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Abstract

Lightweight bistable deployable structures can be designed to be transportable and reusable. They instantaneously
achieve some structural stability when transformed from the compact to the deployed state through a controlled snap-
through, as a result of intended geometric incompatibilities between the beams. Due to their transformable bistable
nature their design requires assessing both their non-linear transformation behaviour, as well as their service state in
the deployed configuration. The requirement of a low peak force during transformation can be shown to oppose the
high stiffness requirement in the deployed state; their design can therefore be formulated as a multi-objective non-
linear optimisation problem. In this contribution, a size and shape optimisation method is elaborated by choosing the
best material combinations, the optimal geometry of the structure and beam cross-sections. The originality of this
contribution is the use of a multi-objective evolutionary algorithm to structurally optimise bistable scissor structures
taking into account the deployed state as well as the transformation phase. First, the method is applied to optimise a
single bistable scissor module. Next, a multi-module bistable scissor structure is optimised and the single module and
full structure based approaches are critically compared.

Keywords: structural engineering, non-linear computational mechanics, deployable structures, scissor structures,
bistable structures, multi-objective optimisation, evolutionary algorithms

1. Introduction

Scissor structures consist of scissor-like elements (SLE),
themselves made of two beams connected by a pivot con-
nection which allows the beams rotating around an axis
perpendicular to the plane of the two beams. Mobile5

lightweight deployable scissor structures are transportable
and can be transformed rapidly while offering a huge vol-
ume expansion. Geometric incompatibilities between the
members during transformation can be introduced as a de-
sign strategy to obtain bistability (i.e. stable folded and10

deployed states), which instantaneously introduces some
structural stability in the deployed state. Zeigler was
the first to propose this self-supporting concept in scis-
sor structures [1, 2], followed by Clarke [3], Zalewski and
Krishnapillai [4], Logcher and Rosenfeld [5, 6], and Gantes15

and Connor [7–11]. In bistable scissor structures, the in-
tended geometric incompatibilities result in the bending
of some specific members with a controlled snap-through
behaviour while they are transforming from the folded to
the deployed configuration. Because of the large displace-20

ments and rotations and the bistability, the transforma-
tion behaviour of bistable scissor structures, first studied
computationally by Gantes [11], is highly non-linear. By
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consequence, both the service state as well as the trans-
formation phase have to be considered in the design. Al-25

though analysing bistable scissor structures is a contem-
porary research topic [12–19], existing applications in civil
engineering are rare, largely due to this complex structural
behaviour.

A proper structural design has to provide sufficient30

stiffness in the deployed state, while providing flexibility
during deployment to limit the force required for transfor-
mation, which are contradicting requirements [20]. The
complex structural behaviour of bistable scissor struc-
tures, being different both during deployment and in the35

deployed configuration, prevents the formulation of any
straightforward, rigorous and automated design method-
ology. A design methodology was suggested by Gantes
[11, 21], the main limitation being that every iteration on
the design has to be performed manually.40

Because of the progress in computational efficiency
over the recent years, several researchers in the field
of mechanism-type of scissor or pantographic structures
(without snap-through) used optimisation methods suc-
cessfully. Sequential Quadratic Programming was first45

used by You to minimise the weight or maximise the
stiffness of a pantographic mast in terms of the geome-
try, cross-sectional areas and material properties, satisfy-
ing displacement, strength and buckling constraints [22].
The folded and the deployed configuration, with and with-50
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out prestress, were considered. Kaveh used Recursive
Quadratic Programming to minimise the weight of scis-
sor structures by varying the cross-sectional area of the
beams, using penalty functions for the stress, buckling
and displacement constraints [23]. He continued to op-55

timise scissor structures using a genetic algoritm [24] and
Ant Colony Optimisation [25–27]. For movable bridge de-
sign, Thrall et al. employed shape and size optimisation
[28, 29]. They used Multi-Objective Simulated Anneal-
ing and the First Best Gradient method to minimise the60

self-weight and the power required for the operation of the
bridge in terms of the geometry and the cross-sections,
satisfying kinematic and structural constraints. Thrall et
al. [30] presented a methodology for the size and shape
optimisation of pantographic structures to minimise their65

weight with a Gradient-based Steepest Descent algorithm,
Genetic Algorithm, Simulated Annealing and Descent Lo-
cal Search. Alegria Mira et al. used Simulated Annealing
and Descent Local Search to do a topology, shape and
size optimisation of the Universal Scissor Component [31]70

to minimise its weight, satisfying the constraints of Eu-
rocode 9 [32], as well as Descent Local Search to minimise
the weight of a scissor arch in terms of the geometry [33].
Koumar et al. used for the first time the Nondominated
Sorting Genetic Algorithm II to perform a multi-objective75

optimisation of a barrel vault, leading to a Pareto front
with several optimal solutions [34, 35]. The mass and the
compactness were minimised, varying the cross-section and
the geometry and satisfying the constraints of Eurocode
9. Recently, Salar introduced a fast Genetic Algorithm80

method for the size optimisation of scissor structures to
minimize their weight [36]. All of the previous methods
were used to optimise stable states of scissor structures,
e.g. the deployed configuration. By consequence, no non-
linear analyses were required.85

The optimisation of bistable scissor structures, which
requires taking into account the geometric non-linearities
during transformation, was attempted by Gantes [37]. Ge-
netic algorithms were applied for the design of a bistable
scissor structure to minimise its weight, varying the cross-90

sectional dimensions and material properties using penalty
functions for the stress and displacement constraints, lead-
ing to one optimal design. Two problems were solved: (1)
a geometrically non-linear analysis during deployment, us-
ing a quarter of a single module to predict the response95

of the multi-module structure and (2) a linear analysis
in the deployed state. Although the proposed approach
is of high interest and may be the sole precursor to this
contribution, additional complementary developments are
required to address fully the aspects of deployment and100

deployed state in a unified manner for two reasons. First,
the simplification of the structure to a quarter of a single
module during transformation does not take into account
the correct direction of the external forces in every module
nor the forces between the modules. Second, the resulting105

single optimal design does not allow the designer to make
choices based on preferences such as the aesthetics of the

structure.
Therefore, in this contribution, a multi-objective size

and shape optimisation problem is elaborated to obtain110

an optimal set of bistable structures which provide stiff-
ness in the deployed state and flexibility during deploy-
ment by choosing the best combinations of the geometry,
of the cross-sections of the beams and of their material
properties. The originality of this contribution is: (1) the115

development of a multi-objective optimisation methodol-
ogy for bistable scissor structures, obtaining a Pareto front
with several optimal solutions, (2) the incorporation of the
non-linear response of the whole structure during transfor-
mation as well as its response in the deployed configura-120

tion and (3) the application of the methodology to sin-
gle unit and full structure cases. A single bistable scissor
module and a multi-module bistable scissor structure are
optimised and the results are critically compared.

