion as they are non-duplicable. In order to make a lossless reduction
of the range of authority, LCM provides special hardware support in the form of split and
splice. The split instruction takes a capability with range of authority [base, end] and
an address n and creates two new capabilities, with [base, n] and [n + 1, end] as ranges of
authority. Everything else, i.e. permission, linearity and current address, is copied without
change to the new capabilities. With split, we can reduce the range of authority of a linear
capability without losing any authority as we retain it in the second capability. The splice
instruction essentially does the inverse of split. Given two capabilities with adjacent
ranges of authority and the same permissions and linearity, splice splices them together
into one capability. The two instructions work in the same way for set-of-seals capabilities.
We do not provide special support for lossless reduction of capability permissions, but this
could probably be achieved with more fine-grained permissions. This would also allow
linear capabilities to have aliases, but only by linear capabilities with disjoint permissions.

The interpretation of the remainder of the instructions are displayed in Appendix 1.
The instructions getb, gete, getl, and getp all query information about capabilities.
The getb and gete instructions, respectively, project the base and end address of the
range of authority. The linearity of a permission is projected with getl, and finally the
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permission is projected with getp. The instructions getb and gete also work on set-of-
seal capabilities. The instruction gettype returns an integer representation of the type of
a word (capability or number). LCM also has arithmetic instructions plus, minus, and
lt. The latter instruction compares two numbers and writes 1 or 0 to a target register
depending on whether one number is less than the other. The instruction seta2b sets the
current address (or seal) of a memory (or set-of-seals) capability to the base address of
the range of authority (or range of seals). This instruction makes it easy to work relatively
to the base address of a capability. This instruction is not strictly necessary as it can be
emulated with other instructions. Finally, we have the restrict instruction which restricts
the permission of a capability according to the ≤ relation.

2.1 The purpose of sealing

To motivate the necessity of an encapsulation mechanism like sealing, consider the sce-
nario where we are executing some trusted code and want to transfer control to untrusted
code. We want to give the untrusted code the means to return to us. That is, we need to give
them a return capability. For now, let us pretend that there does not exist a stack and only
a single invocation of untrusted code happens in the entire execution.

If we did not have an encapsulation mechanism, our only option would be to give the
adversary an executable capability for the address we want them to return to. The untrusted
code could use the return capability as intended, but it could also manipulate it to point
elsewhere in our code. Jumping to such a capability could cause the trusted program to
execute in an unintended and potentially insecure way.

Additionally, when the untrusted code returns, we need to regain access to the capa-
bilities that represent our authority. To achieve this, we have to store them in a location
that we can access after the return. However, without an encapsulation mechanism, the
untrusted code would also have the same authority as us, including access to the authority
we stored away. This is why any reasonable capability machine must have an encapsulation
mechanism to allow programs to set up boundaries between security domains.

To establish such a boundary in LCM, we can seal the return capability. Specifically,
we can seal the return capability (which points to the instruction to be executed after the
return) as a pair, together with a pointer to the stack frame where we have stashed away our
capabilities (see further). By doing this, the untrusted code is prevented from changing the
target of the return capability forcing them to return to the point we specified. Additionally,
they do not get access to the capabilities we stashed away. Nevertheless, the automatic
unsealing of sealed capability pairs upon invocation will ensure that the return code can
still proceed as before. In other words, the sealing mechanism in LCM allows us to transfer
control to untrusted code without giving up our capabilities or handing them over, and also
control the locations in our code they can jump back to.

It is worth pointing out that LCM does not have a direct unsealing instruction to extract
a capability from its sealed version when the seal is available, but one can be (partially)
emulated. Say you have a sealed non-executable word sealed(σ , w) as well as a set-of-seals
capability seal(σb, σe, σ) that contains σ , i.e. σ ∈ [σb, σe]. It is possible to extract w in rdata

using xjmp in the following way. The idea is to use the seal to construct a sealed version
of the pc capability incremented by one, and then perform an xjmp to it in combination
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with the sealed capability. This does not work for sealed executable capabilities because
xjmp fails if the data capability is executable. However, even though we cannot extract the
executable capability from sealed(σ , c), we can still invoke it with arbitrary arguments,
since we can use the seal to construct an arbitrary data part and xjmp to the combination.2

Sealing is meant for encapsulation, but it relies on seals being kept private as should be
clear from the explanations so far. For this reason, it is important that trusted code does not
leak its seals to adversaries and that the system is initialised so that each component has
access to unique seals. We return to this in Section 4.2.

2.2 Decoding and encoding functions

The operational semantics of the capability machine uses the function decode to decode
instructions. We also assume a function encode to make it easy to specify programs in
terms of instructions. Rather than defining such a decode function and an encode function,
we assume that they are given with certain properties. Most importantly, encode : Instr→Z
should be the right inverse of decode, i.e.

∀i∈ Instr. decode(encode(i)) = i

The decode : Word→ Instr should only map numbers to non-fail instructions, i.e.
capabilities are mapped to fail:

∀c∈Cap. decode(c) = fail

These assumptions are sufficient to construct program examples in terms of instructions
rather than machine words (using encode), and run them on the machine (using the fact
that decode is the left inverse of encode).

The full machine semantics in Appendix 1 also assumes decode and encode func-
tions for permissions encodePerm : Perm→Z and decodePerm : Z→ Perm. We assume
the decodePerm function to be the left inverse of encodePerm. For encodePerm, we assume
that it does not encode anything to the getp error value -1, i.e.

∀p∈ Perm. encodePerm(p) 6=−1

For linearity we assume similar functions. Finally in the interpretation of gettype, the
machine uses an encode function for word types encodeType. This function encodes each
kind of word as an integer. This is very much like the previous functions. It encodes each
kind of word differently and all words of the same kind to the same integer.

2.3 Components, linking, programs, and contexts

The executable configuration describes the machine state, but it does not make it clear what
components run on the machine and how they interact with each other. To clarify this, we
introduce notions of components and programs from which we construct executable con-
figurations. A component (defined in Figure 5) is basically a program with entry points in
the form of imports that need to be linked. It has exports that can satisfy the imports of other

2 Alternatively, we could remove the current restriction in xjmp that requires the data capability to be non-
executable but then the invoked code would often have to manually perform this check instead.
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s ∈ Symbol import ::= a← [ s export ::= s 7→w
comp0 ::= (mscode, msdata, import, export, σret, σclos, Alinear)

comp ::= comp0 | (comp0, cmain,c, cmain,d)

comp0 = (mscode,1, msdata,1, import1, export1, σret,1, σclos,1, Alinear,1)

comp′0 = (mscode,2, msdata,2, import2, export2, σret,2, σclos,2, Alinear,2)

comp′′0 = (mscode,3, msdata,3, import3, export3, σret,3, σclos,3, Alinear,3)
mscode,3 = mscode,1 ]mscode,2

msdata,3 = (msdata,1 ]msdata,2)[a 7→w | (a← [ s)∈ (import1 ∪ import2), (s 7→w)∈ export3]

export3 = export1 ∪ export2 import3 = {a← [ s∈ (import1 ∪ import2) | s 7→ 6∈ export3}
σret,3 = σret,1 ] σret,2 σclos,3 = σclos,1 ] σclos,2 Alinear,3 = Alinear,1 ] Alinear,2

dom(mscode,3) # dom(msdata,3) σret,3 # σclos,3

comp′′0 = comp0 ./ comp′0

comp′′0 = comp0 ./ comp′0
(comp′′0 , cmain,c, cmain,d) = comp0 ./ (comp′0, cmain,c, cmain,d)

= (comp0, cmain,c, cmain,d) ./ comp′0

Fig. 5: Components and linking of components.

components. A base component comp0 consists of a code memory fragment, a data mem-
ory fragment, a list of imported symbols, a list of exported symbols, two lists specifying the
available seals (see Section 4), and a set of all the linear addresses (addresses governed by
a linear capability). The import list specifies where in memory imports should be placed,
and imports are matched to exports via their symbols. An export associates a word with
a symbol. A component is either a library component (without a main entry point) or an
incomplete program with a main entry point in the form of a pair of sealed capabilities. The
latter can be seen as a program that still needs to be linked with libraries. Components are
combined into new components by linking them together, as long as only one has a main
function. Two components can be linked when their memories, seals, and linear addresses
are disjoint. They are combined by taking the union of each of their constituents. For every
import that is satisfied by an export of the other component, the data memory is updated to
have the exported word on the imported address. The satisfied imports are removed from
the import list in the resulting linked component and the exports are obtained by combining
the components’ exports.

We can now define the notion of a program as well as a context.

Definition 1 (Programs and Contexts). A program is a component (comp0, cmain,c, cmain,d)

with an empty import list. A context for a component comp is a component comp′ such that
comp ./ comp′ is a program. �
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Adv. stack frame 1
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cap. 1

adv. stack

cap. 2

(a) An adversary uses a previous stack
frame’s stack pointer.

Lower stack
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Trusted

stack frame 1

Adv. stack frame 1

Trusted

stack frame 2

Adv. stack frame 2

return
to wrong
return ptr

(b) An adversary jumps to a previous stack
frame’s stack pointer.

Fig. 6: Possible ways to abuse stack and return capabilities. Grey and white frames indicate
inactive and active stack frames respectively. The red frame emphasizes stack frames being
skipped by an adversarial return.

How a program is initialised to create an executable configuration is discussed in
Section 4. Some simplifications have been made in this presentation of LCM. These sim-
plifications concern minor details, for example, we’ve omitted the fact that moves to the pc
register are disallowed. Full details can be checked in Skorstengaard et al. (2018b).

3 Linear Stack and Return Capabilities

In this section, we introduce our calling convention STKTOKENS that ensures LSE and
WBCF. We will gradually explain each of the security measures STKTOKENS takes and
motivate them with the attacks they prevent.

STKTOKENS is based on a traditional single stack, shared between all components. To
explain the technique, let us first consider how we might already add extra protection to
stack and return pointers on a capability machine. First, we replace stack pointers with
stack capabilities. When a new stack frame is created, the caller provisions it with a stack
capability, restricted to the appropriate range, i.e. not covering the caller’s stack frame.
Return pointers, on the other hand, are replaced by a pair of sealed return capabilities, as
explained in Section 2.1. They form an opaque closure that the callee can only jump to,
and when that happens, the caller’s data becomes available to the caller’s return code.

While the above adds extra protection, it is not sufficient to enforce WBCF and LSE.
Untrusted callees receive a stack capability and a return pair that they are supposed to use
for the call. However, a malicious callee (which we will refer to as an adversary3) can store

3 See Section 4.2 for more details on our attacker model.
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the provided capabilities away on the heap in order to use them later. Figure 6 illustrates
two examples of this. In both examples our component and an adversarial component have
been taking turns calling each other, so the stack now contains four stack frames alternating
between ours and theirs. The figure on the left (Figure 6a) illustrates how we try to ensure
LSE by restricting the stack capability to the unused part before every call to the adversary.
However, restricting the stack capability does not help when we, in the first call, give access
to the part of the stack where our second stack frame will reside as nothing prevents the
adversary from duplicating and storing the stack pointer. Generally speaking, we have no
reason to ever trust a stack capability received from an untrusted component as that stack
capability may have been duplicated and stored for later use. In the figure on the right
(Figure 6b), we have given the adversary two pairs of sealed return capabilities, one in
each of the two calls to the adversarial component. The adversary stores the pair of sealed
return capabilities from the first call in order to use it in the second call where they are not
allowed. The figure illustrates how the adversarial code uses the return pair from the first
call to return from the second call and thus break WBCF.

As the examples illustrate, this naive use of memory and object capabilities does not
suffice to enforce LSE and WBCF. The problem is essentially that the stack and return
pointers that a callee receives from a caller remain in effect outside their intended lifetime:
either when the callee has already returned or when they have themselves invoked other
code. Linear capabilities offer a form of revocation4 that can be used to prevent this from
happening.

The linear capabilities are put to use by requiring the stack capability to be linear. On
call, the caller splits the stack capability in two: one capability for their local stack frame
and another one for the unused part of the stack. The local stack frame capability is sealed
and used as the data part of the sealed return pair. The capability for the remainder of the
stack is given to the callee. Because the stack capability is linear, the caller knows that the
capability for their local stack frame cannot have an alias. This means that an adversary
cannot access the caller’s local data because the caller has a linear capability for it and
there cannot exist an alias. The caller gives this capability to the adversary only in a sealed
form, rendering it opaque and unusable. This is illustrated in Figure 7a and prevents the
issue illustrated in Figure 6a.

In a traditional calling convention with a single stack, the stack serves as a call stack
keeping track of the order calls were made in and thus in which order they should be
returned to. A caller pushes a stack frame to the stack on call and a callee pops a stack
frame from the stack upon return. However without any enforcement, there is nothing to
prevent a callee from popping more from the stack than they should and returning on an
arbitrary call on the call stack. This is exactly what the adversary does in Figure 6b when
they skip two stack frames. In the presence of adversarial code, we need some mechanism
to enforce that the order of the call stack is kept. One way to enforce this would be to hand
out a token on call that can only be used when the caller’s stack frame is on top of the call
stack. The callee would have to present this token on return to prove that it is allowed to
return to the caller, and on return the token would be taken back by the caller to prevent it

4 Revocation in the sense that if we hand out a linear capability and later get it back, then the adversary cannot
have kept a copy of it as it is non-duplicable. In other words, the adversary’s access has effectively been revoked
in this situation.
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(a) The non-duplicable linear stack capabil-
ity for the trusted code’s stack frame and the
opacity of sealed capabilities ensures LSE.
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data return
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(b) The trusted caller fails to splice the stack
capability returned by the adversary with the
capability for the trusted caller’s local stack
frame.

Fig. 7: Abuse of stack and return capabilities prevention. Grey and white frames indicate
inactive and active stack frames respectively. Linear braces indicate memory owned by
linear capabilities.

from being spent multiple times. As it turns out, the stack capability for the unused part of
the stack can be used as such a token in the following way: On return the callee has to give
back the stack capability they were given on invocation. When the caller receives a stack
capability back on return, it checks that this token is actually spendable, i.e. whether its
stack frame is on top of the logical call stack or not. This check can be done by attempting
to recombine (splice) the return token with the stack capability for the local stack frame
(which at this point has been unsealed again) in order to reconstruct the original stack
capability. If the splice is successful, then the caller knows that the two capabilities are
adjacent. On the other hand, if the splice fails, then they are alerted to the fact that their
stack frame may not be the topmost. STKTOKENS uses this approach; and as illustrated in
Figure 7b, it prevents the issue in Figure 6b as the adversary does not return a spendable
token when they return.

In order for a call to have a presence on the call stack, its stack frame must be non-empty.
We cannot allow empty stack frames on the call stack, because then it would be impossible
to tell whether the topmost non-empty stack frame has an empty stack frame on top of
it. Non-empty stack frames come naturally in traditional C-like calling convention as they
keep track of old stack pointers and old program counters on the stack, but in STKTOKENS

these things are part of the return pair which means that a caller with no local data may
only need an empty stack frame. In other words, a caller using STKTOKENS needs to take
care that their stack frame is non-empty in order to reserve their spot in the return order.
There is also a more practical reason for a STKTOKENS caller to make sure their stack
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Fig. 8: Partial return token used to return out of order. Grey and white frames indicate
inactive and active stack frames respectively. Linear braces indicate memory owned by
linear capabilities. The red frame emphasizes a stack frame that is being skipped by an
adversarial return.

frame is non-empty: They need a fragment of the stack capability in order to perform the
splice that verifies the validity of the return token.

At this point, the caller checks that the return token is adjacent to the stack capability for
the caller’s local stack frame and they have the means to do so. However, this still does not
ensure that the caller’s stack frame is on top of the call stack. The issue is that stack frames
may not be tightly packed leaving space between stack frames in memory. An adversarial
callee may intentionally leave a bit of space in memory above the caller’s stack frame, so
that they can later return out of order by returning the bit of the return token for the bit of
memory left above the caller’s stack frame. This is illustrated in Figure 8: In Figure 8a, a
trusted caller has called an adversarial callee. The adversary calls the trusted code back,
but first they split the return token in two and store on the heap the part for the memory
adjacent to the trusted caller’s call frame (Figure 8b). The trusted caller calls the adversary
back using the precautions we have described so far (Figure 8c). At this point (Figure 8d),
the adversary has access to a partial return token adjacent to the trusted caller’s first stack
frame which allows the adversary to return from this call breaking WBCF.

For the caller to be sure that there are no hidden stack frames above its own, they need to
make sure that the return token is exactly the same as the one they passed to the callee. In
STKTOKENS, the base address of the stack capability is fixed as a compile-time constant
(Note: the stack grows downwards, so the base address of the stack capability is the top-
most address of the stack). The caller verifies the validity of the return token by checking
whether the base address of a returned token corresponds to this fixed base address. In the
scenario we just sketched, the base address check would fail in Figure 8d, thus alerting the
caller to the attempt to break WBCF.
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In STKTOKENS, the stack memory is only referenced by a single linear stack capability
at the start of execution. Because of this, the return token can be verified simply by check-
ing its base address and splicing it with the caller’s stack frame. There is no need to check
linearity because only linear capabilities to this memory exist.

The return pointer in the STKTOKENS scheme is a pair of sealed capabilities where the
code part of the pair is the old program counter, and the data part is the stack capability
for the local stack frame of the caller. Both of the capabilities in the pair are sealed with
the same seal. All call points need to be associated with a unique seal (a return seal) that
is only used for the return capabilities for that particular call point. The return seal is what
associates the stack frame on the call stack with a specific call point in a program, so if
we allowed return seals to be reused, it would be possible to return to a different call point
than the one that gave rise to the stack frame, breaking WBCF. For similar reasons, we
cannot allow return seals to be used to seal closures. Return seals should also never be
leaked to adversarial code as this would allow them to unseal the local stack frame of a
caller and thus break LSE. This goes for direct leaks (leaving a seal in a register or writing
it to adversarial memory), as well as indirect leaks (leaking a different capability that can
be used for reading, either directly or indirectly, a return seal from memory).

We have sometimes phrased the description of the STKTOKENS calling scheme in terms
of “them vs us”. This may have created the impression of an asymmetric calling conven-
tion that places a special status on trusted components allowing them to protect themselves
against adversaries. However, STKTOKENS is a modular calling scheme: no restriction
is put on adversarial components that we do not expect trusted components to meet.
Specifically, we will only assume that both trusted and adversarial components are initially
syntactically well-formed (described in more detail in Section 4.2) which basically just
ensures that their initial state does not break machine guarantees (e.g. no aliases for linear
capabilities or access to seals of other components). This means that mutually distrusting
components can ensure WBCF and LSE for themselves by employing STKTOKENS.

To summarise, STKTOKENS consists of the following measures:

1. Check the base address of the stack capability before and after calls.
2. Make sure that local stack frames are non-empty.
3. Create token and data return capability on call: split the stack capability in two to

get a stack capability for your local stack frame and a stack capability for the unused
part of the stack. The former is sealed and used as the data part of the return pair.
The latter is passed to the callee as the stack pointer.

4. Create code return capability on call: Seal the old program counter capability.
5. Reasonable use of seals: Return seals are only used to seal old program counter

capabilities, every return seal is only used for one call site, and they are not leaked
(directly or indirectly).

Item 1-4 are captured by the code in Figure 9 , except for checking stack base before calls.
We do not include this check because it only needs to happen once between two calls, so
that the check after a call suffices if the stack base is not changed subsequently.
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// Ensure non-empty stack. // Clear tmp registers and jump.
1 : move rt1 42 14 : move rt1 0
2 : store rstk rt1 15 : xjmp r1 r2
3 : cca rstk (−1) // The following is the return code.

