

Vrije Universiteit Brussel

Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography
Kensert, Alexander; Collaerts, Gilles; Efthymiadis, Kyriakos; Desmet, Gert; Cabooter, Deirdre

Published in:
Journal of Chromatography A

DOI:
10.1016/j.chroma.2021.461900

Publication date:
2021

License:
CC BY-NC-ND

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Kensert, A., Collaerts, G., Efthymiadis, K., Desmet, G., & Cabooter, D. (2021). Deep Q-learning for the selection
of optimal isocratic scouting runs in liquid chromatography. Journal of Chromatography A, 1638, [461900].
https://doi.org/10.1016/j.chroma.2021.461900

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 19. Apr. 2024

https://doi.org/10.1016/j.chroma.2021.461900
https://cris.vub.be/en/publications/deep-qlearning-for-the-selection-of-optimal-isocratic-scouting-runs-in-liquid-chromatography(aa5235af-9d15-4c1b-8400-21a8077ceb9a).html
https://doi.org/10.1016/j.chroma.2021.461900

1

 1
 2

 3

 4

 5

Deep Q-learning for the selection of optimal isocratic 6

scouting runs in liquid chromatography 7

 8

Alexander Kensert1, Gilles Collaerts1, Kyriakos Efthymiadis2, Gert Desmet3 and Deirdre 9

Cabooter1,* 10

 11

 12
(1)University of Leuven (KU Leuven), Department for Pharmaceutical and Pharmacological Sciences, 13

Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium 14
(2)Vrije Universiteit Brussel, Department of Computer Science, Artificial Intelligence Lab, Pleinlaan 9, 15

1050 Brussel, Belgium 16
 (3)Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium 17

 18

 19

(*) corresponding author: 20

e-mail: deirdre.cabooter@kuleuven.be 21

tel.: (+) 32 (0)16.32.34.42 22

 23
 24
 25
 26
 27
 28

2

 29
ABSTRACT 30
 31
An important challenge in chromatography is the development of adequate separation methods. 32
Accurate retention models can significantly simplify and expedite the development of adequate 33
separation methods for complex mixtures. The purpose of this study was to introduce 34
reinforcement learning to chromatographic method development, by training a double deep Q-35
learning algorithm to select optimal isocratic scouting runs to generate accurate retention 36
models. These scouting runs were fit to the Neue-Kuss retention model, which was then used 37
to predict retention factors both under isocratic and gradient conditions. The quality of these 38
predictions was compared to experimental data points, by computing a mean relative 39
percentage error (MRPE) between the predicted and actual retention factors. By providing the 40
reinforcement learning algorithm with a reward whenever the scouting runs led to accurate 41
retention models and a penalty when the analysis time of a selected scouting run was too high 42
(> 1h); it was hypothesized that the reinforcement learning algorithm should by time learn to 43
select good scouting runs for compounds displaying a variety of characteristics. The 44
reinforcement learning algorithm developed in this work was first trained on simulated data, 45
and then evaluated on experimental data for 57 small molecules – each run at 10 different 46
fractions of organic modifier (0.05 to 0.90) and four different linear gradients. The results 47
showed that the MRPE of these retention models (3.77% for isocratic runs and 1.93% for 48
gradient runs), mostly obtained via 3 isocratic scouting runs for each compound, were 49
comparable in performance to retention models obtained by fitting the Neue-Kuss model to all 50
(10) available isocratic datapoints (3.26% for isocratic runs and 4.97% for gradient runs) and 51
retention models obtained via a “chromatographer’s selection” of three scouting runs (3.86% 52
for isocratic runs and 6.66% for gradient runs). It was therefore concluded that the 53
reinforcement learning algorithm learned to select optimal scouting runs for retention 54
modeling, by selecting 3 (out of 10) isocratic scouting runs per compound, that were 55
informative enough to successfully capture the retention behavior of each compound. 56
 57
 58
Keywords: method development; retention models; machine learning; reinforcement 59
learning; deep q-learning; 60

3

1 INTRODUCTION 61
 62
One of the main challenges in (liquid) chromatography is to obtain adequate methods to 63
separate complex samples. Method development is still often done based on a trial-and-error 64
approach, leading to lengthy optimization procedures. Decision-algorithms can be used to help 65
find adequate separations for complex samples (1–8). These algorithms need to be able to 66
predict future runs and select the correct runs to produce the most desirable outcome, which 67
means accurate retention models need to be incorporated into the algorithms. Retention models 68
can generally be divided into two types: quantitative structure retention relationship (QSRR) 69
models, that model retention times of compounds for specific separation conditions based on 70
their molecular descriptors (9–16) and empirical models, that model retention times of 71
compounds based on experimental instrument or system variables, e.g. the fraction of strong 72
eluent in the mobile phase (17–24). The two types of retention models are complementary and 73
usually answer different questions. For instance, QSRR models are commonly developed to 74
improve the identification of known analytes, while empirical retention models are rather 75
developed to improve the separation of complex mixtures of known or unknown compounds. 76
As the present study focuses on improving separation methods for compounds for which 77
molecular structures are not always available, empirical retention models will be used. 78
 79
An often employed empirical retention model is the Neue-Kuss model (21,26–28): 80
 81
𝑘(𝜑) = 𝑘௪(1 + 𝑆ଶ𝜑)ଶ exp ቀ−

ௌభക

ଵାௌమఝ
ቁ (1) 82

 83
Wherein  is the fraction of strong eluent in the mobile phase, k() the retention factor for a 84
specific  and kw, S1 and S2 are retention parameters that need to be fit to experimental retention 85
factors to yield a retention model for a given compound. More specifically, kw refers to the 86
retention factor of a compound for =0 (in reversed-phase liquid chromatography (RPLC) this 87
corresponds to a purely aqueous mobile phase), S1 refers to the slope and S2 to the curvature of 88
the correlation between k and . Since the Neue-Kuss model requires three parameters for the 89
prediction of the retention factor (𝑘௪, 𝑆ଵ 𝑎𝑛𝑑 𝑆ଶ), at least three datapoints (i.e., experimental 90
retention factors obtained at three different mobile phase compositions) are needed as input. In 91
RPLC, the polarity of a compound is one of the main factors influencing its retention behaviour. 92
Since compounds can have large differences in polarity, the selection of the scouting runs, i.e., 93
the selection of the mobile phase compositions that need to be selected to obtain adequate 94
retention models, is an important problem as the most informative conditions can strongly 95
differ for each compound. This importance is emphasized making the economic consideration 96
that the number of scouting runs should preferably be kept as low as possible. Thus, there is a 97
clear need to develop algorithms that can select optimal scouting runs leading to accurate 98
retention models. 99
 100
Decision algorithms for chromatographic applications, such as method development, have been 101
studied since the 1980’s. These algorithms, also sometimes referred to as expert systems, 102
focused on different aspects of the chromatographic workflow: method selection (28,29), 103
mobile phase selection (30,31), mobile phase/selectivity optimization (32,33), system 104
optimization (34,35) and retention optimization (36–39). All these algorithms aimed at 105
improving the decision-making process for method development and reducing the extent of 106
trial-and-error that is commonly practiced. However, in the late 90’s these expert systems lost 107
their popularity due to the fact that the high expectations for these systems were not met, and 108
the computational power available at that time was inadequate. 109

