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Abstract 22 

The origin of the peak skewness that can be observed when applying the deconvolution method to 23 

isolate the diffusion process from the flow processes for peak parking experiments conducted under 24 

conditions of slow radial equilibration and strong trans-column velocity gradients was investigated. 25 

Numerical simulations were carried out for a variety of trans-column velocity profiles and a broad range 26 

of experimental conditions and system parameters were investigated. Results show that, under the 27 

aforementioned conditions, the traditionally employed variance subtraction method displays a 28 

consistent error which follows the dynamics of the diffusive relaxation during both the peak parking and 29 

the flow steps. It is also found that, under the same conditions, the peak deconvolution method is 30 

bound to produce deconvoluted “parking-only” peaks that are strongly asymmetric, despite the 31 

perfectly symmetric nature of the pure diffusion process marking this parking step. It is shown that this 32 

asymmetry is acquired during the flow step following the parking stop. During this step, parked and non-33 

parked peaks are deformed in different ways, despite being subjected to the same trans-column velocity 34 

profile. This different deformation cannot be filtered away with the deconvolution or the variance 35 

subtraction method, hence introducing an error. Solutions to alleviate the peak skewness and the 36 

variance error consist of parking the peak close to the inlet or the outlet or exiting the parked peak 37 

through the column inlet (flow reversal method). Under the considered conditions, these approaches 38 

could reduce the error on the measured effective diffusion coefficient up to 87%. Carrying out the 39 

variance subtraction or the deconvolution process with a peak that has also been parked for a 40 

substantially long parking time instead of using a “no-parking” peak as is customary done, is another 41 

option to counter the effect.  42 

 43 

Keywords: deconvolution ; effective diffusion coefficient; numerical simulation; peak parking; peak 44 

symmetry ; radial heterogenity 45 

 46 

1. Introduction 47 

Peak parking experiments [1-9] were introduced in the field of chromatography after a taxi ride 48 

discussion between Knox and Giddings [10] and have since then played a crucial role in the 49 

interpretation of the band broadening data measured on a chromatography column. The measurement 50 

produces a value for the effective diffusion coefficient Deff. This is not only a direct measure for the 51 
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longitudinal diffusion or B-term band broadening, but, via the use of the effective medium theory, also 52 

allows to determine the value of the intra-particle diffusion coefficient [11,12]. This not only determines 53 

the Cs-term contribution but also influences the eddy-dispersion term [13]. Peak parking experiments 54 

also play an important role in the flow reversal method established by Felinger to determine dispersion 55 

losses in column fittings [14,15]. 56 

In brief, the traditional peak parking experiment uses Einstein’s law of diffusion to determine Deff from 57 

the difference in spatial variance 2 between an experiment with and one without peak parking and 58 

the duration tpp of the parking process [16]: 59 

      Deff= 2/2.tPP     (1) 60 

The spatial variance 2 in Eq. (1) is obtained by multiplying the time variance with the square of the 61 

velocity of the retained peak when flowing through the column [16]. 62 

The direct reason for the present study was our interest in the peak skewness that was observed during 63 

peak parking experiments conducted with analytes displaying a low effective diffusion in a reversed-64 

phase particle packed column (see Fig. 1 for an example). This skewness compromises the use of the 65 

peak widths conventionally used to determine the peak’s variance (e.g., peak width at half height, 4- or 66 

5-width), as these assume a Gaussian peak shape. The alternative approach to calculate the peak’s 67 

variance, i.e., via the second order central moment, is also encumbered by the skew of the peak as it is 68 

generally more difficult to find the correct starting and end point of the peak when it is tailing or 69 

fronting [17,18]. The obvious solution to attenuate the skewness problem, i.e., using longer parking 70 

times, is in many cases not practical either because of the unaffordable waiting times. In addition, the 71 

longer waiting times also increase the probability of baseline shifts which can have a detrimental effect 72 

on the accuracy of the method of moments [19]. One approach to deal with such skewed peaks is to 73 

model them with an exponentially modified Gaussian (EMG), describing the symmetrical part of the 74 

peak shape with the classic variance 2 and representing the skewness using a relaxation parameter  75 

[18]. However, there is no physical link between this model and the true physics of the process, nor is 76 

there a theoretical framework that can be used to interpret the value of the -parameter which 77 

nevertheless contains an important part of the information on the peak shape. Attempting to remove 78 

the undesired skewness of the peak, we also tested the so-called deconvolution method [20,21], 79 

deconvoluting the parked peak with the peak signal obtained when the parking time is either zero or 80 

very small (see Eqs. (9) and (10) further on for the deconvolution procedure). The idea behind this 81 
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approach is that it would filter out the band broadening acquired by the peak while flowing through the 82 

column, leaving only the band broadening acquired during the actual parking period. Given this 83 

broadening is exclusively originating from the longitudinal molecular diffusion, which is a perfectly 84 

symmetrical process, it was expected the deconvoluted peak would have been perfectly symmetrical as 85 

well and hence much easier to quantify than the original skewed peak. However, as can be noted in Fig. 86 

1, this was not the case, and the deconvoluted peak displayed a clear skew (cf. the difference with the 87 

best-fit Gaussian peak (dashed curve) in Fig. 1). The skew was even more pronounced than the skew of 88 

the original non-deconvoluted parked and non-parked peaks shown in Fig. S-1 of the Supporting 89 

Material (SM).  90 

The hypothesis underlying the present study is that the observed skewness originates from radial trans-91 

column velocity gradients, in turn induced by radial gradients in packing density and the wall effect 92 

[22,23]. We surmise this because the theory used to interpret peak parking experiments (the variance 93 

method as well as the deconvolution method) is based on a 1-dimensional representation of the 94 

diffusion process, ignoring the existence of any radial concentration gradients. In case of slowly diffusing 95 

molecules and significant radial packing quality and density gradients, the trans-column velocity profile 96 

induced by the latter can be expected to give rise to significant radial concentration gradients, whose 97 

presence can be suspected to invalidate the 1D-simplification.  98 

To investigate this hypothesis, a detailed view on the formation of the peak shape during the different 99 

steps of the peak parking process is needed. The investigation is therefore carried out numerically, 100 

studying the time-dependent solution of the complete advection-diffusion mass balance in cylindrical 101 

coordinates: 102 

 
𝜕𝐶

𝜕𝑡
= −𝑢(𝑟)

𝜕𝐶

𝜕𝑥
+ 𝐷𝑎𝑥

𝜕2𝐶

𝜕𝑥2
+ 𝐷𝑟𝑎𝑑 (

𝜕2𝐶

𝜕𝑟2
+

1

𝑟

𝜕𝐶

𝜕𝑟
) (2) 

where 𝑢(𝑟) is the velocity, which varies across the column’s cross-section, and 𝐷𝑎𝑥 and 𝐷𝑟𝑎𝑑 are the 103 

axial and radial dispersion coefficients, respectively. As specified in Section 2.2, these parameters were 104 

chosen to lump the properties of both the mobile and stationary phase, thus including their dependence 105 

on retention. Note that the original 3D cylindrical column geometry is reduced here to a 2D geometry 106 

because of the assumed angular symmetry, a common simplification for packed bed columns [22].  107 

