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 29 
ABSTRACT 30 
 31 
An important challenge in chromatography is the development of adequate separation methods. 32 
Accurate retention models can significantly simplify and expedite the development of adequate 33 
separation methods for complex mixtures. The purpose of this study was to introduce 34 
reinforcement learning to chromatographic method development, by training a double deep Q-35 
learning algorithm to select optimal isocratic scouting runs to generate accurate retention 36 
models. These scouting runs were fit to the Neue-Kuss retention model, which was then used 37 
to predict retention factors both under isocratic and gradient conditions. The quality of these 38 
predictions was compared to experimental data points, by computing a mean relative 39 
percentage error (MRPE) between the predicted and actual retention factors. By providing the 40 
reinforcement learning algorithm with a reward whenever the scouting runs led to accurate 41 
retention models and a penalty when the analysis time of a selected scouting run was too high 42 
(> 1h); it was hypothesized that the reinforcement learning algorithm should by time learn to 43 
select good scouting runs for compounds displaying a variety of characteristics. The 44 
reinforcement learning algorithm developed in this work was first trained on simulated data, 45 
and then evaluated on experimental data for 57 small molecules – each run at 10 different 46 
fractions of organic modifier (0.05 to 0.90) and four different linear gradients. The results 47 
showed that the MRPE of these retention models (3.77% for isocratic runs and 1.93% for 48 
gradient runs), mostly obtained via 3 isocratic scouting runs for each compound, were 49 
comparable in performance to retention models obtained by fitting the Neue-Kuss model to all 50 
(10) available isocratic datapoints (3.26% for isocratic runs and 4.97% for gradient runs) and 51 
retention models obtained via a “chromatographer’s selection” of three scouting runs (3.86% 52 
for isocratic runs and 6.66% for gradient runs). It was therefore concluded that the 53 
reinforcement learning algorithm learned to select optimal scouting runs for retention 54 
modeling, by selecting 3 (out of 10) isocratic scouting runs per compound, that were 55 
informative enough to successfully capture the retention behavior of each compound.  56 
 57 
 58 
Keywords: method development; retention models; machine learning; reinforcement 59 
learning; deep q-learning;   60 
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1 INTRODUCTION 61 
 62 
One of the main challenges in (liquid) chromatography is to obtain adequate methods to 63 
separate complex samples. Method development is still often done based on a trial-and-error 64 
approach, leading to lengthy optimization procedures. Decision-algorithms can be used to help 65 
find adequate separations for complex samples (1–8). These algorithms need to be able to 66 
predict future runs and select the correct runs to produce the most desirable outcome, which 67 
means accurate retention models need to be incorporated into the algorithms. Retention models 68 
can generally be divided into two types: quantitative structure retention relationship (QSRR) 69 
models, that model retention times of compounds for specific separation conditions based on 70 
their molecular descriptors (9–16) and empirical models, that model retention times of 71 
compounds based on experimental instrument or system variables, e.g. the fraction of strong 72 
eluent in the mobile phase (17–24). The two types of retention models are complementary and 73 
usually answer different questions. For instance, QSRR models are commonly developed to 74 
improve the identification of known analytes, while empirical retention models are rather 75 
developed to improve the separation of complex mixtures of known or unknown compounds. 76 
As the present study focuses on improving separation methods for compounds for which 77 
molecular structures are not always available, empirical retention models will be used. 78 
 79 
An often employed empirical retention model is the Neue-Kuss model (21,26–28):  80 
 81 
𝑘(𝜑) =  𝑘௪(1 + 𝑆ଶ𝜑)ଶ exp ቀ−

