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Abstract

In adsorption based separation techniques or in environmental applications

where adsorption on a porous matrix is involved, the broadening of migrating

bands of solutes varies with the characteristics of the adsorption isotherms.

For nonlinear Langmuir (L) adsorption isotherms, the displacement speed of

the solutes decreases when their concentration in the mobile phase increases,

inducing a sharpening of the frontal part of the spatial concentration peak

and a tailing at its back. A reverse effect, i.e. formation of a shock layer at

the back and widening at the frontal part of the spatial concentration peak,

is obtained for nonlinear anti-Langmuir (AL) isotherms typically observed in

overloading conditions at high analyte concentrations. We and is generally

overwhelming at solute concentrations deep in the non-linear region. We

introduce here a novel concept to minimize concentration overloading dis-

persion: We show theoretically that a spatial alternation of Langmuir (L)

and Anti-Langmuir (AL) zones along the displacement direction induces an

accordion effect, i.e. an alternation of sharpening and dilution of the solute

zones, reducing in the end the final broadening of the peak. To do so, we
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develop a model describing the displacement of a given solute in a porous

matrix alternating L and AL adsorption zones and We quantify in the pa-

rameter space of the problem the reduction in band broadening concentration

overloading related band widening of the L-AL system compared to the pure

L or AL cases. A numerical analysis of the solute transport reveals a depen-

dence of solute spreading on the ratio of sample to plate stationary phase

zone widths and on the intensity of the adsorption parameter. The initial

position of the sample solvent in its surrounding liquid i.e. whether the dis-

placement starts in a L or AL zone is also shown to have an influence on the

dispersive behavior. An optimization analysis is performed to highlight the

optimal alternance geometry to minimize solute spreading.

Keywords: Heterogeneous porous media, Langmuir adsorption,

anti-Langmuir adsorption, accordion effect, chromatography, spreading,

peak tailing

1. Introduction

In porous media, understanding the transport of solutes that can adsorb

on the porous matrix is of importance for environmental applications as, for

instance, in carbon capture and sequestration [1], oil recovery [2] or contam-

inant remediation in subsurface systems [3, 4]. In chemical and pharmaceu-

tical engineering, processes such as chromatographic separation of solutes

from a mixture also exploit transport and adsorption in porous systems to

obtain high purity compounds [5, 6]. Such adsorption or interaction based

separation methods are versatile and well suited for the rapid production of

milligrams to tons of products [2, 7, 8]. Such techniques often require multi-
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component separation, an initial maximum as high as possible concentration

is desired to avoid further costly or even analyte degrading steps to remove

the solvent.

In the above applications, the solutes present in a given liquid sample

displaced by a miscible displacing fluid in the porous matrix can be retained

on the solid phase following the reversible adsorption-desorption step [9]

Am 

ka

kd

As. (1)

Here, Am and As represent the solute molecules in the mobile and stationary

phases respectively, where their concentrations are equal to cm and cs, while

ka and kd are the adsorption and desorption kinetic constants. During the

displacement, the solutes are progressively separated because of a selective

adsorption of the components on the porous matrix . However, the selectivity

of the separation process can be impaired by dispersion mixing processes

which cause a broadening of the solute bands and thus possible overlap

between the peaks while dispersion causes broadening of the solute bands

[9, 5]. In this context, a general goal of the applications mentioned above

is to minimize this band broadening concentration overloading related band

widening by choosing appropriate operating conditions exploiting variable

solute interactions with the porous matrix.

The spreading of solutes in a porous matrix is dependent on the adsorp-

tion isotherm cs = f(cm) expressing the dependence of the solute concen-

tration in the stationary phase cs on its concentration in the mobile phase

cm [6, 10]. For the linear adsorption isotherm, cs = Kcm, where K = ka/kd

is the equilibrium constant of the adsorption-desorption processes. The so-

lute retention is then characterized by the retention factor k = FK, where
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linear

anti-Langmuir

Langmuir

Figure 1: (a) Linear, Langmuir and Anti-Langmuir isotherms with their typical corre-

sponding peak shapes.

F = Vs/Vm = (1 − εtot)/εtot is the phase ratio of the volume Vs and Vm of

the stationary and mobile phases, where εtot is the total porosity or void

volume fraction of the porous medium. When the hydrodynamic dispersion

and mass transfer limitations are not strong, the linear isotherms result in

symmetric solute profiles (see Fig.1). They can typically be used only if the

amount of solutes in the sample is sufficiently low [11, 12]. In numerous ap-

plications however, the concentration of a component in the stationary phase

at equilibrium depends nonlinearly on its concentration in the mobile phase

[13]. For a monolayer adsorption, the simplest nonlinear adsorption models

are given by Langmuir and anti-Langmuir adsorption isotherms [14].

