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Abstract 

We report on an alternative experimental method to determine the transversal or radial dispersion 

coefficient (Drad) in packed bed columns for liquid chromatography. The method uses a recently developed 

type of column end-fitting with an impermeable segmentation ring that splits the incoming flow in a central 

and peripheral part. Using this device and continuously sending a tracer-laden flow through the central 

inlet and a tracer-less flow through the peripheral inlet, a steady-state radial dispersion pattern is 

established which can be used to determine the degree of radial dispersion.  

The present part of the study lays the theoretical foundation for the method and shows the parameter 

sensitivity of the different possible data analysis variants. In addition, computational fluid dynamics 

simulations have been to validate the established procedure (agreement between true and determined 

Drad-value better than 0.4%) as well as to study the effect of the most important error sources: the 

presence of the annular flow segmentation ring and the almost inevitable occurrence of mismatches 

between the central and the peripheral in- and outlet flows. In the latter case, a combined read-out method 

can be proposed that nearly perfectly compensates for the flow mismatch error (remaining error on the 

Drad-value smaller than 3%).   



1 

1. Introduction 

Liquid chromatography is probably the chemical process whose performance is most sensitive to the 

micro- and macroscopic shape of the column packing. This sensitivity manifests itself as the axial 

dispersion or band broadening, which directly determines the separation efficiency of the column. An 

important contributor to this axial dispersion originates from the radial differences in axial velocity that 

inevitably arise because of the non-uniformity of the medium (so called eddy-dispersion). Fortunately, 

these biases in axial velocity are countered by the radial dispersion process, tending to alleviate these 

axial velocity differences [1]. According to Fick's law, the radial dispersion process is quantified by the 

radial dispersion coefficient (Drad), which hence plays a crucial role in determining the eventual degree of 

eddy-dispersion. Somewhat surprisingly, the number of studies value on the measurement of Drad in 

chromatography columns and its dependency on the flow rate, particle size, retention factor, etc is 

relatively scarce, and there is no generally accepted model that can be used to accurately predict Drad 

under a given specific condition. This is in part due to the fact that these columns are operated in a range 

of very low Reynolds-numbers (typically Re < 0.01) and reduced velocities (typically 0 <  < 20), which 

are seldom encountered in other packed bed processes, such that the data found in engineering literature 

are of little use. The reduced velocity , also commonly known as the Péclet-number (Pe), is defined as 

the ratio of the rate of transport by convection to that by diffusion [1-3]: 

=Pe=
u∙dp

Dmol

 (1) 

with u the linear velocity, dp the particle size and Dmol the molecular diffusion coefficient. 

 

The common thread in all literature correlation is that Drad can be described by an expression of the 

following form: 

Drad

Dmol

=
Deff

Dmol

+f(ν) (2) 

wherein Deff is the effective diffusion coefficient (=effective average over diffusion outside and inside 

particles) as measured by a peak parking experiment. Note that diffusion in a packed bed column can be 

assumed to be isotropic, hence the effective diffusion rate measured in the axial direction should be the 

same as in the radial direction. The second term represents the departure from Deff in the presence of an 

advective transport component. Throughout the years, many different expressions have been suggested 

for f [4-8], with the most commonly adopted form being a simple linear proportionality. The latter appears 

to be the correct relationship at high velocities, but in the range of velocities applicable to packed bed LC 

the relationship appears to be more complex [7-8]. For example, video recordings of the radial dispersion 

in micro-pillar array chips covering the range of showed that Drad rather follows an s-shaped curve, with 
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Drad leveling off to a constant value again at high  ( > 50). A good overview of the correlations and 

experiments typically used in engineering is given in [5]. 

 

Another important shortcoming of the Drad-values and correlations found in classical engineering studies 

in the context of chromatography is that they do not incorporate the effect of species retention, which can 

be expected to play an important role in the radial transport in chromatography columns. Due to the 

retention equilibrium, the analytes spend a large part of their time in the retained state, during which they 

undergo an enhanced transport (so-called surface diffusion). Transport through the particle is given by 

the product of the diffusion in or on the stationary phase layer (which in itself is slower than in the bulk of 

the mesopores) and the equilibrium constant K. Given the latter can be much larger than unity, the so-

called surface diffusion [9] can be expected to be a major contributor to the over-all intra-particle diffusion 

rate, and hence also to Drad. 

 

Given the above, there is a clear need for good methods to accurately measure Drad in chromatographic 

columns. Unfortunately, the number of such studies is rather limited. Most measurements of the radial 

dispersion in packed bed columns are based on the measurement of the radial variation of the tracer 

concentration when injecting an instantaneous or continuous source of tracer [5,10-17]. Shalliker et al. 

proposed a method to measure Drad with an in-column injection of a small droplet volume of tracer inside 

a transparent glass column using a needle [18]. Through optical measurement of the dispersion of this 

droplet in time, one can deduce the axial and radial dispersion coefficients. This technique has proven 

that radial differences in packing quality affect both axial and radial dispersion rates. This technique is 

however limited in inlet pressure and particle size since the use of large pressures to pack small particles 

can break the glass column. Furthermore, the use of pulsed-field-gradient nuclear magnetic resonance 

has been used to determine dispersion in packed bed columns [19-21], but this technique is limited to low 

fluid velocities [5]. 