The paper is organised as follows. Section 2 explains125

the optimisation problem statement for bistable scissor
structures. Section 3 establishes the optimisation formu-
lation. Its computational implementation is discussed in
Section 3.1. In Section 4, a single bistable scissor module
is optimised and the results are discussed. In Section 5,130

a multi-module structure is optimised with boundary con-
ditions that mimic the boundary conditions of the single
module in Section 5.1 and with rail supports along two
sides in Section 5.2 and the results are critically compared.
Conclusions are given in Section 6.135

2. Optimisation problem statement for bistable
scissor structures

2.1. Geometry and structural response
The considered structures are a square flat polygonal

module made of 8 SLE’s (Fig. 1) and a multi-module as-140

sembly of such single modules (presented in Section 5).
During the module transformation, the outer SLE’s (on
the edges of the module) remain straight while the inner
SLE’s (on the diagonals of the module) bend due to ge-
ometric incompatibilities. The length of the edge of the145

square module is 1 m and the height of the corner points
of the module is chosen to be 0.33 m in the deployed state.

In general, the load-displacement curve of bistable scis-
sor structures is similar to Fig. 2, showing the folding
of a single module. The load is the sum of all the ap-150

plied folding force magnitudes (i.e. not a vector sum)
F =

∑nforces

p=1 Fp (with nforces the number of forces) and
the displacement is the relative vertical displacement be-
tween the center points. In this case, the lower corner
points are considered to be fixed in the vertical direction155

z, while the upper corner points are subjected to a hori-
zontal load in the direction of the diagonals which is fixed
throughout the transformation (Fig. 3). Point A corre-
sponds to the initial deployed configuration. Due to ge-
ometric incompatibilities, some of the beams bend elas-160

tically, requiring an increasing force to fold the structure
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Figure 1: A single flat bistable module with outer and inner SLEs
indicated.

(A-B). The maximum folding load is reached at point B
(referred to as peak load in the sequel of the paper), fol-
lowed by a snap-through from B to D. The required load
becomes negative (i.e. changes direction) from C to E.165

This implies that without this restraining force, the struc-
ture would ‘snap’ to point E in a dynamic fashion. After
point D (referred to as minimum load in the sequel), the
bent beams gradually become straight again and internal
stresses relax. Point E can be considered as the final folded170

configuration. When the structure is subjected to gravity,
the load-displacement curve shifts upwards for this par-
ticular structure, because the folding force acts against
gravity resulting in a higher required load for transfor-
mation. When the shift due to self-weight becomes too175

large, the curve has no negative part any more which im-
plies that the structure would have the tendency to unfold
by itself from the folded state to the deployed configura-
tion, provided that it can overcome the geometric incom-
patibility. (Fig. 2). In all subsequent simulations i.e. in180

transformation analyses as well as in analyses of the de-
ployed structure, gravity is considered. When finite joint
dimensions are taken into account, the maximum folding
load increases [18]. Technically, finite size joints are al-
ways present in scissor structures and are included in all185

the simulations as is explained in Section 2.2. Frictional
effects unavoidably occur in real life structures and mecha-
nisms, resulting in an increase of the transformation forces,
but are not considered in this contribution for the sake of
simplicity and computational efficiency.190

The following opposing trends are observed in the non-
linear transformation problem, which makes its solution
non-trivial:

1. Point D must be negative in load to maintain a
structural snap-through with C-E being a negative195

branch. The position of point D is related to the
bending stiffness of the inner SLE’s and to the self-
weight. The bending stiffness can be increased to
shift point D down by choosing different materials
or by increasing the corresponding cross sectional200

dimensions. Larger cross sectional dimensions or a

Displacement

L
oa

d

folding

without gravity
with gravity

A

B

C

D
E

F

Figure 2: The load required for transformation as a function of the
vertical displacement between the center points. If the self-weight
is to high i.e. there is no negative part of the curve, spontaneous
unfolding of the structure happens.

x

yz

Fp

Fp

Fp

Fp

Figure 3: Applied loads Fp and boundary conditions for a single
module.

denser material result in a heavier structure, with a
larger self-weight shifting point D upwards.

2. In order to facilitate the deployment, it is desirable
that the peak load at point B is be as low as possible,205

which is related to the bending stiffness of the inner
SLE’s. A lower peak load can be reached by lowering
the stiffness of the inner SLE’s.

3. The initial gradient at A (also related to the bending
stiffness of the inner SLE’s) is representative for the210

structural stiffness in the deployed state. Increas-
ing the bending stiffness of the inner SLE’s results
in increasing the stiffness of the structure in the de-
ployed state. A higher stiffness of the structure in
the deployed state is beneficial for the service state,215

however, it potentially decreases the safety of the de-
ployment due to the increased energy release during
transformation, i.e. the snap-through becomes more
difficult to control.
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2.2. Design variables220

In this example, the overall dimensions of the deployed
module are considered as fixed i.e. its length L (1 m) and
height H (0.33 m). Hollow rectangular cross sections are
chosen to obtain a lightweight structure and because the
beam-to-beam connections are simpler from a technolog-225

ical point of view than for circular cross sections. The
height h of the upper centre point (CT in Fig. 4) and the
cross-sectional dimensions are geometric variables in the
optimisation process while the height z of the lower centre
point (CB in Fig. 4) and the hub sizeR are dependent vari-230

ables (the connection of several beams is ensured through
hubs, as shown in Fig. 7). The dependent variables are
calculated as follows:

h
H

CB

CT

(a) lower limit

h H

CT

CB

(b) higher limit

Figure 4: Side view of the bistable scissor module (outer SLE’s in
black, inner SLE’s in blue) with the boundary values for h/H.