Langmuir Isotherm

The Langmuir isotherm assumes that, on the porous matrix, there is

only a fixed number of sites on which the molecules can adsorb and that

these molecules do not interact with the neighbouring sites. The amount of

solute needed to saturate the stationary phase in the column thus depends
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on the nature of the porous matrix and fixes the saturation capacity of the

stationary phase reached when all sites are occupied. The corresponding

Langmuir isotherm is expressed as [14]:

cs =
Kcm

1 + bLcm
, (2)

where K is the initial slope of the isotherm, bL is a term related to the adsorp-

tion energy; K/bL = csat is the monolayer capacity and where bL = K/csat

represents the rate at which the stationary phase concentration cs saturates to

the saturation capacity csat and K is the associated adsorption equilibrium

constant. Because of this nonlinear adsorption, the velocity of the solute

propagation in the mobile phase increases with cm. This is due to the fact

that, when all the adsorption sites are occupied at a sufficiently high concen-

tration, the non-retained solutes at the area of local saturation migrate with

a narrow velocity distribution (related to the parabolic flow profile) around

the unretained velocity of the mobile phase. Meanwhile the upstream re-

tained solutes experience a much broader distribution of velocities around

the average retained velocity as a consequence of the continuous switching

between the adsorbed and desorbed states. As a result, a shock layer (SL)

forms in the course of time at the frontal interface of the peak [11, 12]. This

SL is a thin region of space where the concentration varies continuously but

rapidly, and that propagates as a constant pattern [15]. At the rear interface,

on the other hand, a rarefaction wave (RF) corresponding to an expanding

wave is formed [16] (see Fig.1). On the long term, these two nonlinear waves

end up interacting with each other to form an asymptotic triangular peak

with a SL at the front, which is a peculiar feature of the Langmuir adsorption

isotherm [6, 17].

5



Anti-Langmuir Isotherm

The anti-Langmuir isotherm is observed in presence of adsorbate-adsorbate

interactions favoring further adsorption [18, 19]. Such a cooperativity over-

loading effect induces an adsorption curve opposite to that of the Langmuir

isotherm i.e. cs increases more rapidly with an increase in cm (Fig.1). The

anti-Langmuir adsorption isotherm is expressed as

cs =
Kcm

1− bAL cm
, (3)

where bAL is the adsorption parameter. This isotherm is valid provided

cm ≤ cth = 1/bAL where cth corresponds to the threshold concentration of the

column. Because of the increased adsorption at larger cm, the velocity of the

solute in the mobile phase is smaller in the zones of larger concentrations,

which results in the formation of a SL at the rear interface and of a RF wave

at the frontal interface [20, 21]. Anti-Langmuir isotherms feature therefore

asymptotic triangular peaks with a SL at the back (see Fig.1).

The Langmuir (L) or Anti-Langmuir (AL) models give an appropriate rep-

resentation of the adsorbed behaviour in many systems [22]. Because of the

nonlinear adsorption properties, the tailing at either the rear (L) or frontal

(AL) part of the spatial concentration profile enhances the band broadening

concentration overloading related band widening and thus impairs the resolu-

tion of solute separation or the efficiency of pollution remediation or instance.

Efforts are thus being developed to eliminate or reduce the peak tailing effects

[23].

Deviations to such tailing can be observed in the case of heterogeneous

porous matrices [24, 25, 26] containing different zones where the interaction
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of the solid phase with the solute is different. The bi-Langmuir or multi-Langmuir

isotherms, the competitive Langmuir isotherm, the Tóth isotherm, and the

Freundlich isotherm are a few examples of other models that are then most

often used [9, 6]. The simplest model for a heterogeneous adsorption surface

is a surface covered with patches exhibiting two different kinds of retention

property. The patches are created by covering the surface with different

chemical groups which may exhibit a similar interaction isotherm with the

solute but with different retention parameter or may exhibit entirely different

adsorption isotherms. An example of such surface is found with the chiral

stationary phases (CSP) where there is selective retention of one enantiomer

with respect to the other one, thus different enantiomers of the same solute

show different affinity to the CSP [27]. Alternatively, sharpening of the

sample band by applying solvent of modifier gradients using mobile phase

gradients of solvent or modifier gradients is a well-known approach to reduce

the sample band width [28].

On a heterogeneous surface with two different adsorption sites, the peak

tailing originating from interaction with both sites is enhanced if one of

the adsorption site is weaker than the other one because the molecules are

held for a considerable time on the strongly adsorbing site. Thus when

desorption occurs, the bulk of the solute zone has already passed over,

resulting in the build-up of a tailing part in the concentration profile [29, 30].

A radial heterogeneity can also influence peak tailing in relation to the

column efficiency [31].

An experimental study of heterogeneous surfaces with micropillar array

chips reveal a significant increase in band broadening due to disordered arrays

7



[32]. The contribution of heterogeneity of support structures flow-through

channels has also been demonstrated in an experimental study using ordered

and disordered pillar arrays wherein dispersion was measured. Because of

the ability to observe dispersion through the transparent glass lid with high

precision inside pillar array columns, the effects of overloading have also been

clearly observed and these negatively influenced the separation performance

[33]. The concentration at which overloading dispersion occurs can be increased

as the available specific surface is increased, for which several manufacturing

methods are available [34, 35]. This approach however does not fundamentally

solve the problem that, at a given concentration, concentration overloading

will lead to dispersion and hence dilution or even mixing of the products of

interest.