// Split stack in local stack frame and unused. // Check that returned stack pointer has base stk base.
4 : geta rt1 rstk 16 : getb rt1 rstk
5 : split rstk rrdata rstk rt1 17 : minus rt1 rt1 stk base

// Load the call seal. 18 : move rt2 pc
6 : move rt1 pc 19 : cca rt2 5
7 : cca rt1 (off pc − 5) 20 : jnz rt2 rt1
8 : load rt1 rt1 21 : cca rt2 1
9 : cca rt1 off σ 22 : jmp rt2

// Seal the local stack frame. 23 : fail

10 : cseal rrdata rt1 // Splice with capability for local stack frame.
// Construct code return pointer. 24 : splice rstk rstk rdata
11 : move rrcode pc // Pop 42 from the stack
12 : cca rrcode 5 25 : cca rstk 1
13 : cseal rrcode rt1 // Clear tmp register

26 : move rt2 0

Fig. 9: The instructions for a calloff pc,off σ r1 r2. Registers r1 and r2 are assumed to contain
the callee closure as a sealed capability pair. The code uses rt1 and rt2 as temporary regis-
ters. The number off pc is the offset between the memory location where the first instruction
of the call is stored to the memory location where the set-of-seals capability is stored that
should be used for sealing the return capability. This set-of-seals capability may give access
to a range of seals and the offset off σ identifies which of these should be used. stk base is
the globally agreed on stack base. There are some magic numbers in the code: line 1: 42,
garbage data to ensure a non-empty stack. Line 7: −5, offset from line 6 (where pc was
copied into rt1) to line 1. Line 12: 5, offset to the return address. Line 19: 5, offset to fail.
Line 21: offset to address after fail.

4 Formulating Security with a Fully Abstract Overlay Semantics

As mentioned, the STKTOKENS calling convention guarantees well-bracketed control flow
(WBCF) and local state encapsulation (LSE). However, before we can prove these proper-
ties, we need to know how to even formulate them. Although the properties are intuitively
clear and sound precise, formalizing them is actually far from obvious.

Ideally, we would like to define the properties in a way that is

1. intuitive
2. useful for reasoning: we should be able to use WBCF and LSE when reasoning

about correctness and security of programs using STKTOKENS.
3. reusable in secure compiler chains: for compilers using STKTOKENS, one should

be able to rely on WBCF and LSE when proving correctness and security of other
compiler passes and then compose such results with ours to obtain results about the
full compiler.

4. arguably “complete”: the formalization should arguably capture the entire meaning
of WBCF and LSE and should arguably be applicable to any reasonable program.
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5. potentially scalable: although dynamic code generation and multi-threading are cur-
rently out of scope, the formalization should, at least potentially, extend to such
settings.

Previous formalisations in the literature are formulated in terms of a static control flow
graph (e.g., Abadi et al., 2005b). While these are intuitively appealing (1), it is not clear
how they can be used to reason about programs (2) or other compiler passes (3), they lack
temporal safety guarantees (4) and do not scale (5) to settings with dynamic code gener-
ation (where a static control flow graph cannot be defined). Skorstengaard et al. (2018a)
provide a logical relation that can be used to reason about programs using their calling
convention (2,3), but it is not intuitive (1), there is no argument for completeness (4), and
it is unclear whether it will scale to more complex features (5).

We contribute a new way to formalise the properties using a novel approach we call
fully abstract overlay semantics. The idea is to define a second operational semantics for
programs in our target language. This second semantics uses a different abstract machine
and different run-time values, but it executes in lock-step with the original semantics and
there is a very close correspondence between the state of both machines.

The main difference between the two semantics is that the new one satisfies LSE and
WBCF by construction: the abstract machine comes with a built-in stack, inactive stack
frames are unaddressable and well-bracketed control flow is built into the abstract machine.
Important run-time values like return capabilities and stack pointers are represented by
special syntactic tokens that interact with the abstract machine’s stack, but during exe-
cution, there remains a close, structural correspondence to the actual regular capabilities
that they represent. For example, stack capabilities in the overlay semantics correspond
directly to linear capabilities in the underlying semantics, and they have authority over the
part of memory that the overlay views as the stack. The new run-time values in the overlay
semantics are treated appropriately in functions like encodeType. All the new values corre-
spond to concrete capabilities on the LCM machine which the encoding function reflects.
For instance, the encoding of a stack pointer in the overlay semantics is the same as the
encoding of a linear memory capability on the LCM machine.

The fact that STKTOKENS enforces LSE and WBCF is then formulated as a theorem
about the function that maps components in the well-behaved overlay semantics to the
underlying components in the regular semantics. The theorem states that this function
constitutes a fully abstract compiler, a well-known property from the field of secure com-
pilation (Abadi, 1999). Intuitively, the theorem states that if a trusted component interacts
with (potentially malicious) components in the regular semantics, then these components
have no more expressive power than components which the trusted component interacts
with in the well-behaved overlay semantics. In other words, they cannot do anything
that doesn’t correspond to something that a well-behaved component, respecting LSE and
WBCF, can also do. More formally, our full-abstraction result states that two trusted com-
ponents are indistinguishable to arbitrary other components in the regular semantics if and
only if they are indistinguishable to arbitrary other components in the overlay semantics.

Our formal results are complicated by the fact that they only hold on a sane initial con-
figuration of the system and for components that respect the basic rules of the calling
convention. For example, the system should be set up so that seals used by components for
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constructing return pointers are not shared with other components. We envision distribut-
ing seals as a job for the linker, so this means our results depend on the linker to do this
properly. As another example, a seal used to construct a return pointer can be reused but
only to construct return pointers for the same return point. Different seals must be used
for different return points. Such seals should also never be passed to other components.
These requirements are easy to satisfy: components should request sufficient seals from
the linker, use a different one for every place in the code where they make a call to another
component, and make sure to clear them from registers before every call. The general pat-
tern is that STKTOKENS only protects components that do not shoot themselves in the
foot by violating a few basic rules. In this section, we define a well-formedness judge-
ment for the syntactic requirements on components as well as a reasonability condition
that semantically disallows components to do certain unsafe things. Well-formedness is a
requirement for all components (trusted and untrusted), but the reasonability requirement
only applies to trusted components, i.e. those components for which we provide LSE and
WBCF guarantees.

4.1 Overlay Semantics

The overlay semantics OLCM for LCM views part of the memory as a built-in stack
(Figure 10). To this end, it adds a call stack and a free stack memory to the executable
configurations of LCM. The call stack is a list with all the stack frames that are currently
inaccessible because they belong to previous calls. Every stack frame contains encapsu-
lated stack memory as well as the program point that execution is supposed to return to.
The free stack memory is the active part of the stack that has not been encapsulated by a
previous call and thus can be used by the currently executing code. In order to distinguish
capabilities for the stack from the capabilities for the rest of the memory, OLCM adds stack
pointers. A stack pointer has a permission, range of authority, and current address, just like
capabilities on LCM, but they are always linear. The final syntactic constructs added by
OLCM are code and data return pointers. The data return pointer corresponds to a stack
capability, and the code return pointer corresponds to a executable capability for the corre-
sponding return point. Syntactically, the return pointers contain just enough information to
reconstruct what they correspond to on the underlying machine. During OLCM function

Sealables ::= Sealables | stack-ptr(perm, base, end, a) |
ret-ptr-data(base, end) | ret-ptr-code(base, end, a)

StackFrame def
= Addr×MemFrag Stack def

= StackFrame∗

ExecConf def
= Memory×RegFile× Stack×MemFrag

Instr ::= Instr | calloff pc,off σ r r off pc, off σ ∈ N

Fig. 10: The syntax of OLCM. OLCM extends LCM by adding stack pointers, return
pointers, and a built-in stack. Everything specific to the overlay semantics is written in
blue.
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calls, return pointers are generated from the stack and program counter capabilities, and
they are turned back to those capabilities upon return.

The opaque nature of the return pointers is reflected in the interpretation of instructions
as OLCM does not add special interpretation for them in non-xjmp instructions. Stack
pointers, on the other hand, need to behave just like capabilities, so OLCM adds new cases
for them in the semantics, e.g. cca can now also change the current address of a stack
pointer as displayed in Figure 11. Similarly, load and store work on the free part of the
stack when provided with a stack pointer. A store attempted with a stack capability that
points to an address outside the free stack results in the failed configuration because that
action is inconsistent with the view of the overlay semantics on the underlying machine. In
OLCM executions, there should only be stack pointers for the stack memory.

As discussed earlier, our formal results only provide guarantees for components that
respect the calling convention. Untrusted components are not assumed to do so. To for-
malize this distinction, OLCM has a set of trusted addresses TA. This TA is a constant
parameter of the OLCM step relation. Only instructions at these addresses will be inter-
preted as native OLCM calls and push frames to the call stack. As such, WBCF and LSE
will be guaranteed only for calls from these addresses. In addition to TA, STKTOKENS

assumes a fixed base address of the stack memory, that is also passed around as such a
parameter, for use in the native semantics of calls.

In addition to the (modified) reduction rules of LCM, OLCM has an overlay step that
takes precedence over the others. This step is shown in Figure 11, and it is different from
the others in the sense that it interprets a sequence of instructions rather than a single one.
The sequence of instructions have to correspond to a call, i.e. the instructions in Figure 9
(calloff pc,off σ

i r1 r2 corresponds to the ith instruction in the figure and call len is always 26,
i.e. the number of instructions). Calls are only executed when the well-behaved component
executes, so the addresses where the call resides must be in TA, and the executing capability
must have the authority to execute the call.

The interpretation of calloff pc,off σ r1 r2 is also shown in Figure 11 and essentially does
the following: The registers r1 and r2 are expected to contain a code-data pair sealed with
the same seal and the unsealed values are invoked by placing them in the pc and rdata

registers, respectively. The current active stack and the stack capability are split into the
local stack frame of the caller and the rest. call also constructs a return capability copc

and its address opc, pointing after the call instructions. The local stack frame and return
address are pushed onto the stack, and the local stack capability and return capability are
converted into a pair of return capabilities and sealed with the seal designated for the call.

Since the return capabilities ret-ptr-code and ret-ptr-data are sealed, they can only be
used using the xjmp instruction, to perform a return. When this happens, the topmost call
stack frame (opc, mslocal) is popped from the call stack. In order for the return to succeed,
the return address in the code return pointer must match opc, and the range of addresses in
the data return pointer must match the domain of the local stack. If the return succeeds, the
stack pointer is reconstructed, and the local stack becomes part of the active stack again.

OLCM supports tail calls. A tail call is a call from a caller that is done executing, and
thus doesn’t need to be returned to or preserve local state. This means that a tail call should
not reserve a slot in the return order by pushing a stack frame on the call stack, i.e. it should
not use the built-in OLCM call. Instead, to perform a tail call, the caller simply transfers
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control to the callee using xjmp. The tail-callee should return to the caller’s caller, so the
caller leaves the return pair they received for the callee to use.

It is important to observe that the operational semantics of OLCM natively guarantee
WBCF (well-bracketed control flow) and (local stack encapsulation) for calls made by
trusted components. By inspecting the operational semantics of OLCM, we can see that it
never allow reads or writes to inactive stack frames on the call stack. The built-in call for
trusted code pushes the local stack frame to the inactive part of the stack, together with the
return address. Such frames can be reactivated by xjmping to a return capability pair, but
only for the topmost stack frame and if the return address corresponds to the one stored in
the call stack. In other words, WBCF and LSE are natively enforced in this semantics.

4.2 Well-Formed Components

The components introduced in Section 2.3 are pretty much unconstrained. For instance,
a component can have multiple linear capabilities for the same piece of memory, and
might have arbitrary set-of-seals capabilities. In a real system, the operating system and
linker would make sure everything is setup correctly. For instance, they would not allo-
cate multiple linear capabilities for the same memory, and they would ensure sane seal
allocation.

In this section, we introduce a syntactic well-formedness judgement, which captures
requirements that would normally be enforced by the operating system and linker. It applies
to both trusted and adversarial components. Well-formedness will only be required when
the system starts executing, i.e. the requirement serves to ensure a sane initial state. It does
not prevent code from organizing its memory differently when the system is executing.

For simplicity, the well-formedness judgement imposes a quite rigid structure on
components. A component’s code memory may contain only data (including encoded
instructions) and set-of-seals capabilities. The data memory may contain only data, mem-
ory capabilities to the component’s data memory (respecting linearity) or sealed memory
capabilities to the component’s data memory, sealed with closure seals. This produces a
clear separation between code and data memory as neither can contain capabilities for the
other. Well-formedness does not allow executable capabilities to data memory or writable
capabilities to code memory, effectively enforcing a kind of Write-XOR-Execute policy.
This means we currently exclude dynamic code generation, but see Section 6.3 for thoughts
on how this restriction might be lifted. A component’s exports should be sealed code or
data capabilities, sealed with a closure seal.

As explained in the previous section, we make use of a set of trusted addresses TA to
distinguish trusted components from adversarial components. To prevent ambiguity, the
well-formedness judgement requires that any component’s code memory must fall entirely
within or outside of TA, so every component is either trusted or adversarial. Additionally,
some well-formedness requirements are specific for adversarial and trusted components
respectively. Well-formed adversarial components cannot have return seals. On the other
hand, well-formed trusted components can have return seals, and must allocate unique
return seals to every call site.

These requirements are formally expressed by the well-formedness judgement TA `
comp: it defines initial syntactic requirements for components, necessary to be able to
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Φ(pc) = ((p, ), b, e, a)
[a, a + call len− 1]⊆ TA [a, a + call len− 1]⊆ [b, e] p∈ {RWX, RX}

Φ.mem(a, . . . , a + call len− 1) = call
off pc,off σ

0 r1 r2 · · · call
off pc,off σ

call len−1 r1 r2

Φ→TA,stk base
r
calloff pc,off σ r1 r2

z
(Φ)

i∈ Instr JiK (Φ) Conditions
halt halted

. . . (the operational semantics of LCM)
store r1 r2 updPc(Φ[reg.r2 7→w2]

[msstk.a 7→Φ(r2)])

Φ(r1) = stack-ptr(p, b, e, a) and
p∈ {RWX, RW} and b≤ a≤ e and
w2 = linClear(Φ(r2)) and
a∈ dom(msstk)

cca r rn updPc(Φ[reg.r 7→w]) Φ(rn) = n∈Z and
Φ(r) = stack-ptr(p, b, e, a) and
w = stack-ptr(p, b, e, a + n)

calloff pc,off σ

r1 r2
xjmpRes(c1, c2,

Φ[reg.r1 7→w1]

[reg.r2 7→w2]

[reg.rrcode 7→ sc]

[reg.rrdata 7→ sd ]

[reg.rstk 7→ cstk]

[msstk 7→msstk,rest]

[stk 7→ stk′]


)

msstk,local, clocal, msstk,rest, cstk =

splitStack(Φ.reg(rstk), Φ.msstk) and
opc, copc = setupOpc(Φ.reg(pc)) and
stk′ = (opc, msstk,local) :: Φ.stk and
σ = getCallSeal(

Φ.reg(pc), Φ.mem, off pc, off σ ) and
sc, sd = sealReturnPair(σ , copc, clocal)

and w1, w2 = linClear(Φ.reg(r1, r2))

and Φ.reg(r1, r2) =

sealed(σ ′, c1), sealed(σ ′, c2)

. . .
failed otherwise

xjmpRes(c1, c2, Φ) =

Φ[reg.pc 7→ c1]

[reg.rdata 7→ c2]
nonExec(c2) and c1 6= ret-ptr-code( ) and
c2 6= ret-ptr-data( )

Φ[reg.pc 7→ copc]

[reg.rstk 7→ cstk]

[reg.rdata 7→ 0]
[stk 7→ stk′]
[msstk 7→msstk ]mslocal]

(opc, mslocal) :: stk′ = Φ.stk∧
c1 = ret-ptr-code(b, e, opc)
c2 = ret-ptr-data(astk, estk)∧ dom(mslocal) = [astk, estk]

cstk = reconstructStackPointer(Φ.reg(rstk), c2)∧
copc = ((RX, normal), b, e, opc)

failed otherwise

Fig. 11: An excerpt of the operational semantics of OLCM (some details omitted).
Auxiliary definitions are found in Figure 12.
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splitStack(stack-ptr(RW, bstk, estk, astk), msstk) = msstk,local, clocal data, msstk,unused, cstk iff

bstk < astk ≤ estk

msstk,local = msstk|[astk,estk][astk 7→ 42]
msstk,unused = msstk|[bstk,astk−1]
cstk = stack-ptr(RW, bstk, astk − 1, astk − 1)
clocal data = ret-ptr-data(astk, estk)

setupOpc((( , ), b, e, a)) = opc, copc iff
{

opc = a + call len∧
copc = ret-ptr-code(b, e, opc)∧

getCallSeal(cpc, mem, off pc, off σ ) = σ iff


cpc = (( , ), b, e, a)∧ b≤ a + off pc ≤ e∧
mem(a + off pc) = seal(σb, σe, σa)∧ σb ≤ σ ≤ σe ∧
σ = σa + off σ

sealReturnPair(σ , copc, clocal) = sealed(σ , copc), sealed(σ , clocal)

reconstructStackPointer(stack-ptr(RW, stk base, astk − 1, ), ret-ptr-data(astk, estk)) =

stack-ptr(RW, stk base, estk, astk) iff stk base≤ astk

Fig. 12: Auxiliary definitions used in the operational semantics of OLCM.

dom(mscode) = [b, e] [b− 1, e + 1] # dom(msdata)

mspad = [b− 1 7→ 0]] [e + 1 7→ 0] ∃Aown : dom(msdata)→P(dom(msdata))

dom(msdata) = Anon−linear ] Alinear Alinear =
⊎

a∈dom(msdata)

Aown(a)

export = sexport 7→wexport import = aimport←[ simport {aimport} ⊆ dom(msdata)

simport # sexport ( /0 6= dom(mscode)⊆ TA)∨ (dom(mscode) # TA ∧ σret = /0)
dom(msdata) # TA σret, σclos, TA `comp−code mscode

∀a∈ dom(msdata). dom(mscode), Aown(a), Anon−linear, σclos `comp−word msdata(a)
∀wexport ∈wexport. dom(mscode), Anon−linear, σret, σclos `comp−export wexport

TA ` (mscode ]mspad, msdata, import, export, σret, σclos, Alinear)
BASE

comp0 = (mscode, msdata, import, export, σret, σclos, Alinear)

TA ` comp0 ( 7→ cmain,c), ( 7→ cmain,d)∈ export

TA ` (comp0, cmain,c, cmain,d)
MAIN

Fig. 13: Well-formedness judgement.

rely on unique linear capabilities, component unique seals, etc. The judgement is defined
in Figure 13 with auxiliary judgements in Figure 14.

The TA ` comp judgement has two rules: MAIN and BASE. If components contain a main
entry point (in the form of capabilities cmain,c, cmain,d), then the MAIN rule requires them to
be part of the exports. The BASE rule for base components has a variety of requirements:
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• Code and data memory are disjoint.
• Code memory is padded with zeros (mspad) and this padded memory may not be

referenced. This prevents code memories from being spliced together. If the capa-
bilities for two code memories can be spliced together, then the execution of one
code memory can continue into the other creating an unintended control-flow which
would cause various complications5.

• All memory can either be addressed by any number of non-linear capabilities or
at most one linear capability. The data address space is split into Anon−linear and
Alinear which can be addressed by non-linear capabilities and linear capabilities,
respectively. The judgement ensures uniqueness of linear capabilities by allocating
ownership of addresses in Alinear uniquely to linear capabilities in data memory.

• All import addresses are part of the data memory.
• Import and export symbols are disjoint.
• One of the following is true:

– The code address space is disjoint from the trusted address space TA and there
are no return seals. In this case, the component contains untrusted code. We are
interested in WBCF and LSE from the perspective of the trusted code, so we
do not let untrusted memory have return seals. Untrusted code still has access
to closure seals that it can use to protect calls.

– The code address space is part of the trusted address space TA. In this case, the
component contains trusted code and can use return seals for calls.

• The data address space is disjoint from the trusted address space TA. Data memory
is not executable, so the trusted addresses never include data memory addresses.

• The code memory, data memory and exports satisfy, respectively, the component-
code, component-word and components-export well-formedness judgements, which
we explain next.

Figure 14b defines the well-formedness judgement `comp−word for words in a compo-
nent’s data memory. Well-formed rules are defined as integers, memory capabilities with
at most read and write permission and well-formed words sealed with a closure seal. The
range of authority of linear and non-linear memory capabilities is required to be available
in Alinear (where it is exclusively owned) and Anon−linear, respectively. Note that data mem-
ory is not allowed to initially contain sealed code capabilities. However, a component is
free to place sealed data capabilities in memory during execution.