ௌభക

ଵାௌమఝ
ቁ       (1) 82 

 83 
Wherein  is the fraction of strong eluent in the mobile phase, k() the retention factor for a 84 
specific  and kw, S1 and S2 are retention parameters that need to be fit to experimental retention 85 
factors to yield a retention model for a given compound. More specifically, kw refers to the 86 
retention factor of a compound for =0 (in reversed-phase liquid chromatography (RPLC) this 87 
corresponds to a purely aqueous mobile phase), S1 refers to the slope and S2 to the curvature of 88 
the correlation between k and . Since the Neue-Kuss model requires three parameters for the 89 
prediction of the retention factor (𝑘௪, 𝑆ଵ  𝑎𝑛𝑑 𝑆ଶ), at least three datapoints (i.e., experimental 90 
retention factors obtained at three different mobile phase compositions) are needed as input. In 91 
RPLC, the polarity of a compound is one of the main factors influencing its retention behaviour. 92 
Since compounds can have large differences in polarity, the selection of the scouting runs, i.e., 93 
the selection of the mobile phase compositions that need to be selected to obtain adequate 94 
retention models, is an important problem as the most informative conditions can strongly 95 
differ for each compound. This importance is emphasized making the economic consideration 96 
that the number of scouting runs should preferably be kept as low as possible. Thus, there is a 97 
clear need to develop algorithms that can select optimal scouting runs leading to accurate 98 
retention models.  99 
 100 
Decision algorithms for chromatographic applications, such as method development, have been 101 
studied since the 1980’s. These algorithms, also sometimes referred to as expert systems, 102 
focused on different aspects of the chromatographic workflow: method selection (28,29), 103 
mobile phase selection (30,31), mobile phase/selectivity optimization (32,33), system 104 
optimization (34,35) and retention optimization (36–39). All these algorithms aimed at 105 
improving the decision-making process for method development and reducing the extent of 106 
trial-and-error that is commonly practiced. However, in the late 90’s these expert systems lost 107 
their popularity due to the fact that the high expectations for these systems were not met, and 108 
the computational power available at that time was inadequate.  109 
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Traditional approaches, like those used in the 80’s and 90’s, usually take the form of predefined 110 
rules and if-else statements, which are directly programmed/handcrafted by the software 111 
engineer and experts in the field. The inherent problem of this approach is its great difficulty 112 
to generalize to new data or scale to large, diverse datasets. Algorithms like machine learning 113 
(40) can, to some extent, solve the problem of generalization by letting the machine program 114 
itself (learn its own rules) via highly parameterized and regularized function approximators 115 
that are trained on a so-called training dataset. Supervised machine learning algorithms have 116 
been around for many decades (41–44) but came to proliferate in the late 2000’s when the 117 
availability of data in both private and public repositories grew considerably and sufficiently 118 
powerful computer hardware became readily available. This family of algorithms only needs 119 
to be supplied with input and output pairs, and everything in-between (mapping from input to 120 
output) is learned by the algorithm itself. Given an input, supervised learning algorithms learn 121 
how to minimize the error between their prediction and the target (the associated output for 122 
that input). A typical application of supervised learning is classification, in which, given an 123 
input, the algorithm outputs the correct class. However, the limitation of supervised learning is 124 
the need to label every input, which is often either very time-consuming or impossible to 125 
actualize. Unsupervised learning deals with situations where no labels are required, with a 126 
typical application being clustering. Instead of directly getting a prediction from some input, it 127 
clusters the input data and finds patterns in it. Either of these two paradigms is important, but 128 
neither fulfills the criteria for intelligent decision making as required in method development. 129 
In method development, especially when dealing with novel or unknown compounds, a 130 
prediction of the next step to perform is needed, but the effects of the steps are unknown and 131 
impossible to plan. 132 
 133 
Reinforcement learning is a machine learning paradigm that deals with sequential decision 134 
making (45,46). In contrast to supervised learning, where each prediction is independent of the 135 
others, decisions are sequential and dependent on each other. This aligns well with method 136 
development, which is clearly a sequential procedure (cfr. the trial-and-error approach when 137 
method development is carried out in its most simple form). Furthermore, in reinforcement 138 
learning, there is no need for input-output pairs as in supervised learning, because no label is 139 
needed to teach the algorithm to perform well on a given task (which is of great importance as 140 
labels are commonly unavailable in method development). Instead of a label, a scalar reward 141 
signal reinforces a desirable behavior; i.e. the reinforcement learning algorithm learns a 142 
mapping from some input to some desirable output by receiving feedback based on the output. 143 
The goal of the reinforcement learning algorithm is not to optimize itself towards accurate label 144 
predictions, but instead maximize the cumulative future reward (i.e. learn to optimally perform 145 
a specific task). Due to its generality, reinforcement learning algorithms have been widely 146 
utilized and studied in many applications and areas of research and industry, including robotics 147 
(44–49). Besides its many applications, reinforcement learning is possibly most known for its 148 
achievements in attaining superhuman level performance in board games, such as Chess and 149 
Go (53–55), and in video and computer games such as Atari (56), Starcraft II (57,58) and Dota 150 
2 (59).  151 
 152 
In the present study, the possibilities of reinforcement learning are investigated for a basic 153 
chromatographic problem: selecting optimal isocratic scouting runs in RPLC to fit retention 154 
models. Specifically, the aim is to train a reinforcement learning algorithm to select a minimum 155 
number of scouting runs that allow to obtain accurate retention models for a diverse set of 156 
compounds. The present study is considered a simple first step in introducing reinforcement 157 
learning to the area of chromatography. 158 
  159 
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2 THEORY 160 
 161 
Reinforcement Learning is a goal directed paradigm in which a computer program, called the 162 
agent, is continuously interacting with the environment. The environment is the world in which 163 
the agent resides and encapsulates the task the agent tries to solve. By performing actions, the 164 
agent receives a numerical feedback from the environment based on the quality of the chosen 165 
action. Over time, the agent learns to optimize the actions it takes by trying to maximize the 166 
future rewards. Typically, reinforcement learning uses a Markov Decision Process (MDP) as 167 
its mathematical model. An MDP is a 4-tuple <S, A, T, R>, where S is the state space, A the 168 
action space, T(s, a, s’) = Pr(s’ | s, a) the probability that action a in state s will lead to state s’, 169 
and R(s, a, s’) the immediate reward (𝑟) received when action (𝑎) taken in state (𝑠) results in a 170 
transition to state (𝑠’). The problem of solving an MDP is to find a policy (𝜋) (i.e., mapping 171 
from states to actions) that maximizes the accumulated reward (i.e., the sum of all scalar reward 172 
signals). A typical interaction goes as follows: given a state 𝑠, the agent takes an action a, which 173 
causes the environment to change its state to a new state 𝑠’. In addition to the new state 𝑠’, the 174 
environment provides a specific reward signal, indicating how good it is in the new state. 175 
Moving across states by performing an action is known as a transition, and a sequence of 176 
transitions is called a trajectory. Specifically, in this study, a trajectory (also referred to as an 177 
episode) is defined as a sequence of transitions and ends with a termination signal indicating 178 
that no more scouting runs are to be run for a given compound.  179 

The state space and action space of the environment define the space in which the 180 
reinforcement learning algorithm (or the agent) can perform intelligently. The state of the 181 
environment can be represented in many ways, everything from video/image input (a 182 
continuous state space), to a vector containing the positions of marks on a tic-tac-toe board (a 183 
discrete state space). Similarly, the action space may also be continuous and/or discrete. The 184 
environment also sets restrictions for what actions are legal – for instance, is the agent allowed 185 
to adjust the percentage of modifier to any percentage? Or is it only allowed to change it 186 
between certain discrete, predefined, ranges?  187 

To formalize the learning procedure, the agent tries to learn a policy – what action to take given 188 
a certain state. The ultimate goal of the agent is to learn a policy π that maximizes the expected 189 
cumulative future reward (known as the expected return) over a trajectory . This optimal 190 
policy denoted as π* is defined as: 191 
 192 
𝜋* = arg maxగ𝐸ఛ~గ[𝑅(𝜏)] ,          (2) 193 
 194 
where 𝑅(𝜏) = ∑ 𝛾௧𝑟௧

ஶ
௧ୀ଴          (3) 195 

  196 
𝐸ఛ~గ[𝑅(𝜏)] denotes the expected return of trajectory  following policy 𝜋 and arg maxగ 197 
specifies the policy maximizing the expected return.   is known as the discount factor 198 
that discounts the reward 𝑟 depending on how far off in the future the reward was obtained. If 199 
the discount factor is smaller than one, it is more valuable to get rewards early on rather than 200 
later.  201 
 202 
For the agent to judge the quality of a given state in an environment, it learns its value through 203 
a value function. The value function denotes the desirability of being in a state at a given point 204 
in time. In the present study, the optimal action-value function Q* will be used – which 205 
expresses the expected return if the agent starts in a state s, takes an action a, and then acts 206 
according to the optimal policy forever after: 207 
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𝑄∗(𝑠, 𝑎) = max
గ

𝐸ఛ~గ[𝑅(𝜏)|𝑠, 𝑎]         (4) 208 

 209 
maxగ indicates the policy yielding the maximum expected return and 𝜏~𝜋 indicates that the 210 
trajectory is sampled according to the policy. Importantly, Q* can be rewritten as a recursive 211 
function, called the Bellman equation for Q* (60): 212 
 213 
𝑄*(𝑠, 𝑎) =  𝛦௦ᇲ~௉ ቂ𝑟(𝑠, 𝑎, 𝑠ᇱ) + 𝛾 max