 

In the present contribution, a radial dispersion coefficient measurement method is discussed that uses 

the flow segmentation or parallel segmented flow technology introduced a few years ago by Shaliker and 

co-workers [22-25]. This technology allows to split the flow running through the column in a central and a 

peripheral fraction, using in- and outlet frits containing an impermeable annular ring and connected to a 

dedicated end fitting piece having one central and three peripheral ports. Originally, the parallel 

segmented flow technology was used to reduce the trans-column velocity gradient band broadening 

originating from radial differences in packing density (including the so-called side-wall effect) and/or from 
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radial temperature gradients caused by viscous heating. In the present study, the device is used to 

experimentally measure the radial dispersion coefficient.  

 

2. Proposed method 

2.1 General method and mathematical modelling 

The proposed measurement principle is depicted in Fig. 1. Spiking the mobile phase flow entering the 

central inlet port with a tracer analyte, while continuously sending pure mobile phase through the 

peripheral inlets, will establish a steady-state, diverging dispersion plume whose width solely depends on 

the species migration velocity and the degree of radial dispersion. Subsequently measuring the steady-

state tracer concentration at the central and/or the peripheral outlet ports can then be used to extract the 

value of the radial dispersion coefficient Drad, because a high degree of radial dispersion can be expected 

to lead to a high Cperi (i.e., just below or equal to Ccent) while a low degree of radial dispersion will keep a 

high Ccent (close to its inlet concentration) and lead to a low Cperi. 

 

The measured concentration differences at the outlet of the central and peripheral (represented in Fig. 1 

as flow C and P respectively) can be related to the Drad-value by solving the following mass balance over 

the entire column [5,26]: 

δC

δt
= -

u

1+k''

δC

δx
+Dax

δ
2
C

δx
2

+
1

r

δ

δr
(Drad∙r∙

δC

δr
) (3) 

with Dax and Drad the effective axial and radial dispersion coefficient wherein the mobile phase dispersion 

and the intra-particle diffusion are weighted by the time spent inside (fraction k''/(1+k'')) and outside the 

particles (fraction 1/(1+k'')). Further, u is the interstitial velocity and k'' the zone retention coefficient 

defined as the ratio of the time spent and outside the particles [26]. In the proposed Drad-experiment, the 

continuous flow and dispersion resulting from the continuous infusion of tracer through the central inlet of 

the column (leading to the boundary conditions C/C0 = 1 at r ≤ Rc and C/C0 = 0 at r > Rc at x = 0) can be 

expected to result in a steady-state tracer 'dispersion plume' as depicted in Fig. 1. An observer moving 

with a cross-sectional plane with velocity u/(1+k'') will observe this plume in his observational plane as a 

gradually expanding circular spot. Considering furthermore that the convective axial transport is much 

stronger than the dispersive axial transport (Bodenstein number [27] already >1000 after the first few mm 

of the column), we can neglect the axial dispersion term and the mass balance in Eq. (3) for a moving 

observer becomes: 

δC

δt
=

1

r

δ

δr
(Drad∙r∙

δC

δr
) (4) 
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The analytical solution of this equation for the specific geometry of the current problem can be derived 

from [28,29], where the problem of the transient radial diffusion (of heat) for the case of an instantaneous 

tracer pulse applied in a circular infinitely thin ring with radius r' injected at t = 0 is solved for the case of 

a no-flux condition at the outer radius R, leading to: 

C(r,r',t)=
1

πR
2

∑ e-Dradαn
2t

J0(rαn)J0(r'αn)

J0
2(Rαn)+J1

2(Rαn)

∞

n=1
 (5) 

where αn are the positive roots of J0(Rn) = 0, and J0 and J1 are the Bessel functions of the first and 

second order respectively. These Bessel functions can be calculated using the standard Matlab®-function 

besselj. The values of αn are calculated using the besselzero.m routine, written by von Winckel and freely 

available on Mathworks [30].  

 

Before proceeding, it is instructive to note the time and the dispersion coefficient are tightly linked, cf. the 

appearance of the product Dradn
2t in the exponent of Eqs. (5). Given that also n can be expected to 

scale inversely proportional with R (cf. the appearance of the product R.n in the argument of J0 and J1), 

it is straightforward to introduce a dimensionless time t': 

t'=
tR∙Drad

R
2

 (6) 

Subsequently, Eq. (5) can be extended to account for the fact that the injection is not limited to an infinitely 

thin ring but homogeneously covers a full circular region with radius Rc. This is implemented by integrating 

Eq. (5) over the radius r', ranging from 0 to Rc. Also using Eq. (6), this finally yields: 

C(r,t)=2π ∫ [C(r,r',t)]r'dr'
Rc

0

 (7) 

c(r,t)=
2

R
2

∑ e-R
2

αn
2t'

J0(rαn)

J0
2(Rαn)+J1

2(Rαn)

∞

n=1
∫ J0(r'αn)r'dr'

Rc

0

 

Fig. 2 shows the typical behavior of the radial concentration profiles described by Eq. (7) for different 

values of t' for the case of a circular injection region with relative radius Rc/R = 0.5. The concentration 

profiles were normalized using the initial injection concentration (C' = C/C0). 