A broad variety of different trans-column velocity profiles is considered. In the main text, all results 108 

relate to either a pure parabolic profile or a profile taken from literature [23,24] and commonly 109 

accepted as a realistic profile for the side-wall region of state-of-the-art packed bed columns (referred 110 
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to as “side-wall“). In the SM, however, a panoply of other shapes is considered. For the sake of 111 

simplicity, it is assumed the profiles remain unchanged along the column axis. Please note the 112 

considered velocity profiles only represent a relatively small deviation from the plug flow character of 113 

the flow (e.g., the parabolic flow profile in Fig. 2a does not tend to a zero velocity near the walls as is the 114 

case in Poiseuille flow through an open tube but tends to a velocity that is only a few % smaller than in 115 

the center). 116 

2. Numerical and experimental methods 117 

2.1 Experimental methods for peak parking experiments 118 

Peak parking experiments were performed on an Ultimate 3000 HPLC system from Dionex (now Thermo 119 

Scientific, Germering, Germany) equipped with a high-pressure pump, an autosampler and UV/VIS 120 

variable wavelength detector with a flow cell of 11 µL. The overall system volume was 20 µL. The 121 

sampling rate was set at 40 Hz. Chromeleon software (Thermo Scientific) was used for data acquisition 122 

and instrument control. The injection volume was 1 µL and the column temperature was kept constant 123 

at 30°C using a Spark Mistral oven (Emmen, Netherlands). The detection wavelength was set at 254 nm. 124 

HPLC grade acetonitrile (ACN) was obtained from Fisher Chemicals (Merelbeke, Belgium). Milli-Q water 125 

was prepared in the lab using a Milli-Q gradient water purification system from Millipore (Bedford, MA, 126 

USA). Caffeine was from Sigma-Aldrich (Diegem, Belgium). A Zorbax Stable Bond C18 column (4.6 × 100 127 

mm, 3.5µm) was obtained from Agilent Technologies (Diegem, Belgium). A stock solution of caffeine was 128 

prepared in Milli-Q water in a concentration of 10.000 ppm and refrigerated. Fresh samples with a 129 

concentration of 1000 ppm were prepared daily in the mobile phase. The mobile phase consisted of 130 

ACN/H2O (5/95, v/v). Caffeine was injected into the column at a flow rate of 0.5 mL/min. When the 131 

compound reached the middle of the column, the flow was stopped for 150 min. Afterwards, the flow 132 

was resumed and the analyte peak eluted from the column towards the detector. 133 

2.2 Numerical methods for peak parking simulations 134 

Peak parking experiments were simulated by solving the time-dependent advection-diffusion problem in 135 

cylindrical coordinates, as given by Eq. (2). This was done by means of an in-house written MATLAB® 136 

code, implementing an implicit finite element method [25], with a grid spacing of 10 𝜇𝑚 and a time step 137 

of 50 𝑚𝑠. 138 

Since the subject of this study is the effect of radial heterogenities on the trans-column level, the 139 

concentration profiles were not resolved on the level of individual pores and particles. Instead, the 140 
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parameters of Eq. (2) were chosen to lump the properties of both the mobile and stationary phase, such 141 

that the advection term was written in terms of the retained velocity (𝑢 = 𝑢0 (1 + 𝑘)⁄ , where 𝑢0 is the 142 

unretained velocity and 𝑘 is the retention factor) and the diffusion terms were written in terms of the 143 

effective dispersion coefficients (which depend on the retention factor as well), both axial and radial. 144 

Furthermore, for the sake of computational efficiency, the peak’s center of mass was kept at the center 145 

of the computational domain (𝑥 = 0) by subtracting the mean velocity from the velocity fields given 146 

below. 147 

In the case of the parabolic flow profile, the velocity is given by (see Fig. 2a): 148 

 𝑢(𝑟) =
𝑢0

1 + 𝑘
(1 − 𝜔

𝑟2

𝑟𝑐
) (3) 

Where 𝜔 is the relative velocity difference (𝜔=u/u) between axis and wall, and 𝑟𝐶  is the column radius. 149 

In the case of the side-wall flow profile, the velocity is given by (see Fig. 2b): 150 

 𝑢(𝑟) =
𝑢0

1 + 𝑘
(1 + 𝜔𝑇𝐿𝑂𝑃𝐿 ⋅ exp (

𝑟 − 𝑟𝑐

𝑑𝑝
) − 𝜔𝑊𝐷𝑅𝑃𝐿 ⋅ exp (

𝑟 − 𝑟𝑐

6𝑑𝑝
)) (4) 

Where 𝜔𝑇𝐿𝑂𝑃𝐿 and 𝜔𝑊𝐷𝑅𝑃𝐿, respectively, are the relative velocity differences resulting from the ‘thin 151 

and loose orderly packed layer’ and the ‘wide and dense randomly packed layer’, as described in [23] 152 

and [24], and 𝑑𝑝 is the particle diameter. With 𝜔𝑇𝐿𝑂𝑃𝐿 = 1.50 and 𝜔𝑊𝐷𝑅𝑃𝐿 = 0.50, this flow profile has 153 

a ‘velocity well’ of Δ𝑢/𝑢 = 0.23 (see Fig. 2b). 154 

In addition, a simulation was done with a plug flow profile (𝑢 = 𝑢0 (1 + 𝑘)⁄  for all 𝑟), to validate the 155 

accuracy of the performed simulations. 156 

An overview of the simulation parameters is given in Table 1. Unless otherwise specified, the parameter 157 

values given here apply to all results discussed in Section 3. Note that during the peak parking regime of 158 

the simulations, 𝑢0 was set to zero and 𝐷𝑎𝑥 and 𝐷𝑟𝑎𝑑 were both set to 𝐷𝑒𝑓𝑓 (as diffusion is the only 159 

source of dispersion under these conditions).  160 

2.3 Data analysis and deconvolution 161 

At each time step of the simulations, the concentration profile’s zeroth, first, second and third order 162 

moment (𝑀0, 𝑀1, 𝑀2 and 𝑀3) were computed, from which the peak’s variance (𝜎2) and skewness (𝛾) 163 

were subsequently derived (note that the peak’s center of mass was kept at 𝑥 = 0): 164 
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 𝑀𝑛 = ∭ 𝑥𝑛𝐶 ⋅ 𝑑𝑉
 

𝑉

= ∬ 𝑥𝑛𝐶 ⋅ 2𝜋𝑟𝑑𝑟𝑑𝑥
 

𝑉

 (5) 

 𝜎2 =
𝑀2

𝑀0
   (6) 

 𝛾 =
𝑀3/𝑀0

𝜎3
 (7) 