Figure 14c defines the well-formedness judgement `comp−export for component exports.
Essentially, well-formed exports are either well-formed words or sealed read-execute capa-
bilities to the component’s code memory, sealed with a closure seal. Both cases together
allow components to export closures as sealed code-data capability pairs.

Finally, Figure 14a defines the well-formedness judgement `comp−code for components’
code memory. The judgement σret, σclos, TA `comp−code mscode is defined in terms of an
auxiliary judgement for an individual memory address σret, σret,owned, σclos, TA `comp−code

mscode, a. The rules allow either set-of-seals capabilities for closure and return seals, or

5 Alternatively to this syntactic condition on components, we could require trusted components to never splice
executable capabilities of unknown origin.
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mscode(a) = seal(σb, σe, σb) [σb, σe] = (σret ∪ σclos)

σret, σret,owned, σclos, TA `comp−code mscode, a
C-SEALS

([a · · · a + call len− 1]⊆ TA∧

mscode([a · · · a + call len− 1]) = call
off pc,off σ

0..call len−1 r1 r2)⇒

(mscode(a + off pc) = seal(σb, σe, σb)∧ σb + off σ ∈ σret,owned)

mscode(a)∈Z

σret, σret,owned, σclos, TA `comp−code mscode, a
C-INSTR

mscode has no hidden calls
σret # σclos ∃dσ : dom(mscode)→P(Seal). σret =

⊎
a∈dom(mscode)

dσ (a)∧

∀a∈ dom(mscode). σret, dσ (a), σclos, TA `comp−code mscode, a

σret, σclos, TA `comp−code mscode
C-MEM

(a) Code well-formedness.

z∈Z
Acode, Aown, Anon−linear, σclos `comp−word z

W-DATA

permv RW l = linear⇒ /0⊂ [b, e]⊆ Aown

l = normal⇒ [b, e]⊆ Anon−linear

Acode, Aown, Anon−linear, σclos `comp−word ((p, l), b, e, a)
W-CAPABILITY

Acode, Aown, Anon−linear, σclos `comp−word sc σ ∈ σclos

Acode, Aown, Anon−linear, σclos `comp−word sealed(σ , sc)
W-SEALED-CAPABILITY

(b) Word well-formedness.

[b, e]⊆ Acode σ ∈ σclos

Acode, Anon−linear, σclos `comp−export s 7→ sealed(σ , ((RX, normal), b, e, a))
E-SEALED-CODE

Acode, /0, Anon−linear, σclos `comp−word w

Acode, Anon−linear, σclos `comp−export s 7→w
E-WORD

(c) Export well-formedness

Fig. 14: Well-formedness judgement for code, words, and export. call len it the length of
the call code.

integers, including encoded instructions. If the code memory contains a call instruction
in a trusted component (i.e. addresses in TA), then there must be a set-of-seals capability
available at the expected address, containing the return seal for this call. Additionally, the
judgement ensures that return seals are at most used by one call by partitioning available
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return seals in σret,owned over code addresses for use in calls. Further, return seals must be
disjoint from closure seals.

4.3 Reasonable Components

The static guarantees given by TA ` comp make sure that components initially don’t under-
mine the security measures needed for STKTOKENS. However, in order for STKTOKENS to
provide guarantees for a component, we additionally expect it not to shoot itself in the foot
at run-time and perform certain necessary checks not captured by the call code (Figure 9).
More precisely, we expect four things of a reasonable component:

(1) It checks the stack base address before performing a call. As explained in Section 3,
we do not include this check in the call code as it would often be redundant.

(2) It uses the return seals only for calls and the closure seals in an appropriate way.
Specifically, closure seals should only be used to seal executable capabilities for
code that behaves reasonably, or for certain forms of non-executable capabilities.

(3) It does not leak return and closure seals (or means to retrieve them). This means
that set-of-seals capabilities with return or closure seals cannot be left in registers
when transferring control to another module. There are also indirect ways to leak
seals such as leaking a capability for code memory or leaking a capability for code
memory sealed with an unknown seal.

(4) It never stores return and closure seals (or means to get them) to memory. By disal-
lowing this, we make sure that data memory always can be safely shared as it does
not contain seals or means to get them.

We capture these properties in 4 definitions. Definition 2 defines the reasonable words
which means that they cannot be used to leak seals directly or indirectly. Definition 3
defines the reasonable PCs which means that if it is plugged into a configuration with
a register file filled with reasonable words, then the configuration behaves reasonably.
Definition 4 defines the reasonable configurations which captures the four informal
behavioural properties. Finally, definition 5 lifts the notion of reasonability to components.

Most of the definitions in this chapter will be parameterized by a tuple
(TA, stk base, σglob ret, σglob clos) that we will sometimes denote with the meta-variable gc.
This tuple collects four global constants. In addition to TA, the set of trusted addresses, and
stk base, the fixed base address of the stack memory, which we have already encountered in
Section 4.1, the tuple contains two additional constants: σglob ret and σglob clos: respectively
the set of all return and closure seals in the system.

4.3.1 Reasonable words

To provide any guarantees, STKTOKENS relies on the program not to leak return seals in
any way. But what does it mean to “leak” a return seal? It means that set-of-seals capabili-
ties that contain return seals as well as any means to obtain such sets cannot be leaked. The
following definition makes this more precise.
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Definition 2 (Reasonable word). Take a set of trusted addresses TA and sets of return and
closure seals σglob ret and σglob clos. We define that a word w is reasonable up to n steps in
memory ms and free stack msstk if n = 0 or the following implications hold.

• If w = seal(σb, σe, ), then [σb, σe] # (σglob ret ∪ σglob clos)

• If w = ((p, ), b, e, ), then [b, e] # TA

• If w = sealed(σ , sc) and σ 6∈ (σglob ret ∪ σglob clos) then sc is reasonable up to n− 1
steps.

• If w = ((p, ), b, e, ) and p∈ readAllowed and n > 0, then ms(a) is reasonable up
to n− 1 steps for all a∈ ([b, e] \ TA)

• If w = stack-ptr(p, b, e, ) and p∈ readAllowed and n > 0, then msstk(a) is reason-
able up to n− 1 steps for all a∈ [b, e]

�

The definition rules out set-of-seals capabilities that contain return or closure seals.
STKTOKENS rely on return seals to be unique in order to work, but it does not rely on
closure seals. However, leaking closure seals to malicious code still defeats their pur-
pose as the malicious code can then fabricate data capabilities for the code capabilities
or code capabilities for the data capabilities which effectively allows malicious code to
unseal the data capability. Further, it makes reasoning about leakage of return seals diffi-
cult because the closures have to be well-behaved no matter what data they are executed
with. Capabilities to trusted code memory in TA are also ruled out, because the code mem-
ory may contain set-of-seals capabilities. Capabilities that are sealed with capabilities not
owned by the component must still be reasonable themselves (since such an untrusted seal
provides no protection at all).

Finally, we define that stack or memory capabilities with read permission are reasonable
if the memory they give access to contains only reasonable words. To accommodate this,
reasonability of words is defined relative to the memory and stack. The definition is cyclic,
but the step-index ensures that it is well-founded.

4.3.2 Reasonable pc and configuration

In order to define desired behaviour, we need to specify what may happen on a machine
during execution. An execution steps between executable configurations, so we need to
define when a configuration is reasonable. While the step relation is defined over configu-
rations, it is the pc that decides what instruction is executed. Therefore, we define when an
executable capability is reasonable as a pc. The following definition roughly says that a pc
is reasonable when you can plug it into a configuration where all the words in the register
file are reasonable and the result is a reasonable configuration.

Definition 3 (Reasonable pc). We say that an executable capability c =
((p, normal), b, e, a) behaves reasonably up to n steps if for any Φ such that

• Φ.reg(pc) = c
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• Φ.reg(r) is reasonable up to n steps in memory Φ.mem and free stack Φ.msstk for all
r 6= pc

• Φ.mem, Φ.msstk and Φ.stk are all disjoint

we have that Φ is reasonable up to n steps. �

With Definition 2 and 3 in place, we are all set to define when a configuration is
reasonable.

Definition 4 (Reasonable configuration). We say that an execution configuration Φ is
reasonable up to n steps with (TA, stk base, σglob ret, σglob clos) iff for n′ ≤ n:

1. Guarantee stack base address before call...
If Φ points to calloff pc,off σ r1 r2 in TA for any r1 and r2, then all of the following
hold:

• Φ(rstk) = stack-ptr( , stk base, , )

• r1 6= rt1

• n′ = 0 or Φ(pc) + call len behaves reasonably up to n′ − 1 steps (Definition 3)

2. Use return seals only for calls, use closure seals appropriately...
If Φ points to cseal r1 r2 in TA and Φ(r2) = seal(σb, σe, σ), then one of the
following holds:

• Φ is inside calloff pc,off σ r′1 r′2 and σ ∈ σglob ret

• σ ∈ σglob clos and one of the following holds:

– executable(Φ(r1)) and n′ = 0 or Φ(r1) behaves reasonably up to n′ − 1
steps (Definition 3).

– nonExec(Φ(r1)) and n′ = 0 or Φ(r1) is reasonable up to n′ − 1 steps in
memory Φ.ms and free stack Φ.msstk (Definition 2).

3. Don’t store private stuff...
If Φ points to store r1 r2 in TA, then n′ = 0 or Φ.reg(r2) is reasonable in memory
Φ.mem up to n′ − 1 steps.

4. Don’t leak private stuff...
If Φ→TA,stk base Φ′, then one of the following holds:

• There exist p, l, b, e, a, a′ such that all of the following hold:

– Φ′.reg(pc) = ((p, l), b, e, a′) and Φ.reg(pc) = ((p, l), b, e, a)
– Φ does not point to xjmp r1 r2 for any r1 and r2

– Φ does not point to calloff pc,off σ r1 r2 for any r1 and r2, off pc, off σ

– n′ = 0 or Φ′ is reasonable up to n′ − 1 steps

• All of the following hold:

– Φ points to calloff pc,off σ r1 r2 for some r1 and r2

– n′ = 0 or Φ.reg(r) is reasonable in memory Φ.mem and free stack Φ.msstk

up to n′ − 1 steps for all r 6= pc
• All of the following hold:

– Φ points to xjmp r1 r2 for some r1 and r2
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– n′ = 0 or Φ.reg(r) is reasonable in memory Φ.mem and free stack Φ.msstk

up to n′ − 1 steps for all r 6= pc

�

The four items in Definition 4 correspond to the four informal items from the
introduction of this section.

Item 3 and Item 4 make sure that return seals are not leaked. Item 3 says that only rea-
sonable words can be stored in memory. This means that sets of return seals or execute
capabilities cannot be stored in memory by a reasonable component. Intuitively, a well-
formed and reasonable component has its seals available in the code memory, so it can
always retrieve them from the code memory. In other words, it is not necessary to store
them in the data memory. Further, by making sure that seals are not stored in memory,
we can allow capabilities for data memory to be handed out if there is a need for that
(for instance to have a shared buffer). Item 4 makes sure that seals are not leaked when
transferring control to another component (i.e. on security boundary crossings). With the
component setup, there are two ways to transfer control: xjmp and call. In both cases, we
require that all of the argument registers contain reasonable words. An execution config-
uration may need to do other operations than calling other code, and seals should not be
leaked at any point during execution. For this reason, Item 4 also says that if the next step
is not a call or a jump, then the next execution configuration should also be reasonable.

Item 1 makes sure that the stack has the correct base before a call. In order to not have
to reason about unreasonably generated code, we also add the requirement r1 6= rt1 before
calls. If we allowed r1 = rt1, then the call would be sure to fail as the first instruction
of a call moves 42 to rt1. Finally, this promises that the code after the call will behave
reasonably.

A well-formed component makes sure that a return seal is uniquely available to every
call. This is, however, not sufficient as it does not ensure that other parts of a program
don’t use the return seals. We do not want to specify what non-call code should look like,
so we just require it not to use the call seals. This is what Item 2 ensures. It says that if
the configuration points to a seal-instruction, then either the instruction is part of a call
and uses a return seal or the instruction seals part of a closure and uses a closure seal. In
the latter case, the sealed capability must be reasonable as a pc if it is executable or just a
reasonable word if it isn’t. Definition 4 is cyclic through Definition 3, so both definitions
are step-indexed to break the cycle.

4.3.3 Reasonable component

A reasonable component has the informal behavioural properties from the introduc-
tion. Reasonability is captured by the previous definitions. These definitions are lifted to
components by the following definition.

Definition 5 (Reasonable component). We say that a component

(mscode, msdata, import, export, σret, σclos, Alinear)
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cmain,c = sealed(σ , c′main,c) cmain,d = sealed(σ , c′main,d) nonExec(c′main,d)

reg(pc, rdata) = c′main,c, c′main,d reg(rstk) = stack-ptr(RW, bstk, estk, estk)

reg(rstk) = ((RW, linear), bstk, estk, estk) reg(RegName \ {pc, rdata, rstk}) = 0
range(msstk) = {0} mem = mscode ]msdata ]msstk

[bstk, estk] = dom(msstk) # (dom(mscode)∪ dom(msdata)) import = /0

((mscode, msdata, import, export, σret, σclos, Alinear), cmain,c, cmain,d) (mem, reg, /0, msstk)

Fig. 15: The judgement prog Φ, which defines the initial execution configuration Φ for
executing a program prog.

is reasonable if the following hold: For all (s 7→ sealed(σ , sc))∈ cexport, with
executable(sc), we have that sc behaves reasonably up to any number of steps n.

We say that a component (comp0, cmain,c, cmain,d) is reasonable if comp0 is reasonable.
�

In our result, we assume that adversarial components are well-formed. This assump-
tion ensures that the trusted component can rely on basic security guarantees provided by
the capability machine. For instance, if we did not require linearity to be respected ini-
tially, then adversarial code could start with an alias for the stack capability. However, the
adversary is not assumed to be reasonable as we do not expect them to obey the calling
convention in any way. Can adversarial code call into trusted components? The answer to
that question is yes but not with LSE and WBCF guarantees. Formally, adversarial code
can contain the instructions that constitute a call. However, for untrusted code, OLCM will
not execute those instructions as a “native call” but execute the individual instructions sep-
arately. The callee then executes in the same stack frame as the caller, so WBCF and LSE
do not follow (for that call).

We will assume trusted components, for which WBCF and LSE are guaranteed, to be
both well-formed and reasonable.

4.4 Full Abstraction

All that is left before we state the full-abstraction theorem is to define how components are
combined with contexts and executed, so that we can define contextual equivalence.

Given a program comp, the judgement comp Φ in Figure 15 defines an initial exe-
cution configuration that can be executed. It works almost the same on LCM (conditions
in red) and OLCM (conditions in blue). On both machines a stack containing all zeroes is
added, as part of the regular memory on LCM and as the free stack on OLCM. On OLCM,
the initial stack is empty as no calls have been made. The component needs access to the
stack, so a stack pointer is added to the register file in rstk. On LCM this is just a linear
read-write capability, but on OLCM it is the representation of a stack pointer. The entry
point of the program is specified by main, so the two capabilities are unsealed (they must
have the same seal) and placed in the pc and rdata registers. Other registers are set to zero.

Contextual equivalence roughly says that two components behave the same no matter
what context we plug them into.
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Definition 6 (Plugging a component into a context). When comp′ is a context for com-
ponent comp and comp′ ./ comp Φ, then we write comp′[comp] for the execution
configuration Φ. �

Definition 7 (LCM and OLCM contextual equivalence).

On OLCM , we define that comp1 ≈ctx comp2 iff

∀C . /0 `C ⇒C [comp1]⇓
TA,1,stk base1
− ⇔C [comp2]⇓

TA,2,stk base2
−

with TA,i = dom(compi.mscode).
On LCM , we define that comp1 ≈ctx comp2 iff

∀C . /0 `C ⇒C [comp1]⇓−⇔C [comp2]⇓−

where Φ⇓TA,stk base
i iff Φ→TA,stk base

i halted and Φ⇓TA,stk base
−

def
= ∃i. ⇓TA,stk base

i �

With the above defined, we are almost ready to state our full-abstraction, and all that
remains is the compiler we claim to be fully-abstract. We only care about the well-formed
components, and they sport none of the new syntactic constructs OLCM adds to LCM.
This means that the compilation from OLCM components to LCM components is simply
the identity function.

Theorem 1. For reasonable, well-formed components comp1 and comp2, we have

comp1 ≈ctx comp2 ⇔ comp1 ≈ctx comp2�

Readers unfamiliar with fully-abstract compilation may wonder why Theorem 1 proves
that STKTOKENS guarantees LSE and WBCF. Generally speaking, behavioral equiva-
lences are preserved and reflected by fully-abstract compilers. This means that source
language abstractions (or at least the equivalences they imply6) must be preserved in the
target language, either by translating them to similar abstractions in the target language
or by using the available target language features to enforce the source language abstrac-
tion. In our case, OLCM semantics offers a native stack with LSE and WBCF, but this
abstraction does not natively exist in LCM. In order to enforce the abstraction on LCM,
STKTOKENS can be used. Theorem 1 proves that STKTOKENS enforces these abstraction
properties in a way that behaviorally matches OLCM which means that it enforces LSE
and WBCF.

5 Proving full abstraction

To prove Theorem 1, we essentially show that trusted components in OLCM are related
in a certain way to their embeddings in LCM, and that untrusted LCM components are
similarly related to their embeddings in OLCM. We will then prove that these relations
imply that the combined programs have the same observable behavior, i.e. one terminates

6 See Section 7 for a discussion of secure compilation properties that require preservation of more general
language properties than equivalences.
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if and only if the other does. The difficult part is to define when components are related.
In the next section, we give an overview of the relation we define, and then we sketch the
full-abstraction proof in Section 5.7.

The goal of this section is not to provide full technical detail or list tedious proofs.
However, we believe there are many interesting aspects about our proof that we were
forced to omit from the conference version, which would be worthwhile explaining to
other researchers. This includes, for example, our use of cross-language logical relations,
the techniques we use for reasoning about seals and linear capabilities, or for the linking
model. In the current version, we provide a more detailed explanation of the most impor-
tant of these aspects, taking care to gradually introduce the different techniques we use and
to not bother the reader with tedious details. Of course, this material is targeted at readers
with an interest in these proof techniques and may be safely skipped by others.

5.1 Kripke worlds

The relation between OLCM and LCM components is non-trivial: essentially, we will say
that components are related if invoking them with related values produces related observ-
able behavior. However, values are often only related under certain assumptions about the
rest of the system. For example, the linear data part of a return capability should only be
related to the corresponding OLCM capability if no other value in the system references
the same inactive stack frame and it is sealed with a seal only used for return pointers to
the same code location. To accommodate such conditional relatedness, we construct the
relation as a step-indexed Kripke logical relation with recursive worlds.

These assumptions are explictly represented using (Kripke) worlds. To a first approxi-
mation, a world is a semantic model of the memory. In its simplest form, it is a collection
of invariants that the memory must satisfy. The invariants of a world can vary in complex-
ity and expressiveness depending on the application. In order to relate LCM and OLCM,
we model all the features of OLCM in the world which means we have to model:

• Three kinds of memory: heap, stack of local frames, and free stack
• Linearity
• Call stack
• Seals

The three kinds of memory are modelled by having three sub-worlds where each sub-world
is its own little world in a traditional sense. Linearity is modelled by adding ownership to
certain parts of the world which can be claimed exclusively by capabilities. Memory sat-
isfaction (the relation that decides whether two memories are related in the world) models
the call stack by ensuring that the memory is actually shaped like a stack. Finally, the seals
are modelled by seal invariants that make sure that seals are only used on permitted seal-
ables. In the following, we present the world and go into details about how each of the four
features are modelled.
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5.1.1 Triple world and regions

OLCMs memory is split in three: heap, free stack and encapsulated local stack frames. In
order to model the three kinds of memory, we simply have three sub-worlds. That is, our
world is defined as a product:

World = Worldheap ×Worldcall stack ×Worldfree stack

For ease of explanation, we will gradually introduce the definition of these three compo-
nents, starting with simplified versions and gradually introducing different complications
before obtaining the intended definition of worlds by the end of Section 5.1. That ver-
sion will only be modified a bit further in Section 5.2, purely for technically justifying the
recursive definition of the worlds. The final definitions can be found in Theorem 2.