In this context, our aim in the present study is to propose and study theo-

retically a heterogeneous configuration with multi-site adsorption to analyze

the conditions on the geometry and adsorption properties of the porous ma-

trix to reduce the solute spreading at overloading concentrations to achieve a

better resolution of separated components. Specifically, we show that an al-

ternation along the displacement of zones with L or AL adsorption properties

can decrease the broadening of peaks thanks to the succession of sharpening

of the solute spatial concentration profile at the front or at the rear depending

whether the sample crosses a L or an AL zone.

2. Langmuir/Anti-Langmuir (L-AL) adsorption model

We consider a heterogeneous porous matrix consisting of an alternation

along the displacement direction x of zones with different adsorption proper-
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ties. In some zones, the adsorption on the surface is described by a classical

Langmuir isotherm (Eq.2) while the adsorption on the complementary zones

of the surface follows an anti-Langmuir isotherm (Eq.3) behavior. The porous

matrix is thus composed of alternating bands of two types of sites charac-

terized by different adsorption isotherms. The sites are supposed to behave

independently. This is possible for instance when a component like butyl-

benzene is subject to weak forces of a polar stationary phase. The aromatic

analyte-analyte interaction can then dominate, leading to Anti-Langmuir

behavior while, in a reverse phase coating, a stronger interaction with the

stationary phase will rather give a Langmuir behavior [36, 37, 38]. Our ob-

jective is to analyze the influence of this alternation of adsorption properties

on the widening of a sample of given initial width L displaced along this

sytem at a given velocity U . The flow is assumed to be uniform and the

porous matrix is supposed to be radially homogeneous.

2.1. L-AL adsorption isotherm

Local adsorption at a position x and at a time t is given by the isotherm

cs(x, t) =
Kcm(x, t)

1 + b(x) cm(x, t)
. (4)

Depending whether the local site at position x is of the L or AL type, we use

b(x) =

 bL, if x ∈ Langmuir zone,

−bAL, if x ∈ anti-Langmuir zone.
(5)

The constant bL quantifies the adsorption-desorption in the Langmuir zone

while bAL characterizes the anti-Langmuir sites. As stated before, for the

anti-Langmuir isotherm, the function (4) is defined only for cm < 1/bAL. We
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define a non-dimensional parameter δ = bL/bAL as the ratio of the non-linear

adsorption parameters of the Langmuir and anti-Langmuir isotherms.

In this study the following simplifying assumptions are made:

• The adsorption surface is divided equally in Langmuir and Anti-Langmuir

zones referred to as plates of equal width Lplate covering the column al-

ternatively.

• There is no interaction of the species adsorbed on one type of site with

those of the other sites.

• The equilibrium constant K is the same for all plates zones.

• The non-linear adsorption parameter bL and bAL of the Langmuir and

anti-Langmuir plates zones are independent of each other and depend

on the threshold mobile phase concentration cth and thus on the porous

matrix.

• If Lplate → 0, we assume b(x)→ 0 and thus we recover the linear

adsorption case.

Our objective is to achieve reduced peak tailing and hence find the optimal

geometrical and adsorption conditions to achieve high efficiency by reduce

the band broadening at overloading concentrations concentration overloading

related band widening. We next analyze the spreading dynamics of adsorbed

solutes on this heterogeneous surface alternating L and AL sites using numer-

ical simulations of the mass balance transfer equation and L-AL isotherms.

We show that, with a suitable choice of parameters, the L-AL system leads
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to a significant reduction of the solute spreading and can be used to reduce

the severe tailing of the concentration profiles.

2.2. L-AL flow model

(Wim and Chinar: I don’t understand at all this paragraph. I

guess it has been added to please a referee but it makes no sense

to me... Can’t we suppress it? ) Equilibrium theory is an elegant

approach to investigate dynamic behavior in chromatography. As it is often

justified to assume thermodynamic equilibrium between the mobile and the

stationary phase, the governing equations that describe analyte transport can

often be appropriately expressed as a system of hyperbolic first-order partial

differential equations [11, 12, 22, 39]. As the flow is uniform and the column

is assumed to be radially homogeneous, the model is unidimensional. The

mass balance equation for the concentration cm of the solute in the mobile

phase and cs in the stationary phase in presence of advection at speed U and

dispersion reads:

∂cm
∂t

+ F
∂cs
∂t

+ U
∂cm
∂x

= D
∂2cm
∂x2

, (6)

where D is the dispersion coefficient. Taking into account the adsorption

isotherm (Eq.4) for cs and using k = FK, the mass balance equation (6)

reduces to

∂

∂t

(
1 +

k

(1 + b(x)cm(x, t))

)
cm(x, t) + U

∂cm(x, t)

∂x
= D

∂2cm(x, t)

∂x2
. (7)

Let Lx be the length of the uni-dimensional system such that x ∈ [0, Lx] and

xin be the initial position of the rear interface of the sample of width W .
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The initial mobile phase concentration cm(x, 0) is then assumed to be

cm(x, 0) =

 cth/α, for x ∈ [xin, xin +W ],

0, elsewhere,
(8)

where α > 1. The initial concentration is always assumed to be smaller than

cth to avoid the divergence due to anti-Langmuir adsorption. The boundary

conditions, imposed on concentration cm(x, t) and velocity u are:

u = U,
∂cm(x, t)

∂x
= 0, at the inlet and the outlet. (9)

Thus at the boundaries the velocity u is set to be equal to the injection

velocity U and a no flux boundary condition is imposed on the mobile phase

concentration of the solute.

