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Highlights: 

- Liver disease research relies to an important extent on the use of in vitro models. 

- Interdisciplinary collaboration will increase the translational value of primary hepatocyte 

cultures. 
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Abstract 

Liver disorders constitute a worldwide increasing problem. Both the study of the mechanisms 

underlying liver disease and the development of liver disease therapeutics heavily rely on the 

use of experimental models. Among those, human-based in vitro systems are more and more 

preferred over laboratory animals because of ethical reasons. Primary human hepatocytes and 

their cultures are still considered as the gold standard liver-based in vitro models, as they 

provide a good reflection of the in vivo situation. Nevertheless, these in vitro systems deal with 

the gradual deterioration of the differentiated morphological and functional phenotype. This 

can be overcome by following a number of strategies, such as by using spheroid/organoid and 

sandwich culture configurations. Further improvement in this area in view of enhancing overall 

translational value of primary human hepatocytes and their cultures warrants interdisciplinary 

collaboration.  
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At least 650 million people worldwide are affected by some form of liver disorder. In Europe, 

the prevalence of liver disease was estimated to be approximately 6%, which equals to about 

29 million people. The average European mortality rate for chronic liver pathologies is 14.3 per 

100.000 habitants, making it the fifth most common cause of death in Europe. This means that 

more than 70.000 Europeans are dying from chronic liver disease every year [1,2]. The 

European economic burden of liver disease is substantial and has been estimated at €645 per 

patient per month. Hospitalizations account for 50.6% of the overall direct costs per month, 

with 41.2% being attributed to treatment. In addition, patients and family caregivers lose on 

average 1.15 days of productivity per patient per month [1]. The only curative therapy for liver 

failure is transplantation. More than 5.500 liver transplantations per year are currently 

performed in Europe, costing up to €100.000 the first year and €10.00€ yearly thereafter [1,3]. 

Drug-related hepatotoxicity accounts for more than 50% of acute liver failure cases [4]. More 

than 1000 drugs have been associated with drug-induced liver injury, especially of the 

cholestatic type, including anti-infectious drugs, anti-diabetics, anti-inflammatory drugs, 

psychotropic drugs, cardiovascular drugs and steroids [5]. Drug-induced liver injury is a major 

reason of drug failure during pre-marketing and post-marketing phases, accounting for up to 

29% of all drug withdrawals [6]. Acute liver failure is responsible for 6% of all liver-related 

deaths and for 7% of all liver transplantations in Europe [7]. 

Driven by the epidemiologic relevance as well as the ubiquitous lack of efficient therapies, 

many teams, both in academic and industrial settings, have devoted their research to the 

characterization of appropriate druggable targets and/or the development of new liver disease 

therapeutics, but equally to the establishment of strategies to predict liver toxicity induced by 

drugs. Animal models play a pivotal role throughout these research efforts. A wide variety of 

animal models, mostly in rodents, is currently used for studying liver diseases, including acute 

liver failure [8], cholestatic disorders [9], non-alcoholic steatohepatitis [10], liver fibrosis and 
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cirrhosis [11], and different types of liver cancer [12]. They are typically based on the use of 

specific chemicals, well-defined diets, genetic modifications, surgical procedures or infection-

based strategies. Besides obvious ethical constraints and high costs, such animal models only 

reproduce some aspects of the corresponding human pathology because of interspecies 

differences. In this respect, it is well-known that a mere 50% of clinical human drug-induced 

liver injury cases can be predicted in rodents [13]. Even for seemingly generic processes, such 

as inflammation, the underlying mechanisms show poor correlation between rodents and human 

[14]. For these reasons, and in particular in view of increasing translational value, considerable 

attention has been paid, and is still being paid, to the use of human liver-based in vitro models.  