4

Traditional approaches, like those used in the 80’s and 90’s, usually take the form of predefined 110
rules and if-else statements, which are directly programmed/handcrafted by the software 111
engineer and experts in the field. The inherent problem of this approach is its great difficulty 112
to generalize to new data or scale to large, diverse datasets. Algorithms like machine learning 113
(40) can, to some extent, solve the problem of generalization by letting the machine program 114
itself (learn its own rules) via highly parameterized and regularized function approximators 115
that are trained on a so-called training dataset. Supervised machine learning algorithms have 116
been around for many decades (41–44) but came to proliferate in the late 2000’s when the 117
availability of data in both private and public repositories grew considerably and sufficiently 118
powerful computer hardware became readily available. This family of algorithms only needs 119
to be supplied with input and output pairs, and everything in-between (mapping from input to 120
output) is learned by the algorithm itself. Given an input, supervised learning algorithms learn 121
how to minimize the error between their prediction and the target (the associated output for 122
that input). A typical application of supervised learning is classification, in which, given an 123
input, the algorithm outputs the correct class. However, the limitation of supervised learning is 124
the need to label every input, which is often either very time-consuming or impossible to 125
actualize. Unsupervised learning deals with situations where no labels are required, with a 126
typical application being clustering. Instead of directly getting a prediction from some input, it 127
clusters the input data and finds patterns in it. Either of these two paradigms is important, but 128
neither fulfills the criteria for intelligent decision making as required in method development. 129
In method development, especially when dealing with novel or unknown compounds, a 130
prediction of the next step to perform is needed, but the effects of the steps are unknown and 131
impossible to plan. 132
 133
Reinforcement learning is a machine learning paradigm that deals with sequential decision 134
making (45,46). In contrast to supervised learning, where each prediction is independent of the 135
others, decisions are sequential and dependent on each other. This aligns well with method 136
development, which is clearly a sequential procedure (cfr. the trial-and-error approach when 137
method development is carried out in its most simple form). Furthermore, in reinforcement 138
learning, there is no need for input-output pairs as in supervised learning, because no label is 139
needed to teach the algorithm to perform well on a given task (which is of great importance as 140
labels are commonly unavailable in method development). Instead of a label, a scalar reward 141
signal reinforces a desirable behavior; i.e. the reinforcement learning algorithm learns a 142
mapping from some input to some desirable output by receiving feedback based on the output. 143
The goal of the reinforcement learning algorithm is not to optimize itself towards accurate label 144
predictions, but instead maximize the cumulative future reward (i.e. learn to optimally perform 145
a specific task). Due to its generality, reinforcement learning algorithms have been widely 146
utilized and studied in many applications and areas of research and industry, including robotics 147
(44–49). Besides its many applications, reinforcement learning is possibly most known for its 148
achievements in attaining superhuman level performance in board games, such as Chess and 149
Go (53–55), and in video and computer games such as Atari (56), Starcraft II (57,58) and Dota 150
2 (59). 151
 152
In the present study, the possibilities of reinforcement learning are investigated for a basic 153
chromatographic problem: selecting optimal isocratic scouting runs in RPLC to fit retention 154
models. Specifically, the aim is to train a reinforcement learning algorithm to select a minimum 155
number of scouting runs that allow to obtain accurate retention models for a diverse set of 156
compounds. The present study is considered a simple first step in introducing reinforcement 157
learning to the area of chromatography. 158
 159

5

2 THEORY 160
 161
Reinforcement Learning is a goal directed paradigm in which a computer program, called the 162
agent, is continuously interacting with the environment. The environment is the world in which 163
the agent resides and encapsulates the task the agent tries to solve. By performing actions, the 164
agent receives a numerical feedback from the environment based on the quality of the chosen 165
action. Over time, the agent learns to optimize the actions it takes by trying to maximize the 166
future rewards. Typically, reinforcement learning uses a Markov Decision Process (MDP) as 167
its mathematical model. An MDP is a 4-tuple <S, A, T, R>, where S is the state space, A the 168
action space, T(s, a, s’) = Pr(s’ | s, a) the probability that action a in state s will lead to state s’, 169
and R(s, a, s’) the immediate reward (𝑟) received when action (𝑎) taken in state (𝑠) results in a 170
transition to state (𝑠’). The problem of solving an MDP is to find a policy (𝜋) (i.e., mapping 171
from states to actions) that maximizes the accumulated reward (i.e., the sum of all scalar reward 172
signals). A typical interaction goes as follows: given a state 𝑠, the agent takes an action a, which 173
causes the environment to change its state to a new state 𝑠’. In addition to the new state 𝑠’, the 174
environment provides a specific reward signal, indicating how good it is in the new state. 175
Moving across states by performing an action is known as a transition, and a sequence of 176
transitions is called a trajectory. Specifically, in this study, a trajectory (also referred to as an 177
episode) is defined as a sequence of transitions and ends with a termination signal indicating 178
that no more scouting runs are to be run for a given compound. 179

The state space and action space of the environment define the space in which the 180
reinforcement learning algorithm (or the agent) can perform intelligently. The state of the 181
environment can be represented in many ways, everything from video/image input (a 182
continuous state space), to a vector containing the positions of marks on a tic-tac-toe board (a 183
discrete state space). Similarly, the action space may also be continuous and/or discrete. The 184
environment also sets restrictions for what actions are legal – for instance, is the agent allowed 185
to adjust the percentage of modifier to any percentage? Or is it only allowed to change it 186
between certain discrete, predefined, ranges? 187

To formalize the learning procedure, the agent tries to learn a policy – what action to take given 188
a certain state. The ultimate goal of the agent is to learn a policy π that maximizes the expected 189
cumulative future reward (known as the expected return) over a trajectory . This optimal 190
policy denoted as π* is defined as: 191
 192
𝜋* = arg maxగ𝐸ఛ~గ[𝑅(𝜏)] , (2) 193
 194
where 𝑅(𝜏) = ∑ 𝛾௧𝑟௧

ஶ
௧ୀ଴ (3) 195

 196
𝐸ఛ~గ[𝑅(𝜏)] denotes the expected return of trajectory  following policy 𝜋 and arg maxగ 197
specifies the policy maximizing the expected return.   is known as the discount factor 198
that discounts the reward 𝑟 depending on how far off in the future the reward was obtained. If 199
the discount factor is smaller than one, it is more valuable to get rewards early on rather than 200
later. 201
 202
For the agent to judge the quality of a given state in an environment, it learns its value through 203
a value function. The value function denotes the desirability of being in a state at a given point 204
in time. In the present study, the optimal action-value function Q* will be used – which 205
expresses the expected return if the agent starts in a state s, takes an action a, and then acts 206
according to the optimal policy forever after: 207

6

𝑄∗(𝑠, 𝑎) = max
గ

𝐸ఛ~గ[𝑅(𝜏)|𝑠, 𝑎] (4) 208

 209
maxగ indicates the policy yielding the maximum expected return and 𝜏~𝜋 indicates that the 210
trajectory is sampled according to the policy. Importantly, Q* can be rewritten as a recursive 211
function, called the Bellman equation for Q* (60): 212
 213
𝑄*(𝑠, 𝑎) = 𝛦௦ᇲ~௉ ቂ𝑟(𝑠, 𝑎, 𝑠ᇱ) + 𝛾 max

௔ᇱ
𝑄*(𝑠′, 𝑎′)ቃ (5) 214

 215
𝑠ᇱ~𝑃 indicates that the next state is sampled according to the environment’s transition rules, 216
𝑟(𝑠, 𝑎, 𝑠ᇱ) is the reward received in the next state 𝑠′ by taking action 𝑎 in state 𝑠, and 217
𝛾 max௔ᇱ 𝑄*(𝑠′, 𝑎′) is the discounted maximum expected return in the next state 𝑠ᇱ. The 218
expected return Q*, also referred to as the Q-value, of each state-action pair can be computed 219
– allowing for the optimal action a* in a given state to be obtained via: 220
 221
𝑎∗(𝑠) = arg max௔𝑄∗(𝑠, 𝑎) (6) 222
 223
arg max௔ specifies the action which maximizes 𝑄∗(𝑠, 𝑎) and yields the highest Q-value. 224
 225
The optimal action-value function (Q*) is not known at the start and needs to be solved. A 226
common approach to solve Q* is via Q-learning (61). The Q-learning algorithm incorporates 227
the Bellman equation for Q* to iteratively update Q: 228
 229
𝑄௜ାଵ(𝑠, 𝑎) = 𝐸௦ᇱ ቂ𝑟 + 𝛾 max

௔ᇲ
𝑄௜(𝑠ᇱ, 𝑎ᇱ) |𝑠, 𝑎ቃ (7) 230

where 𝑄௜ → 𝑄* when 𝑖 → ∞ 231
 232
Q is known as the Q-function, which approaches or represents Q* at any given time. i indicates 233
iteration i, or transition i. By experiencing states and actions, Q can iteratively be updated until 234
it reaches Q* or is close enough to it. The agent will select actions based on an action selection 235
mechanism. A typical method for action selection is 𝜖-greedy and is defined as: 236
 237

𝑎 ← ൜
 arg maxୟ𝑄(𝑠, 𝑎) with probability 1 − 𝜖
random action with probability 𝜖

 238

 239
In essence, the agent will choose to perform a random action with probability 𝜖, and will select 240
the optimal action (based on what the agent knows about the environment so far) with a 241
probability 1- 𝜖. Through this continual interaction, the agent will eventually learn which 242
actions to perform at each state. 243
 244
However, a problem with this tabular approach is that it is impractical, because the state space 245
and action space in most interesting problems are often too large. This approach may not 246
converge to Q* and lacks generalization capabilities (only able to yield accurate expected 247
returns given actions and states that it has experienced previously). In reinforcement learning, 248
generalization is typically solved by some form of function approximation by representing the 249
value function as a linear function or as a neural network. A major breakthrough in 250
reinforcement learning was the use of the representational power of deep neural networks 251
instead of tabular value functions which led to the creation of Deep Q Networks (DQN) (56) 252
and spurred an entire research field called Deep Reinforcement Learning. 253
 254