௔ᇱ
𝑄*(𝑠′, 𝑎′)ቃ       (5) 214 

 215 
𝑠ᇱ~𝑃 indicates that the next state is sampled according to the environment’s transition rules, 216 
𝑟(𝑠, 𝑎, 𝑠ᇱ) is the reward received in the next state 𝑠′ by taking action 𝑎 in state 𝑠, and 217 
𝛾 max௔ᇱ 𝑄*(𝑠′, 𝑎′) is the discounted maximum expected return in the next state 𝑠ᇱ. The 218 
expected return Q*, also referred to as the Q-value, of each state-action pair can be computed 219 
– allowing for the optimal action a* in a given state to be obtained via: 220 
 221 
𝑎∗(𝑠) = arg max௔𝑄∗(𝑠, 𝑎)          (6) 222 
 223 
arg max௔ specifies the action which maximizes 𝑄∗(𝑠, 𝑎) and yields the highest Q-value. 224 
 225 
The optimal action-value function (Q*) is not known at the start and needs to be solved. A 226 
common approach to solve Q* is via Q-learning (61). The Q-learning algorithm incorporates 227 
the Bellman equation for Q* to iteratively update Q: 228 
 229 
𝑄௜ାଵ(𝑠, 𝑎) = 𝐸௦ᇱ ቂ𝑟 + 𝛾 max

௔ᇲ
𝑄௜(𝑠ᇱ, 𝑎ᇱ) |𝑠, 𝑎ቃ        (7) 230 

where 𝑄௜ → 𝑄* when 𝑖 → ∞ 231 
 232 
Q is known as the Q-function, which approaches or represents Q* at any given time. i indicates 233 
iteration i, or transition i. By experiencing states and actions, Q can iteratively be updated until 234 
it reaches Q* or is close enough to it. The agent will select actions based on an action selection 235 
mechanism. A typical method for action selection is 𝜖-greedy and is defined as: 236 
 237 

𝑎 ← ൜  
 arg maxୟ𝑄(𝑠, 𝑎)      with probability 1 −  𝜖 
random action         with probability  𝜖        

 238 

   239 
In essence, the agent will choose to perform a random action with probability 𝜖, and will select 240 
the optimal action (based on what the agent knows about the environment so far) with a 241 
probability 1- 𝜖. Through this continual interaction, the agent will eventually learn which 242 
actions to perform at each state. 243 
 244 
However, a problem with this tabular approach is that it is impractical, because the state space 245 
and action space in most interesting problems are often too large. This approach may not 246 
converge to Q* and lacks generalization capabilities (only able to yield accurate expected 247 
returns given actions and states that it has experienced previously). In reinforcement learning, 248 
generalization is typically solved by some form of function approximation by representing the 249 
value function as a linear function or as a neural network. A major breakthrough in 250 
reinforcement learning was the use of the representational power of deep neural networks 251 
instead of tabular value functions which led to the creation of Deep Q Networks (DQN) (56) 252 
and spurred an entire research field called Deep Reinforcement Learning.  253 
 254 
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Specifically, a function approximator, in this case a deep neural network, approximates 255 
𝑄∗: 𝑄ఏ ≈ 𝑄*. The parameterized action-value function 𝑄ఏ is thus a neural network, referred to 256 
as the Q-network, which receives as input a state s and outputs the expected return for each 257 
possible action in that state. The parameters 𝜃 of the Q-network are estimated by minimizing 258 
an objective function [with respect to 𝜃], which aims to yield an accurate approximation of Q*:  259 
 260 

min
ఏ೔

ቈቆ𝑟(𝑠௜, 𝑎௜ , 𝑠௜
ᇱ) + 𝛾 max

௔೔
ᇲ

𝑄(𝑠௜
ᇱ, 𝑎௜

ᇱ, 𝜃௜
ି)ቇ − 𝑄(𝑠௜, 𝑎௜ , 𝜃௜)቉

ଶ

     (8) 261 

 262 
minఏ೟

 indicates that 𝜃 is being adjusted at each iteration (i) to minimize the objective function. 263 
The objective function is the mean squared error between the target (left term between brackets) 264 
and the prediction (right term between brackets). For stability purposes, the target network has 265 
its parameters 𝜃ି held fixed when minimizing the objective function to not have a continually 266 
moving target. The method is referred to as DQN, and the minimization procedure referred to 267 
as training – which is an iterative procedure that iteratively tries to minimize the objective 268 
function over the course of thousands of episodes.  269 
 270 
To better understand the concept of reinforcement learning from a higher level, and to tie it to 271 
the process of method development, let us consider the agent-environment interaction. This 272 
can be thought of as an analyst performing liquid chromatography (LC). If the environment is 273 
the LC with its internal physics and chemistry (for example the interactions of analytes with 274 
the stationary phase inside the column), then the agent would be the analyst, interacting with 275 
the LC. The analyst merely sees a representation of the interaction between a mixture of 276 
compounds and the mobile/stationary phase. This representation will take the form of a 277 
chromatogram (or retention times), which is the output of the LC. Based on this output, the 278 
analyst decides the next action, and as a consequence of this new action, a new representation 279 
of a state (new output) is presented to the analyst, and so on. These abstractions are important 280 
to understand the roles of the agent and the environment and how they interact, as well as the 281 
important differences between them.  282 
 283 
  284 
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3  MATERIALS AND METHODS 285 
 286 
3.1 Chemicals 287 
 288 
The compounds used in this study, together with their structure, Log P and pKa values, stock 289 
solvent and supplier, are mentioned in Table S-1 in the Supporting Information. Structures 290 
were drawn in Marvin Sketch (v20.9.0, 2020, ChemAxon (www.chemaxon.com)) and values 291 
were gathered from PubChem (62).  The solvents used to prepare stock solutions and mobile 292 
phases were: acetonitrile (ACN, HPLC grade) purchased from Fisher Chemical 293 
(Loughborough, UK); formic acid (99%) purchased from Acros Organics (Geel, Belgium); and 294 
ammonium formate (≥ 99.995%) purchased from Sigma-Aldrich (Diegem, Belgium). Ultra-295 
pure water (H2O, conductivity = 0.1 µS/cm, pH 6.00) was produced in the laboratory using a 296 
Milli-Q gradient purification system from Millipore (Bedford, MA, USA). 297 
 298 
3.2 Apparatus 299 
 300 
All measurements were done on an Agilent Infinity 1290 system from Agilent Technologies 301 
(Waldbronn, Germany) that consisted of the following modules: a quaternary pump (G4204A), 302 
an autosampler (G4226A), a thermostatted column compartment (G1316C) and a diode array 303 
detector with a 1.0 µL flow cell (G4212A). OpenLab software (Agilent Technologies) was 304 
used to operate the system and acquire and analyse the data. Further data treatment was done 305 
in Microsoft Excel. The maximum pressure of the system was 1200 bar. The injection volume 306 
was kept constant at 0.50 µL and the flow rate was 0.500 mL/min. The detector was set at an 307 
acquisition rate of 40 Hz to measure the retention times of the compounds and at 80 Hz to 308 
measure the column void and extra-column times. The considered wavelengths were 240 nm, 309 
254 nm and 275 nm. The column was placed in an oven with a constant temperature of 30.0 310 
°C. Analyses were performed on an Xbridge C8 column (2.1 x 50 mm; 2.5 µm) from Waters 311 
(Wexford, Ireland). Connections between the autosampler, column and detector were made 312 
with nanoViper tubing (inner diameter: 75 µm, total length: 1000 mm) from Thermo Scientific 313 
(Germering, Germany). 314 
 315 
3.3 Stock and working solutions 316 
 317 
Stock solutions of all compounds were prepared in pure organic (ACN) or aqueous solvent, 318 
depending on their solubility, as mentioned for each compound in Table S-1, in a concentration 319 
up to 10,000 µg/mL. Working solutions were made by diluting the stock solutions to 20 µg/mL 320 
in a final solvent mixture of 1.000 mL 5/95 ACN/H2O. 321 
 322 
3.4 Dataset 323 
 324 
Retention factors were collected for 82 representative small molecules (see Table S-1), 325 
covering a wide range of physiochemical properties, at ten different isocratic strengths wherein 326 
the fraction of ACN (ACN) was varied between 0.05 and 0.90 (in 0.10 intervals between 0.10 327 
and 0.90). The aqueous component of the mobile phase was an ammonium formate buffer 328 
(brought to pH 3.00 with formic acid). Each compound was injected in triplicate and obtained 329 
retention times were averaged. The obtained retention times were converted into retention 330 
factors using the following equation: 331 
 332 

