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With the emergence of a global climate youth movement, questions of inter-

generational justice regarding climate change mitigation have come to the

fore. However, a scienti�c perspective on intergenerational climate impacts

is still lacking. Here we show that newborns in 2020 are projected to expe-

rience 2�7 times more extreme events globally under current climate pledges

than someone born in 1960, using a novel framework that quanti�es impacts

as they are experienced along a person’s lifetime. Limiting warming to 1.5 �C

consistently reduces that burden while still leaving younger generations with

unavoidable impacts that are unmatched by those experienced by older gener-

ations. Our results provide a scienti�c basis to understand the position from

which younger generations challenge the present shortfall of adequate climate

action.

Young people around the world have been leading climate demonstrations since late 2018.

This surge in climate protests has received explicit support from many climate scientists (1) and

has been accompanied by the emergence of climate change litigation. Meanwhile, government

actions are falling short of achieving the emission reductions required to halt global warming

at the safe levels agreed upon under the UN Paris Agreement (2). This failure to adequately act
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implies that global warming could easily exceed 3 �C by the end of the century (2), and projec-

tions of future climate change impacts under such scenarios have far-reaching implications (3).

This situation raises important questions about solidarity and fairness across generations (1, 4).

Under continued global warming, extreme events such as heatwaves will continue to rise in

frequency, intensity, duration and spatial extent over the next decades (5�8). Current younger

generations that will experience those future decades are therefore expected to face more im-

pacts compared to their (grand)parents. However, the ruling paradigm to study climate change

impacts assesses change in discrete time windows or at discrete levels of warming (3). Such an

approach, which we term the Eulerian perspective (in demography called period perspective),

inhibits quanti�cation of exactly how much more impacts from climate change a particular birth

cohort will experience compared to another generation.

Meteorological extremes, hazards, or climate change impacts are so far mostly studied as

they evolve over time under varying emission scenarios and socio-economic pathways (6, 8, 9).

For instance, applying a heatwave indicator (10) (table S1) to four bias-adjusted global climate

models indicates that the land area annually affected by such heatwaves will increase from

�15 % around 2020 to �22 % by 2100 under a 1.5 �C-compatible scenario and to �46 % under

a scenario in line with current emission reduction pledges (�g. 1a). Recent studies extended

this approach by studying aspects of climate change as a function of global mean temperature

(GMT) anomalies, highlighting the scenario-independence of several extreme event indicators

(5, 7, 9) but remaining, in essence, a comparison of two time windows.

Instead, we here take a Lagrangian (or cohort) perspective to climate change impacts that

measures extreme event exposure over the course of a person’s lifetime. Our intention is thereby

to quantify, in the most robust way possible, the changes in lifetime exposure to climate ex-

tremes across generations. To this end, we perform a birth cohort analysis by combining an un-

precedented collection of multi-model impact projections (7) with country-scale life expectancy
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information (11), gridded population data (12), and future global temperature trajectories (13)

from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Global Warm-

ing of 1.5 �C (see Methods). By integrating the exposure of an average person in a country

or region to extreme events across their lifetime, we encapsulate spatio-temporal changes in

climate hazards, population density, cohort size, and life expectancy (�g. 1).

Extreme event exposure Our results allow for comparing lifetime exposure to climate ex-

tremes across birth cohorts globally. For example, a person born in 1960 will on average ex-

perience around 4 �2 (1 �) heatwaves across their lifetime according to our extreme heatwave

de�nition (�g. 1b). The lifetime heatwave exposure of this cohort is largely insensitive to the

three future temperature scenarios considered here. A child born in 2020 will, in contrast, ex-

perience 30 �9 heatwaves under a scenario following current climate pledges, which could be

reduced to 22 �7 heatwaves if warming is limited to 2 �C or 18 �8 heatwaves if it is limited to

1.5 �C. In any case, that is 7, 6, or 4 times more compared to a person born in 1960. Repeating

this analysis for all cohorts born between 1960 and 2020 highlights clear differences in lifetime

exposure to heatwaves between older and younger cohorts globally (�g. 1c). The effect of al-

ternative future temperature trajectories on the lifetime exposure multiplication factor becomes

discernible only for cohorts younger than 40 years in 2020, with the largest differences for the

youngest cohorts.

The previous example only uses one impact indicator and a subset of all possible future tem-

perature pathways. We now expand this approach and consider six extreme event categories:

wild�res, crop failures, droughts, river �oods, heatwaves, and tropical cyclones (table S1),

which we analyse under a wide range of temperature pathways that result in future warming

ranging from constant present-day levels up to 3.5 �C by 2100 (see Methods and �g. S1). To

this end, we generated a total of 273 global-scale projections with 15 impact models forced by

4



four bias-adjusted global climate models (table S2). Inspired by the IPCC’s Reasons for Con-

cern Framework (3), we visualise the exposure multiplication factors relative to a hypothetical

reference person living under pre-industrial climate conditions as a function of the 2100 GMT

anomaly and cohort (�g. 2). Life expectancy varies with the cohort, whereas the hypothetical

reference person is given the same life expectancy as the oldest cohort in our �gures. Therefore,

in contrast to the previous comparison of lifetime exposure across generations given historical

and climate conditions (Fig. 1), we from now on assess how projected lifetime exposure of birth

cohorts is affected by climate change since pre-industrial and by increased life expectancy since

1960.

Our results highlight that lifetime exposure to each of the considered extreme events con-

sistently increases for higher warming levels and younger cohorts. Changes in extreme event

frequencies have had relatively little effect on lifetime exposure for cohorts above age 55 in

2020, but this rapidly changes for younger cohorts as they start experiencing extreme events

in the coming years and decades (�g. 2). For a 3 �C global warming pathway, a 6-year old in

2020 will experience twice as many wild�res and tropical cyclones, 3 times more river �oods,

4 times more crop failures, 5 times more droughts, and 36 times more heatwaves relative to the

reference person. Such conditions clearly pose a severe threat to the safety of young cohorts.

While qualitatively consistent, quantitative exposure changes differ among categories: for wild-

�res and tropical cyclones, increases in exposure remain limited relative to the other categories,

whereas heatwave exposure increases much more strongly, up to a factor 44 for newborns un-

der 3.5 �C of global warming. Aggregating the exposure multiplication factors across the six

categories shows that people younger than 10 in 2020 will experience about a fourfold increase

in extreme events under 1.5 �C of global warming, an increase that older cohorts will never ex-

perience, even if a scenario towards 3.5 �C warming is followed (�g. S2a). Under a 3 �C global

warming pathway, children under 8 will face an almost �vefold increase in extreme event expo-
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sure. These exposure multiplication factors scale robustly with the warming pathway and cohort

across a range of aggregation methods, despite some variation in the factor values (�g. S2).

We then calculate the probability of each person’s lifetime exposure occurring under pre-

industrial climate conditions. Lives with an accumulated exposure that would occur with less

than 0.01 % probability under pre-industrial climate (that is, with less than a 1-in-10 000 chance)

are thereby classi�ed as unprecedented. We �nd that cohorts above age 55 in 2020 will on

average live an unprecedented life only for heatwaves and crop failures, while cohorts aged 0-

40 in 2020 will additionally face unprecedented exposure to droughts and �ooding above 1.5 �C

warming (�g. 2a-f). Aggregated across all the impact categories, lifetime exposure to extremes

is unprecedented at all warming levels and cohorts (�g. S2a).

Regional patterns Behind this global average picture, there are important spatial variations.

Repeating the analysis for a selection of world regions (�g. S3) reveals marked differences

between regions (�gs. S4�S5), while a country-level assessment highlights even stronger spatial

disparities (Supplementary Note 1; �gs. S6�7). We �nd a particularly strong increase in lifetime

exposure across the Middle East and North Africa, with on average at least 7 times higher

exposure for all cohorts younger than 25 years in 2020 under current pledges (�g. S8a). In sub-

Saharan Africa, newborns will on average experience 5.9 times more extreme events compared

to a reference person living under pre-industrial climate, while newborns in other regions will

on average experience 3.7�5.3 times more extremes. This burden on newborns in terms of

additional exposure to extreme events is substantially reduced when limiting global warming

to 1.5 �C: the strongest reductions in exposure are found in the Middle East and North Africa

(-39%), Europe and Central Asia (-28%), and North America (-26%), while bene�ts in Sub-

Saharan Africa, East Asia and the Paci�c roughly correspond to the global average (-24%).