 

Fig. 2 readily reveals two limiting cases, both represented in blue. If the radial dispersion coefficient or the 

residence time tend to infinity (t' = +), the injected tracer analytes are dispersed evenly across the 

column radius, thus leading to a radially uniform concentration (cf. blue line for t' = 0.5 in Fig. 2). To obey 

the conservation of mass, the concentration under this totally dispersed condition should be equal to the 

ratio of the area of the injected pulse (πRc
2) versus the total column area (πR2), which is 0.25 in this 

specific case. Comparing with the other considered t'-values, it can be concluded that a fully dispersed 
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flat concentration profile will be prevailing for all times t' larger than 0.5. When t' = 0.5, the maximal 

difference in concentration (i.e., the difference in concentration at the center (r = 0) and the concentration 

at the outer surface (r = R)) is already smaller than 0.1%. 

 

In the other limiting case (t' = 0), when the time and/or the radial dispersion coefficient tend to zero, the 

concentration profile displays a straight step-function shape as the concentration in the central part (r' < 

Rc/R) is still equal to the maximal value of 1, while the concentration of tracer is zero everywhere else (r' 

> Rc/R). The wiggles [31] that are present in the solution for this limiting case, especially at radii close to 

Rc, originate from the summation over the parameter (n) in Eqs. (5) and (7), which should ideally be 

executed for an infinite number. Due to limitations in processing power and time, the counter n is however 

only calculated up to a value of 100.  

 

For the intermediate values of t', the concentration profile is gradually changing from a step-function to a 

constant value with increasing t', as represented by the different colored lines in Fig. 2. Knowing these 

radial concentration profiles as a function of t', the average concentration at the outlet of the column in the 

central (Ccent) and peripheral (Cperi) part can be calculated by integrating Eq. (7) over the central, resp. 

peripheral part of the column outlet cross-section: 

Ccent=
1

πRc
2

∫ [C(r,t)]
Rc

0

2π r dr (8) 

          =
1

πRc
2

∫ [
2

R
2

∑ e-R
2

αn
2t'

J0(rαn)

J0
2(Rαn)+J1

2(Rαn)

∞

n=1
∫ J0(r'αn)r'dr'

Rc

0

]
Rc

0

2π x dx 

Cperi=
1

π(R²-Rc
2
)
∫ [C(r,t)]

R

RC

2π r dr 

(9) 

       =
1

π(R²-Rc
2
)
∫ [

2

R
2

∑ e-R
2

αn
2t'

J0(rαn)

J0
2(Rαn)+J1

2(Rαn)

∞

n=1
∫ J0(r'αn)r'dr'

Rc

0

]
R

Rc

2π x dx 

Both concentrations play a key role in the proposed method since they are the ones that are 

experimentally accessible when connecting the central and/or peripheral part of the column outlet to a 

detector. The course of Ccent and Cperi as a function of the dimensionless t' as determined by Eqs. (8) and 

(9) is represented by the full lines shown in Fig. 3 for the case of Rc/R = 0.5 (Fig. 3a) and Rc/R = 0.75 (Fig. 

3b), both representative for the conditions considered in the experimental part of the study (see part II). 

 

Again, the two limiting cases for very low and very high values of t' can be readily distinguished. At very 

low values of t', corresponding to very short residence times or small values of Drad, no significant radial 
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dispersion takes place in the column and the average central outlet concentration Ccent is still equal to the 

concentration at the central inlet of the column (i.e., Ccent = C0), whereas the average peripheral outlet 

concentration Cperi is equal to zero. For very high values of t' on the other hand, radial dispersion is 

complete, leading to a completely uniform distribution of tracer along the column, with C'cent = C'peri = 0.25 

for the Rc/R = 0.5-case and C'cent = C'peri = 0.57 for the Rc/R = 0.75-case. Note that in general this fully 

dispersed concentration at large t' is equal to (Rc/R)2). 

 

For intermediate t', the normalized concentration profiles gradually vary between the two limiting cases. 

The course of this variation can be used as a calibration curve to determine the value of t', as is 

represented by the blue arrows in Fig. 3a. Using Eq. (7) and the known residence time (tR) and column 

radius R, the value for Drad can then be directly calculated from the thus determined value of t'.  

 

2.2 Parameter sensitivity analysis and alternative data analysis methods 

The sensitivity of the read-out of t' depends on the steepness of the C' versus t'-curve. Both the C'cent- and 

C'peri-curves vary most strongly, i.e., are most sensitive in the range of t'-values between 10-3 and 0.3. 