7

Specifically, a function approximator, in this case a deep neural network, approximates 255
𝑄∗: 𝑄ఏ ≈ 𝑄*. The parameterized action-value function 𝑄ఏ is thus a neural network, referred to 256
as the Q-network, which receives as input a state s and outputs the expected return for each 257
possible action in that state. The parameters 𝜃 of the Q-network are estimated by minimizing 258
an objective function [with respect to 𝜃], which aims to yield an accurate approximation of Q*: 259
 260

min
ఏ೔

ቈቆ𝑟(𝑠௜, 𝑎௜ , 𝑠௜
ᇱ) + 𝛾 max

௔೔
ᇲ

𝑄(𝑠௜
ᇱ, 𝑎௜

ᇱ, 𝜃௜
ି)ቇ − 𝑄(𝑠௜, 𝑎௜ , 𝜃௜)቉

ଶ

 (8) 261

 262
minఏ೟

 indicates that 𝜃 is being adjusted at each iteration (i) to minimize the objective function. 263
The objective function is the mean squared error between the target (left term between brackets) 264
and the prediction (right term between brackets). For stability purposes, the target network has 265
its parameters 𝜃ି held fixed when minimizing the objective function to not have a continually 266
moving target. The method is referred to as DQN, and the minimization procedure referred to 267
as training – which is an iterative procedure that iteratively tries to minimize the objective 268
function over the course of thousands of episodes. 269
 270
To better understand the concept of reinforcement learning from a higher level, and to tie it to 271
the process of method development, let us consider the agent-environment interaction. This 272
can be thought of as an analyst performing liquid chromatography (LC). If the environment is 273
the LC with its internal physics and chemistry (for example the interactions of analytes with 274
the stationary phase inside the column), then the agent would be the analyst, interacting with 275
the LC. The analyst merely sees a representation of the interaction between a mixture of 276
compounds and the mobile/stationary phase. This representation will take the form of a 277
chromatogram (or retention times), which is the output of the LC. Based on this output, the 278
analyst decides the next action, and as a consequence of this new action, a new representation 279
of a state (new output) is presented to the analyst, and so on. These abstractions are important 280
to understand the roles of the agent and the environment and how they interact, as well as the 281
important differences between them. 282
 283
 284

8

3 MATERIALS AND METHODS 285
 286
3.1 Chemicals 287
 288
The compounds used in this study, together with their structure, Log P and pKa values, stock 289
solvent and supplier, are mentioned in Table S-1 in the Supporting Information. Structures 290
were drawn in Marvin Sketch (v20.9.0, 2020, ChemAxon (www.chemaxon.com)) and values 291
were gathered from PubChem (62). The solvents used to prepare stock solutions and mobile 292
phases were: acetonitrile (ACN, HPLC grade) purchased from Fisher Chemical 293
(Loughborough, UK); formic acid (99%) purchased from Acros Organics (Geel, Belgium); and 294
ammonium formate (≥ 99.995%) purchased from Sigma-Aldrich (Diegem, Belgium). Ultra-295
pure water (H2O, conductivity = 0.1 µS/cm, pH 6.00) was produced in the laboratory using a 296
Milli-Q gradient purification system from Millipore (Bedford, MA, USA). 297
 298
3.2 Apparatus 299
 300
All measurements were done on an Agilent Infinity 1290 system from Agilent Technologies 301
(Waldbronn, Germany) that consisted of the following modules: a quaternary pump (G4204A), 302
an autosampler (G4226A), a thermostatted column compartment (G1316C) and a diode array 303
detector with a 1.0 µL flow cell (G4212A). OpenLab software (Agilent Technologies) was 304
used to operate the system and acquire and analyse the data. Further data treatment was done 305
in Microsoft Excel. The maximum pressure of the system was 1200 bar. The injection volume 306
was kept constant at 0.50 µL and the flow rate was 0.500 mL/min. The detector was set at an 307
acquisition rate of 40 Hz to measure the retention times of the compounds and at 80 Hz to 308
measure the column void and extra-column times. The considered wavelengths were 240 nm, 309
254 nm and 275 nm. The column was placed in an oven with a constant temperature of 30.0 310
°C. Analyses were performed on an Xbridge C8 column (2.1 x 50 mm; 2.5 µm) from Waters 311
(Wexford, Ireland). Connections between the autosampler, column and detector were made 312
with nanoViper tubing (inner diameter: 75 µm, total length: 1000 mm) from Thermo Scientific 313
(Germering, Germany). 314
 315
3.3 Stock and working solutions 316
 317
Stock solutions of all compounds were prepared in pure organic (ACN) or aqueous solvent, 318
depending on their solubility, as mentioned for each compound in Table S-1, in a concentration 319
up to 10,000 µg/mL. Working solutions were made by diluting the stock solutions to 20 µg/mL 320
in a final solvent mixture of 1.000 mL 5/95 ACN/H2O. 321
 322
3.4 Dataset 323
 324
Retention factors were collected for 82 representative small molecules (see Table S-1), 325
covering a wide range of physiochemical properties, at ten different isocratic strengths wherein 326
the fraction of ACN (ACN) was varied between 0.05 and 0.90 (in 0.10 intervals between 0.10 327
and 0.90). The aqueous component of the mobile phase was an ammonium formate buffer 328
(brought to pH 3.00 with formic acid). Each compound was injected in triplicate and obtained 329
retention times were averaged. The obtained retention times were converted into retention 330
factors using the following equation: 331
 332

𝑘 =
௧ೝି௧బ

௧బି௧೐
 (9) 333

9

 334
Wherein tr is the retention time of a particular compound, t0 is the elution time of an unretained 335
marker (thiourea in this study) and te is the extra-column dead time, obtained by replacing the 336
column in the system by a zero dead-volume union and injecting thiourea under the same 337
experimental conditions as for tr and t0. 338
 339
Some compounds in the dataset were so strongly retained at low ACN (e.g., 0.05 and 0.10) that 340
it became impractical to record their retention factors in a reasonable amount of time. 341
Therefore, the retention factors at low ACN for these compounds were estimated by fitting the 342
Neue-Kuss model (Eq. 1) to the available retention factors, and then using the fitted Neue-Kuss 343
model to determine the missing retention factors. Some other compounds were highly polar 344
and did not retain adequately (defined as having a retention factor below 2.5 at 0.05 ACN or 345
having less than five retention factor values above 0.001) resulting in unreliable data. These 346
compounds were therefore discarded in this study. The final remaining number of compounds 347
was 57. Furthermore, all datapoints were clipped to have a lowest k-value of 0.001, which was 348
necessary because inherent measurement errors caused low retention factor values to be 349
unreliable, with fluctuations between small positive (<0.001) and small negative (> -0.001) 350
values. All experimentally obtained retention factors are shown in Table S-2 in the supporting 351
information. In addition to isocratic retention data, experimental gradient retention data were 352
additionally collected for the 57 compounds. For this purpose, four different gradient profiles 353
were experimentally run (see Table 1). 354
 355
 356
3.5 Compound simulator 357
 358
To train the Q-network, a compound simulator was created to generate sufficient training data 359
for the Q-learning algorithm. By fitting the Neue-Kuss model to all the experimentally obtained 360
retention data for the 57 compounds described above, ranges of parameter values (S1, S2 and 361
kw) were deduced, and these ranges and their mutual relations laid the basis to generate 362
retention parameters for simulated compounds (see Figure S-1 and S-2 in the Supporting 363
Information). The simulator generated a simulated compound in five steps: 364
 365

1. S1 was randomly sampled between 100.9 and 101.8; 366
2. S2 was sampled from its relationship with S1: 𝑆ଶ = 2.5010 ∙ log 𝑆ଵ − 2.0822 + 𝑟ଵ, 367
where 𝑟ଵ is a random number sampledfrom a uniform distribution 𝑈~(−0.35, 0.35); 368
3. kw was sampled from its relationship with S1: 𝑘௪ = 10଴.଴଼ଷଽ∙ௌభା଴.ହ଴ହସା௥మ, where 𝑟ଶ is 369
a random number sampled from a uniform distribution 𝑈~(−1.2, 1.2); 370
4. the resulting parameter values were input to the Neue-Kuss model to output ten 371
datapoints (retention factors) between ACN= 0.05 and 0.90; 372
5. random noise sampled from a normal distribution N~(1.0, 0.1) was added to each 373
datapoint via multiplication. 374

 375
The last step was included to mimic the noisy nature of the experimental data. A total of 10,000 376
compounds were simulated according to the five-step procedure above; each of which would 377
occupy a single episode in the complete training of the deep Q-learning algorithm. Although 378
not directly evaluated, 10,000 simulated compounds were considered sufficient to capture the 379
compound space for the specific HPLC setup. 380
 381