Grouping countries by income category instead of by region highlights that young gen-
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erations in low-income countries will face by far the strongest increases in lifetime exposure

with a more than �vefold increase for newborns under current pledges (�g. S8b). High-income

countries, on the other hand, face the smallest increases for younger cohorts and the smallest

variation across generations. However, while 60-year old people in high-income countries rep-

resent 22% of their cohort globally, this fraction has reduced to 10% for newborns (�g. S9-10).

The corresponding relative cohort sizes of low-income countries, on the contrary, increased

from 5% to 18%. Thus, children born in the present and future are much more likely to be born

in regions facing the highest increase in lifetime extreme event exposure. For example, 53 mil-

lion children born in Europe and Central Asia between 2016 and 2020 will experience 3.8�4.0

times more extreme events under current pledges, but 172 million children of the same age in

sub-Saharan Africa face a factor 5.5�5.9 increase in lifetime extreme event exposure, including

a factor 50�54 increase in lifetime heatwave exposure (�g. S9-10). This combined rapid growth

in cohort size and extreme event exposure (�g. S9-12) highlights a disproportionate climate

change burden for young generations in the Global South.

Improvements in life expectancy (�g. 1a; �g. S13) represent a confounding factor in the

signal of increasing exposure to extreme events over a person’s lifetime. However, we �nd

that globally, climate change explains 98% of a newborn’s exposure change under the current

pledges scenario (�g. S14, see Methods). In high-income countries, the enhanced exposure

of a newborn is almost entirely attributable to climate change (99%), whereas in low, lower-

middle and upper-middle income countries, climate change contributes 98% of the total expo-

sure change (�gs. S14�S15).

Discussion Analysis of climate risks to humans has traditionally considered impacts as they

evolve over time. Our Lagrangian approach provides a more intuitive account of climate im-

pacts by tracking exposure to extreme events across a person’s lifetime and comparing changes
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across generations. While we comprehensively account for hazards and exposure using an

unprecedented climate impact modeling effort (7, 12) and within-country population density

variability, there are multiple reasons to think that our approach, if anything, underestimates

intergenerational differences in exposure (Supplementary Note 2).

Further work could aim at extending this novel approach to include further demographic

dimensions and vulnerability (14). Vulnerability to extreme events depends on a range of socio-

economic factors but may also evolve over the course of a lifetime. A young person may for

instance experience little health impacts from a heatwave compared to older people (15), but

schooling infrastructure destroyed by a tropical cyclone may have a disproportionate detrimen-

tal effect on children’s education which could persist throughout their entire lifetime. And while

communities may possibly become less vulnerable to extreme events over time, limits to adap-

tive capacity remain even under optimistic pathways beyond mid-century (14) (Supplementary

Note 3).

Climate change impacts may also engender migration and ultimately even affect life ex-

pectancy via increased mortality, two aspects which are not considered in this study. Even

though climate change increases mortality (15), it is currently not included in life expectancy

estimates and population projections like the ones we use here. Likewise, migration triggered

by environmental degradation may change both exposure and vulnerability to extreme events.

Further analysis should therefore aim at systematically integrating population dynamics and

climate risk assessments to better understand the long-term impacts of extreme climate events

and to improve socioeconomic scenario development.

Our results overall highlight the strong bene�ts of aligning policies with the Paris Agree-

ment for safeguarding the future of current young generations. While all generations younger

than 60 in 2020 will live unprecedented lives in terms of extreme event exposure, lifetime expo-

sure to climate change impacts drastically increases for younger generations as global warming
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progresses. Heatwaves dominate the escalating exposure to hazards, but a consistent rise is

also observed for droughts, wild�res, tropical cyclones, crop failures as well as �ooding. The

strongest increases occur in low income countries where strongly rising extreme events (8) af-

fect a rapidly growing young population. Overall, limiting global warming to 1.5 �C instead

of following the current pledges scenario nearly halves (-40%) the additional exposure of new-

borns to extreme heatwaves and substantially reduces the burden for wild�res (-11%), crop

failures (-27%), droughts (-28%), tropical cyclones (-29%), and river �oods (-34%). These

�ndings have direct implications for climate litigation and call for ambitious mitigation efforts

to improve intergenerational and international justice.
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Figure 1: From an Eulerian (period) to a Lagrangian (cohort) perspective on climate
change impacts. (a) Historical and future evolution of global land area fraction annually ex-
posed to heatwaves under a 1.5 �C, 2 �C, and current pledges scenario. Each line represents the
multi-model mean of a heatwave metric calculated from the four bias-adjusted global climate
models available in ISIMIP2b (see Methods and table S1). All lines were smoothed using a
10-point moving average and the uncertainty band spans 1 standard deviation across the model
ensemble. Horizontal grey arrows indicate the global-average lifespan of a person born in 1960
and 2020, respectively. (b) Lifetime heatwave exposure for the 1960 and 2020 birth cohort,
respectively, under the three scenarios. The rotated factors above each bar indicate the exposure
multiplication factor relative to the 1960 birth cohort under the respective scenario. (c) Expo-
sure multiplication factors for lifetime heatwave exposure across birth cohorts relative to the
exposure of the 1960 birth cohort under the respective scenario. Uncertainty bands represent
model uncertainty as the inter-quartile range for the 2020 birth cohort exposure relative to the
multi-model mean exposure of the 1960 birth cohort.
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Figure 2: lifetime exposure on the rise. Exposure multiplication factors across birth cohorts
(x-axis) under a range of global warming trajectories (�g. S1) reaching 0.87 �C to 3.5 �C global
mean temperature (GMT) anomalies in 2100 relative to the pre-industrial (PI) reference period
(1850�1900; y-axis) for (a) wild�res, (b) crop failures, (c) droughts, (d) river �oods, (e) heat-
waves, and (f) tropical cyclones. All factors are computed relative to the mean exposure of
a hypothetical reference person living under pre-industrial climate conditions with year-1960
life expectancy, and therefore incorporate the effect of historical as well as projected climate
change. The grey contour delineates lifetime extreme event exposure with 0.01 % probability
of occurrence under pre-industrial climate conditions; absence of the contour indicates that this
probability is lower for all cases covered. Note the different colour bar range for heatwaves.
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Materials and Methods

The aim of this study is to quantify, in the most robust way possible, the global- and regional-

scale increase in exposure to climate extremes for younger generations. To this end, we integrate

the exposure of an average member of a birth cohort to extreme events across their lifetime and

subsequently compare these results across cohorts and regions. This is achieved by combining

�ve sources of data, which are explained hereafter.

Employed data First, we developed the largest multi-model biophysical impact projections

database available to date as part of the Inter-Sectoral Impact Model Intercomparison Project

phase 2b (ISIMIP2b) (16). Following the ISIMIP2b protocol, we performed simulations with 15

impact models that represent variables relevant for the six extreme event categories described

below (CARAIB (17), LPJ-GUESS (18), LPJmL (19, 20), ORCHIDEE (21), VISIT (22, 23),

GEPIC (24), PEPIC (25, 26), CLM4.5 (27, 28), H08 (29), JULES-W1 (30), MPI-HM (31, 32),

PCR-GLOBWB (33,34), WaterGAP2 (35,36), HWMId-humidex (37), and KE-TG (38)). These

process-based models represent the state of the art of global-scale hydrological, vegetation,

agricultural, land surface, heat stress, and tropical cyclone modeling (39�45). Each model pro-
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vides relevent biophysical impact variables such as runoff, crop yields, or soil moisture at a

spatial resolution of 0:5� � 0:5� and at daily to annual time scales. The impact models are

each driven by up to four downscaled and bias-adjusted (46) global climate models (GCMs;

GFDL-ESM2M (47), HadGEM2-ES (48), IPSL-CM5A-LR (49), and MIROC5 (50)) partic-

ipating in the �fth phase (51) of the Coupled Model Intercomparison Project (CMIP5) under

pre-industrial, historical, and RCP 2.6, 6.0 and 8.5 climate forcings. GCMs are designed to cap-

ture the spatially-explicit climate response to rising greenhouse gas concentrations and other an-

thropogenic forcings; as such, they are the cornerstone of scienti�c knowledge on future climate

change. Here, the four GCMs were selected based on data availability and representativeness

of the entire CMIP5 ensemble (see Supplementary Text 5 for a detailed description of the se-

lection, downscaling, and bias adjustment procedure). Besides transient historical and future

climate information, our simulations represent other human in�uences via input data mimick-

ing historical socioeconomic development until 2005 and assuming �xed year-2005 conditions

thereafter. Overall, our extreme event data set consists of 273 global-scale extreme event pro-

jections spanning the period 1861�2099 (table S2) and 101 pre-industrial control simulations

covering on average 542 years each. A more detailed description of the data is provided in (37).