2.3. Non-dimensionalized L-AL flow model

To nondimensionalize the governing equations, the concentration cth is

chosen to non-dimensionalise cm, bL and bAL, while U is taken as the char-

acteristic velocity. Defining the length scale Lc = D/U and the time scale

tc = D/U2, the non dimensional velocity, length and time are defined as [40]:

Û = U/U = 1, x̂ = x/(D/U), t̂ = t/(D/U2) while the non-dimensional con-

centration and adsorption parameters become

ĉm = cm/cth

b̂L = bLcth = bL/bAL = δ,

b̂AL = bALcth = 1

ĉs = cs/cth =


Kĉm

1 + δĉm
, if x ∈ Langmuir zone,

Kĉm
1− ĉm

, if x ∈ anti-Langmuir zone,
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After implementing the above non-dimensionalisation, the mass balance

equation becomes:

∂

∂t̂

(
1 +

k

(1 + b̂(x)ĉm(x, t))

)
ĉm(x, t) +

∂ĉm(x, t)

∂x̂
=
∂2ĉm(x, t)

∂x̂2
(10)

where,

b̂(x) =

 δ, for x ∈ Langmuir zone,

−1, for x ∈ anti-Langmuir zone.
(11)

After dropping the hats this can be further simplified and written as :(
1 +

k

(1 + b(x)cm(x, t))2

)∂cm(x, t)

∂t
+
∂cm(x, t)

∂x
=
∂2cm(x, t)

∂x2
(12)

Defining κ =
(

1 +
k

(1 + b(x)cm(x, t))2

)
, we get finally:

∂cm(x, t)

∂t
=

1

κ

∂2cm(x, t)

∂x2
− 1

κ

∂cm(x, t)

∂x
. (13)

The non-dimensional length of the domain is L = ULx/D and the dimen-

sionless length of the L and AL plate zones is Lp = ULplate/D. The non-

dimensional initial concentration is

cm(x, 0) =

 1/α, for x ∈ [xin, xin + l],

0, elsewhere,
(14)

where l = UW/Dx is the non-dimensional width of the injected sample and

xin is the initial position of the rear interface of the sample.

2.4. Parameter values and numerical method

The solute mass balance equation (13) is a partial differential equa-

tion with variable coefficients that we solve using a Pseudo-spectral Fourier

method.
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The Fourier series expansions of cm(x, t) and of the right-hand side of

equation (13) read: Chinar, please suppress also eqs.15,16 and 17: I

cannot erase them in green

cm(x, t) =
∑
p

ĉp(t)e
i(kpx) (15)

J(x, t) =
1

κ

{∂2cm
∂x2

− ∂cm
∂x

}
=
∑
p

Ĵp(t)e
i(kpx) (16)

where kp = 2πp/L , (p = 0, 1, 2...) are the wave number of Fourier modes.

The Fourier coefficients ĉp are calculated by Fast Fourier Transform with

cm(x, t) known at the collocation points xp = (p/M)L, p = 0, 1, 2...,M − 1,

where M is the number of spectral modes and L is the computational length.

Without loss of generality, periodic boundary conditions are taken for cm(x, t).

In Fourier space, equation (13) reduces to a first order ordinary differential

equation in time,
dĉp
dt

= Ĵp. (17)

The solution of the above equation (17) is obtained by a predictor-corrector

method. The second order Adams-Bashforth method [41] is used to predict

the concentration of the solute and the predicted value is corrected by trapezoidal

rule. A higher accuracy can be achieved in spectral methods with a coarser

mesh that also lead to little or no artificial dissipation. Numerical stability

is achieved using dx = 1, dt = 0.02, for which the solute mass conservation

is also verified. The solutions are observed to remain invariant with further

decrease in grid size. The non-dimensional parameters of the problem are

α, l, δ, k and Lp that set the initial concentration cm(x, 0), the rate of ad-

sorption and describe the flow dynamics i.e. the propagation pattern of the
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Figure 2: Influence of the parameter rp = l/Lp on the geometry of the L-AL alternance

encountered by the mobile phase concentration profile cm. The white zones correspond to

L plates zones while the grey zones feature AL properties. For a fixed value of l, taken

here equal to 64, an increase in rp corresponds to a decrease of the plate zone width Lp.

If rp < 1, the initial sample can be contained within one either pure L or pure AL zone

depending on the value of the initial position of the sample given by rd. Here rd = 0 and

the sample starts in a L zone. If rp > 1, the sample initially covers more than one plate

zone.

solute and its rate of spreading. In addition to this, the initial position xin

of the slice also plays a crucial role in determining the spreading dynamics

of the adsorbed solute (as explained in detail in section 3.3).

Since there are a number of variables involved in our model, we combine

some variables for which the influence on the propagation dynamics of the

solute is observed to be dependent on each other. The values of parameters

chosen in the simulations are:

• α = 2, which sets the initial mobile phase concentration cm(x, 0) = 0.5.