10

 382

 383

 384

11

3.6 Double deep Q-learning algorithm 385
 386
3.6.1 Environment 387
 388
The dynamics of the reinforcement learning environment aimed to mimic that of a real 389
chromatographic workflow: sequentially selecting [isocratic] scouting runs for one compound 390
at a time (see Figure 1). 391
 392
For consistency, and to allow for evaluation on experimental data later on, the state and action 393
space of the environment was restricted to the fractions of organic modifier (ACN) that had 394
been experimentally run (namely 0.05 and 0.10 to 0.90 in steps of 0.10; Table S-2). 395
Specifically, a state was defined as an array of 10 elements, each of which was a placeholder 396
for a retention factor value at a certain ACN (e.g. the first element was a placeholder for the 397
retention factor value at 0.05 ACN, the second element was a placeholder for the retention 398
factor value at 0.10 ACN, and so on). The default value of the elements in the array when a 399
given placeholder was not holding any retention factor value was set to -1, as is the case when 400
no scouting runs had been run (see Fig. 1). The value was set to -1 and not 0 in an attempt to 401
make the Q-network more easily distinguish between a non-retention factor value and a low 402
retention factor value. Similar to the state space, the action space was defined to select from 403
the different ACN that had been run experimentally, with an addition of a STOP action, 404
allowing the agent to stop performing scouting runs (see Fig. 1). At each step, the agent was 405
given the choice to select one specific scouting run, or to stop. 406
 407
To teach the agent to select desirable scouting runs that can be used to accurately model the 408
retention behavior of a given compound, a reward function was defined. The reward function 409
was defined in such a way as to teach, or reinforce, the agent to select optimal scouting runs. 410
After the agent had finished performing scouting runs (and at least three different scouting runs 411
had been selected and run), the resulting retention factors (from those three scouting runs) were 412
used to fit the Neue-Kuss model (see appendix A for more information). Subsequently, the 413
reward function computed a reward based on the inverse of the mean relative error (MRE-1) 414
between the target retention factors (𝑦) and the retention factors predicted by the Neue-Kuss 415
model (𝑦ො): 416
 417
reward = MREିଵ, (10) 418
 419
where MRE =

ଵ

ଵ଴
 ∑

|௬೔ି௬ො೔|

|௬೔|

ଵ଴
௜ୀଵ (11) 420

 421
The targets 𝑦 are assumed to be the true retention factors which we want the predictions 𝑦ො to 422
be as close as possible to. In the best-case scenario, true retention factors would be obtained 423
from real experiments. However, as mentioned before, because Q-networks need a lot of 424
training data, simulated compounds were used instead; and the relatively few (57) experimental 425
compounds were held-out as a test set, and later used to evaluate the agent after it had been 426
trained. Although the training data were randomly sampled using the simulator, which used 427
ranges of Neue-Kuss parameter values (S1, S2 and kw) that were based on those of the 428
compounds in the held-out test set, these parameters were merely roughly deduced from the 429
overall trends of the parameter values of the test compounds and should therefore not 430
undermine the purpose of the held-out test set, which is to evaluate the agent on real ‘unseen’ 431
data. Importantly, the MRE was always calculated based on all (10) retention factors (0.05  432
0.90 ACN), as the purpose was to obtain models that predicted well for all (10) ACN. 433

12

Furthermore, if the agent stopped before three scouting runs had been selected, the MRE 434
evaluation (Eq. 10) was not carried out and the agent was rewarded zero (0). Finally, the agent 435
was penalized (negatively rewarded) in two ways: 436
 437

1. by selecting scouting runs that had already been selected before, penalized -5; 438
2. by selecting scouting runs that resulted in long analysis times (> 1 hour), penalized 439
based on a sigmoidal (s-shaped) function 𝑓௦: 440

 441
𝑓௦(𝑘) =

ଵ

ଵି௘ష(ೖ∙బ.బబరమఱషర.బ) × 20 (12) 442
 443
where 𝑘 is the retention factor. The function 𝑓௦ is adapted in such a way as to have a maximum 444
penalty close to the maximum reward that can be obtained (Eq. 10), and a minimum penalty at 445
zero (0). These penalties were implemented to enable the agent to quickly learn not to select 446
the same scouting run multiple times, and to avoid selecting scouting runs that would result in 447
high analysis times, respectively. The analysis time penalty (Eq. 12) was important because the 448
Q-network had to learn to tailor the choice of scouting runs depending on the retention behavior 449
of the compound. For example, if the agent had to select scouting runs for a highly retained 450
compound, it was expected to avoid running scouting runs at low ACN. 451
 452
3.6.2 Agent 453
 454
In this study, as an extension to the deep Q-learning algorithm introduced in section 2, a double 455
deep Q-learning algorithm (63) with experience replay (64,65) was implemented. 456
Additionally, an epsilon-greedy policy (60) was incorporated for selecting actions (see 457
appendix A, B and C for details on these implementations respectively). 458
 459
Instead of having a single Q-network for both the target and the prediction together, the double 460
deep Q-learning algorithm utilizes two separate neural networks with two separate Q-functions 461
to approximate Q*: a target network and a prediction network, for the target and the prediction 462
respectively. The minimization procedure is based on the procedure of a single Q-network as 463
described in (Eq 8). The target network has fixed parameters 𝜃ି which are updated every N 464
episodes by having the prediction network copying over its parameters 𝜃, while the prediction 465
network is updated every episode via the minimization procedure (Eq. 8). 466
 467
It is of great importance to have a separate network to produce the target, because it counters 468
the issue of overestimating and biasing the target. The overestimation (and bias) of the target 469
naturally occurs for standard Q-learning and DQN due to the max operator (cfr. maxa in eq. 5 470
and 6) both selecting and evaluating the actions. Hasselt et al. have shown how Double deep 471
Q-learning produces more accurate estimations of the expected return as well as better policies 472
(63,66). 473
 474
A crucial quality of the minimization procedure (Eq. 8) is that it can be formulated to accept 475
diverse batches of non-correlated examples. Specifically, the minimization step can be done 476
batch-wise, where each batch contains transitions from different trajectories. In other words, 477
each batch may contain tuples (s,a,s’) from entirely different scouting runs. To be able to 478
sample such batches, a memory unit called replay memory was implemented to store transitions 479
that were experienced by the agent while it was performing scouting runs. These stored 480
transitions were scheduled to be sampled (in batches) after each episode, and to be directly 481
used to train the agent (minimize the objective function). Although we did not test any 482

13

algorithm without experience replay (replay memory), it is believed that this technique greatly 483
stabilizes and smoothens the training process (64,65). The discount factor 𝛾 was set to 0.95 as 484
an attempt to give slightly higher weight to early rewards. 485
 486
 487
3.7 Evaluation 488
 489
After the double deep Q-learning agent was trained, it was evaluated on real, experimental data. 490
Similar to how the agent selected scouting runs for simulated data during training, the agent 491
selected scouting runs for isocratic experimental compounds. The resulting Neue-Kuss model 492
(fitted on the retention factors resulting from the scouting runs selected by the agent) were then 493
used to predict the retention factors for all 10 isocratic scouting runs. Additionally, the same 494
Neue-Kuss parameters were also used in the Neue-Kuss equation for gradient elution, which 495
was used to predict retention data under four different gradient conditions (Table 1). The model 496
for gradient elution is defined as follows: 497
 498

𝑡௥,௚௥௔ௗ௜௘௡௧ =
ଵ

ௌఉ

(ଵାௌమఝబ)మ୪୬(ଵାௌభఉ௞ೢ ୣ୶୮ቀ
షೄభകబ

భశೄమകబ
ቁቀ௧బି

೟ವ
ೖబ

ቁ)

ଵିௌమቀ
భశೄమകబ

ೄభ
ቁ ୪୬(ଵାௌభఉ௞ೢ ୣ୶୮ቀ

షೄభകబ
భశೄమകబ

ቁቀ௧బି
೟ವ
ೖబ

ቁ)
+ 𝑡଴ + 𝑡஽ (13) 499

 500
where Sଵ, Sଶ and k୵ are the same parameters as for the isocratic model (cfr Eq. 1), t୰,୥୰ୟୢ୧ୣ୬୲ 501
is the gradient retention time, φ଴ the fraction of strong eluting solvent in the mobile phase at 502
the start of the gradient, β the slope of the gradient (=/tG), k଴ the retention factor at φ଴, t଴ 503
the elution time of an unretained compound and tୈ the dwell time of the system (the time the 504
mobile phase needs to flow from the pump to the head of the column). The predicted retention 505
factors (for both isocratic and gradient runs) were then compared to all experimental data 506
available for that compound by calculating the mean relative percentage error (MRPE) with 507
modification, as follows: 508
 509
MRPE =

ଵ

ଵ଴
 ∑

|௬೔ି௬ො೔|

|ଵା௬೔|
× 100ଵ଴

௜ୀଵ (14) 510

 511
The (modified) MRPE was used as it was less sensitive to small k-values (<0.1), creating a 512
more stable and robust evaluation metric. To further illustrate how well the resulting model 513
(based on the selected scouting runs) performed, a comparison was made to a model fit on all 514
available isocratic datapoints (0.05  0.90 ACN), a model fit on a random selection of three 515
isocratic scouting runs, as well as a model fit on a chromatographer’s selection of three scouting 516
runs, namely ACN= 0.1, 0.5 and 0.8. 517
 518
 519
 520