A vast number of state-of-the-art human-based in vitro models to study liver disease is available 

today. They can be roughly grouped in 2 main classes, namely liver-derived in vitro models 

and stem cell-derived in vitro models [15,16]. The latter have emerged over the past 2 decades 

and involve stem cells of various origin that can be differentiated in vitro to hepatocyte-like 

cells by exposure to specific cytokines and growth factors, thereby mimicking liver 

embryogenesis. Hepatocyte-like cells derived from stem cells have been found a promising 

model of liver steatotic disorders [17,18]. A major breakthrough in this field came with the 

introduction of the induced pluripotent stem cell technique [19]. However, although some 

groups showed their relevance [20,21], liver cells obtained from induced pluripotent stem cells 

are not the most appropriate in vitro systems for cholestasis research [22]. In general, great 

promise lies with stem cell-derived in vitro models for studying liver disease. Nevertheless, 

major challenges still need to be tackled, such as related to the efficiency of differentiation 

protocols and the homogeneity of resulting hepatocyte-like cell populations as well as their 

expression of the full repertoire of in vivo-relevant functional features.  

At present, liver-derived in vitro models seem better fit for liver disease modeling. They are 

diverse in nature, and range from precision-cut human liver slices, primary human hepatocytes 
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and human liver-derived cell lines all up to subcellular human liver fractions [15,16]. All these 

liver-based in vitro models differ in complexity and longevity, and have their own specific 

strengths and flaws (Table 1).  

Precision-cut human liver slices maintain liver architecture and thus overall cell-cell as well as 

cell-extracellular matrix interactions. Accordingly, they provide a good reflection of the hepatic 

in vivo situation [23,24]. Precision-cut human liver slices have been shown appropriate for 

studying cholestatic disorders [25]. The preparation of precision-cut human liver slices requires 

quite some technical skills. Moreover, the viability of precision-cut human liver slices is limited 

to a couple of days, therefore impeding the study of long-term effects [15].  

Human-based liver cell lines are typically derived from liver cancers, in particular 

hepatocellular carcinoma. Because of their growth capacity, they provide a virtually unlimited 

cell supply [26]. Cell lines are easy to use and typically yield highly reproducible testing results. 

However, although exceptions exist, such as holds for the human hepatoma HepaRG cell line 

that has a good biotransformation and drug transporter capacity [27], most liver cell lines show 

aberrant functionality and morphology due to their carcinogenic origin, which jeopardizes in 

vivo relevance [15]. Nonetheless, liver cell lines have shown their value in studying liver 

steatosis [28] and cholestasis [29].  

Subcellular liver fractions are popular systems because of their ease of use. Among those are 

microsomes and S9 factions, which are obtained by centrifugating human liver homogenates at 

100.000g and 9.000g, respectively. Microsomes contain most of the hepatocyte’s endoplasmic 

reticulum, including cytochrome P450 biotransformation enzymes. For this reason, microsomes 

are abundantly used in early drug development, in particular for metabolite profiling and 

cytochrome P450 biotransformation enzyme inhibition and induction studies [30]. However, 

their applicability for investigating liver disease is minimal, as their composition strongly 

deviates from in vivo liver cyto-architecture [15].  
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Isolated primary hepatocytes and their cultures are still considered as the gold standard liver-

based in vitro model, because they provide a good reflection of the hepatic in vivo situation. 

Nonetheless, they cope with the gradual loss of the differentiated phenotype at the functional 

and morphological level. This so-called dedifferentiation process is triggered during the 

isolation of primary hepatocytes from human liver, which routinely relies on a 2-steps 

collagenase perfusion technique. By consecutively abolishing cell-cell and cell-extracellular 

matrix interactions, proliferative and inflammatory responses are initiated, both that drastically 

suppress the expression of liver-specific factors, such as cytochrome P450 biotransformation 

enzymes. This dedifferentiation event starts within minutes after the start of the isolation 

procedure and progressively manifests upon subsequent cultivation of hepatocytes, which limits 

their use for long-term testing purposes [15,16]. A number of strategies has been introduced  to 