𝑘 =
௧ೝି௧బ

௧బି௧೐
            (9) 333 
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 334 
Wherein tr is the retention time of a particular compound, t0 is the elution time of an unretained 335 
marker (thiourea in this study) and te is the extra-column dead time, obtained by replacing the 336 
column in the system by a zero dead-volume union and injecting thiourea under the same 337 
experimental conditions as for tr and t0. 338 
 339 
Some compounds in the dataset were so strongly retained at low ACN (e.g., 0.05 and 0.10) that 340 
it became impractical to record their retention factors in a reasonable amount of time. 341 
Therefore, the retention factors at low ACN for these compounds were estimated by fitting the 342 
Neue-Kuss model (Eq. 1) to the available retention factors, and then using the fitted Neue-Kuss 343 
model to determine the missing retention factors. Some other compounds were highly polar 344 
and did not retain adequately (defined as having a retention factor below 2.5 at 0.05 ACN or 345 
having less than five retention factor values above 0.001) resulting in unreliable data. These 346 
compounds were therefore discarded in this study. The final remaining number of compounds 347 
was 57. Furthermore, all datapoints were clipped to have a lowest k-value of 0.001, which was 348 
necessary because inherent measurement errors caused low retention factor values to be 349 
unreliable, with fluctuations between small positive (<0.001) and small negative (> -0.001) 350 
values. All experimentally obtained retention factors are shown in Table S-2 in the supporting 351 
information. In addition to isocratic retention data, experimental gradient retention data were 352 
additionally collected for the 57 compounds. For this purpose, four different gradient profiles 353 
were experimentally run (see Table 1). 354 
 355 
 356 
3.5 Compound simulator 357 
 358 
To train the Q-network, a compound simulator was created to generate sufficient training data 359 
for the Q-learning algorithm. By fitting the Neue-Kuss model to all the experimentally obtained 360 
retention data for the 57 compounds described above, ranges of parameter values (S1, S2 and 361 
kw) were deduced, and these ranges and their mutual relations laid the basis to generate 362 
retention parameters for simulated compounds (see Figure S-1 and S-2 in the Supporting 363 
Information). The simulator generated a simulated compound in five steps: 364 
 365 

1. S1 was randomly sampled between 100.9 and 101.8; 366 
2. S2 was sampled from its relationship with S1: 𝑆ଶ = 2.5010 ∙ log 𝑆ଵ − 2.0822 + 𝑟ଵ, 367 
where 𝑟ଵ is a random number sampledfrom a uniform distribution 𝑈~(−0.35, 0.35); 368 
3. kw was sampled from its relationship with S1: 𝑘௪ = 10଴.଴଼ଷଽ∙ௌభା଴.ହ଴ହସା௥మ, where 𝑟ଶ is 369 
a random number sampled from a uniform distribution 𝑈~(−1.2, 1.2); 370 
4. the resulting parameter values were input to the Neue-Kuss model to output ten 371 
datapoints (retention factors) between ACN= 0.05 and 0.90; 372 
5. random noise sampled from a normal distribution N~(1.0, 0.1) was added to each 373 
datapoint via multiplication.  374 

 375 
The last step was included to mimic the noisy nature of the experimental data. A total of 10,000 376 
compounds were simulated according to the five-step procedure above; each of which would 377 
occupy a single episode in the complete training of the deep Q-learning algorithm.  Although 378 
not directly evaluated, 10,000 simulated compounds were considered sufficient to capture the 379 
compound space for the specific HPLC setup. 380 
 381 
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 382 