14

4 RESULTS AND DISCUSSION 521
 522
4.1 Learning curves: training progression 523
 524
To illustrate how the agent learned to perform optimal scouting run selection, the rewards and 525
number of selected scouting runs were collected during the training procedure. Figure 2 526
illustrates both how the reward and the number of selected actions changed over the first 3500 527
episodes. In addition, for comparison, the theoretical optimum (highest possible reward) was 528
also calculated and plotted. Notice that the theoretical optimum does not reflect the best 529
possible performance by an agent, but rather illustrates what in theory could be obtained. 530
Specifically, the theoretical optimum was obtained by selecting, for each and every compound 531
separately, the combination of (three) scouting runs (out of the 120 combinations that exist for 532
3 actions and 10 possible states) that resulted in the highest reward. Due to random action 533
selection, leading to poor retention models and high penalties, the reward given to the agent 534
started off at high negative values (around -5 to -15). Specifically, the low reward as well as 535
the high number of selected scouting runs in the first 100 episodes confirmed that the selected 536
actions were highly random (due to the high 𝜖 for the epsilon-greedy policy). Between episode 537
100 and 200 however, the agent started to select scouting runs non-randomly, which resulted 538
in the agent selecting much fewer scouting runs (around 2 on average). Notice that, although 539
not yielding a retention model due to too few scouting runs (< 3), the agent had at this point 540
learned to select better actions than before, because no or fewer penalties were given. After 541
200 episodes, the agent went from an insufficient number of scouting runs (which resulted in 542
a reward around 0) to selecting enough scouting runs for a retention model, resulting in a 543
positive reward outweighing potential penalties. In other words, after 200 episodes, the agent 544
started to learn how to optimize the selection of scouting runs for retention modelling – 545
selecting around four scouting runs on average, which is on average one scouting run more 546
than the minimum required to fit a three-parameter model. This number was overestimated due 547
to the epsilon-greedy policy (𝜖 > 0), which is likely to cause the agent to select scouting runs 548
sub-optimally (i.e. not selecting actions with the greatest Q-value). Notice, although not 549
visualized, if only the greedy policy was followed (epsilon = 0), the agent would select closer 550
to three scouting runs on average. 551
 552
4.2 Scouting run selection 553
 554
After the agent, or the Q-network, was optimized or trained to select scouting runs for simulated 555
data, it was evaluated on experimental data. Figure 3 illustrates how the agent selected scouting 556
runs for four representative compounds it had never seen before (see Table S-3 for complete 557
results). For the four compounds considered in Figure 3, ACN of 0.20 and 0.90 were selected 558
by the trained agent; and for all four compounds, three scouting runs were run in total (which 559
is the minimum requirement). What differed between compounds of different retention 560
behavior, specifically between less retained compounds (e.g. nitrobenzene and o-561
methylacetophenone) and more retained compounds (e.g. iodobenzene and anthracene), was 562
the selection of the third scouting run (ACN of 0.05 for the less retained compounds and 0.50 563
for the more retained compounds), which indicates that the selection of scouting runs was 564
tailored based on the retention behavior of the compounds. Because nitrobenzene and o-565
methylacetophenone are less retained compounds, they were both selected to be run at as low 566
as ACN=0.05. Intuitively, a scouting run at ACN=0.05 holds important information for a 567
retention model but requires significantly longer analysis time for highly apolar compounds, 568
like iodobenzene and anthracene. For these highly retained compounds, ACN=0.05was avoided 569
and instead ACN=0.50 was selected by the agent. Furthermore, in all cases, the scouting run 570

15

selection spanned a wide range of selectable ACN, in a relatively evenly spaced-out manner, 571
which intuitively should result in more accurate retention models. Finally, these results 572
illustrate that the penalty given to the agent for selecting scouting runs resulting in high (>> 1 573
hour) analysis times (i.e. high retention factors), made the agent avoid the lower percentages 574
for compounds like iodobenzene and anthracene, but not for compounds like nitrobenzene and 575
o-methylacetophenone, which in regards to this study was highly desirable. 576
 577
 578
4.3 Q-values: taking action 579
 580
While Figure 3 illustrates which actions the agent took depending on the retention behavior of 581
the compounds, Figure 4 illustrates how the agent, or the Q-network and its Q-values, decided 582
which actions to take, given a certain state. It also illustrates how the Q-values varied between 583
steps and between compounds with a different retention behavior (specifically, in Figure 4, 584
acetophenone and biphenyl). Interestingly, the penalty given for high analysis times, forced the 585
Q-values for ACN= 0.05 and ACN= 0.10 to differ significantly between the two compounds. 586
Specifically, biphenyl, which is more retained than acetophenone, was predicted by the Q-587
network to result in a high penalty if run at ACN= 0.05 or ACN= 0.10 (the analysis time would 588
be too long), and therefore predicted higher Q-values at higher ACN. Furthermore, the penalty 589
given when the same ACN was selected more than once, resulted in a significant lowering of 590
the Q-value in the succeeding steps for that ACN. 591
 592
Acetophenone had higher Q-values on average, suggesting the reward/penalty on average was 593
greater for less retained compounds (like acetophenone) than higher retained compounds (like 594
biphenyl). This suggests that (1) ACN= 0.05 was an important datapoint to accurately model 595
retention behaviors (resulting in a low MRPE) – a datapoint which did not get selected for 596
highly retained compounds due to high penalties; (2) the continual higher penalties for highly 597
retained compounds forced down the Q-values. 598
 599
Although not directly presented in this study, the number of selected scouting runs, as well as 600
the specific selection of scouting runs may differ between agents trained on slightly different 601
data. Specifically, Figure 4 illustrates how several actions have similar Q-values given a certain 602
state, which could easily nudge the agent in a different direction. This does not necessarily 603
mean that the agent (or the double deep Q-learning algorithm) is not robust, but rather that 604
there are several solutions to the problem – i.e. several directions (combinations of scouting 605
runs) that result in good retention models. 606
 607
4.4 Retention model performance: isocratic and gradient prediction errors 608
 609
To get a better understanding of how well the retention models resulting from the scouting runs 610
selected by the agent perform, the prediction accuracy of these retention models was compared 611
to the prediction accuracy of retention models obtained by fitting to (1) all 10 available isocratic 612
data points (ACN of 0.05 to 0.90); (2) a random selection of three isocratic scouting runs and 613
(3) a chromatographer’s selection of three isocratic scouting runs, namely ACN= 0.1, 0.5 and 614
0.8. These four differently obtained retention models were also used to predict gradient 615
retention factors for four different gradients (Table 2). 616
 617
Table 2 illustrates the MRPE between the experimentally obtained data and the predictions, for 618
both isocratic and gradient data (see Table S-4 for complete results). The retention model 619