1. To determine the height (z in Fig. 5) of the lower
centre point CB, the following calculation is used:235

The length l = b+ d is:

l =
√
h2 + (D − 2R)2 (1)

with D = L/
√
2 the length of a diagonal of the

square module. The half-length of a beam in an
outer SLE (e in Fig. 5) is:

e =

√
H2 + (L− 2R)2

2
(2)

The spacing between two joints connecting the outer
SLE’s, ensuring compatibility of the module in the
folded configuration (v in Fig. 6), is given by:

v = 2
√
2R− 2R (3)

The ratio x = d
l is:

x =
(L− 2R)2 − v2

2
√
4e2 − v2l − 2hH

(4)

The height of the lower centre point z, is given by:

z = h− 1− x
x

H (5)

2. The hub size changes according to the cross sections
of the beams to allow their sound connection to the
hub. The hub dimensions depend on the dimensions
of the cross sections of the beams and the spacing in
between the beams of an SLE (Fig. 7). By varying

LD

Hz

h

R

R

R

R

b

a

c

d

e

e

e

e

RR

RR

Figure 5: The inner and outer SLE’s of a square polygonal module
in the deployed configuration.

L

L

R

R R
R

RR

R RR R
R R

(a) deployed

2R+ v

v
R

R

(b) folded

Figure 6: Top view of the deployed and folded square module.

the cross sectional dimensions of the beams, this hub
size (as well as the distance between the beam axes
in the model) will change and the geometry of the
module is consequently adapted. The hub size R is
given by:

R = max(ri, ro) (6)

ri =
hci
2

+ wci +
1 +
√
2

2
s (7)

ro =
hco
2

+ wco +
1 +
√
2

2
s (8)

with R the hub size, ri and ro the minimum required
size for the hub according to the dimensions of re-
spectively the inner and outer beam cross sections,
hci and hco the height of the inner and outer beams,240

wci and wco the width of the inner and outer beams
and s the spacing in between the beams of an SLE,
chosen to be 1 cm (Fig. 7 and Fig. 8).

R

wco

wci

s

Figure 7: A corner hub connecting two outer beams and one inner
beam.

In total, seven continuous design variables are defined:
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1. The width wci of the inner SLE’s.245

2. The height hci of the inner SLE’s.
3. The thickness tci of the inner SLE’s.
4. The width wco of the outer SLE’s.
5. The height hco of the outer SLE’s.
6. The thickness tco of the outer SLE’s.250

7. A geometrical parameter being the height h of the
module in the centre relative to the height H of the
module at the corners in the deployed configuration
(Fig. 4).

It is worth mentioning that the cross section choices are255

in reality categorical design variables [38], but for simplic-
ity they are treated as continuous design variables in this
contribution.

s

wc

hc
tc

Figure 8: Cut view of an SLE hinge showing the width, height and
thickness of the beams.

The lower and upper bounds for the width and the
height of the cross sections are chosen to be 1/100 and260

1/20 of the beam lengths, respectively. The thickness of
the cross section is chosen to be between 2 mm and 5 mm,
which corresponds to 1/2 of the lower limit for the width
and the height of the cross section. The lower limit for
h/H is chosen in a way that the lower centre point CB can265

never be located below the lower corner points (Fig. 4a),
while the upper limit is chosen in a way that the structure
can be folded using horizontal forces in the corner points
(Fig. 4b). A higher h/H would imply that the vertical
position of the lower centre point CB is higher than the270

vertical position of the upper corner points (equal to H)
in the deployed configuration. For the structure to fold,
it is necessary that point CB goes downwards during the
folding process. This could be achieved by an additional
vertical force in one of the centre points.275

Lower limit Upper limit
wci [cm] 1 5
hci [cm] 1 5
tci [mm] 2 5
wco [cm] 1 5
hco [cm] 1 5
tco [mm] 2 5
h/H 0.4 1.3

Table 1: Lower and upper bounds for the geometric design variables.

Additionally, different material pairs for the beams are

considered, since this is relevant to adjust the SLE stiff-
ness. Three cases have been investigated:

1. Aluminium is used for all the beams.
2. Aluminium is used for the outer SLE’s while HDPE280

(high-density polyethylene) is used for the inner
SLE’s (as in [21]).

3. HDPE is used for all the beams.

The material parameters are given in Table 2. The ma-
terial pairs are not design variables. They are considered285

separately and their results are critically compared.

HDPE Aluminium
Young’s modulus 0.8 GPa 70 GPa
Poisson’s ratio 0.4 0.35
Density 940 kg/m3 2700 kg/m3

Yield strength 31.7 MPa 200 MPa

Table 2: Material parameters of HDPE and aluminium.

2.3. Objectives
The two objectives of the structural optimisation in

this contribution are to keep as low as possible the maxi-
mum load required for folding/deployment, as well as the290

deflection of the structure in the deployed configuration
under structural constraints δ (listed in Section 2.4):

1. The maximum load required for deployment is de-
duced from the load-displacement curve which is ob-
tained from the computational analysis of the trans-
formation phase (using FEM) and corresponds thus
to point B on the load-displacement curve discretized
into load increments in the computations [1, ninc] in
Fig. 2. The maximum load can be given by:

max
i∈[1,ninc]

(nforces∑
p=1

Fp,i

)
(9)

with ninc and nforces the number of increments and
forces respectively.