Furthermore, the concentration profile was recorded at three steps: at the beginning of the peak 165 

parking, at the end of the peak parking and as the peak exited the column. From this data, the peak 166 

shape was computed by integrating over the column’s cross-section: 167 

 𝑓(𝑥) = ∬ 𝐶(𝑥, 𝑟) ⋅ 𝑑𝑆
 

𝑆

= ∫ 𝐶(𝑥, 𝑟) ⋅ 2𝜋𝑟𝑑𝑟
 

𝑆

 (8) 

The peaks resulting from simulations with (𝑓𝑤𝑖𝑡ℎ 𝑃𝑃) and without (𝑓𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑃𝑃, see further on) peak 168 

parking were then deconvoluted in MATLAB®, using the 𝑓𝑓𝑡 (Fast Fourier Transform) and 𝑖𝑓𝑓𝑡 (Inverse 169 

Fast Fourier Transform) functions, analogous to the method described in [21]. 170 

Firstly, the Fourier transform F() of both peaks was computed: 171 

 𝐹(𝜉) = ∫ 𝑓(𝑥)𝑒−𝑖𝜉𝑥 ⋅ 𝑑𝑥
+∞

−∞

 (9) 

Secondly, the two computed spectra were divided, and the deconvoluted curve in the space domain f(x) 172 

was computed as the inverse Fourier transform of the resulting spectrum: 173 

 𝑓𝑃𝑃(𝑥) =
1

2𝜋
∫

𝐹𝑤𝑖𝑡ℎ 𝑃𝑃(𝜉)

𝐹𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑃𝑃(𝜉)
𝑒𝑖𝜉𝑥 ⋅ 𝑑𝜉

+∞

−∞

 (10) 

As both 𝐹𝑤𝑖𝑡ℎ 𝑃𝑃 and 𝐹𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑃𝑃 tend to zero as the wavenumber (𝜉) tends to infinity, the division in Eq. 174 

(10) is error-prone, leading to spurious oscillations in the resulting deconvolution. Therefore, the 175 

deconvolution method involves a curation step, in which the spectrum values above a chosen cut-off 176 

wavenumber (𝜉𝐶𝑂) are discarded. Note that this computational issue is less pronounced in numerical 177 

results than it is in experimental results, because of the lack of noise affecting the spectra. 178 

3. Results and discussion 179 

Before proceeding, it is important to note that the examples shown here relate to cases of very strong 180 

axial and/or very slow radial dispersion, i.e., for cases where the time needed for the axial flow process 181 

is much shorter than the time needed for radial equilibration. From the Taylor-Aris dispersion theory 182 
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[26], the time constant in the exponential of the slowest converging term (which could be used as proxy 183 

for the characteristic time for radial equilibration) is known to be given by (see also discussion of Eq. (20) 184 

further on): 185 

 𝜏𝑟𝑎𝑑 =
1

58.7

𝑑𝑐
2

𝐷𝑟𝑎𝑑
 (11) 

Thus, considering the parameter values given in Table 1, the residence time in the absence of peak 186 

parking (𝑡𝑅 = 10 𝑚𝑖𝑛) is clearly insufficient for radial equilibration (𝜏𝑟𝑎𝑑 = 23 𝑚𝑖𝑛). This is a case that 187 

in practice can be expected to occur in case of poorly packed columns displaying a strong trans-column 188 

velocity profile and slowly diffusing molecules.   189 

3.1 Example and general problem description 190 

Fig. 3 and 4 show the concentration contour plots and their corresponding radially averaged 191 

concentration profile for the parabolic (Fig. 3) and the side-wall profile (Fig. 4) at three different 192 

moments in time: just before and just after the peak parking process (resp. panels a,e and panels b,f) 193 

and at the end of the column (panels c,g). The initial peak (column inlet) was in all cases a perfectly 194 

rectangular band with a width of 20 𝜇𝑚 and peak parking was carried out exactly halfway the column. 195 

For the sake of comparison, the profiles obtained at the end of the column in the absence of peak 196 

parking are given in panels d,h.  197 

As can be noted from panels a,e, the bands are under the presently considered conditions significantly 198 

warped when arriving at the parking position and then axially and radially spread into a perfectly 199 

rectangular shape by the end of the parking period (panels b,f). The band subsequently warps again 200 

during the subsequent flow trajectory towards the column end (panels c,g), during which it deforms 201 

according to the prevailing trans-column velocity profile.  202 

As is customarily done, the information about the shape of the concentration distributions shown in 203 

Figs. 3-4 has been quantified (and condensed) via their variance (2) and skewness (𝛾). These are shown 204 

in Fig. 5 as a function of the time for the case with and without peak parking. Please note that the 205 

dashed part of the curve shown for the “no-parking”-case does not represent any physical process, but 206 

just reflects a jump in time added to have the BC-trajectories directly underneath each other to facilitate 207 

their comparison (the true time coordinate for the BC-trajectory in the “no parking”-case is hence equal 208 

to the time on the x-axis minus the duration of the peak parking in the case with peak parking).  209 
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Fig. 5a and 5d show that, as expected, the increase of the variance with time in the first flow part (AB 210 

trajectory) is the same for the cases with and without peak parking. An important difference can, 211 

however, be noticed in the second flow part (BC trajectory), where the increase of the band’s variance 212 

with time is clearly less steep after an intermediate peak parking step than it is in the “no parking”-case 213 

(cf. the zoom of Fig. 5a in Fig. 5b). In the latter case, the evolution of 2 with time during the BC-214 

trajectory is the mere continuation of the (ever-steepening) relation between variance and time already 215 

marking the AB-trajectory. This ever-steepening trend is a direct reflection of the fact that, for time 216 

scales shorter than 𝜏𝑟𝑎𝑑 (cf. Eq. (11)), 2 is known to vary with a power >1 (initially this power is even 217 

exactly = 2 [27]). In the case with peak parking, the band broadening process during the BC-trajectory 218 

restarts from a radially uniform band (at least when the parking time is several times larger than 𝜏𝑟𝑎𝑑), 219 

as is the case in the AB-trajectory. Since the 2-evolution is fully determined by the shape of the band at 220 

the onset of the dispersion process [26], 2 can hence be expected to follow exactly the same trend as in 221 

the AB-trajectory. The relation between 2 and time is less steep than in the later stages marking the BC-222 

trajectory of the no-parking case, hence explaining why the 2-evolution is steeper in the no-parking 223 

case than in the case with peak parking. 224 

The fact that the growth in variance during the AB-trajectory is the same with and without peak parking, 225 

while it is clearly larger in the subsequent BC-trajectory in the no-parking case automatically implies that 226 

the variance gained during the uninterrupted flow trajectory AC as experienced in the no-parking case is 227 

not equal to but larger than the sum of the variances of the two flow processes AB and AC. 228 

Mathematically, this can be expressed as follows (2 is the variance in space coordinates): 229 