16

obtained by the agent (based on (mostly) 3 scouting runs), performed comparably and better to 620
the retention models based on all experimental datapoints and the retention models based on 621
the chromatographer’s selection of three scouting runs, for the isocratic and gradient data 622
respectively; and performed significantly better than the retention models based on the random 623
scouting run selection. Importantly, the models resulting from the agent’s selection of scouting 624
runs were, compared to retention models based on all datapoints, obtained via seven fewer 625
datapoints; i.e. seven fewer scouting runs, saving significant time and costs. These results 626
indicate that the agent successfully learned to optimize the scouting run selection. 627
 628
The reason why the retention model obtained by the agent had a significantly lower gradient 629
prediction error compared to the retention model fitted on all datapoints and the 630
chromatographer’s selection, lies in the high prediction error for the lowly retained compounds. 631
It is speculated that (1) having many datapoints at medium-high ACN for the lowly retained 632
compounds, where most ACN have retention factors close to 0, is forcing the estimated 633
parameters (kw, S1 and S2) to model the behavior of the given lowly retained compound 634
favorably in the regions of low ACN, but highly unfavorably in the regions of high ACN, which 635
is more relevant for gradient retention modelling; and (2) not having ACN of 0.05 (in the case 636
of the chromatographer’s selection) misses out on valuable information for gradient 637
predictions. 638
 639
5 Conclusions 640
 641
In this study, a reinforcement learning algorithm, specifically the double deep Q-learning 642
algorithm, was shown to be able to learn to optimally select informative scouting runs in a fully 643
self-taught way. Although only isocratic scouting runs were considered for a specific RPLC 644
setup, these experiments illustrate how the agent learned to tailor the selection of scouting runs 645
for different compounds depending on the retention behavior (mainly defined by its polarity, 646
or kw). The experiments also illustrate how the agent limited the number of selected scouting 647
runs yet still yielding a retention model with low prediction error (MRPE of 3.77% and 1.93% 648
for isocratic and gradient data, respectively). The strategy of the agent was to select relatively 649
evenly spaced-out scouting runs (in terms of ACN), including at least one scouting run at low 650
ACN (as long as the analysis time was not too long), and at least one scouting run at high ACN. 651
Intuitively, selecting scouting runs as such will cover a greater space, better capturing the 652
complete behavior of the compound. The retention models based on the agent’s selection of 653
scouting runs (MRPE of 3.77% for the isocratic data and 1.93% for the gradient data) compared 654
well to both the retention models fitted on all datapoints (MRPE of 3.26% for isocratic data 655
and 4.97% for gradient data) and the chromatographer’s selection (3.86% for isocratic data and 656
6.66% for gradient data); and performed significantly better than retention models based on the 657
random selection of three scouting runs (MRPE of 46.30% for isocratic data 7.60% for gradient 658
data). 659
 660
Although the double deep Q-learning algorithm presented in this study shows potential, it has 661
only been tested on its ability to learn from isocratic data for a specific RPLC setup. This double 662
deep Q-learning algorithm is also limited to a discrete, and preferably small, action space, 663
which could potentially be a problem for tasks like selecting scouting runs for gradient elution 664
– where the action space is either larger or continuous. The prospect is to develop a 665
reinforcement learning algorithm that can deal with a more complex/larger state and action 666
space (e.g. Branching Dueling Q-learning (67)) and/or continuous action space (e.g. Twin-667
Delayed Deep Deterministic Policy Gradient (TD3) or Soft Actor-Critic (SAC) algorithm 668
(68,69)), to be able to perform scouting runs for a mixture of compounds (i.e. selecting scouting 669

17

runs for multiple compounds at the same time) in a more complex setting such as gradient 670
conditions. If such an algorithm can be developed successfully, it would be worthwhile 671
integrating it into normal practice. 672
 673
 674
Availability 675
All code used in this study (except the plots), including the complete implementation of the 676
agent and the environment, can be found at https://github.com/akensert/ddqn-isocratic-677
scouting-runs. Due to stochasticity in training an artificial neural network, results may differ 678
somewhat from run to run. InChI for each experimental compound evaluated in this study can 679
be found in supplementary table 5 (Table S-5). 680
 681
Conflicts of interest 682
There are no conflicts of interest. 683
 684
Acknowledgements 685
Alexander Kensert and Gilles Collaerts are funded by a joint-initiative of the Research 686
Foundation Flanders (FWO) and the Walloon Fund for Scientific Research (FNRS) (EOS – 687
research project “Chimic” (EOS ID: 30897864)). Kyriakos Efthymiadis is funded by the 688
VLAIO O&O project “Amedes” (AIO/HBC.2017.0996/AMEDES). Janssen Pharmaceutica is 689
thanked for financially supporting this work, and especially Peter Van Broeck is thanked for 690
helpful discussions. 691
 692
Credit Author Statement 693
Alexander Kensert: Conceptualization; Data curation; Formal analysis; Investigation; 694
Methodology; Validation; Visualization; Writing - original draft. 695
Gilles Collaerts: Data curation; Formal analysis; Investigation; Validation; Writing – review 696
& editing. 697
Kyriakos Efthymiadis: Formal analysis; Investigation; Methodology; Writing – review & 698
editing. 699
Gert Desmet: Conceptualization; Funding acquisition; Investigation; Methodology; 700
Supervision; Writing - review & editing. 701
Deirdre Cabooter: Conceptualization; Funding acquisition; Formal analysis; Methodology; 702
Investigation; Supervision; Writing - review & editing. 703

18

References 704
 705
1. Xu H, Yang L, Freitas MA. A robust linear regression based algorithm for automated 706

evaluation of peptide identifications from shotgun proteomics by use of reversed-phase 707
liquid chromatography retention time. BMC Bioinformatics. 2008 Aug 19;9:347. 708

2. Fong SS, Rearden P, Kanchagar C, Sassetti C, Trevejo J, Brereton RG. Automated peak 709
detection and matching algorithm for gas chromatography-differential mobility 710
spectrometry. Anal Chem. 2011 Mar 1;83(5):1537–46. 711

3. Samanipour S, Reid MJ, Bæk K, Thomas KV. Combining a Deconvolution and a 712
Universal Library Search Algorithm for the Nontarget Analysis of Data-Independent 713
Acquisition Mode Liquid Chromatography-High-Resolution Mass Spectrometry 714
Results. Environ Sci Technol. 2018 17;52(8):4694–701. 715

4. Peters S, Vivó-Truyols G, Marriott PJ, Schoenmakers PJ. Development of an algorithm 716
for peak detection in comprehensive two-dimensional chromatography. J Chromatogr 717
A. 2007 Jul 13;1156(1–2):14–24. 718

5. Cramer JA, Hammond MH, Loegel TN, Morris RE. Evolving window factor analysis-719
multivariate curve resolution with automated library matching for enhanced peak 720
deconvolution in gas chromatography-mass spectrometry fuel data. J Chromatogr A. 721
2018 Dec 21;1581–1582:125–34. 722

6. López-Ureña S, Torres-Lapasió JR, Donat R, García-Alvarez-Coque MC. Gradient 723
design for liquid chromatography using multi-scale optimization. J Chromatogr A. 2018 724
Jan 26;1534:32–42. 725

7. Freier L, von Lieres E. Multi-objective global optimization (MOGO): Algorithm and 726
case study in gradient elution chromatography. Biotechnol J. 2017 Jul;12(7). 727

8. Woldegebriel M, Gonsalves J, van Asten A, Vivó-Truyols G. Robust Bayesian 728
Algorithm for Targeted Compound Screening in Forensic Toxicology. Anal Chem. 2016 729
Feb 16;88(4):2421–30. 730

9. Zapadka M, Kaczmarek M, Kupcewicz B, Dekowski P, Walkowiak A, Kokotkiewicz A, 731
et al. An application of QSRR approach and multiple linear regression method for 732
lipophilicity assessment of flavonoids. J Pharm Biomed Anal. 2019 Feb 5;164:681–9. 733

10. Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, et al. Chemometric-734
assisted method development in hydrophilic interaction liquid chromatography: A 735
review. Anal Chim Acta. 2018 Feb 13;1000:20–40. 736

11. Bouwmeester R, Martens L, Degroeve S. Comprehensive and Empirical Evaluation of 737
Machine Learning Algorithms for Small Molecule LC Retention Time Prediction. Anal 738
Chem. 2019 05;91(5):3694–703. 739

12. Maljurić N, Golubović J, Otašević B, Zečević M, Protić A. Quantitative structure -740
retention relationship modeling of selected antipsychotics and their impurities in green 741
liquid chromatography using cyclodextrin mobile phases. Anal Bioanal Chem. 2018 742
Apr;410(10):2533–50. 743

19

13. Ramezani AM, Yousefinejad S, Shahsavar A, Mohajeri A, Absalan G. Quantitative 744
structure-retention relationship for chromatographic behaviour of anthraquinone 745
derivatives through considering organic modifier features in micellar liquid 746
chromatography. J Chromatogr A. 2019 Aug 16;1599:46–54. 747

14. Wen Y, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA, et al. Retention Index 748
Prediction Using Quantitative Structure-Retention Relationships for Improving 749
Structure Identification in Nontargeted Metabolomics. Anal Chem. 2018 750
07;90(15):9434–40. 751

15. Wen Y, Talebi M, Amos RIJ, Szucs R, Dolan JW, Pohl CA, et al. Retention prediction 752
in reversed phase high performance liquid chromatography using quantitative structure-753
retention relationships applied to the Hydrophobic Subtraction Model. J Chromatogr A. 754
2018 Mar 16;1541:1–11. 755

16. Zarei K, Atabati M, Ahmadi M. Shuffling cross-validation-bee algorithm as a new 756
descriptor selection method for retention studies of pesticides in biopartitioning micellar 757
chromatography. J Environ Sci Health B. 2017 May 4;52(5):346–52. 758

17. Cabooter D, Clicq D, De Boever F, Lestremau F, Szucs R, Desmet G. A variable 759
column length strategy to expedite method development. Anal Chem. 2011 Feb 760
1;83(3):966–75. 761

18. Tyteca E, De Vos J, Vankova N, Cesla P, Desmet G, Eeltink S. Applicability of linear 762
and nonlinear retention-time models for reversed-phase liquid chromatography 763
separations of small molecules, peptides, and intact proteins. J Sep Sci. 2016 764
Apr;39(7):1249–57. 765

19. Snyder LR, Dolan JW, Gant JR. Gradient elution in high-performance liquid 766
chromatography: I. Theoretical basis for reversed-phase systems. Journal of 767
Chromatography A. 1979 Mar 21;165(1):3–30. 768