2. The the maximum deflection under self-weight in the
deployed configuration is obtained from a FE anal-
ysis in the service state (i.e. maximal vertical dis-
placement of the FE nodes). No other service loads
have been applied. The maximum deflection is given
as:

max
j∈[1,nnodes]

(δj) (10)

with nnodes the number of nodes in the structure.295

For the deployed structure, the boundary conditions
are the same as during transformation. These are
described in Section 4 for the single module and in
Section 5 for the multi-module structure.
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2.4. Constraints300

The following constraints are considered in the multi-
objective optimisation problem:

1. The maximum von Mises stress σvonMises during
deployment and in the deployed configuration, ob-
tained from the FE simulations, is below the yield
stress σy of the material.

max
i∈[1,ninc]

(
max

k∈[1,nel]
(σvonMises,i,k)

)
< σy (11)

with ninc and nel the number of increments of the
simulations and finite elements respectively.

2. The maximum deflection in the deployed configu-
ration, obtained from the FE simulation of the de-
ployed state, is chosen to be L/100 with L the max-
imum spatial dimension of the structure i.e. 1 m in
the case of a single module. This constraint is less
strict than for traditional structures [35].

max
j∈[1,nnodes]

(δj) ≤
L

100
(12)

with nnodes the number of nodes.305

3. Buckling of the beams must be avoided in the de-
ployed configuration. An analytical calculation is
implemented for each beam following Eurocode 9
[32, 33, 35]. The critical buckling load is:

Pcr = π2EI

L2
(13)

with E the Young’s modulus, L the longest semi-
length of the beam and I the moment of inertia in
case of in-plane buckling and L the length of the
whole beam and I the sum of the moments of inertia
of both beams in case of out-of-plane buckling, as de-
rived by Koumar et al. [35]. Only compression forces
are taken into account in this contribution. Eq. (13)
is used to calculate the design buckling resistance
NRd following Eurocode 9 [32]. Since hollow cross
sections are used, members are not prone to torsional
deformations and only flexural buckling (caused by
bending in a member in compression) was checked.
Since there is always axial compression as well as
bending, flexural buckling is verified as follows:

( max
i∈[1,ninc]

(
max

k∈[1,nel]
(NEd,i,k)

)
χminωxNRd

)ψc

+
1

ω0

[( max
i∈[1,ninc]

(
max

k∈[1,nel]
(My,Ed,i,k)

)
My,Rd

)1.7

+

( max
i∈[1,ninc]

(
max

k∈[1,nel]
(Mz,Ed,i,k)

)
Mz,Rd

)1.7]0.6
≤ 1.0

(14)

with NEd, My,Ed, Mz,Ed the compression force and
the bending moments obtained from the FE simu-
lations, ψc, ωx, ω0 values taken from Eurocode 9
[32], NRd the design buckling resistance and My,Rd,
Mz,Rd the bending moment capacities calculated fol-310

lowing Eurocode 9 [32].
4. The minimum load Fmin during the folding process

has to be negative (C-E on Fig. 2), to counteract
gravity induced deployment from the folded config-
uration [18].

min
i∈[1,ninc]

( nforces∑
p=1

Fp,i

)
< 0 (15)

with nforces the number of applied forces.

3. Formulation of the optimisation problem

To find optimal solutions which combine a low peak
force during transformation with a low deflection under315

self-weight in the deployed configuration, the optimisation
problem given in the box below (Eq. (16)) has to be solved.

sl refers to the design variables: the cross sec-
tional dimensions for 2 groups of cross sections (s =
(wci, hci, tci, wco, hco, tco)) and the geometrical parameter320

h/H, Sl are the intervals of sl. The applied force Fp, the
stress σvonMises and the section forces NEd and MEd all
depend on the design variables sl. Their dependency on
the design variables is non-linear and they are sampled
point-wise at each increment of the non-linear FE simula-325

tions of transformation for each set of s.
The optimisation approach is based on the NSGA-II

[39], which is a popular method for multi-objective op-
timisation problems in civil engineering [34, 35, 40]. An
initial population N of 100 individuals is chosen randomly.330

Each individual is associated a different design parameter
set, which means that the individuals consist of the values
of the design variables. The parent Pt and offspring Qt
population both have N members. The combined popu-
lation Rt = Pt ∪Qt is sorted according to nondomination335

levels L1, L2... An individual is part of a nondomination
level Ln if no other individual exists within Ln which has
a lower value for all the objectives. The nondomination
levels are selected starting from L1 until its size is equal
to N . From the last accepted level, individuals are chosen340

that are located in a region with the smallest number of
points using the crowding-distance principle, to maintain
a good spread of solutions. A new offspring population is
created by applying the usual crossover and mutation op-
erators by randomly picking parents from Pt+1. Crossover345

is the procedure of combining genes of the parents. The
probability of crossover Pci used in this contribution is 0.9.
Simulated Binary Crossover is used, in which the gene val-
ues of the children have the same distance from the average
gene value of the parents. In the mutation phase, the char-350

acteristics of the individuals are changed. The probability

6



minimize
s

{
max

i∈[1,ninc]

(nforces∑
p=1

Fp,i (s)

)
; (16a)

max
j∈[1,nnodes]

(δj (s))

}
(16b)

subject to max
i∈[1,ninc]

(
max

k∈[1,nel]
(σvonMises,i,k (s))

)
< σy (16c)

max
j∈[1,nnodes]

(δj (s)) ≤
L

100
(16d) max

i∈[1,ninc]

(
max

k∈[1,nel]
(NEd,i,k (s))

)
χminωxNRd (s)


ψc

+
1

ω0

[ max
i∈[1,ninc]

(
max

k∈[1,nel]
(My,Ed,i,k (s))

)
My,Rd (s)


1.7

+

 max
i∈[1,ninc]

(
max

k∈[1,nel]
(Mz,Ed,i,k (s))

)
Mz,Rd (s)


1.7 ]0.6

≤ 1.0 (16e)

min
i∈[1,ninc]

(nforces∑
p=1

Fp,i (s)

)
< 0 (16f)

with sl ∈ Sl l = 1, ..., 7 (16g)

of mutation Pmi is chosen to be 0.1. This procedure of
creating a new generation is repeated until the result is
converged (i.e. a smooth Pareto front is obtained which
doesn’t change for several generations) or until the defined355

maximum number of generations is reached (set to be 200).