Since the actual value of t' is determined by the column parameters (Drad, F, k'', R) and can hence not be 

selected by the user, it is important to have the possibility to shift the range of maximal sensitivity to other 

values. To pursue this, we combined the C'cent- and C'peri-values into a number of combined parameters 

(see dashed curves added to Fig. 3) such as for example their sum (C'cent+C'peri), abbreviated as the C+P-

method, or their difference (C'cent-C'peri), abbreviated as the C-P-method. Both the C+P and the C-P 

method show the same sensitivity range as the pure Ccent- and Cperi-methods (i.e., largest steepness for 

10-3 < t' < 0.3). However, the C-P method has the advantage that this parameter changes over a larger 

C'-range (from 1 to 0) than either of both Ccent and Cperi methods. Also interesting is the C/P-method 

(based on the ratio Ccent and Cperi) as this shifts the range of maximal sensitivity to a totally different range 

of t'-values, i.e., ranging between 5·10-7 and 5·10-3. A drawback of these combined methods of course is 

that they depend on two parameters, thus adding to their absolute and relative measurement error. The 

product of Ccent and Cperi is to be discarded as a potential read-out method because it does not always 

vary monotonically (cf. the C·P-curve in Fig. 3a). 

 

Important to note is that the course of the curves in the C' versus t' calibration plot depends on the radius 

Rc of the injection zone. This can be seen by comparing Fig. 3a with Fig. 3b, showing the C' versus t' plot 

for the case of a different Rc (Rc/R = 0.75). The Ccent- and Cperi-method now converge to a different value 

in the large t'-limit, again given by the ratio of the injected over the total inlet area (Rc/R)2, which in this 

case is equal to 0.57. As a consequence, the Cperi-method has an increased sensitivity for the 
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determination of t', as now the Cperi-calibration curve varies over a larger range, i.e., from 0 to 0.57 instead 

of from 0 to 0.25 as is the case when Rc/R = 0.5. On the other hand, the sensitivity of the Ccent-method is 

decreased since the range of the central relative concentration is now only changing between 1 and 0.57 

instead of between 1 and 0.25. As a consequence, also the derived quantities (C+P, C·P, C/P) display a 

different shape and have slightly different sensitivities.  

 

In a more quantitative approach, the sensitivity of a given Drad read-out method can be expressed as the 

ratio of the variation in Drad that is read-out from the calibration curve in response to a variation in the 

measured C'-value: 

∆Drad

∆C'
≅

dDrad

dC'
 

 
⇒

∆Drad

Drad

≅
dDrad

dC'

∆C'

Drad

 (10) 

Since Drad is proportional to t' (see Eq. 6), this leads to: 

∆Drad

Drad

≅
dt'

dC'

∆C'

Drad

≅
dt'

dC'

1

t'
∙∆C' (11) 

Eq. (11) shows a maximal sensitivity is obtained when the absolute value of the factor 1/t'·dt'/dC' becomes 

maximal. Fig. 4 shows the sensitivity curves for the two Rc/R-cases considered in Figs. 3a and 3b. As can 

be noted, the Rc/R = 0.75-geometry makes the Cperi-method slightly more sensitive compared to the 

Rc/R = 0.5-geometry, while the opposite occurs for the Ccent-method. In both cases, the read-out is 

maximally sensitive for t'-values around t' = 0.05. Reading out Drad from the C-P-curve provides a higher 

sensitivity than any of the two basic curves, while the C+P-curve always leads to a lower sensitivity and 

is hence less useful. As already remarked before, the C/P-curve provides an opportunity to make sensitive 

measurements at much lower t'-values (region t' = 10-5), i.e. at very high flow rates or very low radial 

dispersion rates.  

 

3. Numerical methods 

To investigate the deviations from the ideal situation considered in the previous section, a numerical 

simulation study was performed using the computational fluid dynamic (CFD) software package Ansys 

Fluent®. The Design Modeler and Meshing-module of this software package was used to draw and 

discretize the geometry of the column and the parallel segmented in- and outlet system. Subsequently 

this geometry was spatially discretized (=meshed) to calculate the velocity field and the species 

dispersion. The mesh cell size was chosen such that the velocity and mass profiles were independent of 

this size. It was found that 4.5·105 cells or nodes sufficed to produce a value for Drad that was within a 

0.3% accuracy of the case wherein the number of cells was quadrupled to 1.8·106. 
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Given the cylindrical symmetry of the column, the geometry was reduced to an axi-symmetrical problem 

calculated in cylindrical coordinates. Both the central and peripheral inlet boundaries were defined as a 

velocity inlet, whereas both outlets were defined as a pressure outlet. Two different column geometries 

(both with an radius of 2.3 mm) were considered: one with and one without the presence of a distributor 

ring (situated between 1.18 mm < r < 1.80 mm). The packed bed inside the column was modeled as a 

continuous porous region having an average viscous resistance (equal to the inverse of the column bed 

permeability) equal to 1014 m-2, which can be considered as a representative value for a 3 µm particle 

bed. The material properties (e.g., viscosity, density, etc.) of the fluid and the tracer compound in the 

system were chosen equal to those of pure water. The radial mass diffusion coefficient of this tracer in 

the porous zone filled with fluid can be chosen in Fluent® by using a user defined diffusion function. This 

was used to vary Drad over the range between 6·10-10 m2/s and 2·10-9 m2/s. 

 

The CFD Fluent® software was used to first calculate the steady-state velocity field by solving the Navier-

Stokes equations. Subsequently, the steady-state tracer species distribution was calculated solving the 

general advection-diffusion mass balance. The velocity and mass profiles were calculated using the 

segregated pressure-based steady state solver with a least squares cell based gradient evaluation and a 

second order upwind interpolation scheme for the momentum equations.  