 383 

  384 
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3.6 Double deep Q-learning algorithm  385 
 386 
3.6.1 Environment 387 
 388 
The dynamics of the reinforcement learning environment aimed to mimic that of a real 389 
chromatographic workflow: sequentially selecting [isocratic] scouting runs for one compound 390 
at a time (see Figure 1).  391 
 392 
For consistency, and to allow for evaluation on experimental data later on, the state and action 393 
space of the environment was restricted to the fractions of organic modifier (ACN) that had 394 
been experimentally run (namely 0.05 and 0.10 to 0.90 in steps of 0.10; Table S-2). 395 
Specifically, a state was defined as an array of 10 elements, each of which was a placeholder 396 
for a retention factor value at a certain ACN (e.g. the first element was a placeholder for the 397 
retention factor value at 0.05 ACN, the second element was a placeholder for the retention 398 
factor value at 0.10 ACN, and so on). The default value of the elements in the array when a 399 
given placeholder was not holding any retention factor value was set to -1, as is the case when 400 
no scouting runs had been run (see Fig. 1). The value was set to -1 and not 0 in an attempt to 401 
make the Q-network more easily distinguish between a non-retention factor value and a low 402 
retention factor value. Similar to the state space, the action space was defined to select from 403 
the different ACN that had been run experimentally, with an addition of a STOP action, 404 
allowing the agent to stop performing scouting runs (see Fig. 1). At each step, the agent was 405 
given the choice to select one specific scouting run, or to stop. 406 
 407 
To teach the agent to select desirable scouting runs that can be used to accurately model the 408 
retention behavior of a given compound, a reward function was defined. The reward function 409 
was defined in such a way as to teach, or reinforce, the agent to select optimal scouting runs. 410 
After the agent had finished performing scouting runs (and at least three different scouting runs 411 
had been selected and run), the resulting retention factors (from those three scouting runs) were 412 
used to fit the Neue-Kuss model (see appendix A for more information). Subsequently, the 413 
reward function computed a reward based on the inverse of the mean relative error (MRE-1) 414 
between the target retention factors (𝑦) and the retention factors predicted by the Neue-Kuss 415 
model (𝑦ො): 416 
 417 
reward =  MREିଵ,                    (10) 418 
 419 
where MRE =

ଵ

ଵ଴
 ∑

|௬೔ି௬ො೔|

|௬೔|

ଵ଴
௜ୀଵ                    (11) 420 

 421 
The targets 𝑦 are assumed to be the true retention factors which we want the predictions 𝑦ො to 422 
be as close as possible to. In the best-case scenario, true retention factors would be obtained 423 
from real experiments. However, as mentioned before, because Q-networks need a lot of 424 
training data, simulated compounds were used instead; and the relatively few (57) experimental 425 
compounds were held-out as a test set, and later used to evaluate the agent after it had been 426 
trained. Although the training data were randomly sampled using the simulator, which used 427 
ranges of Neue-Kuss parameter values (S1, S2 and kw) that were based on those of the 428 
compounds in the held-out test set, these parameters were merely roughly deduced from the 429 
overall trends of the parameter values of the test compounds and should therefore not 430 
undermine the purpose of the held-out test set, which is to evaluate the agent on real ‘unseen’ 431 
data. Importantly, the MRE was always calculated based on all (10) retention factors (0.05  432 
0.90 ACN), as the purpose was to obtain models that predicted well for all (10) ACN. 433 
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Furthermore, if the agent stopped before three scouting runs had been selected, the MRE 434 
evaluation (Eq. 10) was not carried out and the agent was rewarded zero (0). Finally, the agent 435 
was penalized (negatively rewarded) in two ways: 436 
 437 

1. by selecting scouting runs that had already been selected before, penalized -5; 438 
2. by selecting scouting runs that resulted in long analysis times (> 1 hour), penalized 439 
based on a sigmoidal (s-shaped) function 𝑓௦:  440 

 441 
𝑓௦(𝑘) =

ଵ

ଵି௘ష(ೖ∙బ.బబరమఱషర.బ) × 20                 (12) 442 
 443 
where 𝑘 is the retention factor. The function 𝑓௦ is adapted in such a way as to have a maximum 444 
penalty close to the maximum reward that can be obtained (Eq. 10), and a minimum penalty at 445 
zero (0). These penalties were implemented to enable the agent to quickly learn not to select 446 
the same scouting run multiple times, and to avoid selecting scouting runs that would result in 447 
high analysis times, respectively. The analysis time penalty (Eq. 12) was important because the 448 
Q-network had to learn to tailor the choice of scouting runs depending on the retention behavior 449 
of the compound. For example, if the agent had to select scouting runs for a highly retained 450 
compound, it was expected to avoid running scouting runs at low ACN.  451 
 452 
3.6.2 Agent 453 
 454 
In this study, as an extension to the deep Q-learning algorithm introduced in section 2, a double 455 
deep Q-learning algorithm (63) with experience replay (64,65) was implemented. 456 
Additionally, an epsilon-greedy policy (60) was incorporated for selecting actions (see 457 
appendix A, B and C for details on these implementations respectively). 458 
 459 
Instead of having a single Q-network for both the target and the prediction together, the double 460 
deep Q-learning algorithm utilizes two separate neural networks with two separate Q-functions 461 
to approximate Q*: a target network and a prediction network, for the target and the prediction 462 
respectively. The minimization procedure is based on the procedure of a single Q-network as 463 
described in (Eq 8). The target network has fixed parameters 𝜃ି which are updated every N 464 
episodes by having the prediction network copying over its parameters 𝜃, while the prediction 465 
network is updated every episode via the minimization procedure (Eq. 8).  466 
 467 
It is of great importance to have a separate network to produce the target, because it counters 468 
the issue of overestimating and biasing the target. The overestimation (and bias) of the target 469 
naturally occurs for standard Q-learning and DQN due to the max operator (cfr. maxa in eq. 5 470 
and 6) both selecting and evaluating the actions. Hasselt et al. have shown how Double deep 471 
Q-learning produces more accurate estimations of the expected return as well as better policies 472 
(63,66).  473 
 474 
A crucial quality of the minimization procedure (Eq. 8) is that it can be formulated to accept 475 
diverse batches of non-correlated examples. Specifically, the minimization step can be done 476 
batch-wise, where each batch contains transitions from different trajectories. In other words, 477 
each batch may contain tuples (s,a,s’) from entirely different scouting runs. To be able to 478 
sample such batches, a memory unit called replay memory was implemented to store transitions 479 
that were experienced by the agent while it was performing scouting runs. These stored 480 
transitions were scheduled to be sampled (in batches) after each episode, and to be directly 481 
used to train the agent (minimize the objective function). Although we did not test any 482 
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algorithm without experience replay (replay memory), it is believed that this technique greatly 483 
stabilizes and smoothens the training process (64,65). The discount factor 𝛾 was set to 0.95 as 484 
an attempt to give slightly higher weight to early rewards. 485 
 486 
 487 
3.7 Evaluation 488 
 489 
After the double deep Q-learning agent was trained, it was evaluated on real, experimental data. 490 
Similar to how the agent selected scouting runs for simulated data during training, the agent 491 
selected scouting runs for isocratic experimental compounds. The resulting Neue-Kuss model 492 
(fitted on the retention factors resulting from the scouting runs selected by the agent) were then 493 
used to predict the retention factors for all 10 isocratic scouting runs. Additionally, the same 494 
Neue-Kuss parameters were also used in the Neue-Kuss equation for gradient elution, which 495 
was used to predict retention data under four different gradient conditions (Table 1). The model 496 
for gradient elution is defined as follows: 497 
 498 