• The ratio of the width l of the solute slice to the width Lp of the plates

zones is rp = l/Lp (see Figure 2). If rp ≤ 1, we study cases for which

the sample width l is smaller than or equal to the plate alternation

zone width Lp while if rp > 1 then l > Lp.
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Figure 3: Influence of the parameter rd on the initial position of the sample for rp = 0.1

here. For 0 < rd ≤ 1, the rear part of the sample starts in a L zone while for 1 < rd ≤ 2,

the rear part starts in an AL zone.

• The influence of the retention parameter k is studied for k = 1 and 5.

• For a given value of xin, the initial condition is observed to repeat itself

after 2∗Lp. The sample is thus assumed to be placed such that its rear

starts within the second or third alternation zone i.e. xin is varied as

Lp + rd ∗ Lp with rd ∈ [0, 2) (see Figure 3).

• Simulations run up to t = 50000 and we fix l = 64, L = 32768. So the

ratio of the sample length to the column length is l/L = 0.002, which

is typical of experimental conditions in chromatographic columns.

In the next section, we analyze the influence of varying the parameter values

on the propagation and spreading dynamics of the solute.
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Figure 4: (a) Spatial concentration profiles of the mobile phase cm(x, t) for k = 5 in a

L-AL alternate geometry for bL = bAL = 1, rd = 1, rp = 0.1 at successive times. (b)

Temporal evolution of the spreading length Lm of the adsorbed solute for k = 5 in a L

model (bL = 1), AL model (bAL = 1) and L-AL model (bL = bAL = 1, rp = 0.1, rd = 1)

with the corresponding peak profiles at the time shown by a bullet.

3. Results

The parameters on which the flow dynamics of the solute depends are

here reduced to δ (the ratio bL/bAL of the nonlinear adsorption parameters),

the retention parameter k controlling the strength of the adsorption, the

geometrical parameter rp comparing the relative width of the sample to that

of the plates alternation zones and rd, the parameter controlling whether the

initial position of the rear part of the injected sample is in a L or AL zone.

Before analyzing the effect of varying the values of these parameters, let us

examine the qualitative influence of the alternance of L and AL zones on the

dynamics.

3.1. Accordion effect and reduction of peak widening

Fig.(4)a shows a typical displacement of a finite width sample into a

L-AL alternating geometry. We take here k = 5 corresponding to a quite
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strong adsorption effect and δ = 1 for bL = bAL = 1 i.e. the adsorption

parameter is of the same strength in the L and AL plates zones. The width

l of the sample is 1/10 of the length Lp of the plates L/AL zones such that

the geometrical parameter rp = l/Lp = 0.1. For rd = 1, the left part of the

sample starts at the initial time in an AL zone and, as rp < 1, the sample

is initially totally contained in the AL zone (see Fig. 4(a) at time t = 0).

Once the displacement starts, the rear part of the sample is sharpening while

its frontal is widening because of the anti-Langmuir adsorption properties

of the plate AL zone in which the sample starts its journey in the porous

matrix (see Fig. 4(a) at times t = 1000, 3000). However, once the sample

starts passing through a L zone, the reverse effect sharpens its front while

diluting the rear part (see Fig. 4(a) at times t = 5000, 6000, 7000). The

alternation between sharpening and widening at both edges of the sample

gives an accordion effect that, in the end, reduces the total broadening of the

peak. This can be appreciated in figure 4(b) giving the temporal evolution

of the spreading length Lm, computed as the length of the interval for which

the solute concentration cm ≥ 0.001 [42]. Lm is a measure of the widening

of the peak. First, we note that the pure AL displacement gives a larger

broadening of the sample than a pure L one because, for AL displacements,

the rarefaction wave is formed in the direction of the flow, thus spreading

due to rarefaction is further enhanced. The peak profiles for L and AL

displacements at time t = 3 × 104 are shown in the inset of Fig. 4(b) [21].

It is seen that the L-AL alternation gives a smaller mixing length at a given

time than both pure L or AL systems, thanks to this accordion effect. Let

us now see how this reduction of peak widening in the L-AL system depends
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Figure 5: Spatial concentration profiles in the mobile phase cm(x, t) for k = 5, δ = 1

with bL = bAL = 1, rd = 0 and (a) rp = 0.5 (b) rp = 1 (c) rp = 2 at times t =

0, 2000, 4000, 6000, 8000, 10000.

on the various parameters of the problem.