    AC,no parking
2  > AB

2  +BC,with parking
2    (12) 230 

Eq. (12) reflects the well-established fact that the variances of successive individual dispersion processes 231 

are only strictly additive when these are independent of each other [28]. Flow systems displaying a 232 

radial velocity gradient and a slow radial equilibration are a classic example where this independency is 233 

not respected [29]. In the “no parking” experiment, molecules that were either residing in a slow or a 234 

fast-moving region in the AB-trajectory will under the presently considered conditions to a very large 235 

extent also still do so in the BC-trajectory. In other words, the dispersion history they experience in the 236 

two subsequent processes is not independent. In the run with peak parking stop, analytes starting their 237 

BC-trajectory have the opportunity to completely “forget” their flow history in the AB-trajectory 238 
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provided the stop lasts long enough to achieve complete radial equilibration, such that in this case the 239 

additivity assumption is valid (cf. Eq. (13a) further on). 240 

Further introducing tot,with PP
2  and tot,no PP

2  as the variances measured at the end of the column 241 

respectively with and without peak parking, and  PP
2  as the true variance acquired during the parking 242 

process, we can write:  tot,with PP
2  = AB

2 + PP
2  +BC

2          (13a) 243 

    tot,no PP
2  = AC,no PP

2       (13b) 244 

With Eq. (12), it is then straightforward to note:  245 

PP,measured
2 = tot,with PP

2 − tot,no PP
2  < PP

2   (14) 246 

In other words, the fact that the increase in variance during the BC-trajectory in general depends on the 247 

band variance and band shape acquired during the preceding processes invalidates the classic approach 248 

adopted to determine PP
2  from the difference in variance between a run with and without peak 249 

parking in cases where the flow process leads to a strong radial warp of the band shape, as is the case in 250 

the present example.  251 

Turning now to the skewness of the band, it can be verified from Figs. 3 and 4 that the skewness 252 

acquired by the peak during the BC trajectory is clearly smaller than that acquired during the AB 253 

trajectory (compare skewness between panels e and g) despite the flow process underlying this skewing 254 

is the same. This is essentially caused by the fact that the peak width and shape during the BC-trajectory 255 

is for a large part determined by the (symmetrical) broadening acquired during the parking process, such 256 

that the (asymmetrical) broadening originating from the flow process has a relatively smaller impact on 257 

the band shape than it did in the AB-trajectory, which started from a much narrower and consequently 258 

more easily deformable band.  259 

The above can be assessed in a more quantitative form from the plots of the evolution of the band’s 260 

skewness (𝛾) with time as represented in Figs. 5c and 5f. Please note that the side-wall and the parabolic 261 

flow profiles lead to a different sign of 𝛾, resp. displaying a negative and a positive skew. In the side-wall 262 

profile case, the most significant deviation from the mean velocity is the tailing velocity near the wall. As 263 

the fronting part immediately next to the wall is too small to counter this effect, it is indeed obvious to 264 

observe a tailing band (and hence a negative skew). In case of the parabolic flow profile, the incurred 265 

skewness is substantially smaller than in case of the side-wall flow profile. This seems to be related to 266 

the much more gradual variation of the radial velocity profile. 267 
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Considering now first the runs with peak parking, it is in both cases observed that the skewness of the 268 

band at the end of the BC-trajectory is much smaller than that incurred during the AB-trajectory, as a 269 

direct consequence of the band straightening effect of the peak parking process. In agreement with 270 

physical expectations, we also see the skewness at the end of the “no-parking” runs is much higher 271 

(=further away from zero) than the skewness of the bands subjected to an intermediate parking stop, as 272 

an obvious consequence of the fact that the former did not undergo the radial equilibration effect of the 273 

peak parking process. 274 

3.2 Deconvolution method 275 

Addressing now the use of the deconvolution process as a potential solution to remove the skewing 276 

effect of the flow trajectories AB and BC, the black curves in Fig. 6a,b show the band shapes obtained by 277 

deconvoluting a band recorded at the column’s end after a parking stop with a “no parking” band. As 278 

can be noted, the deconvoluted band deviates from the perfect Gaussian shape (gray curves) expected 279 

based on the perfectly symmetrical nature of the diffusion-only band broadening process experienced 280 

during the parking stop. For the side-wall flow profile, the deviation is relatively small, although the 281 

presence of a part with negative values of the deconvolution curve is certainly disturbing. Especially not 282 

given the high accuracy of the numerical simulations, implying the negative part of the curve cannot be 283 

considered as a measurement artefact. The latter can be appreciated from Fig. S-2, where a similar 284 

exercise is made for the case of a pure plug flow transcolumn velocity profile. As can be noted, the 285 

resulting deconvoluted curve representing the “parking only” band broadening is perfectly Gaussian in 286 

this case, without any negative values on the curve. For the parabolic flow profile, the deconvoluted 287 

peak can even be categorized as strongly non-Gaussian, given the strong pattern of wiggles at its right-288 

hand side. The observed asymmetries are also no numeric artefacts, as can be witnessed from the 289 

perfectly symmetrical gray curves in Fig. 6a-b. These are obtained by deconvoluting the band obtained 290 

immediately after the parking process (panels c,f in Fig. 3-4) with the band just prior to the parking 291 

process (panels b,e in Fig. 3-4). Please note that this deconvolution exercise is not possible in practice, as 292 

the required information about the in-column band shape is not available to the experimenter. This 293 

impediment is not present in the current simulation study, allowing us to show the deconvolution 294 

process is indeed capable of isolating and hence demonstrating the pure symmetric nature of the 295 

diffusion process, despite the strongly asymmetric shape of the input profiles (see e.g., Fig. 4h). 296 

However, this is only possible if no other, dependent processes are involved.  297 
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Mathematically, this can be understood as follows. Adopting the ∗-notation for the convolution 298 

operator [29], the functions describing the peak observed at the end of a run with peak parking and one 299 

without peak parking can respectively be written as: 300 

fwith parking= fAB*fPP*fBC,with parking     (15a) 301 

fno parking= fAC,no parking =fAB*fBC,no parking    (15b) 302 

wherein the individual f’s on the right-hand side of the equations represent the different band 303 

broadening processes experienced by the band during the AB-, BC- or AC-trajectories or during the peak 304 

parking events.  305 

Next, it is a well-established fact that the shape of a band undergoing a deformation by a laminar flow 306 

process will remain to depend on its initial shape as long as the radial concentration gradients are not 307 

completely wiped out by radial equilibration, as already remarked when explaining the different BC
2-308 

trajectories in Figs. 5a,d. Considering then that the BC-trajectory in the case with peak parking starts 309 

from a perfectly rectangular and radially homogenized band (panels b,f in Fig. 3-4) while the BC-310 

trajectory in the case without peak parking starts from the warped band marking the end of the AB-311 

trajectory (panels a,e in Fig. 3-4), it readily follows that the peak transformations fBC,with parking and fBC,no 312 

parking will be different: 313 

    fBC,with parking  fBC,no parking      (16) 314 

Subsequently switching to the Fourier-domain, where the deconvolution process reduces to a mere 315 

division (see Eqs. (9) and (10)):   316 

         (17) 317 

it can easily be understood that the deconvoluted parking peak (fPP,measured-peak, obtained by back-318 

transforming FPP,measured via Eq. (10)) will not reflect the true (symmetrical) diffusion process, as the 319 

division on the right hand side of Eq. (17) will not entirely remove the FBC-factors. Note that the capital F 320 

in Eq. (17) represents the Fourier-transforms of the corresponding lower-case f in Eq. (15).  321 