3.1. Computational implementation
First, the NSGA-II algorithm (written in Matlab [39])

generates the initial population and sends the design vari-
ables for each individual to Grasshopper (a plug-in for360

Rhinoceros [41]), in which the geometry is updated para-
metrically (i.e. the height of the centre points, the spacing
in between the beams and the hub size) and the input files
are written for Abaqus FE simulations [42].

In the structural FE model, which is described in detail365

in [18], the semi-length of each beam (between the hub and
the pivotal connection) is modelled as four Timoshenko
beam elements, which has been verified to correspond to
a converged mesh. The connections are simulated with
the geometrically nonlinear connector type ‘hinge’, incor-370

porating the update of the hinge orientation during trans-
formation. In reality, the two beams in an SLE do not lie
in the same plane. This is taken into account by incorpo-
rating a spacing between the beam elements. This finite
spacing between the beams promotes the beams of the in-375

ner SLE’s to buckle out-of-plane for large height-to-width

ratios. The hub is described by a stiff grid of small beam
elements, as in [11].

Two FE computations are performed for each design:
1) a linear analysis of the structure in the deployed state380

to measure the maximum deflection under self-weight and
2) a non-linear analysis of the folding from the deployed
configuration without considering friction in the hinges.
To solve the snap-through problem, the modified Riks so-
lution strategy is used [18]. The complex non-linear simu-385

lations make the optimisation of bistable scissor structures
time-consuming. To reduce the computational time, the
simulations of different individuals in the same population
are run in parallel.

The output of these sets of FE simulations is accessed390

using a Python script and the constraints are calculated.
The objectives and constraints are sent back to Matlab
in which the NSGA-II algorithm evaluates the objective
functions and creates a new population.

4. Optimisation of a single module395

This section focuses on a square flat polygonal module
(Fig. 1) with boundary conditions shown in Fig. 3. The
center points are constrained to move only in the vertical
direction z. The folding force used in the objective func-
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tion is the arithmetic sum of the 4 applied diagonal corner400

forces (4.F ).
The evolution of the Pareto front throughout the opti-

misation process of the pure HDPE case is given in Fig. 9.
Because of the many constraints and the limited range
for the design variables, it took in this case more than 50405

generations to find solutions to the problem. Once a few
solutions are found, the Pareto front evolved in around 100
generations towards the converged Pareto front.
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Figure 9: Evolution of the Pareto front throughout the optimisation
process.

Generation 180 in Fig. 9 corresponds to a stable Pareto
front, even though it is not smooth. The smoothness can410

be recovered by decreasing the allowed maximum arc in-
crement in the FE simulations to approximate the peak
load more accurately. This of course results in a longer
computational time for a simulation, which is why it was
attempted systematically only for a close to converged gen-415

eration. In the discussed case more than 200 generations
were needed to reach a smooth Pareto front (generation
340 in Fig. 9). Runs with different sets of optimisation
parameters have been carried out for the same structure.
The results were comparable, meaning that a stable solu-420

tion is reached and that the optimisation methodology is
robust and applicable for complex problems.

The final Pareto fronts obtained for the 3 material pairs
(pure Al; Al-HDPE; pure HDPE) are given in Fig. 10 with
the corresponding design variables for points A, B and C425

shown in Table 3. The case in which HDPE was used for
all the beams is quite different from the other scenarios.
The deflection in the deployed configuration (2.6 mm to
3.1 mm) is clearly higher for the same peak load as for the
other cases (0.39 mm to 1.6 mm for aluminium and HDPE430

combined, 0.4 mm to 1.3 mm for pure aluminium), result-
ing in more compliant structures, as expected. When com-
paring the pure aluminium case to Al-HDPE, a decrease
in the peak load can be observed for the same deflection
for the composite structure. This difference in peak load435

decreases for low deflections (high peak load regime) and
increases for large deflections (low peak load regime). The
lowest peak load observed for the pure Al structure is 0.521
kN, while the lowest peak load for Al-HDPE is almost 5
times lower, 0.101 kN (corresponding to 4 diagonal point440

loads of 25.25 N applied at every corner of the module).
Since low peak loads are desired, the Al-HDPE case cor-
responds to more optimal structures. Moreover, for the
Al-HDPE structure, the weight ranges from 3 to 4 kg,
which is less than the 4 to 6 kg for the pure Al structure,445

and somewhat more than the 2 to 3 kg for the pure HDPE
structure. The composite structure thus seems to be a
good compromise, joining low weight and high stiffness in
the deployed configuration (comparable to pure Al) with
a possibility of reaching low peak forces (comparable to450

pure HDPE).
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Figure 10: Comparison of the Pareto fronts for structures built from
different material pairs.

In Fig. 11, the normalised values (relative to the lower
and upper bounds) of the design variables on the Pareto
sets are shown. This graphical representation is interesting
because it shows whether the lower or upper limits of the455

design variables are reached and whether the optimal so-
lutions are well-spread or rather focused around a certain
value.

For the pure Al structure, the outer beams have the
lowest width while the inner beams have the largest width460

and height (Fig. 11a). This can be explained by higher
stresses observed in the inner beams (for the sake of brief-
ness stress plots are not included for single modules here).
The solution with the lowest peak force (solution A on
Fig. 10) corresponds to a structure in which the cross sec-465

tion of the outer beams is small (reaching the lower bound
for the width and height). The solution with the high-
est peak force (solution C on Fig. 10) corresponds to a
structure in which the cross section of the outer beams
is thin and high. The smaller the cross section of the470

outer beams, the lower their self weight is, leading to a
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A B C

Al outer beams

inner beams
geometry

Al-HDPE outer beams

inner beams

geometry

HDPE outer beams

inner beams

geometry

Table 3: Beam cross sections for the solutions A, B and C on the
Pareto fronts in Fig. 10.

smaller deflection. Smaller inner cross sections also lead
to an easier deployment and thus a lower peak load. The
most compliant and stiffest designs in this paper, i.e. with
the highest and the lowest deflections under self weight in475

the deployed configuration are denoted as A and C sys-
tematically throughout this contribution, with case B an
intermediate optimum solution between A and C.