Second, we employ data on life expectancy at the age of 5 available from the United Nations

World Population Prospects (52), indicating the number of years a 5-year old would be expected

to live if mortality patterns prevailing at the time of observation (year to which this period

indicator pertains) were to remain constant throughout their lifetimes. The data is available at

the country, regional, and global scale (�g. S4) in 5-year blocks for 1950-1955 to 2015-2020.

From this data, we calculate cohort life expectancy at birth which adjusts for child mortality 0-4

because child mortality distorts the pattern that shall be studied. First, we translate the data to

annual values using linear interpolation, assume the life expectancy value is representative for

the middle year of the 5-year block, and linearly extrapolate life expectancy from 2017 to 2025
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in every country. To capture the entire length of the life span starting with birth, we subsequently

add 5 years and assign the value to the birth year of the respective cohort, thereby assuming that

this value represents life expectancy at birth excluding child mortality. Finally, we translate

this indicator from period to cohort life expectancy by adding 6 years to the value of the period

life expectancy estimate at birth (53). This is based on a rather conservative assumption of

future increases in life expectancy given the current uncertainty about future mortality trends.

We note that that this life expectancy data ignores impacts from climate change. Our approach

thus follows UN fertility and mortality projections, but omits climate change feedbacks on

population dynamics.

Third, future GMT trajectories are derived from scenarios compiled in support of the IPCC

Special Report on Global Warming of 1.5 �C (SR1.5) (54, 55) and were subsequently made

available through the Integrated Assessment Modeling Consortium and the International In-

stitute for Applied Systems Analysis (56, 57). We select three marker scenarios: two sce-

narios limiting global warming to 1.5 �C and 2.0 �C above pre-industrial levels (58), respec-

tively, and a third scenario consistent with current (2020) Nationally Determined Contributions

(NDCs) � also referred to as the current pledges scenario (�g. S1). The 1.5 �C and NDC scenar-

ios (originally labelled ‘MESSAGEix-GLOBIOM 1.0 LowEnergyDemand’ and ‘MESSAGE-

GLOBIOM 1.0 ADVANCE INDC’, respectively) were developed with the Integrated Assess-

ment Model MESSAGE-GLOBIOM version 1.0 (59). The 2.0 �C scenario was derived using

IMAGE version 3.0.1 (60). The 2 �C compatible scenario is assessed by the IPCC SR1.5 to keep

warming below 2 �C with at least 66 % probability, whereas the 1.5 �C scenario limits warm-

ing to 1.5 �C with 50 % probability but potentially exceeds this level temporarily by less than

0.1 �C (54). The GMT anomalies in 2091�2100 compared to the pre-industrial reference period

(1850�1900) are 1.4 �C, 1.7 �C and 2.4 �C for the 1.5 �C, the 2.0 �C and the current pledges

scenario, respectively (�g. S1).
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Fourth, gridded population reconstructions and projections are obtained from the ISIMIP2b

input data repository. Historical reconstructions are based on version 3.2 of the History Database

of the Global Environment (HYDE3.2) (61) while future projections are derived from a gravity-

based downscaling model (62) under the Middle-of-the-Road Shared Socioeconomic Pathway

2 (SSP2) (63). Social and economic trends of the SSP2 scenario do not markedly shift from

the historical trends. Most countries complete the demographic transition, and the population

growth levels off in the second half of the century. Under SSP2, all countries in the world are

projected to develop with medium fertility, mortality and migration trends (64). The gridded

future population projections account for population growth, urbanization level, and spatial ur-

banization pattern by incorporating variations of these patterns across regions and SSPs (62).

For population change, countries are categorized according to fertility and income into three

groups (high fertility, low fertility with high incomes, and low fertility), whereas for urbaniza-

tion, countries are grouped based on income alone (Low, Medium and High income). While

population density evolves over time according to these drivers, climate-induced changes in mi-

gration, urbanisation, fertility, and mortality are not considered in this data set, and therefore not

in our approach. We analysed the uncertainty associated with the gridded population data by

testing the sensitivity of our results to using gridded population projections under an alternative

SSP. Using SSP3 � a pathway considered inconsistent with RCP2.6 � instead of SSP2 showed

little sensitivity of the results to the SSP choice, re�ecting the fact that our analysis builds on

within-country relative population density variability rather that on absolute population totals.

Finally, we use country-scale cohort size data provided by the Wittgenstein Centre and avail-

able through its Human Capital Data Explorer (65). We consider cohort sizes of the year 2020

and linearly interpolate the 5-year block data to annual time scale, assuming the cohort size

value to be valid for the center year of the block.
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Extreme event de�nition. A detailed description of the processing of the ISIMIP2b simula-

tions is provided in Ref. (37) and summarised hereafter. We consider 6 extreme event categories:

wild�res, crop failure, droughts, river �oods, heatwaves, and tropical cyclones. We select these

six extreme event categories because we know from existing studies (16, 66) that these hazards

(i) will increase in frequency, intensity, and/or duration with projected climate change, (ii) can

lead to strong impacts when they occur, and (iii) can be tackled comprehensively in a modelling

framework such as ISIMIP. For each category and simulated calendar year, we compute the land

fraction per grid cell exposed at least once to an extreme event as de�ned in table S1. As such,

the land fraction annually exposed to extreme events becomes a comparable quantity across

event categories.

Since the 8 considered global hydrological models do not provide �ood extent and apply dif-

ferent routing schemes (67), we employ the global-scale river routing model CaMa-Flood (68)

to compute the land area exposed to river �ooding using daily gridded runoff from the global

hydrological models as input (table S2). For tropical cyclones, we use the average exposure

over a 100-member ensemble of tropical cyclone tracks downscaled from GCM output (38).

While the strongest increases in tropical cyclone impacts are expected from increasing cyclone

intensities (38, 69), our projections also show a rise in tropical cyclone frequency under con-

tinued warming, consistent with (37, 38). For wild�res, we quantify the pure climate change

effect on burned area using a suite of global vegetation models (see Supplementary Text 6 for

more details). A grid cell is considered to be exposed to a heatwave in a given year if the

Heat Wave Magnitude Index daily (HWMId) (70,71) of that year exceeds the 99th percentile of

the HWMId distribution under pre-industrial climate conditions of that grid cell. For droughts,

heatwaves, and crop failure, we de�ne the extreme event occurrence based on the exceedance of

a pre-industrial percentile threshold (table S1). While the exact percentile value is an arbitrary

choice, the approach allows for a robust estimation of the threshold values thanks to the long
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time span of the pre-industrial control simulations. Moreover, a sensitivity analysis with mul-

tiple heatwave de�nitions showed only little sensitivity of the relative exposure changes at the

global scale, suggesting a limited in�uence of the choice of the pre-industrial percentile value

on the analysis of the historical and future impact model simulations. Finally, we also analyse

lifetime cold spell exposure, which we de�ne as the counterpart of heatwaves (see Supplemen-

tary Text 3).

Exposure calculation. In this study, we integrate the exposure of an average person in any

country or region to climate hazards across their lifetime. This cohort analysis considers land

areas only and is performed across 178 countries (�g. S7), 11 regions (�g. S4) and the globe.