𝑡௥,௚௥௔ௗ௜௘௡௧ =
ଵ

ௌఉ

(ଵାௌమఝబ)మ୪୬(ଵାௌభఉ௞ೢ ୣ୶୮ቀ
షೄభകబ

భశೄమകబ
ቁቀ௧బି

೟ವ
ೖబ

ቁ)

ଵିௌమቀ
భశೄమകబ

ೄభ
ቁ ୪୬(ଵାௌభఉ௞ೢ ୣ୶୮ቀ

షೄభകబ
భశೄమകబ

ቁቀ௧బି
೟ವ
ೖబ

ቁ)
+ 𝑡଴ + 𝑡஽           (13) 499 

 500 
where Sଵ, Sଶ and k୵ are the same parameters as for the isocratic model (cfr Eq. 1), t୰,୥୰ୟୢ୧ୣ୬୲ 501 
is the gradient retention time, φ଴ the fraction of strong eluting solvent in the mobile phase at 502 
the start of the gradient, β the slope of the gradient (=/tG), k଴ the retention factor at φ଴, t଴ 503 
the elution time of an unretained compound and tୈ the dwell time of the system (the time the 504 
mobile phase needs to flow from the pump to the head of the column). The predicted retention 505 
factors (for both isocratic and gradient runs) were then compared to all experimental data 506 
available for that compound by calculating the mean relative percentage error (MRPE) with 507 
modification, as follows: 508 
 509 
MRPE =