 

4. Numerical validation and influence of system parameters 

4.1. Effect of the presence of the flow segmentation ring 

As elaborated in the previous sections, the ratio of the injected over the total column radius Rc/R plays a 

key role in the analysis and the sensitivity of the experiment. In practice, the flow is split in two portions 

by the presence of the flow distributor ring which has a significant thickness. This leads to a disturbance 

of the flow, such that the position of the Rc-radius delimiting the injected tracer region is only established 

after a certain (short) distance downstream of the inlet distributor (see Fig. 6 further on for more detail). 

The streamlines running through the bed zone can be divided in two separate groups, resp. originating 

from the central (tracer) flow and the peripheral flow, and separated by an imaginary line, further referred 

to as the split line (Fig. 5). As this line also delimits the region accessible to the tracer in the absence of 

any dispersion, the radial position of this split line corresponds to the Rc-value appearing in Eqs. (7-9). 

 

The radial position of the split line can be manipulated by changing the ratio of the central and peripheral 

flow rates because the conservation of mass dictates that the split line radius Rc is determined by the ratio 

of the central (Fc,in) to the total (Fc,in+Fp,in) flow rate: 
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Rc
2

R
2

=
Fc,in

Fc,in+Fp,in

=
Fc,in

Ftot,in

 (12) 

Eq. (12) shows that, for example, an increase in the relative central flow rate (Fc,in/Ftot,in) results in an 

increased split radius Rc, since the increased central inlet flow (Fc,in) forces the streamlines in the column 

to expand more towards the outer peripheral region.  

 

In below part, the CFD software is used to validate the expressions given in Eqs. (8-9) without and with 

the potential disturbance of the distributor ring. In the former case, the flow going through the frit is divided 

in a central and peripheral fraction by assuming an infinitely thin distributor ring, capable of splitting the 

flow, but without disturbing the velocity profile. Figs. 6a-b compare the dispersion plume obtained in both 

cases. Both concentration contour plots strongly resemble the expected pattern represented 

schematically in Fig. 1. The tracer concentration is represented in color, with 100% tracer being blue and 

0% tracer being red. Zooming in on the column inlet (Fig. 6c-d), some small differences between both 

cases becomes apparent, the most obvious one being the upward shift of the green colored zone reduced 

(C' = 0.5), representing the plane where the central and peripheral zone meet. This is further emphasized 

in Fig. 6 with the dashed horizontal line at radius r = Rc (split line radius, definition: see Fig. 5). The 

difference in position of the r = Rc-line between both cases owes to the fact that these cases were 

simulated by imposing a uniform velocity over the column inlet cross-section. Because of this uniform 

velocity, the flow rate going through the central and the peripheral part of the inlet cross-section is different 

with or without the presence of the thick distributor ring (because of the difference in cross-sectional area 

ratio between both cases). In the latter case, a relatively higher fraction of the flow goes through the center 

compared to the infinitely thin distributor ring-case because the ratio of the central to the peripheral cross-

sectional inlet area is larger in the thick ring-case. This pushes the split line upward. It could be verified 

that the observed position of the split line was within the simulation accuracy (<0.1%) equal to that 

predicted by Eq. (12) when using the (exactly known) central and peripheral inlet flow rates. This holds 

for both the infinitely thin and the real distributor ring case. 

 

An exact knowledge of the position Rc at which both central and peripheral flow paths are separated or 

split from each other is very important because the value of Rc strongly affects the shape of the C' versus 

t'-curves (see Fig. 3 for examples). When the numerical simulation was converged, the value of the tracer 

concentration at the outlet of column was averaged over the central and peripheral outlets and used to 

read out the corresponding value of t' from the Cperi- and Ccent-calibration lines. Since also the linear 

velocity u is exactly known in these CFD-simulations, the residence time tR needed in Eq. (6) could be 

calculated as tR = u/L, allowing to finally calculate the radial dispersion coefficient Drad from the read-out 
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t'-value. In the CFD simulations, also the true Drad-value is exactly known because this is numerically 

imposed via one the CFD subroutines. For the infinitely thin distributor ring case, we could establish that 

the error made via the Drad read-out method elaborated in the discussion of Fig. 3 is below 0.4% for all 

proposed read-out methods (cf. the Ccent-, Cperi-, C/P-, C+P- and C-P- methods), thus validating the 

analytical expressions and methods proposed there.  

 

Important to note next is the radial displacement of the streamlines occurring in the finite ring thickness 

case (Fig. 6f). The fact that the streamlines no longer run perfectly parallel is a potential problem that 

needed a detailed investigation, for it implies the presence of the ring induces an extra radial convective 

flow which can potentially offset the measured Drad-value. Fortunately, the length over which the velocity 

disturbances occur is very short compared to the overall length of the column. A detailed inspection of 

Fig. 6f shows the streamlines become fully flat again after some 1.5-2 mm downstream of the end of the 

distributor ring. In a 75 mm long column, this only corresponds to 2-2.5% of the total length. This probably 

explains why the maximal error made on the read-out Drad-value was found to be only marginally higher 

(0.5% vs 0.4%) than without the distributor ring present. 