We �rst compute country-scale spatial averages of annual land area exposure weighted by

population totals of the corresponding year over all available historical, RCP 2.6, 6.0 and 8.5

simulations. This way, our exposure assessment accounts for temporal changes in population

density under a Middle-of-the-Road scenario. The resulting time series is then mapped onto

the SR1.5 scenarios (1.5 �C, 2 �C and NDCs, respectively) by selecting from the concatenated

historical-RCP series the year with the GMT anomaly closest to the annual anomaly in each

SR1.5 scenario, thereby effectively using the ISIMIP2b hazard simulations as damage func-

tions (time-shift approach (72, 73); �g. 1 left panel). While the analysis can also be performed

directly on the RCPs, we decide to apply the time-shift approach because (i) of the increasing

policy relevance of low-end warming scenarios like the 1.5�C and 2�C-compatible scenarios;

(ii) the ISIMIP2b framework only samples a small set of greenhouse gas concentration pathways

(i.e. three RCPs), whereas we here analyse a range of potential warming scenarios (see below);

and (iii) we aim to better align hazard projections arising from climate models with different

transient climate response to cumulative carbon emissions (TCRE). Both in ISIMIP2b and the

SR1.5 scenarios, GMT anomalies are computed using the 1850-1900 historical period (51-year
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average) as reference (37, 74). Simulations whereby the absolute GMT difference with the

SR1.5 scenario in any year exceeds 0.2 �C are excluded to avoid that low-end RCP projections

(e.g. RCP 2.6) inform high-end warming scenarios (e.g. current pledges). Our assumption that

the simulated hazards are scenario-independent is generally valid for the considered extreme

event categories (37) and allows us to maximise the hazard information considered in each

SR1.5 scenario. Moreover, a comparison of absolute lifetime exposure (see below) of the 2020

birth cohort under RCP2.6 computed, on the one hand, directly from the RCP2.6 projections,

and reconstructed, on the other hand, by applying the time-shift approach to the RCP2.6, 6.0,

and 8.5 projections, shows a close correspondence between both approaches (�g. S17). From

this we conclude that the time-shift approach is a valid method for translating RCP-based pro-

jections to alternative GMT trajectories in the context of our analysis. That said, some aspects

of these extreme events show a lagged response to global mean temperature increase, making

our assessment conservative (see Supplementary Text 2).

Next, we accumulate for each simulation, country and birth year within the period 1960-

2020 the extreme event exposure across an average life span in that country. As life expectancy

extends up to the year 2113 in some countries and birth cohorts, we assume that beyond 2099,

annually exposed land fractions, GMT anomalies and gridded population densities are constant

at the 2090-2099 average. In contrast, for some spatial units and early birth years, the life

expectancy at birth may not extend until 2020; for those individuals still alive in 2020 the

lifetime exposure accounts for the average, not actual life span. To obtain lifetime exposure

values at the regional and global scale, we compute for each birth cohort the weighted spatial

average of the country-scale exposure using the size of that particular cohort in each country

as weighing factor. Analogous to the well-established distinction between the Eulerian and

Lagrangian perspective in atmospheric science and between the period and cohort approach in

demography, we suggest that the resulting lifetime extreme event exposure values represent the
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Lagrangian/cohort view on climate change hazards.

Computing the multi-model arithmetic mean per extreme event category then enables the

comparison of different birth cohorts (�g. 1 middle panel), whereby the results combine the

effect of changes in extreme event occurrence as a consequence of climate change and the

change in life expectancy in that spatial entity.

Exposure multiplication factor. To analyse the lifetime exposure data, we use the exposure

multiplication factor (EMF ), which is de�ned as

EMF =
Enew

Eref
(1)

where Eref is the lifetime exposure of a person born in the reference year 1960 � that is, all

people being 60 years old on 31 December 2020 � and Enew is the lifetime exposure of a person

born in a later year. This metric allows us to compare birth cohorts across a range of birth years

(�g. 1 right panel). For instance, an EMF of 2 for a newborn and Eref of 3.5 heatwaves implies

that a person born in a given country in 1960 will on average face 3.5 heatwaves across their

lifetime, whereas a person born in 2020 on will on average face 7 heatwaves. To avoid EMF

values being in�nite, we assign the value of 100 in the exceptional cases when extreme events

emerge in a country or region. The EMF metric relates to the probability ratio metric used in

previous studies (75�77), where the probability ratio is generally used as a ratio of frequencies

of occurrence with probabilities limited to [0; 1] by de�nition. However, the EMF metric is

a ratio of event counts (not of event probabilities), and explicitly includes exposure next to

hazards, thereby moving towards more comprehensive risk de�nitions (76).

We consider three approaches to aggregate the information across extreme event categories.

The �rst method computes the geometric mean across the EMF per event category. In this ap-
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proach, percent changes in each of the categories equally contribute to the total change, but the

approach yields conservative estimates in spatial units not affected by one or several categories

under past and future conditions (e.g., tropical cyclones in high-latitude countries). Uncertain-

ties in this approach are computed as the geometric mean of the per-category EMF computed

based on the ensemble’s 25th and 75th percentile lifetime exposure relative to the multi-model

mean exposure under pre-industrial climate conditions. The second approach is to calculate the

geometric mean of the lifetime exposure across the six considered event categories and sub-

sequently compute the EMF . The third approach is to compute the harmonic mean across

the EMF per event category. The harmonic mean is suited for computing the mean across

ratios (such as the EMF ) and is the most conservative of the Pythagorean means. Note that

the arithmetic mean or the sum are not considered here because the results would be dominated

by the strong increase in heatwave occurrence. The sensitivity to the aggregation procedure

is visualised in �g. S3; while the �rst and third aggregation method yield consistent results,

the second approach yields substantially higher exposure estimates. Taking a conservative ap-

proach, all further cross-category results are based on the �rst aggregation method.

Exposure scaling with GMT. To derive the EMFs shown in �g. 2, we �rst construct 28

stylised GMT trajectories. The trajectories are obtained through piecewise linear interpola-

tion between �ve scenarios: a present-day constant temperature (taken here as the 2009 GMT

anomaly of 0.87 �C), a linear temperature increase from 0.87 �C in 2009 to 3.5 �C by 2100, and

the three SR1.5 scenarios (1.5 �C, 2 �C, NDC). The resulting scenarios thereby cover, in 2100,

the 0.87 � 3.5 �C GMT anomaly range with a 0.1 �C increment (�g. S1).

For each pathway, we subsequently compute the lifetime exposure per spatial unit and event

category following the methodology explained above. As reference for the EMF calcula-

tion, we consider the average exposure of a person with year-1960 life expectancy under pre-
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industrial climate conditions. To this end, we �rst compute, for each of the 101 pre-industrial

control simulations, the lifetime exposure for 100 bootstrapped time series. We then pool the

resulting exposure values for all available simulations within that extreme event category, and

calculate the arithmetic mean from the resulting distribution. The pre-industrial control expo-

sure thereby samples from one distribution comprising uncertainty from both internal variability

and structural climate and impact model de�ciencies.

Once the EMF is calculated per extreme event category, the multi-event EMF is obtained

by computing the geometric mean across the EMF values per category (see above). The re-

sulting EMF values are subsequently smoothed using a three-element moving average along

the vertical and visualised in �g. 2. Note that in �g. 2, uncertainty increases along the y-axis

as fewer hazard projections are available to sample from towards higher warming levels. This

sampling artefact explains the apparent reduction in droughts and river �oods EMF for some

cohorts above 3�C warming relative to pre-industrial (�g. 2).

Next to the EMF , we also analyse the probability of experiencing, under pre-industrial

climate conditions, the lifetime exposure values obtained under the stylised pathways. To this

end, we calculate the empirical inverse percentiles from the pre-industrial control distribution of

the lifetime exposure under each of the stylised GMT trajectories. To obtain the pre-industrial

exposure distribution aggregated across the six extreme event categories, we �rst select 1 000

random combinations of one simulation per extreme event category and subsequently com-

pute in each combination the geometric mean EMF across the categories. Since each random

combination consists of 100 lifetime exposure values obtained via bootstrapping (see above),

this yields a distribution of 100 000 lifetime exposure values. Like with the EMF �elds, the

resulting probability �elds are smoothed using a three-element moving average along the ver-

tical, except for tropical cyclones, where a fourth-order polynomial is �tted to the threshold

probability contour to account for the higher uncertainties in these projections obtained from a
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single impact model. The results are visualised as grey contours in �g. 2 and denote the 99.99th

percentile, that is, above and right of these contours, one has less than 0.01 % probability of

living such life under pre-industrial climate conditions. We refer to the latter case as living an

unprecedented life.

With the exception of wild�res and tropical cyclones, our extreme events are de�ned based

on extreme percentiles estimated from the pre-industrial control simulations (table S1) (37).

Due to a statistical artefact (78, 79), the expected relative frequency of exceedance of those

percentiles (or of falling below for the 2.5th crop yield and soil moisture percentiles) may po-

tentially be larger in data that was not used to estimate the percentiles (such as data from the

historical simulations and the future scenario simulations) than in the pre-industrial control

data. However, we believe that this issue can be disregarded in our analysis, because (i) we use

a very large sample of pre-industrial control simulations (542 years on average) to estimate the

percentile values in each simulation, and (ii) our analysis consists of relative changes between

cohort lifespans that all fall entirely outside of the base period.

While �g. 2 is inspired by the burning ember diagrams shown in various IPCC reports

(80�82), we acknowledge that our results cannot be directly translated into this risk framework,

primarily because we only consider 2 dimensions of risk in our assessment, that is, hazard and

exposure. Further work could aim at including vulnerability into the assessment, for instance by

incorporating vulnerability projections and associated adaptation potentials (83) in the analysis.