The sub-worlds are partial maps from names RegionName (not to be confused with
register names), modelled as natural numbers, to regions, which model a form of invari-
ant. Intuitvely, a region is simply a relation over memory segments (i.e. a relation in
Rel(MemorySegment×MemorySegment)). However, this is not sufficient, because the
validity of memory contents must often depend on the world itself. In other words, our
regions must be world indexed, i.e.

Worldheap = RegionName ⇀ (World→Rel(MemorySegment×MemorySegment))

At this point, we can see that we have constructed a recursive domain equation. If we
inline Worldheap in World, then we have a circular equation with no solution because the
self-reference happens in a negative position. However, in Section 5.2, we will explain how
we can solve the circular equation by moving to a different domain.

For the sake of readability, we introduce the following notation

W.heap = π1(W )

W.call stk = π2(W )

W.free stk = π3(W )

5.1.2 Linearity

The linear capabilities of OLCM and LCM guarantee sole authority over the memory they
reference. To model this uniqueness, we need to keep track of which parts of memory are
uniquely referenced and make sure that only one linear capability references them. We use
the world to do this by having two kinds of regions: shared and spatial. Memory governed
by shared and spatial regions can only be referenced by non-linear and linear capabilities
respectively.

However, spatial regions are not enough. A world that contains a spatial region, rep-
resents the assumption of exclusive ownership of the corresponding memory. In other
words, a linear capability for this memory will be valid only in such a world. However,
that does not mean all other worlds should be entirely unaware of the memory’s existence.
To represent knowledge about existence of a spatial region, without requiring its exclusive
ownership, we have shadow regions. Specifically, we add tags spatial and shadow to the
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spatial regions:

Regionspatial =

{
{spatial} × (World→Rel(MemorySegment×MemorySegment))∪
{shadow} × (World→Rel(MemorySegment×MemorySegment))

For readability, we also add a tag shared to the shared regions:

Regionshared = {shared} × (World→Rel(MemorySegment×MemorySegment))

A shadow region is a shadow copy of a spatial region in the sense that it specifies part
of memory, but it does not give the right to reference that part of memory. We will see in
Section 5.1.5 that a world with a shadow region is compatible with a world that has the
same region as spatial. This setup will allow ownership of a memory fragment to reside
with linear capabilities which are not themselves stored in the memory fragment but else-
where in memory or in a register. In such a setup, the region representing the memory
fragment will exist only as shadow in the world where the memory fragment’s contents
are valid, but it will exist as spatial in the world where the linear capability owning the
fragment is valid.

We will extend the regions further in Sections 5.1.3 and 5.1.4, but for now we continue
the definitions of the three sub-worlds. The sub-world Worldheap specifies the heap memory
which can be referenced by both linear and normal capabilities, so it should contain both
shared and spatial regions. For this reason, it is defined as

Worldheap = RegionName ⇀ (Regionshared ∪Regionspatial)

OLCM internalizes the STKTOKENS stack, which will only be referenced by linear capa-
bilities, so the two stack regions only need spatial and shadow regions. For instance the
Worldfree stack is defined as

Worldfree stack = RegionName ⇀ Regionspatial

Worldcall stack not only models the memory contents of the local stack frames, it also models
the call stack itself and specifically the code location for the return point of every frame. In
a traditional C calling convention, this return location would simply be stored in the stack
frame, but STKTOKENS does not require this. It is the code part of the return capability
pair that references this return location and it is connected to the stack frame by the fact
that it is sealed with the same seal as the linear capability that owns the frame: the data part
of the return capability pair. To ensure and remember that all of this is setup correctly, the
world will also keep track of the return location for every frame:

Worldcall stack = RegionName ⇀ (Regionspatial ×Addr)

It will in fact also remember the seal used, as we will see in the next Section.
Given a world, we want to be able to express that a capability that is otherwise valid

with respect to the world is not linear or indirectly depends on a linear capability. This is
expressed by stripping the world of all its ownership which corresponds to replacing all
spatial regions with shadow regions and then requiring that the capability is valid w.r.t.
this new world. We refer to this as the shared part of the world and define the function
sharedPart which turns all spatial regions into shadow copies.
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Definition 8 (The shared part of a world). For any world W, we define

sharedPart(W )
def
= (sharedPart(W.heap), sharedPart(W.call stk), sharedPart(W.free stk))

sharedPart(Wheap)
def
= λ r.

{
(shadow, H) if Wheap(r) = (spatial, H)

Wheap(r) otherwise

sharedPart(Wcall stk)
def
= λ r.

{
((shadow, H), opc) if Wcall stk(r) = ((spatial, H), opc)

Wcall stk(r) otherwise

sharedPart(Wfree)
def
= λ r.

{
(shadow, Hs) if Wfree(r) = (spatial, Hs)

Wfree(r) otherwise

�

5.1.3 Seals

So far, the world represents a collection of assumptions on the memory contents that
value relatedness may depend on. However, value correctness may also depend on other
assumptions. Specifically, STKTOKENS has certain assumption on the seals used for return
capabilities and closures. For instance, a return seal must only be used to seal the return
pointer of one specific return point. Therefore, in addition to a relation on memory seg-
ments, some regions also carry a seal interpretation function that relates the sealables that
may be sealed with a given seal.

Seal ⇀ World→Rel(Sealables× Sealables)

In STKTOKENS, once a seal has been used for a specific purpose (e.g. for sealing return
capability pairs for a specific call site), it can never be reused for a different purpose. This
is because there may still be copies of return capabilities out there, signed with the seal.
This situation is similar to the situation for non-linear memory capabilities, so we only
allow shared regions to carry seal interpretation functions, as we will see that those regions
can never be revoked in future worlds.

Regionshared = {shared} × (World→Rel(MemorySegment×MemorySegment))×
(Seal ⇀ World→Rel(Sealables× Sealables))

We also refer to the seal interpretation function as the seal invariant, and we will refer to
the memory relation as the memory invariant or just invariant when it is unambiguous.

5.1.4 Future worlds and revocation

Very often, relatedness of two capabilities does not change if extra assumptions in the sys-
tem are added. For example, two related capabilities remain related when an extra invariant
is added on unrelated memory, or when a stack frame that it does not reference is dropped.
In Kripke logical relations, such changes that do not invalidate the relatedness of values
are modelled by the future world relation w. The future world relation can also be thought
of as the model of allowed changes in memory over time. We will say that W ′ is a future
world of W if W ′ wW .
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Relatedness of capabilities should be defined, so that it is monotone with respect to the
future world relation. In other words, relatedness of capabilities should only be predicated
on assumptions in the world that are guaranteed to remain valid in future worlds, and
the same holds for memory invariants. As such, we require the world-indexed memory
invariants to be monotone in the world:

Regionspatial =

{
{shadow} × (World mon−→Rel(MemorySegment×MemorySegment))∪
{spatial} × (World mon−→Rel(MemorySegment×MemorySegment))

We make a similar change to Regionshared. The seal invariants must be monotone as well.
Kripke future world relations usually allow extending worlds with extra assumptions,

or take steps in protocols that the system was designed to follow. However, in our setting,
we sometimes allow dropping assumptions, namely when linearity tells us that no value in
the system depends on this assumption any more. Specifically, if we have the only linear
capability for a piece of memory, then we can be sure that there are no other capabilities
for the same memory which makes it safe to repurpose the memory and drop or replace the
previous assumption. We mark dropped regions as revoked in the world following Ahmed
(2004) and Thamsborg & Birkedal (2011) which for all intents and purposes corresponds
to actually dropping the region.

We add a revoked tag to the spatial regions Regionspatial:

Regionspatial =


{shadow} × (World mon−→Rel(MemorySegment×MemorySegment))∪
{spatial} × (World mon−→Rel(MemorySegment×MemorySegment))∪
{revoked}

The spatial-region may be depended on by a linear capability so we cannot allow it to be
revoked. On the other hand, no capability can depend on a shadow-region, so it can be
safely revoked.

We define the future world relation in terms of a future region relation which is displayed
in Figure 16. Apart from being revoked, a region can stay the same, or a shadow region
can become spatial. The latter allows us to reassign the spatial region to some other world,
when the linear capability owning the region is erased (our linear capabilities are actually
affine). The above repurposing is exemplified in Figure 17. The Figure displays two capa-

r ∈Regionspatial ∪Regionshared

rw r revokedw (shadow, )

(spatial, H)w (shadow, H)

Fig. 16: Future region relation.

bilities cnormal and clinear that are normal and linear, respectively. The linear capability is
valid with respect to W1 which has the necessary spatial region, and the normal capability
is valid with respect to W2 which has a shared region. The two worlds are compatible as
W2 has a shadow region that matches the spatial region of W1. When the linear capability
is repurposed, it must be reflected by the worlds W ′1 and W ′2. In both new worlds, the r2
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clin

cnorm

W1

r1

r2

W2

r1

r2

W ′
1

6v

r1

r2

r3

W ′
2

v

r1

r2

r3

Shared region

Shadow regions

Spatial regions

Revoked region

Normal capability

Linear capability

Fig. 17: An example of what happens to worlds when a linear capability clin is repurposed.
The linear capability is originally valid with respect to W1. In W ′1 there is a new spatial
region that the linear capability is valid with respect to (the different coloured regions
signify different invariants). W ′1 still has r2, but now it points to a revoked region. This
means that W ′1 is not a future world of W1. The normal capability cnorm is originally valid
with respect to W2 and should stay valid with respect to the new world W ′2. The W ′2 is a
future world of W2 as the shadow region in W2 is replaced with a revoked region which is
permitted by the future world relation.

region is replaced with a revoked region. W ′1 has a new spatial region at r3, and W ′2 gets a
matching shadow region. The new world for the linear capability, W ′1, is not a future world
of W1 as it replaces a spatial region with a revoked region which is not allowed by the
future region relation. The new world for the normal capability, W ′2, is a future world of W2

as the future region relation allows shadow regions to be revoked. The normal capability
cnormal remains valid in W ′2 as the shared region it depends on is monotone with respect to
the future world relation.
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With the future region relation in place, we can define the future world relation as
follows: For worlds W and W ′,

W ′ wW iff


for i∈ {heap, free stk, call stk}
∃mi : RegionName→RegionName, injective.

dom(W ′.i)⊇mi(dom(W.i))∧ ∀r ∈ dom(W.i).W ′.i(mi(r))wW.i(r)

The relation says that each of the three worlds must be an extension of the past world and
each of the existing regions must have a future region. Note that the future world relation
has a mapping function mi which allows us to change the naming of regions in future
worlds. The definition is a generalization of the standard definition where mi would be the
identity7.

5.1.5 Joining worlds

The world serves multiple purposes as it is both a specification of memory contents as well
as a specification of authority. This is best seen in the operators used to join worlds. First
when we see the world as a memory specification, we have a pretty standard join ] that
simply requires the worlds to have different region names.

Definition 9 (World disjoint union ]). Given worlds W1, W2, W

W1 ]W2 =W iff dom(W.heap) = dom(W1.heap)] dom(W2.heap)∧
dom(W.free stk) = dom(W1.free stk)] dom(W2.free stk)∧
dom(W.call stk) = dom(W1.call stk)] dom(W2.call stk)

�

The ] world join does not guarantee that the result is a sensible world with respect to
authority or memory specification: it may contain regions with conflicting requirements
for memory. In Section 5.1.6, we define memory satisfaction which also acts as a well-
formedness judgement.

When we view the world as a specification of authority, then the world join need to
respect the region ownership. That is, when we join the authority of two worlds, then the
ownership of the two worlds should not overlap. This is expressed by the ⊕ operator.

Definition 10 (⊕, disjoint union of ownership). W1 ⊕W2 =W iff

dom(W.heap) = dom(W1.heap) = dom(W2.heap)∧
dom(W.free stk) = dom(W1.free stk) = dom(W2.free stk)∧
dom(W.call stk) = dom(W1.call stk) = dom(W2.call stk)∧
∀r ∈ dom(W.heap).W.heap(r) =W1.heap(r)⊕W2.heap(r)∧
∀r ∈ dom(W.free stk).W.free stk(r) =W1.free stk(r)⊕W2.free stk(r)∧
∀r ∈ dom(W.call stk). π1(W.call stk(r)) = π1(W1.call stk(r))⊕ π1(W2.call stk(r))

7 In Skorstengaard et al. (2018a) the future region relation and the reasoning about the awkward example could
have been simplified with this future world relation.
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where ⊕ for regions is defined as

(shared, H, Hseal)⊕ (shared, H, Hseal) = (shared, H, Hseal)

(shadow, H)⊕ (shadow, H) = (shadow, H)

revoked⊕ revoked = revoked

(spatial, H)⊕ (shadow, H) = (shadow, H)⊕ (spatial, H)

= (spatial, H)

�

Like the ] operator, the ⊕ operator does not guarantee that the resulting world is
sensible.

Note that this picture is further complicated by our usage of non-authority-carrying
shadow regions. They are really only in a world W as a shadow copy of a spatial region in
another world W ′ that W will be combined with. The shadow copy is used for specifying
when a memory satisfies a world: the memory should contain all memory ranges that any-
one has authority over, not just the ones whose authority belongs to the memory itself. For
example, if a register contains a linear pointer to a range of memory, then the register file
will be valid in a world where the corresponding region is spatial, while the memory will
be valid in a world with the corresponding region only shadow. However, for the memory
to satisfy the world, the block of memory needs to be there, i.e. the memory should con-
tain blocks of memory satisfying every region that is spatial, shared, but also just shadow
(because it may be spatial in, for example, the register file’s world).

5.1.6 Memory satisfaction

The world can be seen as a specification of the memory contents. This means that we need
to define what it means for a pair of LCM and OLCM memories to satisfy the specifi-
cation. The world also keeps track of the structure of the call stack, the allowed uses of
designated seals, and linear capability authority, so these things also influence the defini-
tion of memory satisfaction. The world definition on its own allows the invariants imposed
by regions to be overlapping. However, memory satisfaction will allow only a single region
to govern every piece of memory. It is in this sense that the memory satisfaction also acts
as a well-formedness judgement for worlds.

Memory satisfaction is split into four definitions. At the top-level we have
msS, msstk, stk, msT :gc

n W which relates the source memory triple, msS (heap), msstk (free
stack), and stk (stack frames), from OLCM to the target memory msT from LCM. The
three parts of source memory are related to parts of msT by the relations H , S , and F ,
respectively. We will consider them in this order and discuss msS, msstk, stk, msT :gc

n W last.
Note that the judgement msS, msstk, stk, msT :gc

n W (and other definitions in this section)
is parameterized by gc = (TA, stk base, σglob ret, σglob clos), the global constants that we
previously encountered in Section 4.3 when discussing reasonable components.
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Definition 11 (Heap relation). For a set of seals σ , memory segments ms and msT , and
worlds W and W ′, we define the heap relation H as:

(σ , ms, msT )∈H (W.heap)(W ′) =

∃Rms : dom(active(W.heap))→MemorySegment×MemorySegment∧
msT =

⊎
r∈dom(active(W.heap)) π2(Rms(r))∧

ms =
⊎

r∈dom(active(W.heap)) π1(Rms(r))∧
∃RW : dom(active(W.heap))→World.

W ′ =⊕r∈dom(active(W.heap))RW (r)∧
∀r ∈ dom(active(W.heap)).

Rms(r)∈W.heap(r).H RW (r)∧
∃Rseal : dom(active(W.heap))→P(Seal)∧⊎

r∈dom(active(W.heap)) Rseal(r))⊆ σ∧
∀r ∈ dom(bW.heapc{shared}). dom(W.heap(r).Hseal) = Rseal(r)

�

Memory satisfaction, and thus also the heap relation, only considers the non-revoked
regions. The H -relation uses the function active to erase all the revoked regions from the
world. To a large extent, the definition of H is pretty standard. It assumes the existence of
a partitioning of the LCM and OLCM heap memories that can be turned into memory seg-
ment pairs each satisfying the invariant of a region. The heap satisfaction must also respect
the world as an authority specification, so the heap satisfaction partitions the authority of
the world using ⊕. Each of the memory segment pairs must be in the region invariant with
respect to a specific world partition which makes sure that uniqueness of linearity of capa-
bilities is respected. The heap sub-world contains all seal invariants. Similar to memory
segments, only one seal invariant should impose restrictions on a seal, which H makes
sure is the case.

Definition 12 (Free stack relation).

(msstk, msT )∈F gc(W ) iff

gc = ( , stk base, , )∧
Wstack =W.free stk∧
∃Rms : dom(active(Wstack))→MemorySegment×MemorySegment∧

msT =
⊎

r∈dom(active(Wstack))
π2(Rms(r))∧

msstk =
⊎

r∈dom(active(Wstack))
π1(Rms(r))∧

stk base∈ dom(msT )∧ stk base∈ dom(msstk)∧
∃RW : dom(active(Wstack))→World.

W =
⊕

r∈dom(active(Wstack))
RW (r)∧

∀r ∈ dom(active(Wstack)).

Rms(r)∈Wstack(r).H RW (r)

�
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The free stack relation F is in most regards like the heap relation, H . It partitions the
OLCM and LCM free stack memory, it partitions the authority of the world, and it requires
the memory segment pairs to be related under part of the world. For STKTOKENS to work,
it should always work on the same stack. As discussed in Section 3, we make sure that it is
always the same stack by requiring the address stk base to be the ”top” address of the free
stack address space. As the free stack relation relates the stack of OLCM with the memory
that represents the stack on LCM, it makes sure that stk base is the top address of the free
stack address space.

Definition 13 (Stack relation).

(stk, msT )∈S gc(W ) iff

∃m, opc0, . . . , opcm, ms0, . . . , msm,Wstack.

gc = ( , stk base, , )∧
Wstack =W.call stk∧
stk = (opc0, ms0), . . . (opcm, msm)∧
∀i∈ {0, . . . , m}. (dom(msi) 6= /0∧
∀ j < i. ∀a∈ dom(msi). ∀a′ ∈ dom(ms j). a < a′ < stk base)∧

∃Rms : dom(active(Wstack))→MemorySegment×Addr×MemorySegment.
msT =

⊎
r∈dom(active(Wstack))

π3(Rms(r))∧
ms0 ] · · · ]msm =

⊎
r∈dom(active(Wstack))

π1(Rms(r))∧
∃RW : dom(active(Wstack))→World.

W =
⊕

r∈dom(active(Wstack))
RW (r)∧

∀r ∈ dom(active(Wstack)).

(π1(Rms(r)), π3(Rms(r))∈Wstack(r).H RW (r)∧
π2(Rms(r)) =Wstack(r).opc∧
∃i. opci =Wstack(r).opc∧msi = π1(Rms(r))

�

The stack relation S is similar to the heap relation in some ways. The S relation also
partitions the LCM memory but not the OLCM memory, since the OLCM stack memory
is already partitioned into stack frames. The stack relation also partitions the authority of
the world, so it can relate the stack frames in a way that respects linearity. The stack on
OLCM represents the call stack which means that each stack frame corresponds to a call
and its local data. The operational semantics of LCM does not have a built-in stack, so
we emulate it by requiring that a stack like data structure resides in LCM memory. That is
for a memory segment that represents a stack frame, all the addresses of memory frames
lower in the stack should have strictly smaller memory addresses. Further, the stack frames
should be in the part of the memory we agree to be the stack which means that the addresses
should be smaller than stk base. Informally, this just means that the stack should be laid
out in memory as a downwards growing stack with no addresses above stk base.

S requires every stack frame to be non-empty. As described in Section 3, STKTOKENS

requires non-empty stack frames, so a missing frame can be detected. Note that each stack
frame corresponds to a trusted call. Untrusted calls are not protected which means that
untrusted stack frames reside in the free stack memory. This means that the protected stack
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stk base

stack

Heap (ms)

Free stack (msstk)

Encapsulated stack frame (stk)

Fig. 18: A sketch of how heap, encapsulated stack and free stack are laid out in memory.
The encapsulated stack frames and the free stack constitutes the stack. The encapsulated
stack frames may have free stack in between them where stack frames of non-trusted code
may reside. The stack grows downwards in memory with stk base as the top address (and
the base address of the free stack capability).

frames are not necessarily packed tightly in memory, and the memory in between is part
of the free stack. However, this does not prevent untrusted code from securing their own
stack frames. Figure 18 sketches this.