 

4.2. Impact of a mismatch between Fc,in and Fc,out 

As already indicated, a correct measurement of Drad requires the streamlines in the column to run 

substantially parallel. This condition can only be achieved if the flow rate leaving the column through the 

central outlet is identical to the flow rate entering the column through the central inlet (Fc,in = Fc,out). This 

automatically also implies that, under conditions of an unchanging density, the same condition should 

hold for the peripheral flow (Fp,in = Fp,out). According to Eq. (12), this condition implies the value of Rc is 

independent of the axial position and is hence also the same at the column in- and outlet.  

 

In case of a mismatch between the in- and outgoing flow rate, the streamlines can be expected to either 

converge or diverge along the column axis because a mismatch between the in- and outgoing flow in the 

central column part will inevitably induce a net advective radial transport component. The latter is to be 

prevented for it will disturb the measured radial transport and lead to observed Drad-values deviating from 

the true radial dispersion rate prevailing in the absence of flow rate mismatch. In the latter case, the net 

flux of tracer across the split line can be written as: 

Flux = Ω∙Drad,true

<∆C>

R
+<Cc>∙∆Fc = Ω∙Drad,obs

<∆C>

R
 (13) 

wherein the radial dispersion through the mantle surface of the split line area (Ω = πRc
2) depends on the 

difference in radial tracer concentration <ΔC> and wherein the advective transport through this surface is 
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the product of the difference in central flow rate (ΔFc = Fc,in-Fc,out) and the average tracer concentration 

<Cc> in the central zone. Whereas Eq. (13) readily shows the observed Drad,obs will differ from Drad,true in 

the presence of a net advective transport going from the central to the peripheral region or vice-versa, it 

is of little practical use because there exist no simple expressions for <ΔC> and <Cc>. 

 

Unfortunately, mismatches in flow between the inlet and outlet are difficult to avoid, because this requires 

that the average flow resistances of the three peripheral connection tubing capillaries needs to be exactly 

the same as the flow resistance of the central connection tubing, on both the in- an outlet side. In part II, 

it is shown this is very difficult to realize in practice, especially when considering the connection tubing 

flow paths at the outlet need to pass through a detector. Other deviations result from errors on the read-

out of the mass flow meters, the inaccuracy of the pumped flow rate and thermal fluctuations. 

 

In below part, we show the results of a series of CFD simulations conducted to investigate the effect of 

flow rate mismatches by imposing an exactly known flow rate error (ΔFc = Fc,in-Fc,out) and subsequently 

comparing the measured with the true Drad-value (which is exactly known as it is imposed numerically). 

The mismatch was induced by introducing an additional pressure drop in either the central or peripheral 

outlet of the column to change the ratio of the relative central flow rate between the inlet and outlet of the 

column. The simulations show that an increase in pressure resistance at the peripheral outlet results in a 

higher relative central outlet flow rate, in turn resulting in a streamline pattern converging towards the 

central column outlet. Obviously, this affects the tracer concentration measured at the peripheral and 

central outlets. It was found that when Fc,out > Fc,in (i.e., central converging streamlines), an increased 

amount of peripheral streamlines (carrying lower concentrations of tracer) is going through the central 

outlet, thus decreasing the central outlet tracer concentration. The flow at the peripheral outlet will 

consequently only consist of the most outward streamlines (carrying the lowest concentration of tracer), 

such that also the peripheral outlet concentration will be decreased. Similarly, when Fc,out < Fc,in the central 

streamlines will gradually diverge along the column axis and an increased amount of central streamlines 

(carrying high concentrations of tracer) will leave the column through the peripheral column outlet. 

Because the outer streamlines of the central region carry a lower concentration of tracer compared to the 

most central streamlines (i.e., due to radial dispersion), the loss of the lowest concentrations leads to a 

situation where also the concentration in the central column outlet increases.  

 

Although the above observations (concentration values in central and peripheral outlet either both 

decrease or both increase upon a change in relative central flow rate at the column outlet) may appear 

unexpected, they do not violate the law of conservation of mass. Considering for example the case of 
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central converging streamlines, the decrease in tracer concentration in the central outlet is more than 

compensated by the increase in flow rate, resulting in a larger mass flux of tracer through the central 

outlet. Together with a lower peripheral mass flux (since both concentration of tracer and flow rate is 

decreased), the sum of both mass fluxes is still equal to the case without a flow ratio disturbance. 

 

The impact of the change in average central and peripheral concentrations on the extracted Drad-values 

is best visualized when interpreting the example C' versus t'-plot shown in Fig. 7, representing the same 

Rc/R = 0.5-case as considered in Fig. 3.  

 

Considering first the case of converging central streamlines (flow resistance in central outlet smaller than 

in peripheral outlet). In this case, the lower concentration in the central outlet (Ccent) results in the read-

out of a higher t', thus overestimating Drad (see green arrows added to Fig. 7). The lower Cperi on the other 

hand results in the read-out of a lower t' and hence underestimates the value of Drad. I.e., depending on 

the selected read-out method, the flow rate mismatch will either lead to an over- or an underestimation. A 

similar situation arises for the case with an increased central outlet pressure resistance (diverging central 

streamlines). This results in higher concentrations of tracer in both central and peripheral outlet. As shown 

by the green arrows in Fig. 7, this leads to an underestimation of Drad when using the Ccent-method and to 

an overestimation of Drad when using the Cperi-method. 