ଵ

ଵ଴
 ∑

|௬೔ି௬ො೔|

|ଵା௬೔|
× 100ଵ଴

௜ୀଵ        (14) 510 

 511 
The (modified) MRPE was used as it was less sensitive to small k-values (<0.1), creating a 512 
more stable and robust evaluation metric. To further illustrate how well the resulting model 513 
(based on the selected scouting runs) performed, a comparison was made to a model fit on all 514 
available isocratic datapoints (0.05  0.90 ACN), a model fit on a random selection of three 515 
isocratic scouting runs, as well as a model fit on a chromatographer’s selection of three scouting 516 
runs, namely ACN= 0.1, 0.5 and 0.8. 517 
 518 
 519 
  520 
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4 RESULTS AND DISCUSSION 521 
 522 
4.1 Learning curves: training progression 523 
 524 
To illustrate how the agent learned to perform optimal scouting run selection, the rewards and 525 
number of selected scouting runs were collected during the training procedure. Figure 2 526 
illustrates both how the reward and the number of selected actions changed over the first 3500 527 
episodes. In addition, for comparison, the theoretical optimum (highest possible reward) was 528 
also calculated and plotted. Notice that the theoretical optimum does not reflect the best 529 
possible performance by an agent, but rather illustrates what in theory could be obtained. 530 
Specifically, the theoretical optimum was obtained by selecting, for each and every compound 531 
separately, the combination of (three) scouting runs (out of the 120 combinations that exist for 532 
3 actions and 10 possible states) that resulted in the highest reward. Due to random action 533 
selection, leading to poor retention models and high penalties, the reward given to the agent 534 
started off at high negative values (around -5 to -15). Specifically, the low reward as well as 535 
the high number of selected scouting runs in the first 100 episodes confirmed that the selected 536 
actions were highly random (due to the high 𝜖 for the epsilon-greedy policy). Between episode 537 
100 and 200 however, the agent started to select scouting runs non-randomly, which resulted 538 
in the agent selecting much fewer scouting runs (around 2 on average). Notice that, although 539 
not yielding a retention model due to too few scouting runs (< 3), the agent had at this point 540 
learned to select better actions than before, because no or fewer penalties were given. After 541 
200 episodes, the agent went from an insufficient number of scouting runs (which resulted in 542 
a reward around 0) to selecting enough scouting runs for a retention model, resulting in a 543 
positive reward outweighing potential penalties. In other words, after 200 episodes, the agent 544 
started to learn how to optimize the selection of scouting runs for retention modelling – 545 
selecting around four scouting runs on average, which is on average one scouting run more 546 
than the minimum required to fit a three-parameter model. This number was overestimated due 547 
to the epsilon-greedy policy (𝜖  > 0), which is likely to cause the agent to select scouting runs 548 
sub-optimally (i.e. not selecting actions with the greatest Q-value). Notice, although not 549 
visualized, if only the greedy policy was followed (epsilon = 0), the agent would select closer 550 
to three scouting runs on average. 551 
 552 
4.2 Scouting run selection 553 
 554 
After the agent, or the Q-network, was optimized or trained to select scouting runs for simulated 555 
data, it was evaluated on experimental data. Figure 3 illustrates how the agent selected scouting 556 
runs for four representative compounds it had never seen before (see Table S-3 for complete 557 
results). For the four compounds considered in Figure 3, ACN of 0.20 and 0.90 were selected 558 
by the trained agent; and for all four compounds, three scouting runs were run in total (which 559 
is the minimum requirement). What differed between compounds of different retention 560 
behavior, specifically between less retained compounds (e.g. nitrobenzene and o-561 
methylacetophenone) and more retained compounds (e.g. iodobenzene and anthracene), was 562 
the selection of the third scouting run (ACN of 0.05 for the less retained compounds and 0.50 563 
for the more retained compounds), which indicates that the selection of scouting runs was 564 
tailored based on the retention behavior of the compounds. Because nitrobenzene and o-565 
methylacetophenone are less retained compounds, they were both selected to be run at as low 566 
as ACN=0.05. Intuitively, a scouting run at ACN=0.05 holds important information for a 567 
retention model but requires significantly longer analysis time for highly apolar compounds, 568 
like iodobenzene and anthracene. For these highly retained compounds, ACN=0.05was avoided 569 
and instead ACN=0.50 was selected by the agent. Furthermore, in all cases, the scouting run 570 
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selection spanned a wide range of selectable ACN, in a relatively evenly spaced-out manner, 571 
which intuitively should result in more accurate retention models. Finally, these results 572 
illustrate that the penalty given to the agent for selecting scouting runs resulting in high (>> 1 573 
hour) analysis times (i.e. high retention factors), made the agent avoid the lower percentages 574 
for compounds like iodobenzene and anthracene, but not for compounds like nitrobenzene and 575 
o-methylacetophenone, which in regards to this study was highly desirable. 576 
 577 
 578 
4.3 Q-values: taking action 579 
 580 
While Figure 3 illustrates which actions the agent took depending on the retention behavior of 581 
the compounds, Figure 4 illustrates how the agent, or the Q-network and its Q-values, decided 582 
which actions to take, given a certain state. It also illustrates how the Q-values varied between 583 
steps and between compounds with a different retention behavior (specifically, in Figure 4, 584 
acetophenone and biphenyl). Interestingly, the penalty given for high analysis times, forced the 585 
Q-values for ACN= 0.05 and ACN= 0.10 to differ significantly between the two compounds. 586 
Specifically, biphenyl, which is more retained than acetophenone, was predicted by the Q-587 
network to result in a high penalty if run at ACN= 0.05 or ACN= 0.10 (the analysis time would 588 
be too long), and therefore predicted higher Q-values at higher ACN. Furthermore, the penalty 589 
given when the same ACN was selected more than once, resulted in a significant lowering of 590 
the Q-value in the succeeding steps for that ACN. 591 
 592 
Acetophenone had higher Q-values on average, suggesting the reward/penalty on average was 593 
greater for less retained compounds (like acetophenone) than higher retained compounds (like 594 
biphenyl). This suggests that (1) ACN= 0.05 was an important datapoint to accurately model 595 
retention behaviors (resulting in a low MRPE) – a datapoint which did not get selected for 596 
highly retained compounds due to high penalties; (2) the continual higher penalties for highly 597 
retained compounds forced down the Q-values. 598 
 599 
Although not directly presented in this study, the number of selected scouting runs, as well as 600 
the specific selection of scouting runs may differ between agents trained on slightly different 601 
data. Specifically, Figure 4 illustrates how several actions have similar Q-values given a certain 602 
state, which could easily nudge the agent in a different direction. This does not necessarily 603 
mean that the agent (or the double deep Q-learning algorithm) is not robust, but rather that 604 
there are several solutions to the problem – i.e. several directions (combinations of scouting 605 
runs) that result in good retention models. 606 
 607 
4.4 Retention model performance: isocratic and gradient prediction errors 608 
 609 
To get a better understanding of how well the retention models resulting from the scouting runs 610 
selected by the agent perform, the prediction accuracy of these retention models was compared 611 
to the prediction accuracy of retention models obtained by fitting to (1) all 10 available isocratic 612 
data points (ACN of 0.05 to 0.90); (2) a random selection of three isocratic scouting runs and 613 
(3) a chromatographer’s selection of three isocratic scouting runs, namely ACN= 0.1, 0.5 and 614 
0.8. These four differently obtained retention models were also used to predict gradient 615 
retention factors for four different gradients (Table 2). 616 
 617 
Table 2 illustrates the MRPE between the experimentally obtained data and the predictions, for 618 
both isocratic and gradient data (see Table S-4 for complete results). The retention model 619 
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obtained by the agent (based on (mostly) 3 scouting runs), performed comparably and better to 620 
the retention models based on all experimental datapoints and the retention models based on 621 
the chromatographer’s selection of three scouting runs, for the isocratic and gradient data 622 
respectively; and performed significantly better than the retention models based on the random 623 
scouting run selection. Importantly, the models resulting from the agent’s selection of scouting 624 
runs were, compared to retention models based on all datapoints, obtained via seven fewer 625 
datapoints; i.e. seven fewer scouting runs, saving significant time and costs. These results 626 
indicate that the agent successfully learned to optimize the scouting run selection.  627 
 628 
The reason why the retention model obtained by the agent had a significantly lower gradient 629 
prediction error compared to the retention model fitted on all datapoints and the 630 
chromatographer’s selection, lies in the high prediction error for the lowly retained compounds. 631 
It is speculated that (1) having many datapoints at medium-high ACN for the lowly retained 632 
compounds, where most ACN have retention factors close to 0, is forcing the estimated 633 
parameters (kw, S1 and S2) to model the behavior of the given lowly retained compound 634 
favorably in the regions of low ACN, but highly unfavorably in the regions of high ACN, which 635 
is more relevant for gradient retention modelling; and (2) not having ACN of 0.05 (in the case 636 
of the chromatographer’s selection) misses out on valuable information for gradient 637 
predictions. 638 
 639 
5 Conclusions 640 
 641 
In this study, a reinforcement learning algorithm, specifically the double deep Q-learning 642 
algorithm, was shown to be able to learn to optimally select informative scouting runs in a fully 643 
self-taught way. Although only isocratic scouting runs were considered for a specific RPLC 644 
setup, these experiments illustrate how the agent learned to tailor the selection of scouting runs 645 
for different compounds depending on the retention behavior (mainly defined by its polarity, 646 
or kw). The experiments also illustrate how the agent limited the number of selected scouting 647 
runs yet still yielding a retention model with low prediction error (MRPE of 3.77% and 1.93% 648 
for isocratic and gradient data, respectively). The strategy of the agent was to select relatively 649 
evenly spaced-out scouting runs (in terms of ACN), including at least one scouting run at low 650 
ACN (as long as the analysis time was not too long), and at least one scouting run at high ACN. 651 
Intuitively, selecting scouting runs as such will cover a greater space, better capturing the 652 
complete behavior of the compound. The retention models based on the agent’s selection of 653 
scouting runs (MRPE of 3.77% for the isocratic data and 1.93% for the gradient data) compared 654 
well to both the retention models fitted on all datapoints (MRPE of 3.26% for isocratic data 655 
and 4.97% for gradient data) and the chromatographer’s selection (3.86% for isocratic data and 656 
6.66% for gradient data); and performed significantly better than retention models based on the 657 
random selection of three scouting runs (MRPE of 46.30% for isocratic data 7.60% for gradient 658 
data).  659 
 660 
Although the double deep Q-learning algorithm presented in this study shows potential, it has 661 
only been tested on its ability to learn from isocratic data for a specific RPLC setup. This double 662 
deep Q-learning algorithm is also limited to a discrete, and preferably small, action space, 663 
which could potentially be a problem for tasks like selecting scouting runs for gradient elution 664 
– where the action space is either larger or continuous. The prospect is to develop a 665 
reinforcement learning algorithm that can deal with a more complex/larger state and action 666 
space (e.g. Branching Dueling Q-learning (67)) and/or continuous action space (e.g. Twin-667 
Delayed Deep Deterministic Policy Gradient (TD3) or Soft Actor-Critic (SAC) algorithm 668 
(68,69)), to be able to perform scouting runs for a mixture of compounds (i.e. selecting scouting 669 
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runs for multiple compounds at the same time) in a more complex setting such as gradient 670 
conditions. If such an algorithm can be developed successfully, it would be worthwhile 671 
integrating it into normal practice. 672 
 673 
 674 
Availability 675 
All code used in this study (except the plots), including the complete implementation of the 676 
agent and the environment, can be found at https://github.com/akensert/ddqn-isocratic-677 
scouting-runs. Due to stochasticity in training an artificial neural network, results may differ 678 
somewhat from run to run. InChI for each experimental compound evaluated in this study can 679 
be found in supplementary table 5 (Table S-5). 680 
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Figure Captions 915 
 916 
Figure 1: A simple schematic illustration of the interaction between agent and environment. 917 
A) the environment supplies the agent with a state s, which is an array of retention factors (k) 918 
where each element corresponds to a ACN; based on this state s the agent produces an array of 919 
Q-values for each action. B) the agent takes the greedy action, namely the action with the 920 
highest Q-value, resulting in a new state s’. For readability, the figure excludes the reward and 921 
only covers one single transition (s,a,s’). 922 
 923 
Figure 2: Illustration of how the reward (top; blue) and the number of scouting runs selected 924 
(bottom; orange) by the agent increased over the number of episodes. To reduce the noise of 925 
these learning curves, a moving average filter was applied to the data (window size of 35). The 926 
lighter shaded areas represent a 95% confidence interval of the average lines. The black line in 927 
the top plot illustrates the theoretical optimum (the highest possible reward) that can be 928 
obtained by selecting the best combination of three scouting runs out of 120 different 929 
combinations. 930 