Life expectancy versus climate change. To isolate the contribution of life expectancy change

to the total change in lifetime exposure, we repeat the lifetime exposure calculation but apply it

to the pre-industrial control simulations (see details below; �gs. S15�S16). Assuming this term

corresponds to the pure life expectancy effect in the absence of climate change, the residual

represents the contribution from climate change.
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Data and code availability

Data Availability All materials that have contributed to the reported results are available

from Zenodo at https://zenodo.org/record/5497633, including the postprocessed

ISIMIP2b data. Correspondence and requests for further materials should be addressed to W.T.

(wim.thiery@vub.be). The raw ISIMIP2b impact simulations and gridded population data are

available at https://esg.pik-potsdam.de/search/isimip/, the life expectancy

data at https://population.un.org/wpp/Download/Standard/Mortality/,

the cohort size data at http://dataexplorer.wittgensteincentre.org/wcde-v2/,

and the IPCC SR1.5 Scenario data at https://data.ene.iiasa.ac.at/iamc-1.

5c-explorer.

Code Availability All codes used for the analyses are available through the github repository

of the Department of Hydrology and Hydraulic Engineering at VUB (https://github.

com/VUB-HYDR/2021_Thiery_etal_Science).
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Supplementary Text

Supplementary Text 1 � Country-level analysis

Breaking the analysis down to country scale highlights strong spatial disparities (�gs. S7�8).

Lifetime heatwave exposure for the 2020 birth cohort relative to the 1960 birth cohort increases

in every country in the world and under all future scenarios considered (�g. S7a-b). However,

in several countries the 2020 birth cohort will face more than 10 times as many extreme heat-

waves compared to the 1960 birth cohort under current pledges. This is for instance the case

in countries in Central Africa, the Middle East and West and Southeast Asia. Under a 1.5 �C

scenario, these multiplication factors are often substantially reduced. Similar patterns emerge

for the other extreme event categories (�g. S8), though the multiplication factors are subject to

higher uncertainty and in some cases indicate reduced exposure, for instance in exposure to crop

failures in several Eurasian countries under 1.5 �C warming. Aggregated across all categories,

most countries ultimately show a decrease in the exposure multiplication factor going from the

current pledges scenario to 1.5 �C of global warming (�g. S7c-d), highlighting a clear incentive

for younger generations of limiting global warming to 1.5 �C instead of the 2.6�3.1 �C expected

from current pledges (84, 85).

Our drought de�nition is based on the frequency of occurrence of extremely low monthly

soil moisture values during at least seven consecutive months (table S1) as computed by 8 global

vegetation models and global hydrological models from the ISIMIP biomes and water sector, re-

spectively (CLM4.5, H08, LPJmL, JULES-W1, MPI-HM, ORCHIDEE, PCR-GLOBWB, and

WaterGAP2; table S2). Thus, we mechanistically account for changes in both precipitation

and evapotranspiration in our drought projections. If precipitation increases in a region ac-

cording to a GCM projection, the hazard simulation driven by this GCM might project less

droughts. This is, for instance, the case in Russia under 1.5�C warming and current pledges,
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and in parts of Scandinavia under 1.5�C warming (�g. S8e-f). But if the evapotranspiration

increase is larger than the precipitation increase (especially during the dry season), drought fre-

quency may increase despite projected increases in precipitation, like is the case in East Africa

(�g. S8e-f) (86,87). This also explains why one region may face an increase in exposure to both

droughts and river �oods (e.g. Southern Africa and large parts of Asia; �g. S8e-h).

Supplementary Text 2 � Why our estimates may be considered conservative

Our approach yields conservative lifetime exposure estimates for at least six reasons. First, it

treats consecutive extreme events (88) affecting a speci�c location within a calendar year as one,

leading to an underestimation of the number of events in present-day as well as their increase

in frequency. Second, it only considers changes in the frequency of extreme events, neglecting

possible increases in event intensity and duration (71). For tropical cyclones, for instance, pro-

jected increases in storm intensity can be considered equally important (38), whereas heatwave

duration and intensity are increasing next to heatwave frequency (89). Third, we do not take

into account the effects of compounding extremes, even though, for instance, severe droughts,

heatwaves and crop failures tend to co-occur (88, 90�93). Fourth, we only consider exposure

to local hazards, yet extreme events such as crop failures may lead to regional or even global

food price instability when occurring in isolation or concurrently (81, 92, 94). Fifth, we em-

ploy stringent de�nitions of extreme events, with for instance heatwaves occurring only about

four times in a lifetime on average for the 1960 birth cohort (�g. 1 middle panel). Several

extreme event categories therefore occur only over part of the globe (37), leading to an under-

represented risk when aggregating across extreme event categories. Finally, some aspects of

the extreme event categories we consider demonstrate a lagged response to global warming.

This notably applies for tropical cyclones, which cause substantial impacts via the storm surge

they generate. These storm surges are ampli�ed by background sea level rise (95) which lags
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the global mean temperature increase by decades to centuries (96, 97). This lagged response

further augments inter-generational inequity, and this to the extent that even the already com-

mitted sea level rise will enhance lifetime exposure of generations well beyond the ones we

consider in this study (96, 97). On shorter time scales, this reasoning also applies to wild�res,

as fuel aridity may build up over several years in response to a long-term warming trend (98).

Overall, these six reasons highlight that our current results may underestimate changes in actual

extreme event exposure and thereby underscore the bene�ts of climate action for current and

future young generations.

Supplementary Text 3 � Cold spells

Next to the six extreme event categories considered in this study, the in�uence on climate change

on cold spell exposure could also be considered. To this end, we consider a grid cell to be

exposed to a cold spell in a given year if the Cold Wave Magnitude Index daily (CWMId) of

that year exceeds the 99th percentile of the CWMId distribution under pre-industrial climate

conditions of that grid cell. We de�ne the CWMId as the maximum magnitude of all cold

periods occurring in a year, where a cold period is a period of at least six consecutive days with

daily maximum temperature falling below a threshold value Tpi10 which is de�ned as the 10th

percentile of daily maximum temperatures under pre-industrial climate conditions, centered

on a 31-day window. The magnitude of each cold period in a year is the sum of the daily

magnitudes on the consecutive days composing the cold period, with daily magnitude calculated

according to Md(Td) = 0 if Td � Tpi75 else (Tpi75 � Td)=(Tpi75 � Tpi25), where Td is the daily

maximum temperature on day d of the cold period and Tpi25 and Tpi75 are the 25th and 75th

percentile, respectively, of the annual minimum of the daily maximum temperature under pre-

industrial climate conditions. To estimate Tpi10, Tpi25, and Tpi75, we use more than 400 years

of daily maximum temperature data at 0:5� � 0:5� spatial resolution representing pre-industrial
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climate conditions as available from the ISIMIP2b climate input data set. Based on these more

than 400 years of temperature data we subsequently derive the 99th percentile of the CWMId

distribution under pre-industrial climate conditions. As such, we characterise cold spells as the

mirror of heatwave events (except for the period which we require to be six instead of three

days).

The results of the analysis indicate an overall reduction of exposure to cold spells under

increasing global mean temperature levels and for younger cohorts (�g. S18a). Except for a few

countries in West Asia, lifetime cold spell exposure reduces consistently across most countries,

with the strongest reductions in Africa, the Middle East, Europe, Canada, and parts of South

America (�g. S18b).

Supplementary Text 4 � Vulnerability, impacts and adaptation

Our study is deliberately limited to exposure to climate hazards, given that both adaptation over

time and age-dependent vulnerability are extremely dif�cult to quantify. In that sense, we com-

pute changes in the hazards that people face throughout their lifetime (e.g. a heatwave or a river

�ood), but make no call about the risk or impact which they generate (e.g. mortality, infrastruc-

ture damage). By altering their vulnerabilities, communities can also adapt to the changes in

exposure to hazards. For the extreme event categories considered here, these adaptation options

can take many forms: e.g. changing crop types, agricultural management (irrigation, fertiliser),

�ood protection, reservoir deployment and management, �re management, and improved warn-

ing systems. Depending on the adaptation options that communities will (be able to) choose,

the level of risk arising from the hazard exposure will vary.