3.2. Influence of rp

Figure (5) shows the concentration profiles cm(x, t) of the solute in the

mobile phase for different values of rp when the other parameter values are

fixed. When the plate alternation zone width is larger than the initial sample

width i.e. rp ≤ 1, the solute peak shape behaves in an Anti-Langmuir way

in the AL-plates zones and smoothly switches to a Langmuir behavior in

the L plates zones (see figure 5(a)-(b)). On the contrary, when rp > 1,

the solute concentration distribution encounters rapid local expansions and

contractions whenever the plate zone switch happens inducing undulated

profiles (see figure 5(c)). The temporal evolution of the spreading length Ld

given in figure 6 shows that the solute spreading for the L-AL models is always

smaller for all rp scanned than for transport in the single site adsorption

Langmuir or anti-Langmuir systems. This is because the peak tailing, which

results in band broadening concentration overloading related band widening

of the Langmuir or anti-Langmuir adsorbed solute, is prominently reduced
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Figure 6: Temporal evolution of the spreading length Lm of the adsorbed solute for dif-

ferent values of rp, at fixed rd = 0, k = 5, δ = 1.

with the alternance of L and AL plates zones. In addition, in the L-AL

model, Lm varies with rp. It is observed that Lm is smaller for 0 < rp ≤ 1 in

comparison to rp > 1 cases. Thus least spreading in the L-AL system can be

obtained when the width of the sample is smaller than the width of the plate

alternation zones i.e. l < Lp. In the limiting case of rp → 0, or equivalently

Lp → ∞ for a finite l, the solute profile depicts the features of a single site

model of either Langmuir or anti-Langmuir properties depending upon the

initial position of the sample. On the other hand, for rp →∞ or also Lp → 0,

we recover symmetric solute peaks as in the case of linear adsorption.

3.3. Influence of rd

In the L-AL system, we find that the initial position of the sample i.e.

whether it is initially injected into a L or an AL plate zone has an influence
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Figure 7: Concentration profiles in the mobile phase cm with rp = 1, δ = 1, k = 5 for (a)

rd = 0 (b) rd = 0.5 (c) rd = 1 (d) rd = 1.5 at times t = 0, 1000, 2000, 3000, 4000, 5000.
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Figure 8: Temporal evolution of the spreading length Lm for different initial position rd

of the sample for rp = 1, δ = 1 and k = 5

on the peak profile and on the spreading dynamics of the adsorbed solute.

This can be appreciated in figure (7) giving the spatial concentration profiles

of the solute in the mobile phase at successive times for different values of

rd for k = 5, bL = bAL = 1, rp = 1. Depending on the initial position of the

sample i.e. depending on rd, a difference is observed in the amplitude and

shape of the solute peak. During the propagation, the width of the flat top

solute decreases and, following the interaction of the two interfaces, becomes

a point. After that, the solute peak height starts decreasing from the initial

concentration 1/α in the course of time. Therefore, if the initial position

of the solute sample in a L-AL system is such that both interfaces undergo

widening in the early times (for instance if the frontal part of the sample is

in an AL zone while its rear is in a L zone), the peak height starts decreasing

faster. On the contrary, if the initial position of the solute sample is such that
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both interfaces undergo sharpening in the early times (for instance frontal

part in L and rear part in AL), then the decrease of the peak height occurs

later. For instance, in Figure 7(a), with rd = 0, the frontal and rear interfaces

of the solute both undergo expansion when the displacement starts as they

spend the early times in the AL plate zone and L plate zone, respectively.

This results in their early interaction and a faster decrease of the amplitude of

the solute peak with time. In Figure 7(c), we see that with rd = 1, the frontal

and rear of the solute undergo initially sharpening as they spend early times

in the L plate zone and AL plate zone, respectively. This results in their late

interaction and a delayed decrease in the amplitude of the solute peak with

time. The smallest amplitude is therefore observed for rd = 0 and the largest

one for rd = 1. Intermediate situations are obtained for other values of rd

(see Figure 7b, 7d). Since the initial position of the solute determines the

early time interaction of the solute with the L-AL alternation, it has thus an

effect on the amplitude of the solute.

The corresponding temporal evolution of the spreading length Lm given

in Figure 8 shows again that Lm is always smaller for the L-AL model than

in the single site Langmuir or anti-Langmuir systems. In addition, in the

L-AL model, Lm varies with rd: Lm grows non-monotonically with rd i.e.,

for 0 ≤ rd ≤ 1, Lm increases with rd, while it decreases for 1 < rd < 2. For

rp = 1 the smallest width is obtained for rd = 0. Thus the most efficient

situation in terms of decreasing band broadening concentration overloading

related band widening is thus to start in a L plate zone. This suggests that

the solute dynamics carries its history along the displacement for a long time

when passing through alternating L and AL plates zones.
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Figure 9: (a) Concentration profiles in the mobile phase cm at different times for k = 1

(red) and k = 5 (blue) with rd = 1, rp = 1, δ = 1. (b) Temporal evolution of the

corresponding spreading length Lm and comparison with the pure L and AL cases.

(Chinar, In Fig.9b, ”LaL-model” in the figure should be re-

placed by ”L-AL model”. Also suppress the hyphen in ”L-model”

to read ”L model”. Idem with ”AL-model”: it should be ”AL

model” )

3.4. Influence of k on the solute spreading

For a linear adsorption, it has been shown that the larger the value of the

retention parameter k, the more the solute is retained on the porous matrix

and thus the slower it propagates [43]. In the case of L-AL alternance, larger

values of k imply that the sample will interact with each plate zone more

strongly and will thus be more influenced by the multiple adsorption site

situation in comparison to the small values of k.