In the pure HDPE case, the outer beams have the
largest width and height and the inner beams are thin480

(Fig. 11c), which is the opposite trend of the observations
made in the pure Al case. For pure HDPE, the outer
beams were observed to have the higher stresses which ex-
plains this opposite trend. Solution A on Fig. 10 for pure
HDPE corresponds to a structure in which the cross sec-485

tion of the inner beams reaches the lower bound for the
width and height. Solution C on Fig. 10 corresponds to
a structure in which the cross section of the inner beams
reaches the upper bound for the width and height. The
inner beams determine the compliance of the structure by490

limiting the deflection caused by the weight of the beams
which means that the larger the inner beams, the smaller
the deflection.

In the composite Al-HDPE structure, the width of the
HDPE beams reaches the upper bound (Fig. 11b). So-495

lution A on Fig. 10 corresponds to a structure in which
the cross section of the outer beams is as small as pos-
sible while the cross sections of the inner beams have a
large width and a small height. These wide and low cross
sections for the inner beams allow for in-plane bending,500

leading to an easier transformation and thus a lower peak
force. Solution C on Fig. 10 corresponds to a structure
in which the cross section of the outer beams reaches the
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Figure 11: Comparison of the Pareto sets. The normalised values
(relative to the lower and upper bounds) are given for each design
variable (the width, height and thickness of the outer SLE’s wco, hco

and tco, the width, height and thickness of the inner SLE’s wci, hci

and tci and the geometric variable h/H).

lower bound for the width and the higher bound for the
height and the cross section of the inner beams is as large505

as possible (Table 3). These large cross sections for the in-
ner beams decrease their tendency to bend during trans-
formation, leading to a higher peak force but also to a
higher stiffness in the deployed state. As was the case
for pure HDPE, the inner beams determine the compli-510

ance by limiting the deflection caused by the weight of the
beams. The cross section difference between the inner and
the outer beams can be explained by the different elastic
moduli of the materials. Solution B on Fig. 10 is always
following the trends set between A and C for all material515

pairs.
For pure HDPE and for Al-HDPE cases, the optimal

structural geometry is the one in which the upper centre
point is as high as possible, which seems to be a domi-
nating requirement. This results in the largest geometric520

incompatibilities, leading to a stiffer structure in the de-
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ployed state but also to a higher peak load. When only
aluminium is used, the bending of the inner beams, which
is a result of the geometric incompatibilities, is more dif-
ficult due to a higher material stiffness, leading to larger525

peak forces. This leads to optimized structures having a
lower upper centre point.

In Fig. 12, the values of the constraints are given for
each solution. When all of the values for a constraint for
all of the solutions on the Pareto front are close to the up-530

per bound, this constraint is identified as a governing con-
straint for this specific optimisation problem. The yield
stresses and the buckling constraints are always satisfied
in the simulations yielding solutions far from the bound-
ary (except for the outer beams in the pure Al case). On535

the contrary, the minimum load and the maximum dis-
placement constraints are more critical in all cases. The
minimum load constraint is critical in all cases. This is
due to the structural behaviour of these flat modules in
general, in which the magnitude of the peak load (point B540

in Fig. 2) is found to be always higher than the magnitude
of the minimum load (point D in Fig. 2), based on obser-
vations [18]. Consequently, as the peak load is minimised,
the minimum load converges towards values closer to zero.
It is noteworthy that the choice of the design bounds im-545

posed in the optimisation process is crucial (several of the
solutions operate on these bounds, as shown in Fig. 11).

5. Optimisation of multi-module structures

A flat roof with a span of 5 m composed of 5 by 5 mod-
ules is now considered as multi-module structure. One of550

the main goals here is to investigate whether the results
obtained for a single module remain applicable for multi-
module structures when different boundary conditions are
applied to the structure. Two sets of boundary conditions
are considered: a vertical planar support that mimics BC555

of Section 4 and rail supports along 2 sides. The objective
functions, design variables and constraints are the same
as in Section 4. The maximum deflection in the case of
the flat roof becomes 5 cm. HDPE was used for the inner
SLE’s and aluminium for the outer SLE’s using the mate-560

rial parameters of Table 2 and design bounds of Table 1.

5.1. Lower plane vertical support boundary conditions
Here, the roof has been optimised with comparable

boundary conditions and loads as for the single module.
This set of boundary conditions of course does not match565

a practical application, but is used for comparison with
the single module. Therefore it is expected to yield similar
results. Internal lower nodes are restricted against verti-
cal displacement in the z-direction. Edge lower nodes are
restricted against vertical displacement in the z-direction570

and horizontal displacement in x or y (different for each
edge). Edge upper nodes are restricted against horizontal
displacement in x or y (different for each edge). Forces
are applied at the upper points of the other two sides of
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Figure 12: Comparison of the constraints for the 3 cases.

the structure (Fig. 13a). The same boundary conditions575

apply for the transformation as well as for the deployed
structure under self-weight. The folding force used in the
objective function is the arithmetic sum of all of the ap-
plied forces and of the horizontal reaction forces along the
two constrained edges (11.F ).580

The resulting Pareto front is shown in Fig. 14 together
with the Pareto front of the composite Al-HDPE single
module of Section 4. The maximum deflection of the multi-
module structure under self-weight is smaller because the
horizontal movement of the outer nodes of the modules is585

restricted at two edges of the structure (that is a minor
difference in BC with respect to the single module case).
The peak force is higher for the multi-module structure
since more beams have to bend to transform the structure.
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(b) deformed shape in the deployed configuration

Figure 13: Comparable boundary conditions and loads as for the
single module.