While adaptive capacities may increase over time, extreme events result in detrimental im-

pacts already today, even in developed countries with very high adaptive capacity (see, for

instance, the 2019-2020 wild�res in California and Australia). Moreover, for many develop-
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ing countries, increased adaptive capacity is needed to address today’s climate risks � it does

not imply that these countries can cope with unprecedented future hazards even under very

optimistic scenarios of socio-economic development. Recent research showed that adaptive ca-

pacities are far from uniformly rising Andrijevic2020a and that it will take until well into the

21st century for many developing countries to reach current OECD levels. Overall, there are

huge differences in adaptive capacities between countries with no signs that this gap will drasti-

cally reduce in the next decades, and even in countries with high adaptive capacities, it is unsure

whether entire populations will be able to adapt to severe climate change impacts. Finally, we

note the existence of quite hard (physiological) limits to adaptation for several of the extreme

events considered in this study. For instance, a wet-bulb temperature of 35�C de�nes the limit

of human survivability (99�101). In other cases, migration may be the �nal adaptation option,

which may in turn change both exposure and vulnerability to (a set of) hazards. For instance, a

poor Ugandan farmer migrating to the Capital to escape from increasing crop failure may end

up settling in one of Kampala’s informal settlements which are very prone to �ooding, heat

stress, and vector-borne diseases (102, 103).

Overall, the aspect of changing vulnerability and adaptive capacity requires careful consid-

eration and the absence of a framework to quantitatively integrate future vulnerabilities into

climate risk scenarios is why our analysis focuses explicitly on exposure to climate hazards

instead of climate risk.

A cohort-based approach raises the question about its relationship to discounting over time

to adequately account and weigh intergenerational interests. However, the concept of discount-

ing does not apply to our study given its focus on extreme event exposure instead of climate

change impacts. Discounting is commonly used as a methodological approach within cost-

bene�t analysis (CBA). Yet, our cohort-based extreme event exposure differs from the CBA

frameworks, because it only maps out the consequences and uncertainties of different future
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climate change pathways in terms of extreme event exposure. Incorporating an exposure per-

spective, such as ours, within a CBA would require to value the exposures and aggregate them

into a cost or welfare metric, since discounting can only be applied to value and welfare metrics.

Such aggregation � including the discounting � implicitly assumes that exposures between dif-

ferent groups are comparable and, therefore, trade-offs can be resolved. In principle, the results

of the extreme event exposures can serve as input to such analysis, but it requires to value the

exposures and aggregate them.

Next to informing a CBA, the extreme event exposure results could also inform a rights-

based approach. Rights-based approaches argue for �a general right against risking� (104).

Rights-based approaches are related to the precautionary principle and relate future risks im-

plied by current action to the infringement on future opportunities and the exercising of basic

rights.

In recent years, climate change and the risks for future generations has been increasingly

brought to courts. The cohort-based extreme event exposure approach can help to inform this

debate. However, we refrain from suggesting criteria or requirements that should be applied to

derive the level of climate change. A comprehensive consideration of competing rights would

need to take a broader set of rights into account and could not only rely on extreme event

exposure. The priorities of competing rights and the weighing of competing rights requires a

broader decision analysis framework that is beyond the scope of the present analysis. Finally,

the methodological difference between CBA- and rights-based approaches does not necessarily

imply a stronger or weaker level of future climate change and therefore higher or lower near

term emissions. This is partly due to the sensitivity of CBA results to the choice of the discount

rate (105) and the role competing rights can play.

19



Supplementary Text 5 � GCM selection and bias-adjustment procedure

Global Climate Models (GCMs) allow to simulate climate and weather extremes under histor-

ical and future atmospheric conditions. The ISIMIP2b climate forcing builds on a selection of

GCM output from the �fth phase of the Coupled Model Intercomparison Project (CMIP5) (106).

The ISIMIP2b forcing data covers four of the CMIP5 GCMs (IPSL-CM5A-LR, HadGEM2-ES,

MIROC5, GFDL-ESM2M). Uncertainty of future greenhouse gas emissions is spanned through

scenarios, which are the Representative Concentration Pathways (RCPs) (107) used in CMIP5

and consequently in the IPCC’s Fifth Assessment Report. In support for the IPCC Special

Report on global warming of 1.5 �C, ISIMIP2b covered initially RCP2.6 and RCP6.0, a low

emission and an intermediate stabilization scenario, with the high emission RCP8.5 scenario

added at a later stage, leading to a lower hazard simulation availability (see table S2 for the

scenarios covered by each impact model). The four GCMs were selected by availability of

variables necessary for impact modeling and their position in the distribution of equilibrium

climate sensitivity (ECS) in the CMIP5 ensemble. With an ECS of 4.1 �C for IPSL-CM5A-

LR, 4.6 �C for HadGEM2-ES, 2.7 �C for MIROC5 and 2.4 �C for GFDL-ESM2M, the GCM

selection includes two models at the lower and two at the upper end of the CMIP5 ensemble

range (2.1 �C to 4.7 �C). The climate model data is regridded from its original resolution to

the ISIMIP impact model grid at a spatial resolution of 0:5� � 0:5�. The climate model data

is bias-adjusted (16, 46) to better represent the statistical distribution of observational weather

data while preserving simulated trends. In addition, we use sub-daily output of the GCMs listed

above that is not bias adjusted to force the high-resolution tropical-cyclone model.

Supplementary Text 6 � Wild�re simulations

The global burned area has seen a decrease in recent years, with the decrease explained mostly

by a decrease in the number of �res associated with agricultural expansion (108, 109). In this
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study, the wild�re simulations are designed to quantify the pure climate change effect on wild-

�re activity. To this end, we compute the change in burned area purely from a change in climate

implemented via the GCM forcing, while keeping cropland area, population levels and other

socioeconomic factors constant at 2005 levels. The vegetation models used here are suited

for this type of analyses since their �re modules generally do not include human ignition (ex-

cept for ORCHIDEE in which ignition depends on population density, with population density

kept constant after 2005 in our simulation design). In addition, a historical land use-induced

negative trend in burned area does not preclude that exposure to wild�re activity may rise in

the next decades. Regional increases in wild�re activity have already been attributed to an-

thropogenic climate change (98) and �re weather is projected to substantially intensify in the

coming decades (110). Moreover, exposure to �re may increase due to population expansion

in �re-prone regions, an effect which may even outweigh changes in burned area (111). We

account for this effect thanks to the use of annual gridded population density projections when

spatially averaging the hazard maps. Combining our simulated climate-induced burned area

changes with projected population density data suggest a clear increase wild�re exposure de-

spite substantial uncertainties, corroborating a recent IPCC assessment of rising wild�re dam-

age risk under continued global warming (81, 82).
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Supplementary Figures
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Supplementary Figure 1 j Global mean temperature pathways. Historical and future evolu-
tion of global mean temperature (GMT) anomalies relative to the pre-industrial (PI) reference
scenario, taken here as the 1850�1900 average. Shown are three marker scenarios taken from
the IPCC Special Report on Global Warming of 1.5�C (54), and 25 additional stylised pathways
used for constructing �g. 2 (see Methods).
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Supplementary Figure 2 jLifetime wild�re and tropical cyclone exposure on the rise. Same
as �g. 2, but for the extreme event categories (a) wild�res and (b) tropical cyclones.
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Supplementary Figure 3 j Cross-category lifetime exposure and in�uence of aggregation
method on exposure sensitivity. (a) Same as �g. 2, but with exposure aggregated by computing
the geometric mean across the exposure multiplication factor (EMF ) per category, (b) Same as
�g. 2, but with exposure aggregated by computing the geometric mean across the lifetime expo-
sure (EXP ), (c) Same as �g. 2, but with exposure aggregated by computing the harmonic mean
across the EMF per category. We note that the second aggregation method (geometric mean
on exposure) yields higher EMF values because the absence of events in one extreme event
category results in zero cross-category exposure in a given country. As this occurs more fre-
quently under pre-industrial control conditions, this leads to unrealistically low global-average
pre-industrial control exposure values and hence arti�cially high EMF values.
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Supplementary Figure 4 j World Regions. Groups of countries based on (a) geographical
location and (b) income category for which life expectancy data is available (52). The income
groups are de�ned based on present-day conditions. The region de�nitions are taken from
the World Bank (112) and abbreviated as follows (see e.g. �g. S11-12): East Asia & Paci�c
(EASP), Europe & Central Asia (EUCA), Latin America & Caribbean (LAMC), Middle East &
North Africa (MENA), North America (NAM), South Asia (SAS), Sub-Saharan Africa (SSA).
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Supplementary Figure 5 jRegional lifetime exposure. Same as �g. S3a, but for world regions
shown in �g. S4a.