When deconvoluting the profiles in the b-panels of Figs. 3-4 with those in the a-panels (which is the 322 

process leading to the perfectly Gaussian gray curves in Fig. 6), the FBC-factor is not present, and in this 323 

case the deconvoluted signal exactly reflects the diffusion-only process: 324 

𝐹𝑃𝑃,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝜉) =
𝐹𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑘𝑖𝑛𝑔(𝜉)

𝐹𝑛𝑜 𝑝𝑎𝑟𝑘𝑖𝑛𝑔(𝜉)
=

𝐹𝐴𝐵(𝜉). 𝐹𝑃𝑃(𝜉). 𝐹𝐵𝐶,𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑘𝑖𝑛𝑔(𝜉)

𝐹𝐴𝐵(𝜉). 𝐹𝐵𝐶,𝑛𝑜 𝑝𝑎𝑟𝑘𝑖𝑛𝑔(𝜉)
  𝐹𝑃𝑃(𝜉) 
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         (18) 325 

With the above, it can be ascertained that the asymmetry of the deconvoluted peaks represented by the 326 

black curves in Fig. 6 arises from the difference in band deformation after the parking process, and not 327 

from any asymmetry created during the peak parking process itself. Despite the strong radial warp of 328 

the peak at the start of the peak parking, the radial concentration gradients marking its shape clearly do 329 

not lead to any distortion of the axial diffusion process, which proceeds in a perfectly symmetrical and 330 

Gaussian manner (cf. the gray curves in Fig. 6). 331 

Admittedly, none of the black curves in Fig. 6 is a close fit to the experimentally observed fPP,measured-peak 332 

shown in Fig. 1 and lying at the origin of the present study. However, the huge diversity in the 333 

deformation patterns observed in Figs. S-3 and S-4 of the SM for a broad variety of other transcolumn 334 

velocity profiles shows how sensitive the deconvoluted curve is to the exact shape of the radial velocity 335 

distribution. A good agreement between simulation and experiment will hence only be possible 336 

provided the simulation exactly uses the true radial velocity profile. In practice, however, the latter is 337 

unknown such that a good agreement can only be obtained by “guessing” the right profile (and hoping 338 

the radial velocity profile remains more or less constant along the axis, for this would add another 339 

variable to the problem). In fact, one could think of using the agreement (if found) to infer the actual 340 

radial velocity profile.  341 

Please note when comparing Fig. 1 with the profiles in Fig. 6, that the latter plots are plotted in the x-342 

domain such that the front and tail end of the peak are switched. In the SM, the bands shown in Fig. 6 343 

are represented in the time domain (cf. fig. S-5 of the SM).  344 

The degree of distortion to which the deconvoluted fPP,measured-peak is subjected can be expected to be 345 

directly linked to the degree of deformation the peak undergoes during the flow trajectories. This is 346 

illustrated in Figs. 7a,c, showing the fPP,measured-peak is more strongly distorted when the radial velocity 347 

gradient increases in strength. In case of the parabolic flow profile, the deformation effect is very 348 

pronounced, cf. the huge wiggles appearing on the peak’s right-hand side. 349 

From the discussion of Figs. 5 and 6, the degree of distortion of the fPP,measured-peak can also be expected 350 

to depend on the peak parking time. This is illustrated in Figs. 7b,d. The blue curves represent a case 351 

where the peak parking time is considerably larger than in the reference case in Fig. 6. In this case, the 352 

distortive part of the devonvolution (cf. division of 𝐹𝐵𝐶,𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 and 𝐹𝐵𝐶,𝑛𝑜 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 in Eq. (17)) is 353 

𝐹𝑃𝑃,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝜉) =
𝐹𝑎𝑓𝑡𝑒𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔(𝜉)

𝐹𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔(𝜉)
=

𝐹𝐴𝐵(𝜉). 𝐹𝑃𝑃(𝜉)

𝐹𝐴𝐵(𝜉)
=  𝐹𝑃𝑃(𝜉) 
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‘overshadowed’ or ‘smoothened’ by the diffusive part of the deconvolution (cf. 𝐹𝑃𝑃 in Eq. (17)), resulting 354 

in a peak that appears Gaussian. 355 

When the peak parking time is considerably shorter (red curves), the resulting 𝑓𝑃𝑃,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑-peak could 356 

be expected to be relatively undistorted as well, because of the smaller difference between 357 

𝐹𝐵𝐶,𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 and 𝐹𝐵𝐶,𝑛𝑜 𝑝𝑎𝑟𝑘𝑖𝑛𝑔. However, since there has been less axial diffusion (𝐹𝑃𝑃) to 358 

overshadow or smoothen the distortion, the peak appears especially distorted instead. Furthermore, 359 

when parking times are extremely short, a regime is hit wherein the deconvolution method has to 360 

reconstitute a peak that is extremely narrow (as a reflection of the small degree of extra band 361 

broadening the peak parking process has caused). The back-transformation of such narrow peaks is 362 

known to be plagued by the Gibbs-phenomenon [20], which arises from the need to filter the Fourier 363 

spectrum by means of a cut-off wavenumber. The Gibbs-phenomenon also introduces a pattern of 364 

wiggles, which, however, should not be confused with the wiggles caused by the deformation caused by 365 

a parabolic flow profile. Unlike the latter, which clearly only appear on one side of the peak, the Gibbs-366 

wiggles are more symmetrical. Both phenomena can hence be relatively easily distinguished (e.g., the 367 

wiggles appearing in Fig. 7d are clearly related to the Gibbs phenomenon, as they appear in equal 368 

amounts on both sides of the band). A thorough discussion of the conditions under which the Gibbs-369 

wiggles appear during peak deconvolution is given in [21]. The difference in peak width between the 370 

peaks with and without parking in the case leading to the red curves in Figs. 7b,d falls within the 371 

criterion established in that study, hence explaining the occurrence of the Gibbs-wiggles.  372 