Figure 3: Illustration of how the scouting runs were selected sequentially for four 931 
representative compounds with a significantly different retention behavior. The estimated 932 
Neue-Kuss parameter kw can be used to assess the retention behavior of the compounds, with 933 
a high kw indicating strong retention, and a low kw indicating weaker retention. The blue dots 934 
indicate the experimental data, the orange triangles pointing to the x-axis indicate the scouting 935 
runs selected (sequentially, 1 3), and the orange lines indicate the predicted retention model 936 
resulting from the scouting runs. MRPE stands for mean relative percentage error. The y-axis 937 
has been set to log scale to better visualize the prediction of lower ACN values. 938 
 939 
Figure 4: Illustration of how the scouting runs were sequentially (from top to bottom) selected 940 
based on the highest Q-value at each step, for two representative compounds. Similar to Figure 941 
3, the estimated Neue-Kuss parameter kw indicates the retainability of the compounds, with a 942 
high kw indicating strong retention, and a low kw indicating weaker retention. Orange bars 943 
indicate the selected actions. 944 
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Appendix:  948 

Deep Q-learning for the selection of optimal 949 

isocratic scouting runs in liquid chromatography 950 

 951 
A: Retention Model 952 
The retention model used in this study was the Neue-Kuss model (Eq. 1). The model is obtained 953 
by fitting the model’s parameters (S1, S2 and kw) to the available datapoints for a given 954 
compound. The fitting is done via Nelder-Mead optimization (doi: 955 
https://doi.org/10.1093/comjnl/7.4.308), which is a type of simplex method.  956 
 957 
B: Double Deep Q-network 958 
In this study, the two Q-networks had a 10-unit input layer (corresponding to the state of the 959 
environment), two 1024-unit hidden layers with rectified linear unit activation and a dropout 960 
rate of 0.2, and a final 11-unit linear output layer (corresponding to the actions of the agent). 961 
While, the prediction network was updated each episode via the minimization procedure, the 962 
target network was updated (by copying over the prediction network’s parameters) every 64 963 
steps. The batch-size, which is the number of transitions used per minimization step (Eq. 8), 964 
was set to 128. To minimize the objective function (Eq. 8), a stochastic gradient descent 965 
optimizer was used, with a momentum and an initial learning rate of 0.9 and 0.001 respectively. 966 
The learning rate was scheduled to decay for 4096 iterations (episodes) until it reached a 967 
minimum learning rate of 0.0001.  968 
 969 
Before selecting the hyperparameter values mentioned above, some preliminary testing was 970 
done (i.e. the Q-network was tested with different hyperparameter values). The number of 971 
hidden units was varied between 512 and 2048 (for which 1024 was equal or better to the other 972 
values and was therefore selected), the number of layers were varied between 1 and 3 (for 973 
which 2 was selected), and the dropout rate was varied between 0.1 and 0.5 (for which 0.2 was 974 
selected). Furthermore, the initial learning rate was varied between 0.01 and 0.001 (for which 975 
0.001 was selected), and both rectified linear unit (ReLU) and sigmoid activation was tested 976 
(for which ReLU was selected). Finally, discount factor 𝛾 was varied between 0.0 and 1.0 (for 977 
which 0.95 was selected). 978 
 979 
C: Replay Memory/Experience Replay  980 
Because the batch-size was set to 128, the number of samples sampled from the replay memory 981 
unit was also 128. The capacity (maximum number of transitions stored) for the replay memory 982 
unit was restricted to 2048. This restriction was added to avoid having the Q-network learn 983 
from old experiences (transitions). The sampling of transitions from the replay memory unit 984 
did not start until it had at least 512 transitions stored; because the Q-network (or specifically 985 
the prediction network) was updated every episode, having at least 4 times the batch-size of 986 
transitions helped to avoid having the Q-network train on similar batches multiple times in a 987 
row; and although no evidence is presented here, it was thought that this could potentially bias 988 
the Q-network at the beginning of training and hence slow down learning. As for the 989 
hyperparameters of the Q-network the batch size was varied between 32 and 512 (for which 990 
128 was selected). 991 
 992 
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D: Epsilon-greedy policy 993 
The epsilon-greedy policy is important for balancing the exploration-exploitation tradeoff. The 994 
epsilon-greedy policy in this study was divided into 𝜀௜௡௜௧௜௔௟,  𝜀ௗ௘௖௔௬, and  𝜀௠௜௡௜௠௨௠, which 995 
were set to 1.0, 0.99, and 0.1 respectively. This made the agent take mostly random actions 996 
(exploring) in the beginning, and increasingly by time started to take actions based on the 997 
output of the Q-function (the Q-values), namely arg maxୟ𝑄(𝑠, 𝑎) (exploiting), The minimum 998 
epsilon was kept at 0.1 to force the agent to explore throughout the entire run. As for the 999 
hyperparameters of the Q-network, the initial epsilon, the decay rate, as well as the minimum 1000 
decay was varied between 0.1-1.0, 0.99-0.999 and 0.0-1.0 respectively. For which 1.0, 0.99 1001 
and 0.1 was selected respectively.  1002 
 1003 