 

The above analysis has been repeated for a series of differently imposed flow rate mismatches, always 

using a total flow rates and a Drad,true-value corresponding to t' = 1.1·10-2. The final result is shown in 

Figure 8, plotting the ratio of the observed versus the true Drad (Drad,obs/Drad,true) as a function of the imposed 

error on the central outlet-to-inlet ratio for the different read-out methods represented in Fig. 3. The right 

hand side of this curve (relative central outlet flow rate higher than the relative central inlet flow rate, 

Fcentral,outlet>Fcentral,inlet) represents the case of central converging streamlines, the left hand side represents 

the case of central diverging streamlines (Fcentral,outlet<Fcentral,inlet). The C' versus t' plots needed to calculate 

Drad were always established using Eqs. (8-9) using the proper value of the split radius Rc as read-out at 

the inlet of the column. 

 

As can be noted, the overestimation of the Ccent-method and the underestimation of the Cperi-method (in 

the case of central converging streamlines) varies quasi linearly with the error on the central outlet-to-inlet 

flow ratio over the entire investigated range of relative flow mismatch rates. This is emphasized by the 

straight dotted lines added to guide the eye, and representing the linear best fit passing through the 

x=0-point at the Drad,obs/Drad,true=1-point. As the Drad,obs/Drad,true-values have been obtained via CFD-
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simulations where Drad,true and all flow rates are exactly known, these lines can now be used to correct the 

experimentally determined Drad-values for the experimentally observed flow mismatch, multiplying the 

observed Drad-value with the Drad,obs/Drad,true-ratio read-out from Fig. 8 for the corresponding relative flow 

mismatch. 

 

The quality of all Drad read-out techniques can now be compared, with the C-P method resulting in the 

smallest error (i.e., the cyan line lies closest to the hypothetical horizontal black line, representing the 

ideal case where no correction would be needed). Even more interesting to see is that the overestimation 

(or underestimation) factor of the Ccent method is almost equal to the underestimation (or overestimation) 

factor of the Cperi-method. This finding led us to the introduction of yet another read-out method, 

abbreviated by CPaverage. This method simply calculates the average of the Drad values read-out from the 

Ccent- and Cperi-calibration curves. The result is represented by the gray crosses in Fig. 8. These all lie 

very close to the perfect horizontal Drad,obs/Drad,true=1-line, implying the CPaverage-method allows to closely 

approach the true Drad, even when Fc,in ≠ Fc,out, i.e., even when the streamlines do not run perfectly parallel 

with the column axis. Considering the sensitivity study in Fig. 4, where the change in sensitivity of the 

Ccent-and the Cperi-method resulting from a change in Rc/R-value behave as “communicating vessels” 

(sensitivity gain of the one is nearly exactly matched by a concomitant loss of the other), it can also be 

inferred the sensitivity of the CPaverage-method will be roughly the same over the entire range of possible 

relative central flow rates (i.e., for all possible imposed Rc/R-value). This constitutes another important 

advantage. 

 

As discussed in Section 2, the sensitivity of the employed Drad read-out method depends on the value of 

t', and this value is to a large extent imposed by the system and cannot be chosen by the experimentalist. 

Additional CFD-calculations have therefore been made for two other t'-values: one larger and one smaller 

(resp. t' = 2·10-2 and t' = 5·10-3). The analysis of these measurements resulted plots of the Drad,obs/Drad,true-

value (results not shown) similar to Fig. 8. It was found that the slopes of the Drad,obs/Drad,true-error lines 

increased with about 5% for the lower value of t' (t' = 5·10-3), and decreased by 2-3% for the higher value 

of t' (t' = 2·10-2). (compared to the results shown in Fig. 8 where a value of t' = 1.1·10-2 is used). This holds 

for both the Ccent and Cperi-method. As a consequence, the impact of the difference in t' on the outcome of 

the CPaverage-method remained very small, confirming this method as the most accurate Drad read-out 

method.  

 

Obviously, the above only holds for the range of flow rate mismatches considered in Fig. 8 and one should 

be very cautious about making a linear extrapolation outside the investigated range. 



14 

5. Conclusions 

The end fitting pieces enabling to split the flow in a central cylindrical flow and peripheral annular sheath 

flow introduced a few years ago can be used to devise a method to determine the radial dispersion 

coefficient in liquid chromatographic columns. Using the device, a continuous injection of tracer through 

the central inlet of the column establishes a steady-state concentration profile with radially diverging tracer 

concentration (see Fig. 1). Once steady-state is reached, the tracer concentration measured in the central 

and peripheral outlet can be used to calculate Drad. The solution of the dispersion problem for an observer 

moving with the same speed as the tracer is giving by Eq. (9) and has led to the introduction of calibration 

curves (cf. the C' versus t' curves shown in Fig. 3), linking the measured normalized tracer concentrations 

to a dimensionless time t' = tR·Drad/R2, wherein Drad is then left as the only unknown. 