The distinction between the Gibbs phenomenon and the effect of the flow profile rules out that this 373 

effect is a result of filtering the Fourier spectrum. This is further supported by Fig. S-6 of the SM, 374 

demonstrating the choice of a suitable cut-off wavenumber. 375 

3.3 Variance substraction method 376 

Leaving now the peak deconvolution technique for the more customary practice of variance subtraction, 377 

the aforementioned effect of parking time and magnitude and shape of the radial velocity gradient are 378 

quantified and expressed in Fig. 8 as the difference between the true variance of the parking-only 379 

process (PP
2 ) and the actually measured one (via Eq. (6)): 380 

 Δ𝜎𝑃𝑃,𝑒𝑟𝑟𝑜𝑟
2 = Δ𝜎𝑃𝑃

2 − Δ𝜎𝑃𝑃,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 = 2𝐷𝑒𝑓𝑓𝑡𝑃𝑃 − Δ𝜎𝑃𝑃,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

2  (19) 
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As can be noted, the PP,error
2 -values as defined in Eq. (19) are consistently positive, in full agreement 381 

with the < sign in Eq. (14). Physically, this implies that when the band experiences a radial velocity 382 

profile during its progress through the column, the concomitant peak parking experiment can be 383 

expected to lead to an underestimation of the true peak parking variance, and hence also of the true 384 

effective diffusion coefficient (Deff), because the subtraction in Eq. (14) overestimates the band 385 

broadening incurred during the BC-trajectory of a parked peak. In most practical cases the 386 

underestimation of Deff is insignificant, but this is no longer true in cases of large transcolumn velocity 387 

gradients and slow radial equilibration such as those considered here.  388 

In agreement with physical expectations, Figs. 8a,c show how PP,error
2  grows with increasing radial 389 

velocity difference in the presently considered case of slow radial equilibration. The parabolic profile 390 

clearly increases much more rapidly with Δ𝑢 𝑢⁄  than the side-wall profile (cf. the difference in scale of 391 

the x-axis of Fig. 8a and 8c), in full agreement with the fact that the latter is in essence much flatter than 392 

the parabolic profile. In both cases, the relation between ΔPP,error
2  and Δ𝑢 𝑢⁄  was found to be 393 

quadratic, in agreement with the Taylor-Aris dispersion theory [26]. 394 

The error obviously also grows with increasing parking time because, the larger this time, the more 395 

strongly the radial deformation experienced in the AB-trajectory will be countered. For very large 396 

parking times, this effect however levels off because in this regime the radial equilibration of the band is 397 

complete, in which case the difference in variance gained during the BC-trajectory has reached its 398 

maximum. Note that although the absolute error on Δ𝜎𝑃𝑃
2  increases with the peak parking time, the 399 

relative error actually decreases, because Δ𝜎𝑃𝑃
2  itself increases linearly. This result agrees with the 400 

discussion of Figs. 7b and 7d, where the deconvolution’s distortion becomes less significant as the peak 401 

parking time increases. 402 

Since the PP,error
2 -value is directly linked to the radial diffusive equilibration, it is evident to see its 403 

dependency on the parking time exactly follows the dynamics of the radial diffusion process. Solving the 404 

transient radial diffusion equation, it can be shown the degree of radial equilibration can generally be 405 

written as a summation of exponential decay functions [26]: 406 

 Δ𝜎𝑃𝑃,𝑒𝑟𝑟𝑜𝑟
2 = ∑ 𝛼𝑛(1 − exp(−𝛽𝑛𝑡𝑃𝑃))

∞

𝑛=1

 (20) 

wherein n (with n=1,2,…) is the proportionality constant in the exponential decay function describing 407 

the radial diffusive relaxation process in the nth-term of the summation and wherein n is the amplitude 408 
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of the same term. According to theory, 𝛼𝑛 is related to the deformation of the band during the AB- and 409 

BC-trajectories, and 𝛽𝑛 = 4𝑗1,𝑛
2 ⋅ 𝐷𝑟𝑎𝑑 𝑑𝑐

2⁄ , where 𝑗1,𝑛 is the nth zero of the Bessel function 𝐽1. In 410 

particular, the first (and ‘slowest') term of Eq. (20), for which 𝛽1 = 58.7 ⋅ 𝐷𝑟𝑎𝑑 𝑑𝑐
2⁄ , can be considered as 411 

a good proxy for the characteristic time for radial equilibration (cf. Eq. 11).  412 

Depending on the shape of the velocity field, this series either converges very rapidly (1st term is 413 

dominant), as is the case for the parabolic profile, or very slowly, as is the case for the side-wall profile. 414 

In the latter case, the need to involve a large number of terms gravely complicates the determination of 415 

the n-values by numerical fitting as in the present study. To circumvent this fitting problem, the fitting 416 

as shown in Figs. 8b,d was limited to only three terms. In the parabolic case, it was found that 𝛼1 ≫417 

𝛼2, 𝛼3, whereas 2 and 3 were of a more significant nature in the side-wall profile case.  418 

In case of the parabolic velocity field, where the velocity gradient spans the entire column cross-section, 419 

the first term is clearly dominating, such that the evolution of ΔPP,error
2  can be represented with a good 420 

degree of accuracy by the simpler: 421 

 Δ𝜎𝑃𝑃,𝑒𝑟𝑟𝑜𝑟
2 = 𝛼(1 − exp(−𝛽𝑡𝑃𝑃)) (21) 

Fitting Eq. (21) to the numerical data in Fig. 8b, the fitted 𝛽-value (𝛽 = 64.3 ⋅ 𝐷𝑟𝑎𝑑 𝑑𝑐
2⁄ , 𝑅2 = 0.9998) 422 

differs slightly from the theoretically expected value of 𝛽1 = 58.7 ⋅ 𝐷𝑟𝑎𝑑 𝑑𝑐
2⁄ . This difference is most 423 

probably due to the interference from the higher order terms, which are small but not zero. 424 

Likewise, the 𝛼-value could be determined by fitting Eq. (21) to the numerical data in Fig. 8b. By 425 

repeating this for various values of all relevant parameters, 𝛼 could be modelled as a function thereof. 426 

Apart from the 𝛼~Δ𝑢² dependency shown in Fig. 8a, 𝛼 was found to depend on the radial dispersion (cf. 427 

dependency on Drad and dc
2), but the characteristic time here is linked to the duration (tAB, tBC) of the two 428 

flow processes instead of the duration of the parking process. Based on the fitted 𝛼-values, the 429 

following expression was obtained: 430 

 α =
1

6
Δ𝑢²𝑡𝐴𝐵𝑡𝐵𝐶 exp (−58.7

𝐷𝑟𝑎𝑑

𝑑𝑐
2 √𝑡𝐴𝐵𝑡𝐵𝐶) ,   𝑤𝑖𝑡ℎ Δ𝑢 = 𝜔

𝑢0

1 + 𝑘
 (22) 

Given the physical meaning of 1 (=dependent on the initial band shape), the dependency on tABtBC 431 

makes perfect sense since these are the parameters controlling the degree of peak deformation (band 432 

warp) and hence also the shape of the band at the start of the different steps in the peak parking 433 

process. The fact that tABtBC appears as their product indicates the duration of the AB-trajectory and the 434 
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BC-trajectory have a similar impact on this process. Or at least, it indicates that, when either one of 435 

them turns to zero, the error turns to zero as well.  436 

3.4 Possible solutions to minimize the effect 437 

The fact that tAB and tBC only appear as their product also implies that, since tAB + tBC =fixed, the error on 438 