This can be appreciated on figure 9(a) comparing the concentration pro-

files cm(x, t) at different times for k = 1 and 5 keeping rp, δ and rd fixed. We
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Figure 10: Concentration profiles in the mobile phase cm for k = 5 at different times for

δ = 0.5 (blue), 1 (black) and 2 (red) with rd = 1, rp = 1.

see that, for k = 5, the stronger retention on the porous matrix induces a

slower transport of the sample, a stronger influence of the L-AL alternation

and a smaller broadening than with k = 1. The longer interaction time of

the solute with the corresponding plates zones when k is larger favors thus a

more efficient accordion effect leading to better resolved peaks. This is con-

firmed by analyzing the spreading length of the adsorbed solute for different

Lm for these two values of k as plotted in figure 9(b). Lm is always smaller

for the L-AL model than for the pure L or AL cases, irrespective of the value

of k and the smallest widening for the L-AL system is obtained for larger k.

3.5. Influence of δ on the solute spreading

The non-dimensional parameter δ = bL/bAL compares the strength of the

non-linear adsorption on Langmuir plates zones to the one on anti-Langmuir

plates zones. If δ = 1, we have bL = bAL, which implies that the magnitude of

the deviation from a linear adsorption behavior is identical for both studied
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cases (with however opposite signs, resulting in Langmuir and Anti-Langmuir

behavior, respectively). If δ is increased above one, the influence of L plates

zones is more and more pronounced with regard to that of the AL plates zones

and, vice-versa, for δ < 1, AL plates zones dominate the solute transport

dynamics. To illustrate this, Figure 10 compares the concentration profiles

of the solute for δ = 0.5, 1, 2. We see that, for δ = 0.5, the rear of the sample

tends to a shock wave while the frontal part has more tailing, which shows

the dominance of the AL plates zones. On the contrary, for δ = 2, the L

plates zones can counteract this and “redress” the profile to reach a more

symmetric peak shape.

Thus, for the applications where reducing the band broadening concen-

tration overloading related band widening of the solute is essential to increase

the efficiency of the method, an alternation of L and AL plates zones pro-

vides a robust mechanism to reduce the spreading of the solute. It remains to

assess more quantitatively which combinations of the four parameters gives

the best reduction of peak broadening. This is analyzed in the next section

where an optimization a strategy to reduce the peak broadening is proposed.

4. Quantitative analysis

From the above results, it is clear that the global features of the solute

displacement in a L-AL system, like the widening of the solute peaks, are

largely controlled by the adsorption parameters (k, δ) but also by the pa-

rameters rp and rd related to the geometry of the alternation between the L

and AL plates zones.
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Figure 11: Phase diagrams giving the values of Lm at t = 105 in the (rp,rd) phase space

for k = 5 and different values of δ. The left column refers to the case rp ≤ 1 while, in the

right one, we have rp > 1.

In order to have a better overview of the effect of varying rp and rd on the

efficiency of decreasing the peak widening, we next plot in Figures 11 and 12

show phase diagrams giving the amplitude of the spreading length Lm at the

final time of the simulation in the parameter space (rp,rd) for k = 1 or 5 and

3 different values of δ. The colors on the graph vary from red for the (rp, rd)
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Figure 12: Phase diagrams giving the values of Lm at t = 50000 in the (rp,rd) phase space

for k = 1 and different values of δ. The left column refers to the case rp ≤ 1 while, in the

right one, we have rp > 1.

couple of parameters at which Lm is maximum to blue for the minimal Lm

values. The absolute values of Lm for a given color is given in the color bar

to the right of each panel but in all cases red and blue correspond to the

maximum and minimum values.
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4.1. Quantitative analysis of spreading lengths values

Figures 11 and 12 show the phase diagrams of Lm for k = 5 and k = 1

respectively for three different values of δ. To be able to compare the situation

with a single site model, we fixe bAL = 1 and vary bL to get different values

of δ = bL/bAL. Specifically, we take bL = 0.5, 1 and 2 to get the values

δ = 0.5, 1, 2 respectively.

The phase diagrams show a large variation of the final values of Lm when

rp ≤ 1 (left column) for all values of rd and δ. On the contrary, for rp > 1

(right column), the spreading length remains in a particular color zone for

rd > 0.5. This shows that the influence of rd is more pronounced on the

solute spreading when the plate alternation zone width Lp is larger than the

sample width l. Nevertheless, in all heterogeneous cases, the widening of

the peak is smaller than the one in a pure homogeneous L or AL system.