Each stack frame in the OLCM stack contains an old program pointer which corresponds
to the old program counter recorded in the region of the world associated with the stack
frame. To achieve this, the partition function Rms also records an opc for each region, and
this opc should establish the link between the region and the stack frame.

In order to tie Definitions 11, 12, and 13 together, we define memory satisfaction.
Memory satisfaction defines when a OLCM memory, consisting of a heap, a stack, and
a free stack, relates to a LCM memory under a world.

Definition 14 (Memory satisfaction). For memory segments msS, msstk, and msT , stack stk,
and world W we define memory satisfaction as

msS, msstk, stk, msT :gc W iff

∃m, opc0, . . . opcm, ms0, . . . , msm,Wstack,Wfree stack,Wheap.

stk = (opc0, ms0) :: · · · :: (opcm, msm)∧
msS#msstk#ms0# . . . #msm∧
W =Wstack ⊕Wfree stack ⊕Wheap∧
∃msT,stack, msT,free stack, msT,heap, msT, f , msS, f , ms′S, σ .

msS = ms f ,S ]ms′S∧
msT = msT,stack ]msT,free stack ]msT,heap ]msT, f∧
dom(msT,stack ]msT,free stack) = [bstk, estk]∧
bstk − 1, estk + 1∈ dom(msT, f )∧
(stk, msT,stack)∈S gc(Wstack)∧
(msstk, msT,free stack)∈F gc(Wfree stack)∧
(σ , ms′S, msT,heap)∈H (W.heap)(Wheap)
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�

Memory satisfaction partitions the LCM memory in a heap, stack frames, a free stack
and a frame. The OLCM heap is split in two: the active heap and a frame. Our configura-
tions describe the complete machine state, but we may only be interested in the invariants
on part of it. The frame allows us to ignore the part of the memory that won’t affect the
computation. Just like the previous memory relations, the world is split in three to make
sure that linearity is respected. Each part of the OLCM memory is related to the appropriate
part of the memory from LCM by the relevant relation under a partition of the world.

STKTOKENS requires the stack to not be adjacent to heap or code memory. This is
enforced in the memory satisfaction by requiring that the addresses adjacent to the memory
are in the frame.

5.2 Constructing Worlds: Solving the Recursive Domain Equation

In the previous sections, we sketched what our worlds should be. However, the worlds we
want constitute a self-referential domain equation for which no solution exists in set and
domain theory. Therefore, we need to move to a different domain with enough structure
for a solution to exist for recursive equations. Solutions to recursive domain equations can
be found using standard techniques (Scott, 1976; America & Rutten, 1989; Birkedal et al.,
2011). Essentially, we move to a setting where instead of sets we have c.o.f.e.’s (complete
ordered families of equivalences), instead of functions we have non-expansive functions,
and instead of relations we have downwards-closed relations. A c.o.f.e. can be thought of
as a set with added structure, specifically a step-indexed notion of equality and a limit to
every Cauchy sequence (i.e. they are complete in a similar sense as to how the real numbers
are complete but the rationals are not).

Explaining the construction of the world in detail would require a recap of the basic
theory of c.o.f.e.’s. For conciseness, we choose to not include this here, but instead refer
to the PhD thesis of Skorstengaard (Skorstengaard, 2019, §3.5), which includes a detailed
explanation. We only include the main result, which is the following theorem, asserting the
existence of a World c.o.f.e. satisfying the recursive equation we encountered before.

Theorem 2. There exists a complete ordered family of equivalences (c.o.f.e.) Wor and
preorder w such that (Wor,w) is a preordered c.o.f.e., and there exists an isomorphism ξ

such that

ξ : Wor∼=I(Worldheap ×Worldcall stack ×Worldfree stack)

and for Ŵ , Ŵ ′ ∈Wor

Ŵ ′ w Ŵ iff ξ (Ŵ ′)w ξ (Ŵ )

for Worldcall stack, Worldheap, and Worldfree stack defined as follows

Worldheap = RegionName ⇀ (Regionspatial ∪Regionshared)

Worldcall stack = RegionName ⇀ (Regionspatial ×Addr)

Worldfree stack = RegionName ⇀ Regionspatial
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where RegionName =N. Regionspatial and Regionshared defined as follows

Regionshared = {shared} × (Wor mon, ne−−−→URel(MemorySegment×MemorySegment))×
(Seal ⇀ Wor mon, ne−−−→URel(Sealables× Sealables))

Regionspatial =

{
{shadow, spatial} × (Wor mon, ne−−−→URel(MemorySegment×MemorySegment))∪
{revoked}

�

Theorem 2 uses the method of Birkedal et al. (2011); Birkedal & Bizjak (2014) to
construct the solution Wor to the recursive equation. Note, that Wor is not equal to
I(Worldheap ×Worldcall stack ×Worldfree stack); it is isomorphic. This means that when-
ever we encounter Wor, we have to apply ξ and go under a later before we can actually
use the world. This makes it rather inconvenient to have Wor as the world, so instead we
define the worlds as

World = Worldheap ×Worldcall stack ×Worldfree stack

For ease of presentation, we have omitted step indices and the isomorphisms ξ from the
definitions in Section 5.1.6.

5.3 The Logical Relation

Using these Kripke worlds as assumptions, we can then define when different OLCM
and LCM entities are related: values, jump targets, memories, execution configurations,
components etc. The most important relations are summarised in the following table,
where we mention the general form of the relations, what type of things they relate and
extra conditions that some of them imply: We use the square symbol as a meta-variable
that represents either left-to-right (if �=�) or right-to-left (if �=�) approximation (see
Section 5.3.1).

General form Relates ... and ...

(n, (wS, wT ))∈ V �,gc
untrusted(W ) values (machine words) safe to pass to adversar-

ial code
(n, (wS, wT ))∈ V �,gc

trusted(W ) values (machine words)
(n, (regS, regT ))∈R�,gc(W ) register files safe to pass to adversar-

ial code
(n, ΦS, ΦT )∈O�,gc execution configurations

(n, (wS, wT ))∈ E �,gc(W ) jmp targets(
(wS,1, wS,2),

(wT,1, wT,2)

)
∈ E �,gc

xjmp (W ) xjmp targets

msS, stk, msstk, msT :gc
n W memory satisfy the assumptions

in W
In Section 5.1.6, we already defined memory satisfaction, the relation for memories. In
the following, we define each of the remaining relations and give some intuition about the
definitions. The logical relation we define ends up as a cyclic definition. The circularity is
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resolved by another use of step-indexing in the definitions, but the circularity also poses a
chicken and egg problem with respect to the order in which the definitions of the relations
should be presented. There is no canonical way of presenting the logical relation as we are
bound to make forward references. For this reason, we suggest making a cursory first read
through to get an overview followed by a more thorough read.

5.3.1 Observation relation

The observation relation defines what machine configurations have related and permissible
observable effects. Generally speaking, an observation relation captures the property we
want to prove. Ultimately, we want to prove a full-abstraction theorem which is defined in
terms of contextual equivalence for components that in turn is defined as co-termination in
any context. This means that the observation relation should capture co-termination.

So far, we have talked about the logical relation as though we define only a single one.
However, we actually define two logical relations that only differ in the observation rela-
tion. The two relations O� and O� represent approximation between OLCM and LCM
configurations in both directions. The former defines that a OLCM configuration logically
approximates a LCM configuration when the halting termination of the OLCM configura-
tion implies the halting termination of the LCM configuration. This also means that OLCM
configurations that terminate by failing are related to any LCM configuration. Intuitively,
this is because the failed configuration signals that there was an attempt to break the guar-
antees of the capability machine. For instance, a piece of code could have attempted to
read from a part of memory it does not have access to, or a callee could have attempted to
return out of order. In both cases, we haven’t defined a way to recover from such attempts
to break the guarantees, so we are content with failure.

O�,(TA,stk base, , ) def
=

(
n,
(

(msS, regS, stkS, msstk,S),

(msT , regT )

))∣∣∣∣∣∣
∀i≤ n.
(msS, regS, stkS, msstk,S)⇓TA,stk base

i
⇒ (msT , regT )⇓−


The step-indexing plays a role here because we are only interested in OLCM configura-
tions that terminate in n or fewer steps. However, if the OLCM configuration terminates
successfully in n steps, then the LCM configuration should just terminate in any number
of step (possibly more than n steps). For the most part, it would make sense to require the
LCM configuration to terminate in the same amount of steps as the OLCM configuration
as they run in lockstep for most of the computation. However, when it comes to calls and
returns, the two configurations stop running in lockstep. The OLCM configuration handles
calls and returns in one step whereas LCM configurations need to execute each instruction
of the call preparation as well as the return code.



2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

Journal of Functional Programming 47

The second observation relation O� defines that a LCM configuration approximates a
OLCM configuration in a dual way to the above.

O�,(TA,stk base, , ) def
=

(
n,
(

(msS, regS, stkS, msstk,S),

(msT , regT )

))∣∣∣∣∣∣
∀i≤ n.
(msT , regT )⇓i

⇒ (msS, regS, stkS, msstk,S)⇓TA,stk base
−


The remainder of our logical relation will be the same for both � and �, so we will write
� instead of the approximation.

5.3.2 Value Relations

The value relation relates LCM words to OLCM words. The OLCM machine has special
tokens that represent the stack capabilities and the return pointer components. These tokens
do not exist on LCM, but all of the tokens correspond to capabilities on LCM, and the
value relation establishes the link between then. Skorstengaard et al. (2018a) defines a
logical relation that can be seen as a notion of capability safety. When they define their
value relation, they define based on the question “What is the most an adversary can be
allowed to do with this word without breaking memory invariants?” This allows them to
use the logical relation to reason about arbitrary (untrusted) programs. We also want to be
able to say something about arbitrary (untrusted) programs, but we also want to be able to
say something about somewhat arbitrary trusted programs. In our setting, a trusted program
is a well-formed, reasonable program that follows the STKTOKENS calling convention, and
an untrusted program is an arbitrary well-formed program. In order for a trusted program to
use STKTOKENS, it needs access to return seals, but we cannot allow untrusted programs
access to the return seals. A value relation based on what it is safe for an adversary to
have should prohibit return seals, so such a relation cannot be used to reason about trusted
programs. For this reason, we define two value relations a trusted Vtrusted and an untrusted
Vuntrusted. Anything safe for unstrusted programs is also safe to give to a trusted program,
so the trusted value relation is defined as a super set of the untrusted value relation.

From time to time in this section, we will refer to safety of a capability or a word. In
some sense, our logical relation actually ends up as the definition of safety, so when we
refer to a capability as safe it is in an informal sense where it means that the capability
cannot be used break memory invariants.

In Figure 19, we have sketched the two value relations. This shows that for the most
part, words on OLCM are related to words on LCM that are syntactically identical. The
only exception is stack pointers on OLCM that are related to linear capabilities on LCM.
Note that the return pointers of OLCM are not related to anything as it is never safe for any
program, trusted or not, to have them. The OLCM return pointers should only occur under
a return seal, and they should only be used in a jump in which case the OLCM semantics
transforms them to the capabilities they correspond to.

The value relation is defined in terms of a number of auxiliary definitions. In the fol-
lowing, we introduce a number of standard regions that express common requirements
on memory. Based on the standard regions, we define what we call permission based
conditions, conditions that a capability with a specific permission must satisfy to be safe.
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V �,gc
untrusted(W ) = {(n, (i, i)) | i∈Z} ∪

{(n, (stack-ptr(p, b, e, a), ((p, linear), b, e, a))) | . . . } ∪
{(n, (seal(σb, σe, σ), seal(σb, σe, σ))) | . . . } ∪
{(n, (sealed(σ , scS), sealed(σ , scT ))) | . . . } ∪
{(n, (((p, l), b, e, a), ((p, l), b, e, a))) | . . . }

V �,gc
trusted(W ) = V �,gc

untrusted(W )∪
{(n, (seal(σb, σe, σ), seal(σb, σe, σ))) | . . . } ∪
{(n, (((p, normal), b, e, a), ((p, normal), b, e, a))) | p≤ RX ∧ . . . }

Fig. 19: Sketches of the trusted and untrusted value relation. The untrusted and trusted
value relation both relates OLCM and LCM words. The untrusted value relation Vuntrusted

relates words that are safe to give to untrusted programs and Vtrusted relates words that are
safe to give to trusted programs.

5.3.2.1 Standard regions. The notion of regions we defined in Section 5.1 is general
enough to allow a wide variety of regions. There are, however, some regions that may seem
more natural or standard than others. In particular, when it comes to capability safety, it
seems natural to have a region that requires everything in memory to be safe. This is exactly
what we refer to as a standard region because we usually define a region like that along
with a logical relation.

We define a shared, shadow, and spatial standard region. They all have the same invariant
which is defined as follows:

Hstd,�
A gc Ŵ def

=

(n, msS, msT )

∣∣∣∣∣∣
dom(msS) = dom(msT ) = A∧
∃S : A→World. ξ (Ŵ ) =⊕a∈AS(a)∧
∀a∈ A. (n, (msS(a), msT (a)))∈ V �,gc

untrusted(S(a))


The standard region invariant requires the memory segment pairs to have a specific address
space A. Further, the two memory segments must contain words from the untrusted value
relation. The memory segments may contain linear capabilities, so we must distribute the
ownership of the world between each memory cell which the function S takes care of. Note
that the invariant takes a Ŵ from Wor as argument which means that we must apply the
isomorphism ξ before the world can be used. Using this invariant, we define the standard
shadow and spatial regions as follows:

ι
std,v
A,gc

def
= (v, Hstd,�

A gc), v∈ {shadow, spatial}

and the standard shared regions as follows

ι
std,shared
A,gc

def
= (shared, Hstd,�

A gc, λ . /0)

Note that the standard shared region has an empty seal invariant and thus puts no
requirements on seals.

Sometimes we need to know that the contents of a memory segment stay the same. For
instance, the contents of encapsulated stack frames do not change which we need to be
able to rely on. To express this, we define a static region. The static region is parameterised
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with a memory segment pair which is the only memory segment pair the region accepts.
The memory invariant is defined as follows

Hsta,�
(msS,msT )

gc Ŵ def
=(n, (ms′S, ms′T
))∣∣∣∣∣∣

(
ms′S, ms′T

)
= (msS, msT )∧ dom(msS) = dom(msT )∧

∃S : dom(msS)→World. ξ (Ŵ ) =⊕a∈dom(ms)S(a)∧
∀a∈ dom(msS). (n, (msS(a), msT (a)))∈ V �,gc

untrusted(S(a))


The region also requires the static memory to contain words from the untrusted value
relation. This means that the stack should not be used to store return seals, closure seals,
and code pointers for trusted code. With the memory invariant, we define the static region
as follows:

ι
sta,v,�
(msS,msT ),gc

def
= (v, Hsta,�

(msS,msT )
gc), v∈ {shadow, spatial}

A shared static region can be defined in a similar fashion to that of the standard region.
In our result, we assume well-formed components which puts certain syntactic con-

straints on the components. We also have the semantic assumption that trusted components
are reasonable. Both assumptions need to be captured in the logical relation in order for
us to rely on them. To this end, we define a code region which captures the syntactic and
semantic assumptions we make on components. The memory invariant of the code region
is defined as

Hcode
σret σclos code (TA, , σglob ret, σglob clos) Ŵ =

(
n,
(

code]mspad,

code]mspad

))
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃tst. dom(code) = [b, e]∧ ([b− 1, e + 1]⊆ TA∧
σret ⊆ σglob ret ∧ σclos ⊆ σglob clos ∧ tst = trusted)∨

([b− 1, e + 1] # TA ∧ σret = /0∧ tst = untrusted)∧
mspad = [b− 1 7→ 0]] [e + 1 7→ 0]∧
σret, σclos, TA `comp−code code∧
∀a∈ dom(code).

(n, (code(a), code(a)))∈ V �,gc
tst (sharedPart(ξ (Ŵ )))


The code region is more restrictive than the standard region. It only allows one mem-
ory segment, namely code padded with zeroes that make sure that two capabilities cannot
be spliced to cause unintended control-flow. We use the relation to reason about trusted
components (well-formed and reasonable) as well as untrusted components (well-formed).
The assumptions we can make on the code depend on whether it is part of a trusted or
untrusted component. This is captured by requiring the contents of the code memory to
be in the trusted or untrusted value relation depending on the trustworthiness of the code.
That is, if all the code memory addresses are in the trusted address space and the seals are
from the global seals, then the component is trusted. On the other hand, if the code mem-
ory addresses are disjoint from the trusted addresses and there are no return seals, then
the component is untrusted. In either case, the words should be in the value relation with
respect to the sharedPart of the world which means that the code memory cannot contain
linear capabilities.

STKTOKENS rely on proper seal usage to guarantee well-bracketed control-flow and
local state encapsulation. This means that components must use return and closure seals
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Hcode,�
seal σret σclos code (TA, stk base, , σglob ret) σ Ŵ def

=

(
n,
(

ret-ptr-code(b, e, a′ + call len),
((RX, normal), b, e, a)

))∣∣∣∣
σret ⊆ σglob ret∧
dom(code)⊆ TA∧
decode(code([a′, a′ + call len− 1])) = calloff pc,off σ r1 r2∧
a = a′ + ret pt offset∧
code(a′ + off pc) = seal(σb, σe, σb)∧ σ = σb + off σ ∈ σret∧
[a′, a′ + call len− 1]⊆ [b, e]


∪



(
n,
(

ret-ptr-data(b, e),
((RW, linear), b, e, b− 1)

))∣∣∣∣
σret ⊆ σglob ret∧
dom(code)⊆ TA∧
∃r ∈ dom(ξ (Ŵ ).call stk).

ξ (Ŵ ).call stk(r) n
= (ι

sta,spatial,�
(msS,msT )

(TA, stk base), a′ + call len)∧
dom(msS) = dom(msT ) = [b, e]∧
decode(code([a′, a′ + call len− 1])) = calloff pc,off σ r1 r2∧
code(a′ + off pc) = seal(σb, σe, σb)∧ σ = σb + off σ ∈ σret


for σ ∈ σret

Hcode,�
seal σret σclos code (TA, stk base, σglob clos, σglob ret) σ Ŵ def

=

(n, (sc, sc′))|
(dom(code) # TA ∧ (n, (sc, sc′))∈ V �,gc

untrusted ξ (Ŵ ))∨
(dom(code)⊆ TA ∧ σclos ⊆ σglob clos ∧ σret ⊆ σglob ret∧
((executable(sc)∧ (n, (sc, sc′))∈ V �,gc

trusted ξ (Ŵ ))∨
(nonExec(sc)∧ (n, (sc, sc′))∈ V �,gc

untrusted ξ (Ŵ ))))


for σ ∈ σclos

Fig. 20: The seal invariant for code regions.

for their intended purpose for STKTOKENS to work. The code region has a seal invariant
Hcode,�

seal to guarantee that the return and closure seals of the region are used correctly. The
seal invariant is displayed in Figure 20. The return seals σret in a code region should only
be used to seal return pointers. That is on OLCM, the return seals should only be used to
seal ret-ptr-code and ret-ptr-data. If we allowed any ret-ptr-code to be sealed, then we could
not be sure that the ret-ptr-code came from a call even though it should only be possible to
get a return pointer from a call. For this reason, we require that the OLCM return pointer
actually points to the first address after a call. For a LCM capability related to a OLCM
code return pointer, we require it to point to the first address of the return code, not the first
address after the call, as the return instructions must be executed.

For sealed data return pointers, we need to know that the world contains a region that
governs the local stack frame. That is, there should be a static region with the contents of
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the stack frame. The fact that it is static signifies that the contents will remain the same.
The region that governs the stack frame must come from the call-stack sub-world which
means that it is paired with a return address. The return address should correspond to an
actual return address of a call in code.

Unlike return seals, both trusted and untrusted components can have closure seals. For
untrusted components (components with their code address space disjoint from the trusted
address space), we allow everything in the untrusted value relation to be sealed. Intuitively,
untrusted components are assumed to have access to words from the untrusted value rela-
tion, and we cannot know how the words are used, so we need to assume that an untrusted
component may seal untrusted words. Trusted components only use closure seals for sealed
capability pairs that represent actual closures. The code capability for a closure must point
to the code memory because it is the only part of memory that is executable. Untrusted
components cannot safely have a capability for a trusted component’s code (it could be
used to read return capabilities or start execution in the middle of a call), so capabilities for
the code memory of a trusted component is in the trusted value relation. While it is not safe
to give a bare capability for a trusted components code memory, it can be perfectly safe to
give a sealed capability for a trusted components code. For this reason, the seal invariant
allows executable capabilities from the trusted value relation to be sealed with a closure
seal.