PP,measured
2  is largest when tAB = tBC, i.e., when the peak is parked in the middle of the column. And it 439 

would be minimal if either tAB or tBC would be minimal, i.e., when the peak would either be parked very 440 

close to the inlet or very close to the outlet. This is verified in Figs. 9a,c (red curves), showing the effect 441 

by means of the deconvoluted peaks. The curves for parking at the inlet vs parking at the outlet overlap 442 

perfectly, thus reflecting the interchangeability of tAB and tBC in Eq. (g4). The overlap is perfect in case of 443 

both considered flow profiles. The deconvoluted peaks are also significantly less distorted than in the 444 

mid-column parking case. For the examples under consideration, PP,error
2  values drop from 445 

0.495 𝑚𝑚² to 0.276 𝑚𝑚² in the case of the parabolic flow profile and from 0.483 𝑚𝑚² to 0.284 𝑚𝑚² 446 

in the case of the side-wall flow profile.  447 

Inspired by the recent flow reversal work of Felinger and Gritti [15,30], a close inspection of Eq. (22) also 448 

suggests an even more powerful approach to reduce the error on PP,measured
2 , i.e., by making both tAB 449 

and tBC as small as possible. In practice, this involves parking the band close to the inlet, and then 450 

reversing the flow such that the band exits again along the nearest exit (which originally was the column 451 

inlet). The blue curves in Figs. 9a,c indeed confirm this (PP,error
2 -values now drop to 0.065 𝑚𝑚² in the 452 

case of the parabolic flow profile and to 0.100 𝑚𝑚² in the case of the side-wall flow profile). As a side 453 

note, this approach also causes the sign of the error to change, thus slightly overestimating instead of 454 

underestimating the effective diffusion coefficient. 455 

Considering that the root cause of the error on PP,measured
2  is a difference in band deformation 456 

experienced after the parking process, another way to reduce this difference, and hence PP,error
2 , 457 

consists of replacing the “no parking” concentration profile that is normally used to eliminate the effect 458 

of the flow trajectories by one that has also already experienced a substantial parking time. This is 459 

illustrated in Figs. 9b,d, showing that the deconvoluted peak obtained when deconvoluting a peak with a 460 

parking time of 160 min with one obtained after a parking time of 80 min is clearly much more 461 

symmetrical than the peak obtained after deconvoluting a peak with a parking time of 80 min with one 462 

obtained after a zero parking time experiment (PP,error
2  values drop from 0.495 𝑚𝑚² to 0.014 𝑚𝑚² 463 

in the case of the parabolic flow profile and from 0.483 𝑚𝑚² to 0.007 𝑚𝑚² in the case of the side-wall 464 
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flow profile). In the terminology used in Eq. (17), this can be understood by noting that deconvoluting 465 

the parking peak with another parking peak (one relating to a shorter parking time), the difference 466 

between the two FBC-values that in that case appear in the division in Eq. (17) will be smaller than when 467 

deconvoluting the parking peak with a “no-parking” peak as is customarily done. When determining 468 

𝐷𝑒𝑓𝑓 via linear regression of a (Δ𝜎²,𝑡𝑃𝑃)-plot, the customary approach in literature [1-9], this approach 469 

can be mimicked by only fitting those data points with a sufficiently long peak parking time (i.e., several 470 

times 𝜏𝑟𝑎𝑑) and discarding the others. 471 

4. Conclusions 472 

Peak parking experiments carried out with slowly diffusing analytes (𝜏𝑟𝑎𝑑 > 𝑡𝑅) in columns displaying a 473 

strong trans-column velocity profile (e.g., parabolic flow profile with Δ𝑢/𝑢 > 0.02 or side-wall flow 474 

profile with Δ𝑢/𝑢 > 0.10) can lead to an inherent error on the determined Deff-value when using the 475 

variance subtraction method, or, equivalently, lead to skewed parking-only peaks when using the 476 

deconvolution method. I.e., the intrinsically perfectly symmetrical diffusion process marking the 477 

parking-only step nevertheless leads to an asymmetrical deconvoluted “parking-only”-peak. Depending 478 

on the exact shape of the trans-column velocity profiles, this skewness can be accompanied by strong 479 

oscillations (comprising strongly negative “concentration” values) marking one side of the peak. These 480 

oscillations differ from the more familiar Gibbs phenomenon (which only occurs when the difference in 481 

peak width between the parked and the non-parked peak becomes too small). 482 

The Deff-error and the skewness and oscillations marking the “parking-only”-peak are caused by the fact 483 

that the distortion of the band incurred after the parking stop is not the same as incurred along the 484 

same trajectory, but without preceding parking stop. Consequently, the “no parking” peak cannot be 485 

used to perfectly filter away the flow dispersion effects on the parked peak case, thus leading to an 486 

overcorrection and hence distortion of the (intrinsically Gaussian) “parking-only”-peak. The difference in 487 

band deformation during the post-parking trajectory is in turn due to the fact that, under conditions of 488 

slow radial equilibration, the evolution of a band’s shape strongly depends on its initial shape. And the 489 

initial shape at the start of the post-parking trajectory differs strongly between a parking and a no-490 

parking case. In the former it has a rectangular, radially uniform shape as acquired during the long 491 

parking period, while in the latter is has the strongly warped shape with which it ended the pre-parking 492 

trajectory.  493 
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The exact skewness and shape of the deconvoluted “parking-only”-peak depends strongly on the exact 494 

shape of the trans-column velocity profile, making it very difficult to exactly model the effect because 495 

this profile is unknown and might also vary along the column axis. 496 

The error and skewness grow with increasing radial velocity difference, with increasing length of the 497 

pre- and post-parking distances as well as with increasing parking time (although this trend levels off to 498 

a quasi-constant value such that the relative error on Deff decreases). The two last observations can be 499 

used to suggest a number of solutions to alleviate the problem. These involve parking the peak either 500 

close to the inlet or the outlet or, even better, parking it close to the inlet and exiting it through the 501 

same column inlet using the flow reversal method, at least provided the Deff-measured at these locations 502 

can be considered representative for the rest of the bed. It is known from literature Replacing the “no-503 

parking” peak by a parked peak collected after a substantially long parking time is another option to 504 

counter the effect. 505 
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Figure captions 594 

Figure 1. (a) Deconvoluted “parking-only peak” (solid line) as obtained under the experimental conditions 595 

described in the main text, as compared to the best Gaussian fit (dashed line). (b) Zoom-in of (a). 596 

Figure 2. Velocity profiles considered in the present study: (a) the parabolic flow profile (Δ𝑢/𝑢 = 0.04) 597 

and (b) the side-wall flow profile (Δ𝑢/𝑢 = 0.23) (adapted from [23] and [24]).  598 