20. Dolan JW, Gant JR, Snyder LR. Gradient elution in high-performance liquid 769
chromatography: II. Practical application to reversed-phase systems. Journal of 770
Chromatography A. 1979 Mar 21;165(1):31–58. 771

21. Neue UD. Nonlinear Retention Relationships in Reversed-Phase Chromatography. 772
Chroma. 2006 Jun 1;63(13):S45–53. 773

22. Tyteca E, Desmet G. On the inherent data fitting problems encountered in modeling 774
retention behavior of analytes with dual retention mechanism. J Chromatogr A. 2015 Jul 775
17;1403:81–95. 776

23. Tyteca E, Périat A, Rudaz S, Desmet G, Guillarme D. Retention modeling and method 777
development in hydrophilic interaction chromatography. J Chromatogr A. 2014 Apr 778
11;1337:116–27. 779

24. Tyteca E, Guillarme D, Desmet G. Use of individual retention modeling for gradient 780
optimization in hydrophilic interaction chromatography: separation of nucleobases and 781
nucleosides. J Chromatogr A. 2014 Nov 14;1368:125–31. 782

20

25. Česla P, Vaňková N, Křenková J, Fischer J. Comparison of isocratic retention models 783
for hydrophilic interaction liquid chromatographic separation of native and fluorescently 784
labeled oligosaccharides. J Chromatogr A. 2016 Mar 18;1438:179–88. 785

26. Tyteca E, De Vos J, Vankova N, Cesla P, Desmet G, Eeltink S. Applicability of linear 786
and nonlinear retention-time models for reversed-phase liquid chromatography 787
separations of small molecules, peptides, and intact proteins. J Sep Sci. 2016 788
Apr;39(7):1249–57. 789

27. Roca LS, Schoemaker SE, Pirok BWJ, Gargano AFG, Schoenmakers PJ. Accurate 790
modelling of the retention behaviour of peptides in gradient-elution hydrophilic 791
interaction liquid chromatography. J Chromatogr A. 2020 Mar 15;1614:460650. 792

28. Hindriks R, Maris F, Vink J, Peeters A, De Smet M, Massart DL, et al. Expert system 793
for the selection of initial high-performance liquid chromatographic conditions for the 794
analysis of pharmaceuticals. Journal of Chromatography A. 1989 Dec 27;485:255–65. 795

29. Maris F, Hindriks R, Vink J, Peeters A, Vanden Driessche N, Massart L. Validation of 796
an expert system for the selection of initial high-performance liquid chromatographic 797
conditions for the analysis of basic drugs. Journal of Chromatography A. 1990 May 798
11;506:211–21. 799

30. De Smet M, Peeters A, Buydens L, Massart DL. Expert system for the selection of high-800
performance liquid chromatographic methods in pharmaceutical analysis: Validation of 801
the rules for the selection of the mobile phase. Journal of Chromatography A. 1988 Jan 802
1;457:25–42. 803

31. Szepesi G, Valkó K. Prediction of initial high-performance liquid chromatographic 804
conditions for selectivity optimization in pharmaceutical analysis by an expert system 805
approach. Journal of Chromatography A. 1991 Jan 1;550:87–100. 806

32. Gros N, Gorenc B. Expert system for the ion chromatographic determination of alkali 807
and alkaline earth metals in mineral waters. Journal of Chromatography A. 1995 Apr 808
21;697(1):31–43. 809

33. Fell AF, Bridge TP, Williams MH. Design and application of an expert system for 810
mobile phase optimisation in reversed-phase liquid chromatography. Journal of 811
Pharmaceutical and Biomedical Analysis. 1988 Jan 1;6(6):555–64. 812

34. Schoenmakers PJ, Peeters A, Lynch RJ. Optimization of chromatographic methods by a 813
combination of optimization software and expert systems. Journal of Chromatography 814
A. 1990 May 11;506:169–84. 815

35. Schoenmakers PJ, Dunand N. Explanations and advice provided by an expert system for 816
system optimization in high-performance liquid chromatography. Journal of 817
Chromatography A. 1989 Dec 27;485:219–36. 818

36. Smith RM, Burr CM. Retention prediction of analytes in reversed-phase high-819
performance liquid chromatography based on molecular structure: I. Monosubstituted 820
aromatic compounds. Journal of Chromatography A. 1989 Jan 1;475(2):57–74. 821

21

37. Valkó K, Szabó G, Röhricht J, Jemnitz K, Darvas F. Prediction of retention of 822
metabolites in high-performance liquid chromatography by an expert system approach. 823
Journal of Chromatography A. 1989 Dec 27;485:349–63. 824

38. Hamoir T, Bourguignon B, Massart DL, Hindriks H. Model building for the prediction 825
of initial chromatographic conditions in pharmaceutical analysis using reversed-phase 826
liquid chromatography. Journal of Chromatography A. 1993 Feb 24;633(1):43–56. 827

39. Fekete J, Morovján G, Csizmadia F, Darvas F. Method development by an expert 828
system advantages and limitations. Journal of Chromatography A. 1994 Feb 829
4;660(1):33–46. 830

40. Domingos P. A Few Useful Things to Know About Machine Learning. Commun ACM. 831
2012 Oct 1;55:78–87. 832

41. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995 Sep 1;20(3):273–97. 833

42. Tin Kam Ho. Random decision forests. In: Proceedings of 3rd International Conference 834
on Document Analysis and Recognition. 1995. p. 278–82 vol.1. 835

43. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating 836
errors. Nature. 1986 Oct;323(6088):533–6. 837

44. Hopfield JJ. Neural networks and physical systems with emergent collective 838
computational abilities. PNAS. 1982 Apr 1;79(8):2554–8. 839

45. Kaelbling LP, Littman ML, Moore AW. An Introduction to Reinforcement Learning. In: 840
Steels L, editor. The Biology and Technology of Intelligent Autonomous Agents. 841
Berlin, Heidelberg: Springer; 1995. p. 90–127. (NATO ASI Series). 842

46. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA. Deep Reinforcement 843
Learning: A Brief Survey. IEEE Signal Processing Magazine. 2017 Nov;34(6):26–38. 844

47. Ertefaie A, Shortreed S, Chakraborty B. Q-learning residual analysis: application to the 845
effectiveness of sequences of antipsychotic medications for patients with schizophrenia. 846
Stat Med. 2016 15;35(13):2221–34. 847

48. Shi W, Song S, Wu C, Chen CLP. Multi Pseudo Q-Learning-Based Deterministic Policy 848
Gradient for Tracking Control of Autonomous Underwater Vehicles. IEEE Trans Neural 849
Netw Learn Syst. 2019 Dec;30(12):3534–46. 850

49. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al. Playing 851
Atari with Deep Reinforcement Learning. arXiv:13125602 [cs] [Internet]. 2013 Dec 19 852
[cited 2020 Jul 29]; Available from: http://arxiv.org/abs/1312.5602 853

50. Hwangbo J, Lee J, Dosovitskiy A, Bellicoso D, Tsounis V, Koltun V, et al. Learning 854
agile and dynamic motor skills for legged robots. Science Robotics [Internet]. 2019 Jan 855
16 [cited 2020 Jul 29];4(26). Available from: 856
https://robotics.sciencemag.org/content/4/26/eaau5872 857

51. Liu Z, Abbaszadeh S. Double Q-Learning for Radiation Source Detection. Sensors 858
(Basel). 2019 Feb 24;19(4). 859

22

52. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence 860
Clinician learns optimal treatment strategies for sepsis in intensive care. Nature 861
Medicine. 2018 Nov;24(11):1716–20. 862

53. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, et al. 863
Mastering the game of Go without human knowledge. Nature. 2017 864
Oct;550(7676):354–9. 865

54. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, et al. A general 866
reinforcement learning algorithm that masters chess, shogi, and Go through self-play. 867
Science. 2018 Dec 7;362(6419):1140–4. 868

55. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. 869
Mastering the game of Go with deep neural networks and tree search. Nature. 2016 870
Jan;529(7587):484–9. 871

56. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-872
level control through deep reinforcement learning. Nature. 2015 Feb;518(7540):529–33. 873

57. Vinyals O, Ewalds T, Bartunov S, Georgiev P, Vezhnevets AS, Yeo M, et al. StarCraft 874
II: A New Challenge for Reinforcement Learning. arXiv:170804782 [cs] [Internet]. 875
2017 Aug 16 [cited 2020 Jul 29]; Available from: http://arxiv.org/abs/1708.04782 876

58. Pang Z-J, Liu R-Z, Meng Z-Y, Zhang Y, Yu Y, Lu T. On Reinforcement Learning for 877
Full-length Game of StarCraft. arXiv:180909095 [cs, stat] [Internet]. 2019 Feb 3 [cited 878
2020 Jul 29]; Available from: http://arxiv.org/abs/1809.09095 879