The solution with the lowest deflection and the highest590

peak force has a high peak force of 35.3 kN and a deflection
of only 0.02 cm (point C on Fig. 14), while the solution
with the lowest peak load and the highest deflection has a
peak load of 0.88 kN and a deflection of 0.10 cm (point A
on Fig. 14).595

It is interesting to notice that, although the majority
of solutions of the optimisation of the multi-module struc-
ture has a higher peak load and lower deflection than the
solutions for the single module, there is a domain in which
similar peak loads for a given maximum deflection appear.600

However, it has to be emphasised that the values of the
design variables of overlapping points in Fig. 14 are not
the same for the single and multi-module solutions. While
point C∗ on the Pareto front of the single module is a struc-
ture with outer beams of 18x44x2 mm and inner beams605

of 50x48x3 mm, the closest point on the Pareto front of
the multi-module structure has much thinner outer beams
of 17x25x2 mm and inner beams of 50x20x3 mm (for the
same peak load of 4.5 kN and maximum deflection of 0.039
cm).610

Examining Pareto sets gives valuable complementary
information (Fig. 15). The same trends can be observed for

0 5 10 15 20 25 30 35 40

peak load n.F [kN]

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m
ax

im
um

de
fle
ct
io
n
un

de
r
se
lf-
w
ei
gh

t
[c
m
]

single module
5x5 modules

A

A

C∗

C

overlap
region

Figure 14: Comparison of the Pareto fronts for the single module
and the flat structure consisting of 5 by 5 modules.

the solutions for the single module and the multi-module
structure. The thickness of the aluminium beams is as low
as possible while the width of the HDPE beams is as high615

as possible. The optimal structural geometry is the one in
which the upper centre point is as high as possible, which
results in the largest geometric incompatibilities, leading
to a stiffer structure in the deployed state but also to a
higher peak load. Since the Pareto sets are almost identi-620

cal, it can be concluded that the optimisation of a multi-
module structure can be deduced from the optimisation
of a single module, provided that the boundary conditions
and the applied loads are comparable.

In Fig. 16, the load-displacement curves are plotted625

for the solutions denoted A and C, and for the solution of
the multi-module structure closest to solution C∗ of the
single module. The displacement is the relative vertical
displacement between the center points of a module tak-
ing the deployed configuration as reference. This is done630

for all subsequent plots for multi-module structures. The
load-displacement curves for the solutions with the high-
est deflection (solutions A) have a very low peak load, a
snap-through that is not very pronounced (the difference
between the peak load and the minimum load is rather635

small), and the minimum load is close to zero. For the so-
lutions with the lowest deflection (solutions C), a high peak
load can be observed with a higher snap-through magni-
tude and a more negative minimum load. The solutions
for the single module follow the same trend as the multi-640

module solutions i.e. the snap-through occurs around the
same displacements, the main difference being a higher re-
quired load for transformation for the multi-module struc-
ture. There is a minor difference in the displacement for
the closed configurations between the solutions with the645

highest peak load and the lowest peak load due to dif-
ferent member lengths, resulting from different hub sizes
required to accommodate different cross sections.
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Figure 15: Comparison of the Pareto sets for the single module and
for the flat structure consisting of 5 by 5 modules.
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Figure 16: Comparison of the load-displacement curves for solutions
A and C for the single and multi-module structure with planar sup-
port BC.

In Fig. 17, the comparison of the results and the con-
straints is given for the single module and the multi-650

module structure. The same trends for the stresses and
the buckling can be observed i.e. the yield stresses and
the buckling constraints are always satisfied. For the sin-
gle module, the minimum load constraint and the maxi-
mum deflection constraint are both critical, while for the655

multi-module structure, only the minimum load constraint
is found to yield solutions close to the constraint. The
multi-module structure thus appears to be easier to de-
sign within the predefined bounds than a single module.
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Figure 17: Comparison of the values of the constraints.

5.2. Side rail supported boundary conditions660

In reality, a deployable roof will not be subjected to
horizontal plane support boundary conditions, therefore
a more realistic set of boundary conditions that mimic
the 2 bottom edges of the structure running along two
horizontal, mutually perpendicular rails is adopted here.665

The lower corner point between the two supported sides is
fixed in x, y and z. The lower points of a supported side are
free to move along the edge of the structure in x or y and
they are fixed in the vertical direction z (i.e. like moving
along a rail). The upper points on constrained sides can670

only move in a vertical plane set along a rail (fixed in x or
y). Forces are applied on the upper points of the two other
sides of the structure to transform it (Fig. 18a). These
BC thus constrain two sides of the structure, leaving the
opposite sides and corner point free. The same boundary675

conditions apply for the transformation as well as for the
deployed structure under self-weight. This explains the
deformed shape under self weight shown in Fig. 18b.
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Figure 18: Side rail boundary conditions and applied loads.

The Pareto front resulting from the optimisation is
given in Fig. 19. The direct graphical comparison with680

Section 5.1 is not attempted due to the large difference in
Pareto fronts. The solution with the lowest deflection and
the highest peak load (C) has a deflection of 2.20 cm and a
peak load of 1.648 kN (compared to a deflection of 0.02 cm
and a peak load of 35.3 kN for Section 5.1). The solution685

with the lowest peak load and the highest deflection (A)
has a peak load of only 0.662 kN and a deflection of 2.42
cm (compared to a peak load of 0.88 kN and a deflection
of 0.10 cm for Section 5.1). The deflection of the roof with
rail support is 20 to 100 times larger than the deflection690

of the roof with planar support, while the peak load is up
to 30 times smaller.

The Pareto sets obtained for the two BCs are com-
pared in Fig. 20. For planar BC (Fig. 20a), the thickness
of the outer aluminium beams is as low as possible while695

the width of the HDPE beams is as high as possible. For
rail supports (Fig. 20b), the width and height of the alu-
minium beams are as high as possible, while their thickness
is as low as possible. The dimensions (width, height and
thickness) of the inner HDPE beams are close to the lower700

bounds for rail supports, which is the opposite trend to
the one observed for planar BC. For both cases, the op-
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Figure 19: The Pareto front for the flat roof consisting of 5 by 5
modules with realistic boundary conditions.

timal structural geometry is the one in which the upper
centre point is as high as possible, leading to the largest
geometric incompatibilities.705
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Figure 20: Comparison of the Pareto sets for the flat structures
consisting of 5 by 5 modules.