Figure 3. Concentration profiles (a-d) and peak shapes (e-h) resulting from the parabolic flow profile: (a,e) 599 

at the beginning of peak parking, (b,f) at the end of peak parking, (c,g) as the peak exits the column and 600 

(d,h) idem as (c,g), but in the absence of peak parking. (Δ𝑢/𝑢 = 0.04) 601 

Figure 4. Concentration profiles (a-d) and peak shapes (e-h) resulting from the side-wall flow profile: (a,e) 602 

at the beginning of peak parking, (b,f) at the end of peak parking, (c,g) as the peak exits the column and 603 

(d,h) idem as (c,g), but in the absence of peak parking. (Δ𝑢/𝑢 = 0.23) 604 

Figure 5. Evolution of the peak’s variance (a,d) and skewness (c,f) as a function of time. Panel (b) shows 605 

a zoom of panel (a). Panel (e) shows a schematic of the AB-, BC- and AC-trajectories in simulations with 606 

(top) and without peak parking (bottom). 607 

Figure 6. Deconvolution of the peak shapes with and without peak parking (black), as compared to the 608 

deconvolution of the peak shapes before and after peak parking (gray). 609 

Figure 7. Deconvolution of the peak shapes with and without peak parking (a,c) for various values of the 610 

relative velocity difference (parabolic: Δ𝑢/𝑢 = 0.02 (blue), Δ𝑢/𝑢 = 0.04 (black), Δ𝑢/𝑢 = 0.08 (red); 611 

realistic: Δ𝑢/𝑢 = 0.12 (blue), Δ𝑢/𝑢 = 0.23 (black), Δ𝑢/𝑢 = 0.47 (red)) and (b,d) for various values of 612 

the peak parking time (𝑡𝑃𝑃 = 10 𝑚𝑖𝑛 (red), 𝑡𝑃𝑃 = 40 𝑚𝑖𝑛 (black), 𝑡𝑃𝑃 = 80 𝑚𝑖𝑛 (blue)). 613 

Figure 8. Error on the band broadening caused by peak parking (a,c) as a function of the relative velocity 614 

difference and (b,d) as a function of the peak parking time. The simulation data (dots) are fitted (line) 615 

with a quadratic equation in panels (a) and (c), and with three terms of Eq. (20) in panels (b) (𝛼1 =616 

0.48 𝑚𝑚², 𝛼2 = 0.01 𝑚𝑚² and 𝛼3 = 0.01 𝑚𝑚²) and (d) (𝛼1 = 0.26 𝑚𝑚², 𝛼2 = 0.04 𝑚𝑚² and 𝛼3 =617 

0.20 𝑚𝑚²). 618 

Figure 9. (a,c) Deconvolution of the peak shapes with and without peak parking, simulating different 619 

experimental set-ups: parking at the midpoint of the column, parking at either 1/6 or 5/6 of the 620 

column’s length (red) and parking with flow reversal (blue). (b,d) Deconvolution of the peak shapes 621 
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using different peak parking times: deconvoluting 𝑡𝑃𝑃 = 80 𝑚𝑖𝑛 with respect to 𝑡𝑃𝑃 = 0 𝑚𝑖𝑛 (black) 622 

and deconvoluting 𝑡𝑃𝑃 = 160 𝑚𝑖𝑛 with respect to 𝑡𝑃𝑃 = 80 𝑚𝑖𝑛 (green). 623 
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Figure 5 640 
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Figure 7 648 
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Table 1. Parameters of the peak parking simulations. 660 

parameter symbol value 

column diameter 𝑑𝑐 4 𝑚𝑚 

column length 𝐿𝑐 100 𝑚𝑚 

dispersion coefficient (axial) 𝐷𝑎𝑥 1𝑒 − 9 𝑚2/𝑠 

dispersion coefficient (radial) 𝐷𝑟𝑎𝑑 2𝑒 − 10 𝑚2/𝑠  

effective diffusion coefficient 𝐷𝑒𝑓𝑓 2𝑒 − 10 𝑚2/𝑠 

particle diameter 𝑑𝑝 5 𝜇𝑚 

peak parking time 𝑡𝑃𝑃 80 𝑚𝑖𝑛 

relative velocity difference 𝜔, 𝜔𝑇𝐿𝑂𝑃𝐿 and 𝜔𝑊𝐷𝑅𝑃𝐿 0.04, 1.50 and 0.50 

retention factor 𝑘 5 

unretained velocity 𝑢0 1 𝑚𝑚/𝑠 
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Abstract 680 

In this Supplementary Material, we provide figures to support the discussion in the main text. 681 
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 683 

Figure S-1. (a) Peak recorded after 150min peak parking experiment recorded under the conditions 684 

described in the experimental section (b) “no parking” peak (=peak recorded after a 1min parking time) 685 

used for the deconvolution of the 150min parking peak leading to the deconvoluted “parking-only” peak 686 

shown in Fig. 1 of the main text. Dashed curves are the best fitting Gaussian curves added as a reference. 687 

 688 
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Figure S-2. Deconvolution of the peak shapes with and without peak parking (cf. Fig. 6) in the case of plug 689 

flow, resulting in a Gaussian peak shape. 690 

 691 

 692 

Figure S-3. Deconvolution of the peak shapes with and without peak parking (black), as compared to the 693 

deconvolution of the peak shapes before and after peak parking (gray) (cf. Fig. 6). Three cases are shown, 694 

each of them having a stepwise flow profile (Δ𝑢/𝑢 = 0.03). 695 

 696 

 697 

Figure S-4. Deconvolution of the peak shapes with and without peak parking (black), as compared to the 698 

deconvolution of the peak shapes before and after peak parking (gray) (cf. Fig. 6). Three cases are shown: 699 

the ‘reverse’ flow profiles are obtained by changing the sign of the velocity difference, the ‘simplified’ 700 

flow profile is obtained by having 𝜔𝑇𝐿𝑂𝑃𝐿 = 0 in Eq. (4). 701 
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 702 

Figure S-5. Variant of Fig. 6 in the main text, plotted in the time domain. 703 

 704 

 705 

Figure S-6. (a,c) Division of the Fourier spectra with and without peak parking (cf. division in Eq. (10)). 706 

(b,d) Deconvolutions computed based on different cut-off wavenumbers. Red: low cut-off (𝜉𝐶𝑂 =707 

250 𝑚−1), resulting in Gibbs phenomenon. Green: suitable cut-off (𝜉𝐶𝑂 = 750 𝑚−1), as shown in e.g. Fig. 708 

6. Blue: high cut-off (𝜉𝐶𝑂 = 1250 𝑚−1), resulting in spurious oscillations. Note that any cut-off 709 

wavenumber between 500 𝑚−1 and 1000 𝑚−1 is suitable, resulting in a deconvolution similar to the 710 

green curve. 711 