26



Supplementary Figure 6 j Income-based lifetime exposure. Same as �g. S3a, but for income
group regions shown in �g. S4b.
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Supplementary Figure 7 j Local value of global mitigation. (a,b) Heatwave and (c,d) all-
category exposure multiplication factors at the country scale for the 2020 birth cohort relative
to the 1960 birth cohort under (a,c) the current pledges scenario and (b,d) the 1.5 �C scenario.
Country-scale exposure multiplication factors aggregate within-country variability in popula-
tion density and land fraction affected by extreme events.
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Supplementary Figure 8 j Country-scale exposure multiplication factors. Same as �g. S7,
but for the extreme event categories (a,b) wild�res, (c,d) crop failures, (e,f) droughts, (g,h)
river �oods, and (i,j) tropical cyclones. Country-scale exposure multiplication factors aggregate
within-country variability in population density and land fraction affected by extreme events.
Note that the large tropical cyclone multiplication factors for some world regions with no or very
low numbers of observed tropical cyclone landfalls (e.g. West and Southwest Africa, Western
South America, Western Europe) are based on a small number of simulated tropical cyclones
and should therefore be treated with caution.
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Supplementary Figure 9 j Uneven distribution of lifetime exposure. All-category exposure
multiplication factors across birth cohorts under the current pledges scenario for a range of (a)
geographic regions and (b) income groups (see �g. S4 for the region de�nitions (112)). The
factors are computed relative to the mean exposure of a reference person with year-1960 life
expectancy under pre-industrial climate conditions. The kink in the curve for the Middle East
and North Africa for cohorts below 20 years in 2020 can be explained by the sudden drop in
life expectancy for these cohorts in Iraq and Syria.
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Supplementary Figure 10 jExposure increase across world regions. Regional EMFs relative
to the hypothetical pre-industrial reference cohort under 1.5 �C, 2.0 �C, and current pledges
pathways (colored radial distance) per world region for all extreme event categories (rows) and
cohorts 60, 40, 20, and 0 years old in 2020 (columns). The upper row and angle show the
relative cohort size per region. Note the different radial scale for wild�res and heatwaves.
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Supplementary Figure 11 j Exposure increase across income country groups. Same as
�g. S10 but for income country groups de�ned in �g. S4b. Note the different radial scale for
wild�res and heatwaves.
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Supplementary Figure 12 j Exposure increase relative to the 1960 birth cohort across in-
come country groups. Same as �g. S10 but using the 1960 birth cohort as reference for the
EMF calculation. Note the different radial scale for heatwaves.
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Supplementary Figure 13 j Exposure increase relative to the 1960 birth cohort across in-
come country groups. Same as �g. S11 but using the 1960 birth cohort as reference for the
EMF calculation. Note the different radial scale for heatwaves.
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Supplementary Figure 14 j Life expectancy on the rise. Assumed increase in global cohort
life expectancy at birth (adjusted for child mortality 0-4 -� see methods section).
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Supplementary Figure 15 j Drivers of increasing exposure across world regions. All-
category exposure multiplication factors across birth cohorts separated by driver under the
current pledges scenario for a range of geographic regions (see �g. S4a for the region de�-
nitions (112)). As the �gure is based on exposure instead of EMF, we use the arithmetic mean
instead of the geometric mean to aggregate the information across the categories.

36



Supplementary Figure 16 j Drivers of increasing exposure across income country groups.
Same as �g. S15, but for income country groups de�ned in �g. S4b. As the �gure is based
on exposure instead of EMF, we use the arithmetic mean instead of the geometric mean to
aggregate the information across the categories.
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Supplementary Figure 17 j Evaluation of the time-shift approach. Lifetime extreme event
exposure of the 2020 birth cohort under RCP2.6 computed using the original RCP2.6 simula-
tions (x-axis) and by applying the time-shift approach to the RCP2.6, 6.0, and 8.5 simulations
(y-axis). Each color represents an extreme event category and each dot represents the ensemble
mean for one of the 12 considered regions (geographic regions, income categories, and global
as de�ned in �g. S4).
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Supplementary Figure 18 j Cold spell exposure change. (a) Exposure multiplication fac-
tors across birth cohorts (x-axis) under a range of global warming trajectories (�g. S1) reach-
ing 0.87 �C to 3.5 �C global mean temperature (GMT) anomalies in 2100 relative to the pre-
industrial (PI) reference period (1850�1900; y-axis) for coldwaves. All factors are computed
relative to the mean exposure of a hypothetical reference person living under pre-industrial
climate conditions with year-1960 life expectancy. (b) Same as �g. S7a, but for CWMId.
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Supplementary Table 1 j De�nition of extreme events. For each category, the number of
impact models (M.) and future projections (P.) is reported. Further details are provided in the
Methods section and in (37)

Event M. P. De�nition of land area exposed
Wild�re 5 53 Annual aggregate of monthly burned land area simulated by global vegeta-

tion models
Crop failure 3 24 Fraction of grid cell where one of the considered crops (maize, wheat, soy

or rice) is grown and the corresponding crop yield falls short of the 2.5th

percentile of the pre-industrial reference distribution; crop-speci�c land area
fractions are added up.

Drought 8 86 Entire grid cell if monthly soil moisture falls short of the 2.5th percentile of
the preindustrial reference distribution for at least 7 consecutive months.

River Flood 8 86 Flooding is assumed to occur whenever daily discharge (0:5� � 0:5� resolu-
tion) exceeds the preindustrial 100-year return level (i.e. the 99th percentile);
to derive the associated land area affected per grid cell, simulated runoff is
translated into inundation areas (2.5’� 2.5’ resolution) by CaMa-Flood (68).

Heatwave 1 12 Entire grid cell if the Heat Wave Magnitude Index daily (HWMId) (70, 71)
of that year exceeds the 99th percentile of the HWMId distribution under
pre-industrial climate conditions of that grid cell. The HWMId is de�ned
as the maximum magnitude of all hot periods occurring in a year, where a
hot period is a period of at least 3 consecutive days with daily maximum
temperature exceeding a threshold value Tpi90 which is de�ned as the 90th

percentile of daily maximum temperatures under pre-industrial climate con-
ditions, centered on a 31-day window. The magnitude of each hot period in
a year is the sum of the daily magnitudes on the consecutive days composing
the hot period, with daily magnitude calculated according to Md(Td) = 0 if
Td � Tpi25 else (Td� Tpi25)=(Tpi75� Tpi25), where Td is the daily maximum
temperature on day d of the hot period and Tpi25 and Tpi75 are the 25th and
75th percentile, respectively, of the annual maximum of the daily maximum
temperature under pre-industrial climate conditions. To estimate Tpi90, Tpi25,
and Tpi75, we use more than 400 years of daily maximum temperature data at
0:5� � 0:5� spatial resolution representing pre-industrial climate conditions
as available from the ISIMIP2b climate input data set. Based on these >400
years of temperature data we subsequently derive the 99th percentile of the
HWMId distribution under pre-industrial climate conditions.

Tropical cyclone 1 12 Fraction of grid cell exposed to 1-minute sustained hurricane-force winds
(�64 kt) at least once a year (0.1�� 0.1� resolution); information re-
quired about wind �elds is derived from center location and minimum pres-
sure/maximum wind speed (113, 114).
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Supplementary Table 2 j ISIMIP2b model simulations used for the analysis. Each model
simulation consists of a concatenated historical and future (RCP2.6, 6.0 or 8.5) simulation done
with one impact model (IM) and one global climate model (GCM). The last column indicates
the number of simulation years available from the pre-industrial control simulation (PIcontrol).
For tropical cyclones, each simulation represents the average of a 100-member ensemble of
tropical cyclone tracks downscaled from GCM output (38).