In Fig. 21, the comparison of the results and the con-
straints is given. For the roof with side rail supports, the
stresses are low compared to the planar support. For both
cases, the buckling constraint is far from the threshold. For
the side rail supports, the governing constraint is clearly710

the minimum load, which is very close to zero.
The significant difference in the results can be ex-

plained when looking at the stress distribution when con-
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Figure 21: Comparison of the values of the constraints.

sidering a structure with 2 different BCs. For the sake
of illustration and ease of comparison, the same structure715

with beams of 25x25x2 mm has been subjected to the two
sets of boundary conditions to investigate the structural
behaviour in the deployed state, as well as during trans-
formation. The von Mises stress distributions are given for
HDPE and aluminium elements separately (due to a dif-720

ference in their order of magnitude) in the deployed state
(Fig. 22), as well as during transformation (Fig. 23).

The von Mises stress in the HDPE beams in the struc-
ture with planar support are generally more evenly dis-
tributed, while the stresses in the structure with rail sup-725

ports are locally higher (Fig. 22). The largest stresses
occur in the modules along the two rails of the side rail
supported structure, as expected, since they are furthest
from the free hanging corner.

The von Mises stress in the aluminium beams for pla-730

nar supports are negligible in comparison to the stresses in
the aluminium beams for rail supports. The highest stress
is observed in elements along the side rail supports, as ex-
pected. In the deployed state for planar BC, the HDPE
beams govern the deflection under self weight, while for735

side rail support the aluminium beams are critical.
This explains the optimisation results i.e. the solutions

for the structure with planar support have large cross sec-

tions for the HDPE beams and smaller cross sections for
the aluminium beams, while the solutions for the rail sup-740

port have large cross sections for the aluminium beams
and very small cross sections for the HDPE beams.

In Fig. 23a and Fig. 23b, the von Mises stress in the
inner HDPE beams is shown in an intermediate configura-
tion during transformation. The stresses in the beams are745

very similar for the two BCs, which is expected to lead to
a similar bistable behaviour of the two structures during
transformation.

Fig. 23c and Fig. 23d show the von Mises stress in
the outer aluminium beams at the same state of transfor-750

mation. The stresses in the outer beams for the planar
support BC are very small compared to the rail support.
The highest stresses in the roof with rail support occur
again along the side rail supports.

Fig. 24 compares the load-displacement curves for the755

same structure with different BCs, showing that the two
BCs lead to a very similar response, as expected. It is im-
portant to emphasize that the considered structure is not
a solution of the optimisation problem (e.g. no negative
load is present), their purpose is solely to illustrate the760

difference in the structural behaviour, and link it to the
optimisation results.

The optimisation of the roof with rail support gives
significantly different results than when considering planar
support BCs. This is an expected result because the stress765

distribution in the two structures is very different. The
difference in the structural behaviour in the deployed state
appears to govern the optimisation which explains the very
different optimal solutions for different BCs. This implies
that in the design the whole structure has to be optimised770

in a general setting and that the results of the optimisation
of a single module cannot be used systematically to design
a multi-module structure.

6. Conclusions

Bistable scissor structures should be lightweight, easy775

to deploy and provide enough stiffness in the deployed con-
figuration to sustain their self-weight. To find acceptable
compromises between these conflicting requirements, an
optimisation methodology was proposed in which the peak
force during deployment as well as the deflection in the780

deployed state were minimized, taking into account stress
based, deflection and buckling constraints. The proposed
optimisation approach results in a Pareto front, i.e. several
non-dominated solutions, illustrated in this contribution
on the example of a single bistable module and a flat roof785

composed of 5 by 5 modules. This optimisation method-
ology was shown to be a feasible approach for bistable
deployable structures and can be the basis of a rigorous
design procedure, which will be developed in the future.

It was shown that the Pareto sets resulting from the790

optimisation of a single module and the optimisation of a
5 by 5 multi-module structure with similar boundary con-
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Figure 22: Comparison of the von Mises stresses in the deployed state.
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Figure 23: Comparison of the von Mises stresses during transformation.

ditions (planar support) were very close. It can be con-
cluded that the optimisation of a multi-module structure

can be deduced from the optimisation of a single mod-795

ule, provided that the boundary conditions and the applied
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Figure 24: Comparison of the load-displacement curves for different
BCs.

loads are comparable. It was shown that for other bound-
ary conditions, i.e. the rail support BC, the results were
significantly different. This implies that the whole struc-
ture has to be considered in a general setting and that the800

results of the optimisation of a single module cannot be
used in all scenarios.

The main drawback of the current optimisation
methodology is the long time and computational effort it
takes to obtain a converged Pareto front, which has two805

causes. First, there is the problem with smoothness of the
Pareto fronts, which can be solved by decreasing the max-
imum arc increment. In the future, an automatic decrease
of maximum arc length increment in the Riks path follow-
ing strategy can be aimed for, to make the process fully810

automated. Second, for every individual, one linear as well
as one non-linear FE simulation is needed. For the case of
the pure HDPE single module with 340 generations of 100
individuals, 34,000 linear and 34,000 non-linear FE simu-
lations are required with a computational time of 42 hours815

on a personal laptop (2.9 GHz intel i7 processor and 32
GB RAM). To reduce the computational time, in the fu-
ture the non-linear FE simulations can be carried out using
displacement control in which it is possible to have smaller
load increments in the first part of the load-displacement820

curve to approximate the peak load more accurately while
increasing the load increments in the last part of the curve.

A further extension intended for future work is that
the deployed structure will have a more realistic size and
boundary conditions and will be subjected to additional825

loads, in order to demonstrate its applicability for a wider
range of applications.
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