When it comes to the data capability of a closure, we just require that it comes from
the untrusted value relation because the trusted value relation contains nothing that makes
sense to seal as the data capability (we return to the specific contents of the two value
relations later in this section).

With the memory invariant and seal invariant in hand, we define the code region as
follows:

ι
code
σret,σclos,code,gc

def
= (shared, Hcode,�

σret σclos code gc, Hcode
seal σret σclos code gc)

The code region is shared because it needs to contain a seal invariant and because we
assume that code pointers are normal capabilities.

5.3.2.2 Permission based conditions. The safe capabilities will be defined by the value
relation. However, the safety requirements for a capability depends on the authority the
capability gives. Therefore, rather than bundling everything into the value relation, we first
present a number of permission based conditions that each spell out what the requirements
are for each permission.

The world can be seen as an authority specification which means that it dictates what
kind of capabilities can address a certain part of memory. Specifically, linear capabilities
can only address memory governed by a spatial region, and normal capabilities can only
address memory governed by a shared region. All the permission based conditions we
define project the regions that the capability may address from the world. The addressable
addressable function takes care of the projection:

addressable(l,W )
def
=

{
{r |W (r) = (shared, )} if l = normal

{r |W (r) = (spatial, )} otherwise (i.e. l = linear)
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We capture the essence of what it means for a capability with read permission to be safe
in the condition readCondition. The main purpose of readCondition is to make sure that
only safe words can be read from the memory governed by a read capability. This is done
by putting an upper bound on what requirements an invariant can impose on the memory
segments governed by the capability. In particular a region that governs the memory a read
capability has access to can at most allow safe values to be read. Without this requirement,
a read capability could potentially be used to break memory invariants if it were used to
read capabilities that has the authority to break memory invariants. The read condition is
defined as follows

readCondition�,gc(l,W ) =


(n, A)

∣∣∣∣∣∣∣∣∣∣∣

∃S⊆ addressable(l,W.heap).
∃R : S→P(N).⊎

r∈S R(r)⊇ A∧
(l = linear⇒∀r ∈ S. |R(r)|= 1)∧
∀r ∈ S.W.heap(r).H

n
⊆ ι

std,shared
R(r),gc .H


The readCondition is compatible with all the operations that can be performed on capabili-
ties. This means that if two capabilities for which readCondition holds are spliced together,
we can establish that readCondition holds for the resulting capability. To support this, we
require the presence of a set of regions S that governs the addresses the capability has
authority over rather than just a single region. If we need to establish the readCondition
after a splice, we can simply use the union of the regions that witnessed the readCondition
of the two individual capabilities. We also need to support splitting which is no problem for
normal capabilities as the same shared region can be used to establish the readCondition
for multiple normal capabilities. On the other hand, a spatial region can only be used to
establish the readCondition for one linear capability because the ownership of a spatial
region can only go to one world when splitting the ownership. Nonetheless, we need to sup-
port arbitrary splitting of linear capabilities, which means that readCondition must make
sure that the necessary regions are in the world to argue that the result of a split preserves
readCondition. This is why readCondition requires all regions to only govern one address
when the capability is linear. This means that after a split, the authority of the regions for
the bottom half of the split can go to one capability and the remaining regions can go to
the top half.

A safe read capability only gives authority to read safe words. The invariant on the
memory a read capability gives access to may be even more restrictive than just requiring
safe words. For instance, the invariant may require a flag to stay unchanged. We express
the fact that a region may be more restrictive by making the standard region ι

std,shared
R(r),gc ,

which permits all memory segments with safe words, the upper bound of what a region
may require when it governs a memory segment that can be accessed through a safe read
capability.

Similarly to readCondition, we define a condition that captures the essence of what
it means for a capability with writer permission to be safe. We call this condition
writeCondition. A capability with write permission can be used to write to memory. The
question is what can we safely allow to be written to memory without any memory invari-
ants being broken. The answer to this is anything - even words that are unsafe. Say, you
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manage to write something that can break memory invariants, then it would not be pos-
sible to read it back again as write permission, generally speaking, does not entail read
permission. If the capability had read permission, then readCondition would make sure
that the word would have to be safe8. It should always be possible to write safe values, so
we impose this as a lower bound.

A safe write capability must respect the memory invariant of the region that governs
the memory the capability gives access to. Now consider the case where the invariant
permits two memory segments that differ in two or more addresses. In this case, the write
capability cannot be used to transform the memory from one memory segment to the other
because only one memory address can be updated at a time. If an adversary had such a
capability, then it should be possible for them to transform the memory in a way that is
consistent with the region. In other words, the adversarial code should be able to transform
the memory segment to any memory segment permitted by the region. This is captured
by address stratification (Definition 15) which basically says that if a region permits two
memory segments, then all the intermediate memory segments you may end up with when
transforming one memory segment to the other must be permitted as well.

Definition 15. We say that a region ι = ( , H, ) is address stratified iff

∀n, msS, msT , ms′S, ms′T , s, Ŵ .

(n, (msS, msT )) ,
(
n,
(
ms′S, ms′T

))
∈H Ŵ∧

dom(msS) = dom(msT ) = dom(ms′S) = dom(ms′T )
⇒
∀a∈ dom(msS).

(
n, (msS[a 7→ms′S(a)], msT [a 7→ms′T (a)])

)
∈H Ŵ

�

With address stratification defined, we define the write condition.

Definition 16.

writeCondition�,gc(l,W )
def
=


(n, A)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃S⊆ addressable(l,W.heap).
∃R : S→P(N)⊎

r∈S R(r)⊇ A∧
(l = linear⇒∀r ∈ S. |R(r)|= 1)∧
∀r ∈ S.W.heap(r).H

n
⊇ ι

std,shared
R(r),gc .H∧

W.heap(r) is address-stratified


�

The definition of writeCondition is very similar to readCondition. Support for split and
splice is done in the same way, and the bound is defined in terms of the standard region.

The readCondition and writeCondition specifically use the heap sub-world which means
that it can only be used for heap capabilities. This means that we cannot use it for

8 It should not be possible to obtain a capability that can be used to break invariants. After all, if such a capability
was obtained, memory invariants could be broken. However, the writeCondition tries to capture the essence of
safety and in principle it is safe to write an unsafe capability that cannot be read back.
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stack capabilities. To take care of stack capabilities, we define two more conditions: a
stackReadCondition and stackWriteCondition. The two new conditions are essentially the
same as the readCondition and writeCondition except that they use the free stack sub-
world and assume that the capability is linear as all stack capabilities are linear. Note that
we do not have any condition that talks about the stack-frames sub world because we
should never have a capability that allows us to directly read from or write to that part of
memory.

Definition 17.

stackReadCondition�,gc(W ) =


(n, A)

∣∣∣∣∣∣∣∣∣∣∣

∃S⊆ addressable(linear,W.free stk).
∃R : S→P(N).⊎

r∈S R(r)⊇ A∧
∀r ∈ S. |R(r)|= 1

∀r ∈ S.W.free stk(r).H
n
⊆ ι

std,shared
R(r),gc .H


�

Definition 18.

stackWriteCondition�,gc(W ) =


(n, A))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃S⊆ addressable(linear,W.free stk).
∃R : S→P(N)⊎

r∈S R(r)⊇ A∧
∀r ∈ S. |R(r)|= 1∧
∀r ∈ S.W.free stk(r).H

n
⊇ ι

std,shared
R(r),gc .H∧

W.free stk(r) is address-stratified


�

The final permission we define conditions for is the execute permission. We define two
conditions executeCondition and readXCondition. The executeCondition captures what
operations an execute-capability can be used for, i.e. execution. The readXCondition cap-
tures some additional read assumptions we can make on a capability when we know the
capability is executable.

The executeCondition intuitively says that an execute capability is safe when any capa-
bility that can be derived from it is safe as a program counter now and in the future. We
later define the E -relation which captures what it means for a word to be safe as a program
counter, but for now it suffices to think of it as a program counter that causes an execu-
tion that does not break memory invariants. An executable capability can have its range
of authority shrunk or its current address changed which changes what instructions are
executed and thus potentially whether the code respects memory invariants. For this rea-
son, the condition requires that any executable capability with a derived range of authority
and a current address in that range is safe to use for execution. The executeCondition is
quantified over all future worlds of the sharedPart of W . We do not know when the exe-
cutable capability will be used, so it should be safe even in the future when the memory has
changed. The sharedPart function turns the spatial regions of a world into shadow copies.
This means that the capability cannot depend on linear capabilities and thus the contents of
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the stack. When we define the logical relation, we even require the executable capability to
not be linear. Linear executable capabilities would likely not be useful because they cannot
be moved from the pc-register without crashing the execution. This may sound like an ideal
primitive for constructing something that can be executed once, however, most programs
rely on loading other capabilities or seal sets using the program counter capability which
is not possible when the program counter is linear.

executeCondition�,gc(W ) =(n, A)

∣∣∣∣∣∣
∀n′ < n,W ′ w sharedPart(W ). ∀b′, e′. ∀a∈ [b′, e′]⊆ A.(

n′,
(
((RX, normal), b′, e′, a),
((RX, normal), b′, e′, a)

))
∈ E �,gc(W ′)


The readCondition condition by itself allows many different regions and thus potentially
many different memory segments. However, when we have a read capability with execute
permission, we know that the capability must point to a piece of code memory. For this
reason, we define the readXCondition to capture the additional assumptions that we can
make when a capability is executable.

readXCondition�,gc(W ) =

(n, A)

∣∣∣∣∣∣∣
∃r ∈ addressable(normal,W.heap), code.

W.heap(r) n
= ιcode

, ,code,gc∧
dom(code)⊇ A


The readXCondition requires that the memory segment an executable capability has
authority over is governed by a code region. Note that we do not define executeCondition
and readXCondition for the stack because the stack is not executable.

The executeCondition handles normal jumps, but it does not cover the case of xjmp.
Executable capabilities can be used on their own whereas sealed capabilities must be
jumped to in pairs. However, we do not need to consider arbitrary pairs: given a sealed
capability we only have to consider the capabilities permitted by the relevant seal invari-
ant. Just like the E relation captures what it means for a word to be safe as a program
counter, we later define Exjmp that defines what it means for a code and data capability pair
to be safe together as program counter and data capability, respectively. A sealed capability
is safe when it can be paired with any sealed capability from the seal invariant such that
the pair is in the Exjmp relation. Just like safe executable capabilities, a sealed capability
may be stored, so it should also be safe to use in future worlds. The condition for sealed
capabilities is defined by sealedCondition.

sealedCondition�,gc(W, Hseal) ={
(n, (σ , scS, scT ))

∣∣∣∣∣ ∀W ′ wW,Wo, n′ < n,
(
n′,
(
sc′S, sc′T

))
∈Hseal σ ξ−1(Wo).(

n′, scS, sc′S, scT , sc′T
)
∈ E �,gc

xjmp (W
′ ⊕Wo))

}

5.3.2.3 The untrusted value relation. The untrusted value relation Vuntrusted relates all
the words that untrusted components can safely possess. That is words that cannot be used
to break any memory invariants. The relation is displayed in Figure 21.

The untrusted value relation has five cases: data, capabilities, stack pointers, sealed capa-
bilities, seal sets, and stack pointers. In the following, we will give some intuition about



2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

56 STKTOKENS: Enforcing WBCF and LSE Using Linear Capabilities

why it is safe to give these words to untrusted code as well motivate the conditions they
are safe under.

The first case is data. Data grant no authority, so data is always safe. Further unlike
capabilities, it is always possible to construct a new integer with the move instruction.

Next we have capabilities that do not have a special representation on OLCM, i.e. all
capabilities but stack pointers and return pointers. For two capabilities to be related, they
should be syntactically equal. That is, they should have the same range of authority, linear-
ity and so one. Generally speaking, untrusted components should not have direct access to
a trusted components code, so we require that capabilities must have a range of authority
outside the trusted address space if they are to be related. The safety of a capability also
depends on the world and whether the capability can be used to break the memory invari-
ants of the world. For instance, if a capability has read-permission, then it should not be
possible to read something unsafe, i.e. something that can break memory invariants. This
condition and conditions for the other permissions are captured by the permission based
conditions, so we use them to express the necessary conditions. That is, if a capability
has read permission, then readCondition must be satisfied, if it has write permission, then
writeCondition must be satisfied, and if it has execute permission, then executeCondition
and readXCondition must be satisfied. If the capability has execute permission, then it must
also be a normal capability. Finally, the capability cannot have read/write/execute permis-
sion because that would break the write-XOR-execute assumption, i.e. the code memory
in non-writable and data memory is non-executable.

Stack pointers on OLCM are represented with the special token stack-ptr(p, b, e, a).
The corresponding capability on LCM is a linear capability with the same permission
and addresses. We assume that the stack is non-executable, so the permission for a stack
pointer cannot have execute permission. Similarly to the normal capabilities, we use the
permission based conditions for the stack to ensure that the stack capability is safe to use.

A sealed capability encapsulates the authority of the underlying capability, and the
authority is only released when the sealed capability is used in an xjmp. The xjmp takes
a pair of sealed capabilities, so the authority of a sealed capability depends on what other
sealed capabilities it might be used with. The seal invariant specifies the capabilities that
may be sealed with a given seal and thus the capabilities that may be used together as a
sealed pair. As discussed, closure and return seals must be used in specific ways which
is captured in the code region seal invariant. In order for a pair of OLCM and LCM
sealed capabilities to be in the untrusted value relation, they must be sealed with the
same seal σ and related in the appropriate seal invariant. Further, they should satisfy the
sealedCondition which means that they can safely be paired up with any other pair of
capabilities from the seal invariant and used safely for execution.

For sets of seals to be related in the untrusted relation they must be syntactically equal.
Further, the seals in the set should be disjoint from the return seals and trusted closure seals
(σglob ret and σglob clos) because the trusted code relies on having the sole access to them.
We do not know what an adversary may seal or what seal they may use, so, for every seal
in the seal set, we require the seal invariant to be essentially equal to the untrusted value
relation.

When we give a word to untrusted code, we can make no assumptions on when they will
use it. For instance, they may store it in memory and use it in a later call. This means that
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V �,gc
untrusted(W ) = {(n, (i, i)) | i∈Z} ∪

(
n,
(
((p, l), b, e, a),
((p, l), b, e, a)

)) ∣∣∣∣
[b, e] # TA ∧ p 6= RWX∧
p∈ readAllowed⇒(n, [b, e])∈ readCondition�,gc(l,W )∧

p∈writeAllowed⇒(n, [b, e])∈writeCondition�,gc(l,W )∧
p = RX⇒(n, [b, e])∈ executeCondition�,gc(W )∧

(n, [b, e])∈ readXCondition�,gc(W )∧
l = normal


∪



(
n,
(

stack-ptr(p, b, e, a),
((p, linear), b, e, a)

)) ∣∣∣∣
p 6∈ {RX, RWX}∧
p∈ readAllowed⇒(n, [b, e])∈ stackReadCondition�,gc(W )∧

p∈writeAllowed⇒(n, [b, e])∈ stackWriteCondition�,gc(W )


∪



(
n,
(

sealed(σ , scS),

sealed(σ , scT )

))
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(isLinear(scS) iff isLinear(scT ))∧
∃r ∈ dom(W.heap), σret, σclos, mscode.

W.heap(r) = (shared, , Hseal)∧
Hseal σ

n
= Hcode,�

seal σret σclos mscode gc σ∧
(n′, (scS, scT ))∈Hseal σ ξ−1(W ) for all n′ < n∧
isLinear(scS)⇒ (n, (σ , scS, scT ))∈

sealedCondition�,gc(W, Hseal)∧
nonLinear(scS)⇒ (n, (σ , scS, scT ))∈

sealedCondition�,gc(purePart(W ), Hseal)


∪


(

n,
(

seal(σb, σe, σ),

seal(σb, σe, σ)

)) ∣∣∣∣∣∣∣∣
[σb, σe] # (σglob ret ∪ σglob clos)∧
∀σ ′ ∈ [σb, σe]. ∃r ∈ dom(W.heap).

W.heap(r) = (shared, , Hseal)∧
Hseal σ ′

n
= (V �,gc

untrusted ◦ ξ )


Fig. 21: The untrusted value relation relates all the words on OLCM to all the words on
LCM that are safe for non-trusted components to posses.

a safe word must not only be safe now but also at any point in the future. The untrusted
value relation ensures this as it is monotone with respect to future worlds.

Lemma 1 (Untrusted value relation monotonicity). For all integers n, words w1

and w2, and worlds W ′ wW, if (n, (w1, w2))∈ V �,gc
untrusted(W ), then (n, (w1, w2))∈

V �,gc
untrusted(W

′). �

5.3.2.4 The trusted value relation. The trusted value relation Vtrusted relates everything
safe for a trusted component to have without breaking memory invariants. For the most
part, we allow them to contain the same words as the untrusted components, but we also
need to allow them to have seal sets with trusted closure seals and return seals which we
cannot allow untrusted components to have. Further, we need to allow trusted components
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V �,gc
trusted(W ) =

V �,gc
untrusted(W )∪
(

n,
(

seal(σb, σe, σ),

seal(σb, σe, σ)

))
∣∣∣∣∣∣∣∣∣∣∣∣∣

gc = (TA, stk base, σglob ret, σglob clos)∧
∃r ∈ dom(W.heap).

W.heap(r) n
= ιcode

σret,σclos,code,gc∧
dom(code)⊆ TA∧
[σb, σe]⊆ (σret ∪ σclos)∧
σret ⊆ σglob ret ∧ σclos ⊆ σglob clos


∪


(

n,
(
((p, normal), b, e, a),
((p, normal), b, e, a)

)) ∣∣∣∣∣∣∣∣
pv RX∧
gc = (TA, stk base, σglob ret, σglob clos)∧
[b, e]⊆ TA∧
(n, [b, e])∈ readXCondition�,gc(W )


Fig. 22: The trusted value relation Vtrusted relates all the words that are safe for trusted
components to contain. A trusted component may contain untrusted words (Figure 21),
return seals and trusted closure seals, and code pointers for trusted code.

to have capabilities for the trusted code which, again, is something that we cannot allow
untrusted components to have. The trusted value relation is defined in Figure 22.

The words in Vtrusted but not in the Vuntrusted have the potential to break the system invari-
ants STKTOKENS rely on. We can only let trusted components have words from Vtrusted

because the trusted component promises to not break the invariant by behaving reasonably.
This promise is expressed formally in Vtrusted by requiring the presence of a code region in
both cases specific to Vtrusted. As explained previously, the code region essentially captures
the requirements put on components by well-formedness and the reasonability condition
which constitutes the promise to use seals and trusted code pointers in a way that does not
break invariants.

The trusted closure seals and return seals serve a specific purpose, namely they must be
used for return pointers and closures. To make sure this is the case, there must be a code
region in the world that governs the code. The code region contains a seal invariant that
makes sure that the seals are only used for their intended purpose. This is why the trusted
value relation only relates seal sets of trusted closure seals and return seals when the world
contains an appropriate code region.

Two capabilities are related as trusted code pointers if they are normal, have a permission
derivable from read-execute, and have a range of authority within the trusted address space,
TA. Further, we need to know that the capabilities actually point to a piece of code which
is why we require the readXCondition to be satisfied. This makes sure that the region that
governs the memory the capability points to is a code region. Note that even though the
capability has read permission, we do not require the read condition to hold. The code
memory contains trusted closure seals and return seals that we cannot let untrusted code
have and the read condition requires everything to be in Vuntrusted, so the read condition
would not hold. However, trusted code can have access to such seals because we expect
the trusted code to treat the seals reasonably. Like the untrusted value relation, the trusted
value relation is monotone. Intuitively, the two relations are monotone for the same reason;
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R�,gc(R)(W ) =

(n, (regS, regT ))

∣∣∣∣∣∣∣∣∣
∃S : (RegName \ ({pc} ∪ R))→World.