To appreciate this, we compare in Table 1 the spreading length LL or LAL

at the final time tfin for a single L or AL site model respectively, with the

least spreading Lmin and maximum spreading Lmax obtained at the same

time in the L-AL model. We see that in the L-AL cases, the width of the

solute peaks is always smaller than that of the pure L or AL cases. The

gain in peak width reduction varies however with the specific combination

of the parameter values. To quantify the gain in peak width reduction we

compute the percentage of maximum gain compared to a pure AL column

as GAL =
LAL − Lmin

LAL

× 100. A gain of decrease in peak width as high as

43.82% for L-AL displacement in comparison to a single AL site model is

achieved. A similar measure gives the gain with respect to a pure L column

as GL =
LL − Lmin

LL

× 100. A maximum gain of 32.20% in decrease in peak
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k δ tfin LL LAL Lmin Lmax GAL GL

5 0.5 105 1463 2225 1347 1646 39.46 7.93

5 1 105 1645 2225 1250 1500 43.82 24.01

5 2 105 1876 2225 1272 1530 42.83 32.20

1 0.5 5×104 1663 2192 1586 1754 27.65 4.63

1 1 5×104 1830 2192 1524 1665 30.47 16.72

1 2 5×104 2096 2192 1540 1688 29.74 26.53

Table 1: Table of Lm at tfin for different values of k, δ at fixed bAL = 1 and variable bL in

the case of a pure Langmuir (LL) or Anti-Langmuir (LAL) systems. Lmin and Lmax give

the minimum and maximum values of Lm for an L-AL system when (rp, rd) are varied

(see Figure 11 and 12).

width for L-AL displacement is achieved in comparison to a single L site

model.

4.2. Strategy to reduce the peak broadening

The above results allow to design optimal L-AL heterogeneity configu-

rations of chromatographic column or optimal configurations for practical

engineering applications to reduce the mixing length of the solute. Although

the L-AL model always results in a smaller solute spreading than the classical

single site model, an improved performance can be obtained by a suitable

choice of optimal plate alternation zone width to sample width ratio, optimal

choice of initial zone in which to start the injection and relative strengths

of the L/AL plates zones. As stated previously, different combinations of

rp and rd affect dramatically the performance of the L-AL model. We have
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explored a large number of different configurations looking for a maximum

output efficiency. We find that the combinations of rd and rp giving the max-

imal reduction in band broadening concentration overloading related band

widening are the following :

• For rd ∈ [0, 0.5], rp ∈ (0, 0.2] ∪ [0.8, 1] ∪ (8, 32).

• For rd ∈ [0.5, 1.5], rp ∈ [0.4, 0.8].

• For rd ∈ [1.5, 2], rp ∈ (0, 0.4].

The larger the values of k, the larger the effect of this reduction in sample

spreading.

5. Conclusion

We have analyzed theoretically the transport properties of a sample of

solute injected in a heterogeneous porous matrix alternating in space re-

gions featuring Langmuir (L) and Anti-Langmuir (AL) adsorption isotherms.

Depending whether the solute experiences locally a L or AL adsorption

environment, broadening of its concentration in the mobile phase occurs at

different speed. Indeed, in a L environment, the frontal part of the spatial

solute concentration profile sharpens while its rear is broadening. A reverse

formation of a shock at the rear with rarefaction at the frontal part of the

spatial peak characterizes the AL dynamics. We have shown that, in a

heterogeneous L-AL system, the solute encounters an alternation in space

of these two different behaviors inducing This alternation induces an accor-

dion effect reducing the band broadening concentration overloading related
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band widening of the peak. We have developed a theoretical model describing

displacement in this L-AL system in which the important parameters of the

problem are the adsorption parameter δ = bL/bAL comparing the intensity of

the nonlinear adsorption isotherm parameters, the retention parameter k con-

trolling the strength of the adsorption, the geometrical parameter rp = l/Lp

comparing the relative width l of the sample to the length Lp of the plates

L/AL zones and rd, the parameter controlling whether the position of the

rear part of the injected sample is in a L or AL zone at t = 0.

We find that, whatever the values of the parameters scanned here, the

L-AL alternation always give a smaller peak broadening than the pure L or

AL cases. The widening reduction increases when the adsorption intensity

k increases. The geometry of the L-AL alternation is found to have an im-

portant influence. If the width of the plates L/AL zones is very small (i.e.

rp tends to infinity), the accordion effect cannot be effective and the system

recovers symmetric profiles typical of linear adsorption. On the contrary,

pure L or AL systems are recovered for very large plates zones (rp → 0)

depending whether the sample is injected into a L or AL zone. For interme-

diate values of rp, broadening reduction is obtained, the efficiency of which

further depends on the zone in which the sample is injected initially, which

is controlled by the parameter rd. If the sample width and value of rd are

such that the frontal part of the sample experiences at the beginning of the

displacement a sharpening in a L zone while its rear also sharpens because it

crosses at early times an AL zone, then the widening effect is delayed and the

peak broadening will be the smallest. A further control of the relative weight

of the L or AL behavior can be obtained by tuning the parameter δ. We have
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performed a characterization of the influence of varying these various param-

eters on the dynamics and have given their optimal combination of values

to reduce the concentration overloading related band widening. Our results

pave the way to developing new heterogeneous porous matrices alternating

zones of different adsorption properties to optimize the reduction of band

broadening concentration overloading related band widening. The concept is

quite general. We have demonstrated it here with an alternation of two zones

with Langmuir and Anti-Langmuir adsorption properties of equal width but

the analysis can be straightforwardly adapted to more complex geometries

with plates zones of different lengths and with different adsorption isotherms.

Allowing for more than two different adsorption regimes will further increase

the possible selectivity of the control strategy. Experimental demonstration

of the efficiency of our theoretical concepts could for instance be obtained

using micro-pillar array chips [34, 35] and should be easy to implement in a

large number of applications.
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