Extreme IM GCM RCP PIcontrol (years)

Wild�res CARAIB GFDL-ESM2M 2.6, 6.0 439
Wild�res CARAIB HadGEM2-ES 2.6, 6.0 639
Wild�res CARAIB IPSL-CM5A-LR 2.6, 6.0 639
Wild�res CARAIB MIROC5 2.6, 6.0 639
Wild�res LPJ-GUESS GFDL-ESM2M 2.6, 6.0, 8.5 439
Wild�res LPJ-GUESS HadGEM2-ES 2.6, 6.0, 8.5 639
Wild�res LPJ-GUESS IPSL-CM5A-LR 2.6, 6.0, 8.5 639
Wild�res LPJ-GUESS MIROC5 2.6, 6.0, 8.5 639
Wild�res LPJmL GFDL-ESM2M 2.6, 6.0, 8.5 439
Wild�res LPJmL HadGEM2-ES 2.6, 6.0, 8.5 639
Wild�res LPJmL IPSL-CM5A-LR 2.6, 6.0, 8.5 639
Wild�res LPJmL MIROC5 2.6, 6.0, 8.5 639
Wild�res ORCHIDEE GFDL-ESM2M 2.6, 6.0, 8.5 239
Wild�res ORCHIDEE HadGEM2-ES 2.6, 6.0, 8.5 239
Wild�res ORCHIDEE IPSL-CM5A-LR 2.6, 6.0, 8.5 439
Wild�res ORCHIDEE MIROC5 2.6, 6.0, 8.5 239
Wild�res VISIT GFDL-ESM2M 2.6, 6.0, 8.5 439
Wild�res VISIT IPSL-CM5A-LR 2.6, 6.0, 8.5 639
Wild�res VISIT MIROC5 2.6, 6.0, 8.5 639
Crop failures GEPIC GFDL-ESM2M 2.6, 6.0 439
Crop failures GEPIC HadGEM2-ES 2.6, 6.0 639
Crop failures GEPIC IPSL-CM5A-LR 2.6, 6.0 639
Crop failures GEPIC MIROC5 2.6, 6.0 639
Crop failures LPJmL GFDL-ESM2M 2.6, 6.0 439
Crop failures LPJmL HadGEM2-ES 2.6, 6.0 639
Crop failures LPJmL IPSL-CM5A-LR 2.6, 6.0 639
Crop failures LPJmL MIROC5 2.6, 6.0 639
Crop failures PEPIC GFDL-ESM2M 2.6, 6.0 439
Crop failures PEPIC HadGEM2-ES 2.6, 6.0 639
Crop failures PEPIC IPSL-CM5A-LR 2.6, 6.0 639
Crop failures PEPIC MIROC5 2.6, 6.0 639
Droughts CLM4.5 GFDL-ESM2M 2.6, 6.0, 8.5 239
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Table 2 continued from previous page
Extreme IM GCM RCP PIcontrol (years)

Droughts CLM4.5 HadGEM2-ES 2.6, 6.0, 8.5 239
Droughts CLM4.5 IPSL-CM5A-LR 2.6, 6.0, 8.5 239
Droughts CLM4.5 MIROC5 2.6, 6.0, 8.5 239
Droughts H08 GFDL-ESM2M 2.6, 6.0, 8.5 439
Droughts H08 HadGEM2-ES 2.6, 6.0, 8.5 639
Droughts H08 IPSL-CM5A-LR 2.6, 6.0, 8.5 639
Droughts H08 MIROC5 2.6, 6.0, 8.5 639
Droughts LPJmL GFDL-ESM2M 2.6, 6.0, 8.5 439
Droughts LPJmL HadGEM2-ES 2.6, 6.0, 8.5 639
Droughts LPJmL IPSL-CM5A-LR 2.6, 6.0, 8.5 639
Droughts LPJmL MIROC5 2.6, 6.0, 8.5 639
Droughts JULES-W1 GFDL-ESM2M 2.6, 6.0, 8.5 439
Droughts JULES-W1 HadGEM2-ES 2.6, 6.0, 8.5 639
Droughts JULES-W1 IPSL-CM5A-LR 2.6, 6.0, 8.5 639
Droughts JULES-W1 MIROC5 2.6, 6.0, 8.5 639
Droughts MPI-HM GFDL-ESM2M 2.6, 6.0 439
Droughts MPI-HM IPSL-CM5A-LR 2.6, 6.0 639
Droughts MPI-HM MIROC5 2.6, 6.0 639
Droughts ORCHIDEE GFDL-ESM2M 2.6, 6.0, 8.5 439
Droughts ORCHIDEE HadGEM2-ES 2.6, 6.0, 8.5 439
Droughts ORCHIDEE IPSL-CM5A-LR 2.6, 6.0, 8.5 639
Droughts ORCHIDEE MIROC5 2.6, 6.0, 8.5 439
Droughts PCR-GLOBWB GFDL-ESM2M 2.6, 6.0 439
Droughts PCR-GLOBWB HadGEM2-ES 2.6, 6.0 639
Droughts PCR-GLOBWB IPSL-CM5A-LR 2.6, 6.0 639
Droughts PCR-GLOBWB MIROC5 2.6, 6.0 639
Droughts WaterGAP2 GFDL-ESM2M 2.6, 6.0, 8.5 439
Droughts WaterGAP2 HadGEM2-ES 2.6, 6.0, 8.5 639
Droughts WaterGAP2 IPSL-CM5A-LR 2.6, 6.0, 8.5 639
Droughts WaterGAP2 MIROC5 2.6, 6.0, 8.5 639
River �oods CLM4.5 GFDL-ESM2M 2.6, 6.0, 8.5 439
River �oods CLM4.5 HadGEM2-ES 2.6, 6.0, 8.5 439
River �oods CLM4.5 IPSL-CM5A-LR 2.6, 6.0, 8.5 439
River �oods CLM4.5 MIROC5 2.6, 6.0, 8.5 439
River �oods H08 GFDL-ESM2M 2.6, 6.0, 8.5 439
River �oods H08 HadGEM2-ES 2.6, 6.0, 8.5 639
River �oods H08 IPSL-CM5A-LR 2.6, 6.0, 8.5 639
River �oods H08 MIROC5 2.6, 6.0, 8.5 639
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Table 2 continued from previous page
Extreme IM GCM RCP PIcontrol (years)

River �oods LPJmL GFDL-ESM2M 2.6, 6.0, 8.5 439
River �oods LPJmL HadGEM2-ES 2.6, 6.0, 8.5 639
River �oods LPJmL IPSL-CM5A-LR 2.6, 6.0, 8.5 639
River �oods LPJmL MIROC5 2.6, 6.0, 8.5 639
River �oods JULES-W1 GFDL-ESM2M 2.6, 6.0, 8.5 439
River �oods JULES-W1 HadGEM2-ES 2.6, 6.0, 8.5 439
River �oods JULES-W1 IPSL-CM5A-LR 2.6, 6.0, 8.5 639
River �oods JULES-W1 MIROC5 2.6, 6.0, 8.5 439
River �oods MPI-HM GFDL-ESM2M 2.6, 6.0 439
River �oods MPI-HM IPSL-CM5A-LR 2.6, 6.0 639
River �oods MPI-HM MIROC5 2.6, 6.0 639
River �oods ORCHIDEE GFDL-ESM2M 2.6, 6.0, 8.5 439
River �oods ORCHIDEE HadGEM2-ES 2.6, 6.0, 8.5 439
River �oods ORCHIDEE IPSL-CM5A-LR 2.6, 6.0, 8.5 639
River �oods ORCHIDEE MIROC5 2.6, 6.0, 8.5 439
River �oods PCR-GLOBWB GFDL-ESM2M 2.6, 6.0 439
River �oods PCR-GLOBWB HadGEM2-ES 2.6, 6.0 639
River �oods PCR-GLOBWB IPSL-CM5A-LR 2.6, 6.0 639
River �oods PCR-GLOBWB MIROC5 2.6, 6.0 639
River �oods WaterGAP2 GFDL-ESM2M 2.6, 6.0, 8.5 439
River �oods WaterGAP2 HadGEM2-ES 2.6, 6.0, 8.5 639
River �oods WaterGAP2 IPSL-CM5A-LR 2.6, 6.0, 8.5 639
River �oods WaterGAP2 MIROC5 2.6, 6.0, 8.5 639
Heatwaves HWMId-humidex GFDL-ESM2M 2.6, 6.0, 8.5 439
Heatwaves HWMId-humidex HadGEM2-ES 2.6, 6.0, 8.5 639
Heatwaves HWMId-humidex IPSL-CM5A-LR 2.6, 6.0, 8.5 639
Heatwaves HWMId-humidex MIROC5 2.6, 6.0, 8.5 639
Tropical cyclones KE-TG-mean�eld GFDL-ESM2M 2.6, 6.0, 8.5 439
Tropical cyclones KE-TG-mean�eld HadGEM2-ES 2.6, 6.0, 8.5 439
Tropical cyclones KE-TG-mean�eld IPSL-CM5A-LR 2.6, 6.0, 8.5 639
Tropical cyclones KE-TG-mean�eld MIROC5 2.6, 6.0, 8.5 639
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