counteract hepatocyte dedifferentiation in an attempt to set up culture systems that can be 

applied for extended periods of time. Such anti-dedifferentiation strategies typically strive to 

re-establish the in vivo micro-environment of hepatocytes. One of those approaches includes 

the restoration of cellular contacts by culturing primary hepatocytes in a tridimensional 

configuration in so-called spheroids [31] (Figure 1). This may even be combined by co-

culturing of primary hepatocytes with other liver cell types, whether or not in the presence of a 

scaffold, yielding organoids [32]. Primary hepatocytes, either freshly isolated or cryopreserved, 

in spheroid culture functionally express liver-specific features, including cytochrome P450 

biotransformation enzymes and drug transporters, for several weeks. They have been shown to 

be eminent systems for studying cholestasis [33], liver fibrosis [34] and steatosis [35]. Spheroid 

cultures of primary human hepatocytes can monitor delayed cholestatic effects, and can 

distinguish between adversity and homeostatic adaptation [33]. Furthermore, they allow to pick 

up interindividual differences in responses towards disease and toxicity, which is highly 

clinically relevant [36]. Another anti-dedifferentiation strategy includes the cultivation of 
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primary human hepatocytes between 2 layers of extracellular matrix components, such as 

collagen. Such sandwich culture systems enable primary hepatocytes to regain their polarity 

and cyto-architecture, which in turn favors their functional capacity [37] (Figure 1). As holds 

for spheroid cultures, sandwich cultures of primary human hepatocytes can be used for several 

weeks, in particular for investigating cholestatic events [38]. 

In recent years, the primary hepatocyte users and research field has witnessed several new 

exciting developments to enhance longevity and functionality of freshly isolated or 

cryopreserved primary hepatocytes in culture, thus increasing their translational value. Among 

those are genetic [26] and epigenetic [39] modifications, both that alter gene transcription of 

primary hepatocytes in favor of the differentiated phenotype. A more pragmatic approach 

includes the combination of anti-dedifferentiation strategies, and, in particular, the involvement 

of expertise other than cell biology. Such interdisciplinary efforts are key to advance this field 

forward. Of specific interest is the area of bio-engineering, which has already resulted in a 

number of advanced liver-based in vitro models, namely human liver bioreactors [40] and 

human liver chips/microphysiological systems [41], by implementing state-of-the-art 

technological features, such as microfluidics and in-built sensors to monitor hepatocyte 

functionality and disease responses in real-time. Nonetheless, many challenges still lie ahead, 

including providing such state-of-the-art in vitro models with microbiota, which have emerged 

in the past few years as major players in liver disease [42,43]. Another aspect that deserves 

further scrutiny includes the accurate modeling of interindividual susceptibility towards liver 

disease and toxicity. This is critical to predict idiosyncratic drug-induced liver injury [44], and 

more in general to advance personalized toxicology/medicine. Research in these directions in 

the upcoming years, including induced pluripotent stem cell technology [45], should be strongly 

encouraged and will not only necessitate further interdisciplinary efforts, but equally 

intersectoral collaboration, in particular between academia and (pharmaceutical) industry. 
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Figure and table legends 

Figure 1: Spheroid/organoid and sandwich cultures of primary human hepatocytes. 

 

Table 1: Liver-based in vitro models. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

Table 1 

Strenghts Flaws Translational value 

Precision-cut human liver slices  

Preservation of liver structure - Requires high technical skills 

- Limited viability 

+++ 

Primary human hepatocyte cultures  

May be cryopreserved 

 

- No preservation of liver 

structure 

- Cope with progressive 

dedifferentiation 

+++ 

Human liver-derived cell lines  

- Unlimited cell supply 

- Highly reproducible test 

results 

- Originate from 1 single donor 

- May be dedifferentiated 

+ 

 Subcellular human liver fractions  

- Readily available 

- Easy to use 

No preservation of liver 

structure 

- 

 

 

 

 

 

 