W =
⊕

r∈(RegName\({pc,rdata}∪R)) S(r)∧
∀r ∈RegName \ ({pc} ∪ R).
(n, (regS(r), regT (r)))∈ V �,gc

untrusted(S(r))


Fig. 23: The register file relation relates register files. Two register files are related when
their content is related.

words are potentially used at any point in time. If words are safe now (in the current world),
then they should also be safe to use later (in any possible future world).

Lemma 2 (Trusted value relation monotonicity). For all integers n, words w1 and w2, and
worlds W ′ wW, if (n, (w1, w2))∈ V �,gc

trusted(W ), then (n, (w1, w2))∈ V �,gc
trusted(W

′). �

Another, perhaps unsurprising property, of the trusted value relation it that non-linear
words do not depend on the spatial regions that may be in the world. This is unsurprising
as normal capabilities do not necessarily reference memory uniquely.

Lemma 3 (Non-linear words are independent of spatial regions). If (n, (w1, w2))∈
V �,gc

trusted(W ) and either nonLinear(w1) or nonLinear(w2), then

(n, (w1, w2))∈ V �,gc
trusted(sharedPart(W )). �

This is similar to Lemma 3 for the untrusted value relation.

5.3.3 Register file relation

The register file relation relates OLCM register files to LCM register files. Intuitively,
two register files are related when they only contain safe words, i.e. words from the value
relation. This raises the question “which value relation?” We only use the register file
relation to relate register files for components we do not trust, so the answer is the untrusted
value relation. The definition of the register-file relation is straightforward. It distributes the
authority of the world among the registers and requires each of the registers to contain a
safe word with respect to the authority it is given. The register file never takes into account
the pc and it can leave out further registers. We use this to not relate register content that
will be overwritten anyway. We write R(W ) to mean R( /0)(W ). That is, if we do not need
to exclude additional registers, then we simply omit that argument. The register file relation
is defined in Figure 23.

5.3.4 Expression relations

The expression relation E defines when two capabilities can be used in the pc-register to
produce related executions, i.e. the capabilities can be used to construct configurations in
the observation relation. The E relation can be used to reason about the safety of an exe-
cutable capability, i.e. capabilities that can change the control flow during execution when
a jmp instruction is executed. In the setting of OLCM and LCM, we can also use sealed
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capabilities to change the control flow by using the xjmp instruction. The xjmp instruc-
tion updates the pc register and the rdata register, however, the E relation only updates the
pc-register, so we cannot use E to reason about sealed capabilities. Instead, we define the
relation Exjmp which relates two pairs of capabilities when they are safe to use with the
xjmp instruction.

Executions are related when the observable effects of the executions are permissible.
The permissible observations are defined by the observation relation, so we define the
expression relation in terms of the observation relation. However, the observation relation
relates configurations, not capabilities. We lift the capabilities to configurations simply by
plugging the two capabilities into the pc-register of two configurations. We cannot pick
arbitrary configurations because an arbitrary configuration may contain words that can be
used to break memory invariants and thus create unacceptable observable effects. Instead,
we need to pick configurations made out of related components, i.e. related register files
and related memories that respect linearity. The type of execution captured by E corre-
sponds to a normal jump. When a jmp r instruction is interpreted, the pc-register is replaced
with the contents of register r, i.e. the current configuration is plugged with a new pc. The
E relation is defined in Figure 24

The Exjmp relation looks very much like the E relation. It takes related memories and
register files (ignoring the rdata register) and combines them into two configurations. Each
of the configurations is plugged with a code and data capability just like the xjmp instruc-
tion would and requires the resulting configurations to be in the O relation. The Exjmp

relation is defined in Figure 24.

5.4 Fundamental Theorem

An important lemma in our proof of full abstraction of the embedding of OLCM into LCM
is the fundamental theorem of logical relations (FTLR). The name indicates that it is an
instance of a general pattern in logical relations proofs, but is otherwise unimportant.

Theorem 3 (FTLR). For all n,W, l, b, e, a, If

• (n, [b, e])∈ readXCondition�,gc(W )

and one of the following sets of requirements holds:

• [b, e]⊆ TA and (((RX, normal), b, e, a) behaves reasonably up to n steps (see
Section 4.2).

• [b, e] # TA

then

(n, (((RX, normal), b, e, a), ((RX, normal), b, e, a)))∈ E �,gc(W ) �

Roughly speaking, this lemma says that under certain conditions, executing any exe-
cutable capability under OLCM and LCM semantics will produce the same observable
behavior. The conditions require that the capability points to a memory region where code
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E �,gc(W ) =


(n, (vc,S, vc,T ))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀n′ ≤ n,WR ,WM , regS, regT , msS, msT , msstk, stk.
(n′, (regS, regT ))∈R�,gc(WR)∧
msS, stk, msstk, msT :gc

n′ WM

ΦS = (msS, regS, stk, msstk)

Φ′S = ΦS[reg.pc 7→ vc,S]

ΦT = (msT , regT )

Φ′T = ΦT [reg.pc 7→ vc,T ]

W ⊕WR ⊕WM

⇒
(
n′,
(
Φ′S, Φ′T

))
∈O�,gc



E �,gc
xjmp (W ) =



(n, (vc,S, vd,S,

vc,T , vd,T ))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀n′ ≤ n, regS, regT , msS, msT , msstk, stk.
∀WR ,WM .

(n′, (regS, regT ))∈R�,gc({rdata})(WR)∧
msS, stk, msstk, msT :gc

n′ WM∧
ΦS = (msS, regS, stk, msstk)∧
ΦT = (msT , regT )∧
W ⊕WR ⊕WM is defined
⇒∃Φ′S, Φ′T .

Φ′S = xjumpResult(vc,S, vd,S, ΦS)∧
Φ′T = xjumpResult(vc,T , vd,T , ΦT )∧(
n′,
(
Φ′S, Φ′T

))
∈O�,gc


Fig. 24: The expression relation relates capabilities that can safely be used for execution.
The xjmp expression relation relates capabilities that are safe as sealed capabilties.

is loaded and that code must be either trusted and behave reasonably (i.e. respect the restric-
tions that STKTOKENS relies on, see Section 4.2) or untrusted (in which case, it cannot
have WBCF or LSE expectations, see Section 4.2).

The proof of the lemma consists of a big induction where each possible instruction is
proven to behave the same in source and target in related memories and register files. After
that first step, the induction hypothesis is used for the rest of the execution.

5.5 Related Components

In order to show full abstraction (Theorem 1), we need not only to relate the words on
OLCM with words on LCM we also need to relate OLCM components with LCM com-
ponents. Specifically, we say that two components are related when they are syntactically
equal, after all, a OLCM component is in some sense the same as a LCM as we only see the
difference during execution when a call happens and when we lift a component to a con-
figuration where we need to introduce a stack pointer. However, we cannot take arbitrary
components as they could potentially break memory invariants. For related base compo-
nents, we require that if the imports are satisfied with related words, then the resulting
memory should be safe. Further, related components must have safe exports. Components
with a main are related when the base components are related and the main capabilities are
in the public interface, that is they must be in the exports.
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Definition 19 (Component relation).

C�,gc(W ) =

(n, comp, comp) |
comp = (mscode, msdata, aimport←[ simport, sexport 7→wexport, σret, σclos) and

For all W ′ wW.

If
(
n′, (wimport, wimport)

)
∈ V �,gc

untrusted(sharedPart(W ′)) for all n′ < n

and ms′data = msdata[aimport 7→wimport]

then
(
n, (σret ] σclos, mscode ]ms′data, mscode ]ms′data)

)
∈H (W.heap)(W ′) and(

n, (wexport, wexport)
)
∈ V �,gc

untrusted(sharedPart(W ′))


∪


(
n, (comp0, cmain,c, cmain,d), (comp0, cmain,c, cmain,d)

)
|

(n, (comp0, comp0))∈C�,gc(W ) and

{( 7→ cmain,c), ( 7→ cmain,d)} ⊆wexport


�

5.6 Related Execution Configuration

The full abstraction theorem (Theorem 1) is stated in terms of contextual equivalence.
Contextual equivalence (Definition 7) plugs two components into a context and requires
equitermination of the resulting executable configurations. This means that we need to
lift relatedness one step further than the components, namely to the level of execution
configurations. To this end, we define E C .

Definition 20 (Related execution configuration).

E C�,gc(W ) =



(n, ((msS, regS, stk, msstk), (msT , regT ))) |
gc = (TA, stk base)∧
∃WM,WR,Wpc.W =WM ⊕WR ⊕Wpc∧
(n, ((regS(pc), regS(rdata)), (regT (pc), regT (rdata))))∈ E �,gc

xjmp (Wpc)∧
regS(pc) 6= ret-ptr-code( )∧ regS(rdata) 6= ret-ptr-data( )∧
nonExec(regS(rdata))∧ nonExec(regT (rdata))

msS, msstk, stk, msT :gc
n WM∧

(n, (regS, regT ))∈R�,gc({rdata})(WR)


�

Definition 20 essentially says that two executable configurations are related when they
are made out of related components. That is, the authority of the world must be distributed
such that the code and data pointer pairs are safe for execution, i.e. the contents of the pc
and rdata registers are related by the Exjmp relation. Further, the two memories and the two
register files should be related. This means that the executable configuration only contains
words that respect memory invariants.
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C1 ≈ctx C2

C [C1]⇓gc ⇒ C [C2]⇓gc

(1)

(2)

(3)
C ∼=C

C2 ∼=C2

C ∼=C

C1 ∼=C1

C [C1]⇓ ?⇒ C [C2]⇓

C1
?≈ctx C2

C
ontextualequivalence

preservation

Fig. 25: Proving one direction of fully abstract compilation (contextual equivalence preser-
vation).

5.7 Full Abstraction Proof Sketch

Using Lemma 3, we can now proceed to proving Theorem 1 (full abstraction).
Using Lemma 3 and the definitions of the logical relations, we can then prove the fol-

lowing two lemmas. The first is a version of the FTLR for components, stating that all
components are related to themselves if they are either (1) well-formed and untrusted or
(2) well-formed, reasonable and trusted.

Lemma 4 (FTLR for components). If comp is a well-formed component in LCM, i.e.
` comp. Then consider the same comp in OLCM. If either dom(comp.mscode)⊆ TA and
comp is a reasonable component in OLCM; or dom(comp.mscode) # TA, then there exists a
W such that (n, (comp, comp))∈C�,gc(W ). �

Another lemma then relates the component relation and context plugging: plugging
related components into related contexts produces related execution configurations.

Lemma 5. If (n, (CS,CT ))∈C�,gc(W1) and (n, (compS, compT ))∈C�,gc(W2) and W1 ⊕
W2 is defined, then CS[compS] terminates iff CT [compT ] terminates. �

Finally, we use these two lemmas to prove Theorem 1.

Proof [Proof of Theorem 1] Both directions of the proof are similar, so we only show the
right direction. To show the LCM contextual equivalence, assume w.l.o.g a well-formed
context C such that C [comp1]⇓. The proof is sketched in Figure 25. By the statement of
Theorem 1, we may assume that the trusted components comp1 and comp2 are well-formed
and reasonable. We prove arrow (1) in the figure by using the mentioned assumptions about
comp1 and C along with Lemma 4 and 5. Now we know that C [comp1]⇓, so by the assump-
tion that comp1 and comp2 are contextually equivalent on OLCM we get C [comp2]⇓, i.e.
arrow (2) in the figure. To prove arrow (3), we again apply Lemma 4, 5; but this time, we
use the assumption that comp2 is well-formed and reasonable and that C is well-formed.
�
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6 Discussion

With the technical results established, it’s worth taking a step back and discuss our work
from a more high-level perspective. In the next sections, we specifically give some more
thoughts on our use of full abstraction to express WBCF and LSE, and the practical
usability of STKTOKENS.

6.1 Full Abstraction

Our formulation of WBCF and LSE using a fully abstract overlay semantics has an impor-
tant advantage. Imagine that you are implementing a fully abstract compiler for a high-level
language, i.e. a secure compiler that enforces high-level abstractions when interacting
with untrusted target-language components. Such a compiler would need to perform many
things and enforce other high-level properties than just WBCF and LSE.

If such a compiler uses the STKTOKENS calling convention, then the security proof
should not have to reprove security of STKTOKENS. Ideally, it should just combine security
proofs for the compiler’s other functionality with our results about STKTOKENS. We point
out that our formulation enables such reuse. Specifically, the compiler could be factored
into a part that targets OLCM, followed by our embedding into LCM. If the authors of the
secure compiler can prove full abstraction of the first part (relying on WBCF and LSE in
OLCM) and they can also prove that this first part generates well-formed and reasonable
components, then full abstraction of the whole compiler follows by our result and transitiv-
ity of fully abstract compilation. Perhaps other reusable components of secure compilers
could be formulated similarly using some form of fully abstract overlay semantics, to
obtain similar reusability of their security proofs.

A compiler is secure when it enforces the properties of high-level languages which begs
the question what properties we should enforce. When it comes to fully-abstract com-
pilation, then the answer is that all properties in the high-level language (or at least the
equivalences they imply9) must be preserved in the target language, either by translating
them to similar abstractions in the target language or by using the available target language
features to enforce the source language abstraction. In our case, OLCM semantics offers a
native stack with LSE and WBCF, but this abstraction does not natively exist in LCM, so
STKTOKENS can be used to enforce it.

Perhaps a more subjective question is what kind of high-level language we would like.
STKTOKENS ensures a standard call-return control-flow, but if we want a different kind of
control-flow, for instance call/cc or C’s longjmp, then we need to come up with a different
enforcement scheme. Further, many high-level languages have exceptions as another form
of control-flow not (yet) supported by STKTOKENS. This goes to show how we must con-
sider what high-level language we want in order to answer the question of what properties
we must enforce to get a fully-abstract compiler.

We have not investigated support for continuations and exceptions in STKTOKENS thor-
oughly but we expect such support could be added. For exceptions, one approach would
let callers provide callees with an additional capability for exceptional returns. This second

9 See Section 7 for a discussion of secure compilation properties that require preservation of more general
language properties than equivalences.
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capability would be similar to the code part of the return capability pair and signed with the
same seal. The callee would be able to invoke it to signal that an exception has been thrown
after which the caller’s code would handle the exception, either by executing an exception
handler or by unwinding its stack frame and passing the exception on to its own caller.
Essentially, this would mean every function would be made responsible for unwinding its
own stack frame. Continuations are more complicated but could perhaps be treated using
similar ideas. Alternatively, it might also be possible to have a piece of central trusted code
that does the stack unravelling for all stack frames. To do this, the trusted code would need
to receive a copy of all return seals from the linker.

Full abstraction of a compiler is a property that takes into account the whole source
and target languages. In other words, a full abstraction proof must consider all features
of a language to make sure that the features don’t interact in a way that breaks language
abstractions. If we have a fully abstract compiler and add a feature to the source or target
language, then the new compiler is not necessarily fully abstract anymore. Full abstraction
would have to be proven for the new compiler to make sure that the new feature does not
break existing abstractions in the language. Our proof of full-abstraction for STKTOKENS

targets a simple capability machine that may not be able to enforce the high-level language
abstractions we want, e.g. address hiding. In other words, the full-abstraction proof cannot
be reused immediately. However, STKTOKENS is still a good candidate for the enforce-
ment mechanism for well-bracketed control-flow and local-state encapsulation in a real
fully abstract compiler. Generally speaking, it is worth investigating enforcement mecha-
nisms for full abstraction in a simple setting that allows to quickly try out ideas and verify
that the enforcement works.

Our full-abstraction theorem, Theorem 1 only applies to components that are reasonable
and well-formed. In other words, if we were to define a compiler phase that targets OLCM,
then we would also have to show that every program it generates is well-formed and rea-
sonable in order to use the full-abstraction result. Without the reasonability assumption,
STKTOKENS would have to enforce reasonability instead. That is, STKTOKENS would
have to dynamically ensure that no return seals or means to obtain them are passed in
calls. Such checks would impose a performance overhead and are in principle unneces-
sary for correct code. We have instead chosen to assume that we are given reasonable code
that never exhibits the unreasonable behaviour. A compiler phase where more information
about the original program is available should be able to ensure the assumption with rela-
tive ease. The syntactic requirement of well-formedness is similar, except that it should be
ensured by the compiler and linker together.

One challenge in full-abstraction proofs is to construct source language contexts that
emulate the behavior of an arbitrary target language context. This construction is known
as a back-translation (Devriese et al., 2017), i.e. a translation from the target language to
the source language. When we use an overlay semantics, the back-translation becomes
trivial because the source and target language are syntactically the same, so the identity
can be used as the back-translation. If we have native call and return instructions in the
source language, then the source language would be different from the target language,
and we would have to use a non-trivial back-translation. Specifically, the back-translation
would need to distinguish sequences of instructions that are the translation of a call from
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sequences of instructions that just look like a call. With overlay semantics, this is not a
concern because everything that looks like a call is interpreted as a call.

6.2 Linear Capabilities in reality

We believe there are good arguments for practical applicability of STKTOKENS. The strong
security guarantees are proven in a way that is reusable as part of a bigger proof of compiler
security. Its costs are

• a constant and limited amount of checks on every boundary crossing.
• possibly a small memory overhead because stack frames must be of non-zero length

The main caveat is that we rely on the assumption that capability machines like CHERI
can be extended with linear capabilities in an efficient way.

Although this assumption can only be discharged by demonstrating an actual implemen-
tation with efficiency measurements, the following notes are based on private discussions
with people from the CHERI team as well as our own thoughts on the matter. We also
refer to the latest CHERI ISA report, which contains a concurrently-developed, unimple-
mented design for linear capabilities, albeit without splice and split (Watson et al.,
2020, §D.7). As we understand it, the main problems for adding linear capabilities to a
capability machine like CHERI are related to the move semantics for instructions like
move, store and load. Processor optimizations like pipelining and out-of-order execution
rely on being able to accurately predict the registers and memory that an instruction will
write to and read from. Our instructions are a bit clumsy from this point-of-view because,
for example, move or store will zero the source register resp. memory location if the value
being written is linear. A solution for this problem could be to add separate instructions for
moving, storing and loading linear registers at the cost of additional opcode space. Adding
splice and split will also consume some opcode space.

Another problem is caused by the move semantics for load in the presence of multi-
ple hardware threads. In this setting, zeroing out the source memory location must happen
atomically to avoid race conditions where two hardware threads end up reading the same
linear capability to their registers. This means that a load of a linear capability should
behave atomically, similar to a primitive compare-and-swap instruction. This is in prin-
ciple not a problem except that atomic instructions are significantly slower than a regular
load (on the order of 10x slower or more). When using STKTOKENS, loads of linear capa-
bilities happen only when a thread has stored its return data capability on the stack and
loads it back from there after a return. Because the stack is a region of memory with very
high thread affinity (no other hardware thread should access it, in principle), and which is
accessed quite often, well-engineered caching could perhaps reduce the high overhead of
atomic loads of linear capabilities. The processor could perhaps also (be told to) rely on
the fact that race conditions should be impossible for loads from linear capabilities (which
should be non-aliased) and just use a non-atomic load in that case.
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6.3 Support for source language idioms and features

Our calling convention supports all source language features that can be expressed in
OLCM. This includes relatively basic features such as optimized tail calls (see Section 4.1)
and stack-allocated variable-size arrays. Some other idioms require a bit more thought,
such as the control flow primitives we discussed above.

Also interesting is the idiom of passing stack references in calls, as is common in
programming languages with a C-like calling convention. STKTOKENS supports stack
references but with a couple of caveats. First of all, the stack capability is linear, so all
references to the stack have to be linear. This means that the callee has to respect this lin-
earity when using the reference. Next, like the stack capability, the stack references must
be given back to the caller on return, so they can reconstruct their original stack capability
(allowing them to return). Finally, the encapsulated local stack frame should be a continu-
ous piece of memory (because it has to be addressable by a single capability: the data part
of the return capability pair). Because of this, stack-allocated objects for which references
are passed to callees must be allocated at the top or bottom of the caller’s stack frame. An
escape analysis could be used to statically determine where to put allocations and, in prin-
ciple, the allocations could be reordered dynamically before a call. In summary, support
for passing stack references as arguments to callees could be added to STKTOKENS, but
this would probably require some changes in the compiler and, more importantly, would
require the callee to take special care when manipulating such references. We are unsure
whether it is realistic to apply this approach for existing C code.