 

Using computational fluid dynamic (CFD) software, the proposed experimental approach (including the 

real-world effect of the finite segmentation ring thickness and the quasi inevitable occurrence of flow rate 

mismatches) was numerically simulated and the agreement with the analytical models was validated. It 

has been found that the presence of the flow distributor ring does not significantly disturb the measured 

value of Drad and the analytical model can be accurately used providing the split line (=the imaginary line 

separating the streamlines belonging respectively to the central and the peripheral flows running through 

the column) runs perfectly parallel to the column axis, i.e., provided Fc,in = Fc,out (which also implies that 

Fc,in = Fc,out). In case of a flow mismatch the C' versus t'- calibration curves can be best read-out via the 

CPaverage-method. This method combines the information of the central and peripheral outlet 

concentrations in a way that nearly perfectly compensates for the flow mismatch error. With this approach, 

the remaining error on the Drad-value is smaller than 3% over the entire range of investigated mismatches 

(FC,out max. 6% larger or smaller than FC,in).  

 

As a final comment, it should be noted the same approach could also be applied to measure the radial 

heat transfer coefficient (λrad), injecting heat instead of a tracer species, and measuring temperatures 

rather than concentrations. Knowing the value of λrad in chromatographic columns is also a timely problem 

because of the clear trend towards the use of ultra-high inlet pressures and the concomitant problem of 

radial temperature gradients that tend to affect column efficiency [32]. 
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Figure Captions 

 

Figure 1: (a) Schematic representation of the proposed Drad-measurement principle consisting of centrally injecting 

a tracer flow (blue) and measuring the tracer concentration in both the central (C) and peripheral flow (P). (b) Cross-

sectional view of the specially designed end-fitting pieces needed to conduct the experiment. Rc is the radius of the 

central flow zone. 

 

Figure 2: Normalized concentration profiles calculated using Eq. (7) as a function of the relative radius for seven 

values of the dimensionless time t' (t' = Drad·tR/R2) for the case of central tracer injection with relative radius 

Rc/R = 0.5. 

 

Figure 3: Relative tracer concentration C' in the central (Ccent) and peripheral (Cperi) outlet as a function of 

t' = tR·Drad/R2 for the case of a relative central injection radius (a) Rc/R = 0.5 and (b) Rc/R = 0.75. Additional 

combinations of both Ccent and Cperi are represented in dashed lines: Ccent-Cperi (C-P), Ccent·Cperi (C·P), Ccent+Cperi 

(C+P) and Ccent/Cperi  (C/P). The latter parameter is normalized with its maximal value at t' = 0 (814 for Rc/R = 0.5 

(a), and 295 for Rc/R = 0.75 (b)) to fit on the same normalized scale of the other parameters. The blue arrows added 

to (a) show the procedure to read out the value of t' at a given Ccent. 

 

Figure 4: Sensitivity curves dC'/dt'·t' versus t', displaying the sensitivity of the Drad read-out (using the C' versus t' 

plots shown in Figure 3) for the Ccent- and Cperi-method (full lines) as well as for the different composite measures 

considered in Fig. 3 (dashed lines). Relative central injection radius Rc/R = 0.5 (a) and Rc/R = 0.75 (b). 

 

Figure 5: Schematic representation of the flow pattern in a segmented parallel flow column with in- and outlet frits 

pierced by an impermeable ring (1). The streamlines (full lines) corresponding to the central (Fc) and peripheral (Fp) 

flow are separated by an imaginary split line (dashed line) positioned at a radius Rc. Width over length dimensions 

not to scale.  

 

Figure 6: Visualization of the contour plots of the spatial tracer distribution (radial position versus axial coordinate 

x) (a-d) and the flow streamlines (e-f) calculated by the computational fluid dynamics software Ansys Fluent® (see 

section 3). Both a column with (b/d/f) and without (a/c/e) a distributor ring is presented. (c-f) show a zoom-in of the 

column inlet, the region in which differences in flow streamlines and split radius is most pronounced. Tracer 

concentrations range from 0% (red) to 100% (blue). The x-axis (i.e., the column length) in figures (a-b) is 

compressed with a factor of 3.3 in order to aid visualization. The split line (at relative split radius of Rc/R = 0.5) is 

indicated by the dashed line (relative central flow rate (Fc,in/Ftot,in) equals 0.25). 

 

Figure 7: C' versus t' plot for the case of a relative central flow rate of 25% (corresponding to Rc/R = 0.5 with 

Rc = 1.19 mm and R = 2.39 mm). The effect of central converging (red arrows) and central diverging (green arrows) 

streamlines is shown on the Drad read-out of the Ccent and Cperi method. 

 

Figure 8: Plot of Drad,obs/Drad,true versus the imposed error on the central outlet-to-inlet ratio for the case of 

t' = 1.1·10-2.Positive x-values represent the case of central converging streamlines, negative representing the 

region with diverging streamlines. Colour code for the data points relates to the different methods that can be used 

to read-out the C' versus t' plots: Ccent (), Cperi(■), C-P (•), C+P (x), C/P (▲). The gray crosses represent the new 
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method introduced in the discussion of this figure: CPaverage (+). The horizontal black line represents the hypothetical 

perfect case where no correction is needed. Linear fits (dashed lines) are added to guide the eye. 
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