59. OpenAI, Berner C, Brockman G, Chan B, Cheung V, Dębiak P, et al. Dota 2 with Large 880
Scale Deep Reinforcement Learning. arXiv:191206680 [cs, stat] [Internet]. 2019 Dec 13 881
[cited 2020 Jul 29]; Available from: http://arxiv.org/abs/1912.06680 882

60. Press TM. Reinforcement Learning, Second Edition | The MIT Press [Internet]. The 883
MIT Press; [cited 2020 Aug 17]. Available from: 884
https://mitpress.mit.edu/books/reinforcement-learning-second-edition 885

61. Watkins CJCH, Dayan P. Q-learning. Mach Learn. 1992 May 1;8(3):279–92. 886

62. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: 887
improved access to chemical data. Nucleic Acids Res. 2019 Jan 8;47(D1):D1102–9. 888

63. Hasselt H van, Guez A, Silver D. Deep reinforcement learning with double Q-Learning. 889
In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, 890
Arizona: AAAI Press; 2016. p. 2094–2100. (AAAI’16). 891

64. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al. Playing 892
Atari with Deep Reinforcement Learning. arXiv:13125602 [cs] [Internet]. 2013 Dec 19 893
[cited 2020 Aug 14]; Available from: http://arxiv.org/abs/1312.5602 894

65. Zhang S, Sutton RS. A Deeper Look at Experience Replay. arXiv:171201275 [cs] 895
[Internet]. 2018 Apr 30 [cited 2020 Aug 14]; Available from: 896
http://arxiv.org/abs/1712.01275 897

23

66. Hasselt H van. Double Q-learning. In: Proceedings of the 23rd International Conference 898
on Neural Information Processing Systems - Volume 2. Red Hook, NY, USA: Curran 899
Associates Inc.; 2010. p. 2613–2621. (NIPS’10). 900

67. Arash Tavakoli, Fabio Pardo, Petar Kormushev. Action Branching Architectures for 901
Deep Reinforcement Learning. In: 31st Conference on Neural Information Processing 902
Systems (NIPS 2017). California, USA; 2017. 903

68. Fujimoto S, Hoof H, Meger D. Addressing Function Approximation Error in Actor-904
Critic Methods. In: International Conference on Machine Learning [Internet]. PMLR; 905
2018 [cited 2020 Oct 27]. p. 1587–96. Available from: 906
http://proceedings.mlr.press/v80/fujimoto18a.html 907

69. Haarnoja T, Zhou A, Abbeel P, Levine S. Soft Actor-Critic: Off-Policy Maximum 908
Entropy Deep Reinforcement Learning with a Stochastic Actor. In: International 909
Conference on Machine Learning [Internet]. PMLR; 2018 [cited 2020 Oct 27]. p. 1861–910
70. Available from: http://proceedings.mlr.press/v80/haarnoja18b.html 911

 912

 913
 914

24

Figure Captions 915
 916
Figure 1: A simple schematic illustration of the interaction between agent and environment. 917
A) the environment supplies the agent with a state s, which is an array of retention factors (k) 918
where each element corresponds to a ACN; based on this state s the agent produces an array of 919
Q-values for each action. B) the agent takes the greedy action, namely the action with the 920
highest Q-value, resulting in a new state s’. For readability, the figure excludes the reward and 921
only covers one single transition (s,a,s’). 922
 923
Figure 2: Illustration of how the reward (top; blue) and the number of scouting runs selected 924
(bottom; orange) by the agent increased over the number of episodes. To reduce the noise of 925
these learning curves, a moving average filter was applied to the data (window size of 35). The 926
lighter shaded areas represent a 95% confidence interval of the average lines. The black line in 927
the top plot illustrates the theoretical optimum (the highest possible reward) that can be 928
obtained by selecting the best combination of three scouting runs out of 120 different 929
combinations. 930

Figure 3: Illustration of how the scouting runs were selected sequentially for four 931
representative compounds with a significantly different retention behavior. The estimated 932
Neue-Kuss parameter kw can be used to assess the retention behavior of the compounds, with 933
a high kw indicating strong retention, and a low kw indicating weaker retention. The blue dots 934
indicate the experimental data, the orange triangles pointing to the x-axis indicate the scouting 935
runs selected (sequentially, 1 3), and the orange lines indicate the predicted retention model 936
resulting from the scouting runs. MRPE stands for mean relative percentage error. The y-axis 937
has been set to log scale to better visualize the prediction of lower ACN values. 938
 939
Figure 4: Illustration of how the scouting runs were sequentially (from top to bottom) selected 940
based on the highest Q-value at each step, for two representative compounds. Similar to Figure 941
3, the estimated Neue-Kuss parameter kw indicates the retainability of the compounds, with a 942
high kw indicating strong retention, and a low kw indicating weaker retention. Orange bars 943
indicate the selected actions. 944

 945
 946
 947

25

Appendix: 948

Deep Q-learning for the selection of optimal 949

isocratic scouting runs in liquid chromatography 950

 951
A: Retention Model 952
The retention model used in this study was the Neue-Kuss model (Eq. 1). The model is obtained 953
by fitting the model’s parameters (S1, S2 and kw) to the available datapoints for a given 954
compound. The fitting is done via Nelder-Mead optimization (doi: 955
https://doi.org/10.1093/comjnl/7.4.308), which is a type of simplex method. 956
 957
B: Double Deep Q-network 958
In this study, the two Q-networks had a 10-unit input layer (corresponding to the state of the 959
environment), two 1024-unit hidden layers with rectified linear unit activation and a dropout 960
rate of 0.2, and a final 11-unit linear output layer (corresponding to the actions of the agent). 961
While, the prediction network was updated each episode via the minimization procedure, the 962
target network was updated (by copying over the prediction network’s parameters) every 64 963
steps. The batch-size, which is the number of transitions used per minimization step (Eq. 8), 964
was set to 128. To minimize the objective function (Eq. 8), a stochastic gradient descent 965
optimizer was used, with a momentum and an initial learning rate of 0.9 and 0.001 respectively. 966
The learning rate was scheduled to decay for 4096 iterations (episodes) until it reached a 967
minimum learning rate of 0.0001. 968
 969
Before selecting the hyperparameter values mentioned above, some preliminary testing was 970
done (i.e. the Q-network was tested with different hyperparameter values). The number of 971
hidden units was varied between 512 and 2048 (for which 1024 was equal or better to the other 972
values and was therefore selected), the number of layers were varied between 1 and 3 (for 973
which 2 was selected), and the dropout rate was varied between 0.1 and 0.5 (for which 0.2 was 974
selected). Furthermore, the initial learning rate was varied between 0.01 and 0.001 (for which 975
0.001 was selected), and both rectified linear unit (ReLU) and sigmoid activation was tested 976
(for which ReLU was selected). Finally, discount factor 𝛾 was varied between 0.0 and 1.0 (for 977
which 0.95 was selected). 978
 979
C: Replay Memory/Experience Replay 980
Because the batch-size was set to 128, the number of samples sampled from the replay memory 981
unit was also 128. The capacity (maximum number of transitions stored) for the replay memory 982
unit was restricted to 2048. This restriction was added to avoid having the Q-network learn 983
from old experiences (transitions). The sampling of transitions from the replay memory unit 984
did not start until it had at least 512 transitions stored; because the Q-network (or specifically 985
the prediction network) was updated every episode, having at least 4 times the batch-size of 986
transitions helped to avoid having the Q-network train on similar batches multiple times in a 987
row; and although no evidence is presented here, it was thought that this could potentially bias 988
the Q-network at the beginning of training and hence slow down learning. As for the 989
hyperparameters of the Q-network the batch size was varied between 32 and 512 (for which 990
128 was selected). 991
 992

26

D: Epsilon-greedy policy 993
The epsilon-greedy policy is important for balancing the exploration-exploitation tradeoff. The 994
epsilon-greedy policy in this study was divided into 𝜀௜௡௜௧௜௔௟, 𝜀ௗ௘௖௔௬, and 𝜀௠௜௡௜௠௨௠, which 995
were set to 1.0, 0.99, and 0.1 respectively. This made the agent take mostly random actions 996
(exploring) in the beginning, and increasingly by time started to take actions based on the 997
output of the Q-function (the Q-values), namely arg maxୟ𝑄(𝑠, 𝑎) (exploiting), The minimum 998
epsilon was kept at 0.1 to force the agent to explore throughout the entire run. As for the 999
hyperparameters of the Q-network, the initial epsilon, the decay rate, as well as the minimum 1000
decay was varied between 0.1-1.0, 0.99-0.999 and 0.0-1.0 respectively. For which 1.0, 0.99 1001
and 0.1 was selected respectively. 1002
 1003