STKTOKENS relies on an important property: the fact that return seals should be
uniquely associated to a single call-site. If we were to use a single return seal for mul-
tiple call sites, that would allow an adversary to combine a valid return data capability
with a return code capability for the wrong call-site, thus breaking WBCF guarantees. This
property is currently enforced statically in the well-formedness property for components’
code memory (see Section 4.2), specifically in the C-Instr rule. For any call instruction
in trusted components’ code memory, it is required that the return seal used is exclusively
owned by this call-site. To guarantee that this property does not just hold when the system
is initialized, but continues to hold during execution, the well-formedness judgement addi-
tionally enforces a Write-Xor-Execute policy for components: writable capabilities are not
allowed for code memory and executable capabilities are not allowed for data memory.
Although this approach works, it has the side effect of disallowing dynamic code genera-
tion. This is unfortunate, because we believe that in principle, STKTOKENS is compatible
with dynamic code generation, as long as the generated code respects the unique allocation
of return seals to call sites.

To lift this restriction, an alternative approach would be to enforce the unique allocation
of return seals to trusted call sites semantically rather than statically. More concretely, the
semantic reasonability requirement for components could additionally require that during
any execution, a component uses a return seal only for a single call-site. Such an approach
would, we think, obviate the need for the Write-Xor-Execute policy and the static enforce-
ment of proper use of return seals. Thus, we think dynamic code generation could be
allowed without losing STKTOKENS guarantees.
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7 Related Work

In this final section, we discuss related work on securely enforcing control flow correctness
and/or local state encapsulation or the linear capabilities we use to do it. We do not repeat
the work we discussed in Section 1.

Capability machines originate with Dennis & Van Horn (1966) and we refer to Levy
(1984) and Watson et al. (2015a) for an overview of previous work. The capability machine
formalized in Section 2 is modelled after CHERI (Watson et al., 2015a; Woodruff et al.,
2014). This is a recent, relatively mature capability machine which combines capabilities
with a virtual memory approach in the interest of backwards compatibility and gradual
adoption. For simplicity, we have omitted features of CHERI that were not needed for
STKTOKENS (e.g. local capabilities, virtual memory).

Plenty of other papers enforce well-bracketed control flow at a low level but most are
restricted to preventing particular types of attacks and enforce only partial correctness of
control flow. This includes particularly the line of work on control-flow integrity (Abadi
et al., 2005a). This technique prevents certain classes of attacks by sanitizing addresses
before direct and indirect jumps based on static control graph information and a protected
shadow stack. Contrary to STKTOKENS, CFI can be implemented on commodity hardware
rather than capability machines. However, its attacker model is different, and its security
goals are weaker. They assume an attacker that is unable to execute code but can overwrite
arbitrary data at any time during execution (to model buffer overflows). In terms of security
goals, the technique does not enforce local stack encapsulation. Also, it only enforces a
weak form of control flow correctness saying that jumps stay within the program’s static
control flow graph (Abadi et al., 2005b). Such a property ignores temporal properties and
seems hard to use for reasoning. There is also more and more evidence that these partial
security properties are not enough to prevent realistic attacks in practice (Evans et al., 2015;
Carlini et al., 2015; van der Veen et al., 2017). A related approach relies on CPU extensions
with support for micropolicies on memory Roessler & DeHon (2018). They have a similar
attacker model, but propose policies which enforce stronger properties.

More closely related to our work are papers that use separate per-component stacks, a
trusted stack manager and some form of memory isolation to enforce control-flow correct-
ness as part of a secure compilation result (Patrignani et al., 2016; Juglaret et al., 2016).
Our work differs from theirs in that we use a different low-level security primitive (a capa-
bility machine with local capabilities rather than a machine with a primitive notion of
compartments), and we do not use per-component stacks or a trusted stack manager but
a single shared stack and a decentralized calling convention based on linear capabilities.
Both prove a secure compilation result from a high-level language which clearly implies
a general form of control-flow correctness, but that result is not separated from the results
about other aspects of their compiler.

CheriBSD applies a similar approach with separate per-component stacks and a trusted
stack manager on a capability machine (Watson et al., 2015a). The authors use local
capabilities to prevent components from accidentally leaking their stack pointer to other
components, but there is no actual capability revocation in play. They do not provide
many details on this mechanism and it is, for example, not clear if and how they intend
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to deal with higher-order interfaces (C function pointers) or stack references shared across
component boundaries.

The use of return pointers or capabilities in low-level languages is in many ways similar
to lambda calculus terms in continuation passing style. When applying a CPS-translation
to lambda terms, well-bracketedness can also be violated if continuations are invoked
more than once. Enforcing well-bracketedness for CPS terms means enforcing that con-
tinuations are only used a single time and only in the right invocation, i.e. a form of
linear (or more accurately, affine) usage of continuations must be enforced. One way to
enforce this is by assigning well-chosen types to CPS-translated terms and researchers
have proven effectiveness for two ways of doing this, in the form of a full-abstractness
result for the CPS-translation. In both cases, correct usage of continuations is enforced
by assigning well-chosen types to CPS-translated terms. In the case of Laird (2005),
an affine type system is used to do this, while Ahmed & Blume (2011) use a form of
answer-type polymorphism instead. These results are related to ours because they enforce
well-bracketedness using a form of linearity of continuations or return capabilities, but
there are also quite a few differences: the static nature of the enforcement, the low-level vs.
high-level nature of the languages, the fact that LSE comes naturally in such a setting while
we also have to enforce it. Additionally, Ahmed & Blume consider total languages and use
a back-translation in two steps using an intermediate multi-language and Laird proves full
abstraction using a fully abstract denotational semantics for source and target languages.

The fact that our full abstraction result only applies to reasonable components (see
Section 4) makes it related to full abstraction results for unsafe languages. In their study
of compartmentalization primitives, Juglaret et al. (2016) discuss the property of Secure
Compartmentalizing Compilation (SCC): a variant of full abstraction that applies to unsafe
source languages. Essentially, they modify standard full abstraction so that preservation
and reflection of contextual equivalence are only guaranteed for components that are fully
defined, which means essentially that they do not exhibit undefined behavior in any fully
defined context. If we see reasonable behavior as defined behavior, then our full abstrac-
tion result can be seen as an application of this same idea. In follow-up work, Abate et al.
(2018) extend this approach to components with undefined behavior by proving secure
compilation guarantees for the execution until the undefined behavior happens.

Another interesting relation between our work and that of Abate et al. (2018), is that
they consider dynamic compromise scenarios, where some components start out as trusted
until they are compromised and are treated as adversarial after that. Our full abstraction
result does not apply to those scenarios because it is intended to be used in the verifica-
tion of a secure compiler where such scenarios are not relevant. Nevertheless, we believe
our Fundamental Theorem of Logical Relations (see Section 3) does apply in such sce-
narios because it is step-bounded. To deal with the evolving classification of components
as trusted or adversarial, we can simply apply the theorem several times with different
choices of TA and taking n small enough that the compromise of TA has not yet happened
until that point. Because the theorem only requires reasonability up to n steps, we get
well-bracketedness guarantees up to the right step in the execution. This can be seen as a
step-bounded version of the idea explained in (Patrignani et al., 2016). If confirmed by a
more careful analysis, it would be an interesting observation that modular secure compi-
lation, combined with step-bounded reasoning is sufficient to cover dynamic compromise
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scenarios without the need to build in dynamic compromise scenarios into the definition of
secure compilation like Abate et al. (2018).

Local capabilities can be used to ensure well-bracketed control-flow and local-state
encapsulation as demonstrated by Skorstengaard et al. (2018a, 2019a). Recently, Tsampas
et al. (2019) demonstrated that an extension of local capabilities with multiple linearly
ordered colours can be used to enforce the life time of stack references. Specifically, a stack
reference should not be able to outlive the stack frame it points to. If STKTOKENS was
extended with stack references, then it would also enforce reference life times. Specifically
in order to return from a call, we must use the return token, i.e. the stack. The stack is lin-
ear, so if there are references to it, aside from the stack capability itself, then we cannot
have a complete return token. This means that we have to splice all the stack references
together with the stack capability to complete the return token in order to return. Tsampas
et al. (2019) allow (almost) normal references that can be stored in multiple places at the
same time. This means that their approach is closer to C than STKTOKENS. As explained in
Section 1, these approaches have the downside that they require stack clearing (including
unused parts) on boundary crossings. Very recently, Georges et al. (2021) have proposed
a version of Skorstengaard et al.’s calling convention which succesfully avoids the need
for stack clearing by relying on a newly proposed form of capabilities called uninitial-
ized capabilities and they have proven soundness of the approach using Coq and the Iris
program logic (Jung et al., 2018).

In addition to the already-mentioned work on linear capabilities, Van Strydonck et al.
(2019) have recently used them in a secure (fully abstract) compiler for a C-like language
with separation logic contracts. A form of linear capabilities was also used in the SAFE
machine developed within the CRASH/SAFE project (Azevedo de Amorim et al., 2015,
2016). Abate et al. (2018) used micro-policy enforced linear return capabilities to ensure
a cross-component stack discipline. Their linear capabilities were designed specifically to
enforce the stack discipline but behave similarly to ours with the notable difference that
their linear return pointers are destroyed in a jump.

There are other notions of secure compilation than full-abstraction (Abadi, 1998). Abate
et al. (2019) present an overview of trace-based secure compilation properties. Full abstrac-
tion is only one, relatively weak, property in their hierarchy. It would be interesting to
investigate if our compiler, i.e. the embedding function from OLCM into LCM, also sat-
isfies some of their other properties. While our current result implies that we can prove
contextual equivalences in LCM components using STKTOKENS, by proving them instead
in the more well-behaved OLCM semantics, such stronger properties would imply that we
can also prove robust preservation of other (hyper-)properties in a similar manner. As our
back-translation works for arbitrary programs, we expect that, in addition to full abstrac-
tion, our embedding also satisfies Robust Relational Hyperproperty Preservation (RrHP,
the strongest property in the hierarchy of Abate et al.) and that a large part of our cur-
rent proof (the back-translation and the logical relation) could be reused to establish this.
However, to do this, we would first need to extend our semantics with some form of traces
and we have not investigated how best to do this.
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Georges, A. L., Guéneau, A., Van Strydonck, T., Timany, A., Trieu, A., Huyghebaert, S., Devriese,
D. and Birkedal, L. (2021) Efficient and provable local capability revocation using uninitialized
capabilities. Proceedings of the ACM on Programming Languages 5(POPL):6:1–6:30.

Joannou, A., Woodruff, J., Kovacsics, R., Moore, S. W., Bradbury, A., Xia, H., Watson, R. N. M.,
Chisnall, D., Roe, M., Davis, B., Napierala, E., Baldwin, J., Gudka, K., Neumann, P. G.,
Mazzinghi, A., Richardson, A., Son, S. and Markettos, A. T. (2017) Efficient Tagged Memory.
IEEE International Conference on Computer Design (ICCD). IEEE.
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1 LCM instruction interpretation

In this section, we present the interpretation of the LCM instructions left out of Figure 3
and 4.

i∈ Instr JiK (Φ) Conditions
getb r1 r2 updPc(Φ[reg.r1 7→w]) If Φ(r2) = (( , ), b, , )

orΦ(r2) = seal(b, , ), then w = b and
otherwise w =−1

gete r1 r2 updPc(Φ[reg.r1 7→w]) If Φ(r2) = (( , ), , e, ) or
Φ(r2) = seal( , e, ), then w = e and
otherwise w =−1

gettype r1 r2 updPc(Φ[reg.r1 7→w]) w = encodeType(Φ(r2))
10

getl r1 r2 updPc(Φ[reg.r1 7→w]) If isLinear(Φ(r2)), then
w = encodeLin(linear), otherwise
w = encodeLin(normal)

getp r1 r2 updPc(Φ[reg.r1 7→w]) If Φ(r2) = ((p, ), , , ), then
w = encodePerm(p) and otherwise w =−1

jnz r rn Φ[reg.r 7→w][pc 7→Φ(r)] nonZero(Φ(rn)) and w = linClear(Φ(r))
jnz r rn updPc(Φ) If not nonZero(Φ(rn))

plus r rn1 rn2 updPc(Φ[reg.r 7→
n1 + n2])

If for i∈ {1, 2} Φ(rni) = ni ∈Z

minus r rn1 rn2 updPc(Φ[reg.r 7→
n1 − n2])

If for i∈ {1, 2} Φ(rni) = ni ∈Z

lt r rn1 rn2 updPc(Φ[reg.r 7→ 1]) If for i∈ {1, 2} Φ(rni) = ni ∈Z and n1 < n2

lt r rn1 rn2 updPc(Φ[reg.r 7→ 0]) If for i∈ {1, 2} Φ(rni) = ni ∈Z and n1 6< n2

seta2b r updPc(Φ[reg.r 7→ c]) r 6= pc, Φ(r) = ((p, l), b, e, ), and
c = ((p, l), b, e, b)

seta2b r updPc(Φ[reg.r 7→ c]) r 6= pc, Φ(r) = seal(σb, σe, ), and
c = seal(σb, σe, σb)

restrict r rn updPc(Φ[reg.r 7→ c]) If Φ(r) = ((p, l), b, e, a) and Φ(rn) = n and
decodePerm(n)≤ p and
c = ((decodePerm(n), l), b, e, a)

split r1 r2 r3 rn updPc(Φ[reg.r1 7→ c1]

[reg.r2 7→ c2])

Φ(r3) = seal(σb, σe, σ) and
Φ(rn) = σn ∈N and σb ≤ σn < σe and
c1 = seal(σb, σn, σ) and
c2 = seal(σn + 1, σe, σ)

splice r1 r2 r3 updPc(Φ[reg.r1 7→ c]) Φ(r2) = seal(σb, σn, ) and
Φ(r3) = seal(σn + 1, σe, σ) and
σb ≤ σn < σe and c = seal(σb, σe, σ)

Where nonZero is defined as follows

nonZero(w) def
=

{
⊥ w∈Z∧w = 0

> otherwise
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2 OLCM instruction interpretation

In this section, we present the interpretation of the OLCM instructions left out of Figure 3
and 4. For the instructions that only change slightly on OLCM compared to LCM, we
include the OLCM specific things in blue and the things both have in common in black.

i∈ Instr JiK (Φ) Conditions
store r1 r2 updPc(Φ[reg.r2 7→w2]

[mem.a 7→Φ(r2)])

Φ(r1) = ((p, ), b, e, a) and p∈ {RWX, RW}
and b≤ a≤ e and w2 = linClear(Φ(r2))

and a∈ dom(Φ.mem)

load r1 r2 updPc(Φ[reg.r1 7→w1]

[mem.a 7→wa])

Φ(r2) = stack-ptr(p, b, e, a) and b≤ a≤ e
and p∈ {RWX, RW, RX, R} and
a∈ dom(Φ.msstk) and w1 = Φ.msstk(a) and
isLinear(w1)⇒ p∈ {RWX, RW} and
wa = linClear(w1)

geta r1 r2 updPc(Φ[reg.r1 7→w]) If Φ(r2) = (( , ), , , a), then w = a and
otherwise w =−1

getb r1 r2 updPc(Φ[reg.r1 7→w]) If Φ(r2) = (( , ), b, , ), then w = b and
otherwise w =−1

gete r1 r2 updPc(Φ[reg.r1 7→w]) If Φ(r2) = (( , ), , e, ), then w = e and
otherwise w =−1

getp r1 r2 updPc(Φ[reg.r1 7→w]) If Φ(r2) = ((p, ), , , ), then
w = encodePerm(p) and otherwise w =−1

seta2b r updPc(Φ[reg.r 7→ c]) r 6= pc, Φ(r) = stack-ptr(p, b, e, ), and
c = stack-ptr(p, b, e, b)

restrict r rn updPc(Φ[reg.r 7→ c]) If Φ(r) = stack-ptr(p, b, e, a) and
Φ(rn) = n and decodePerm(n)≤ p and
c = stack-ptr(decodePerm(n), lin), b, e, a)

splice r1 r2 r3 updPc(Φ[reg.r2 7→ 0]
[reg.r3 7→ 0]
[reg.r1 7→ c])

Φ(r2) = stack-ptr(p, b, n, ) and
Φ(r3) = stack-ptr(p, n + 1, e, a) and
b≤ n < e and c = stack-ptr(p, b, e, a)

split r1 r2 r3 rn updPc(Φ[reg.r3 7→ 0]
[reg.r1 7→ c1]

[reg.r2 7→ c2])

Φ(r3) = stack-ptr(p, b, e, a) and
Φ(rn) = n∈N and b≤ n < e and
c1 = stack-ptr(p, b, n, a) and
c2 = stack-ptr(p, n + 1, e, a)

3 World definitions

Definition 21. Given Wfree ∈Worldfree stack

bWfreec{S} = λ r.
{

Wfree(r).v∈ S
⊥

�
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Definition 22 (Private stack sub-world erasure). Given Wpriv ∈Worldcall stack

bWprivc{S} = λ r.
{

Wpriv(r).region.v∈ S
⊥

�

Definition 23 (Heap sub-world erasure). Given Wheap ∈Worldheap

bWheapc{S} = λ r.
{

Wheap(r).v∈ S
⊥

�

Definition 24 (World erasure). Given world (Wheap,Wpriv,Wfree) define world erasure as

b(Wheap,Wpriv,Wfree)c{S} =
(
bWheapc{S}, bWprivc{S}, bWfreec{S}

)
bWheapc{S} = λ r.

{
Wheap(r).v∈ S
⊥

bWprivc{S} = λ r.
{

Wpriv(r).region.v∈ S
⊥

bWfreec{S} = λ r.
{

Wfree(r).v∈ S
⊥

The active function takes a world and filters away all the revoked regions, so

active(W ) = bWc{shadow,spatial,shared}

�

4 Standard c.o.f.e. definitions

Definition 25 (Product c.o.f.e.). Given two c.o.f.e.’s
(

X ,
(

n
=X

)∞

n=0

)
and

(
Y,
(

n
=Y

)∞

n=0

)
define the product c.o.f.e. as

(
X ×Y,

(
n
=
)∞

n=0

)
where the equivalence family is defined as

for (x, y), (x′, y′)∈ X ×Y

(x, y) n
= (x′, y′) iff x n

= x′ ∧ y n
= y′

�

Definition 26 (Product preordered c.o.f.e.). Given two c.o.f.e.’s
(

X ,
(

n
=X

)∞

n=0
,wX

)
and(

Y,
(

n
=Y

)∞

n=0
,wy

)
, define the product preordered c.o.f.e. as(

X ×Y,
(

n
=
)∞

n=0
,w
)
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where the preorder w distributes to the underlying preorder, i.e.

for (x, y), (x′, y′)∈ X ×Y, (x′, y′)w (x, y) iff x′ wX x∧ y′ wY y

and the family of equivalences distributes to the underlying families of equivalences, i.e.

for (x, y), (x′, y′)∈ X ×Y, (x, y) n
= (x′, y′) iff x n

=X x′ ∧ y n
=Y y′

�

Definition 27 (Union preordered c.o.f.e.). Given two c.o.f.e.’s
(

X ,
(

n
=X

)∞

n=0
,wX

)
and(

Y,
(

n
=Y

)∞

n=0
,wy

)
, define the product preordered c.o.f.e. as(

X ∪Y,
(

n
=
)∞

n=0
,w
)

where the preorder w distributes to the underlying preorder, i.e.

for z, z′ ∈ X ∪Y, z′ w z iff
{

z, z′ ∈ X ∧ z′ wx z∨
z, z′ ∈Y ∧ z′ wY z

and the family of equivalences distributes to the underlying families of equivalences, i.e.

for z, z′ ∈ X ∪Y, z n
= z′ iff

{
z, z′ ∈ X ∧ z n

=x z′ ∨
z, z′ ∈Y ∧ z n

=Y z′

�

Definition 28 (I preordered c.o.f.e.). Given a preordered c.o.f.e
(

X ,
(

n
=X

)∞

n=0
,wX

)
define

I
(

X ,
(

n
=X

)∞

n=0
,wX

)
=
(

X ,
(

n
=I

)∞

n=0
,wX

)
where

x n
=I x′ iff

{
n = 0∨
x n−1
= X x′

�
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