VRIJE
UNIVERSITEIT

Vrije Universiteit Brussel BRUSSEL

A Middleware for Implicit Human-Computer Interaction Across loT Platforms
Attoh, Ekene; Signer, Beat

Published in:
Proceedings of UbiComp 2021 (Doctoral Consortium), ACM International Joint Conference on Pervasive and
Ubiquitous Computing, Virtual Event, September 2021

DOI:
10.1145/3460418.3479311

Publication date:
2021

License:
Other

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):

Attoh, E., & Signer, B. (2021). A Middleware for Implicit Human-Computer Interaction Across loT Platforms. In
Proceedings of UbiComp 2021 (Doctoral Consortium), ACM International Joint Conference on Pervasive and
Ubiquitous Computing, Virtual Event, September 2021 (pp. 90-94). (UbiComp/ISWC 2021 - Adjunct Proceedings
of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the
2021 ACM International Symposium on Wearable Computers). ACM. https://doi.org/10.1145/3460418.3479311

Copyright

No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 19. Apr. 2024

https://doi.org/10.1145/3460418.3479311
https://cris.vub.be/en/publications/a-middleware-for-implicit-humancomputer-interaction-across-iot-platforms(f7fdb0d0-65b8-4706-8fe5-4748bb10167e).html
https://doi.org/10.1145/3460418.3479311

A Middleware for Implicit Human-Computer Interaction
Across loT Platforms

Ekene Attoh
WISE Lab, Vrije Universiteit Brussel
Brussels, Belgium
eattoh@vub.be

ABSTRACT

The Internet of Things is increasingly becoming a part of our daily
life. With popular task automation or IoT platforms such as If This
Then That (IFTTT), users are able to define rules to enable inter-
actions between smart devices in their environment and thereby
improve their daily lives. However, rules authored by users on
these popular task automation or IoT platforms are often tied to
the platform or even to the specific devices for which they have
been configured, implying a vendor lock-in for users. Therefore,
switching to a different task automation or IoT platform or the
introduction of new devices might demand for a re-creation of the
rules that are specific to the new platform and devices. In order to
address this problem, we need human-computer interaction that
works across IoT platforms, in particular with the proliferation of
IoT services in domains such as smart health where a user’s quality
of life might depend on an uninterrupted service offered by a plat-
form. In this paper, we propose an architecture to enable implicit
human-computer interaction across IoT platforms by introducing
the necessary concepts providing users ownership and control over
their IoT data and rules.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-
puting systems and tools.

KEYWORDS
Internet of Things, cross-platform IoT, interoperability, Solid

ACM Reference Format:

Ekene Attoh and Beat Signer. 2021. A Middleware for Implicit Human-
Computer Interaction Across 10T Platforms. In Adjunct Proceedings of the
2021 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting and Proceedings of the 2021 ACM International Symposium on Wearable
Computers (UbiComp-ISWC °21 Adjunct), September 21-26, 2021, Virtual, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3460418.3479311

1 INTRODUCTION AND RELATED WORK

The avoidance of vertical IoT silos and the enabling of cross-platform
interoperability has been investigated in a number of research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UbiComp-ISWC °21 Adjunct, September 21-26, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8461-2/21/09...$15.00
https://doi.org/10.1145/3460418.3479311

Beat Signer
WISE Lab, Vrije Universiteit Brussel
Brussels, Belgium
bsigner@vub.be

projects. Li et al. [4] identified the problem of vendor lock-in in
end-user development, whereby manufacturers provide proprietary
software to enable users to create IoT rules for their smart de-
vices. However, the rules created via this software can only be
executed on devices of the manufacturer’s ecosystem. The popular
IFTTT! platform enables users to create rules for devices of various
manufacturers, but only certain devices and services by partners
and a subset of the commonly used functionality are supported [4].

The solution proposed by Li et al. enables users to author rules
for their IoT devices by demonstrating interactions between smart
devices using their mobile phone. This is achieved via an Android
application which enables users to create automation scripts which
are composed by recording the actions they perform on the mobile
application of their smart devices. The scripts can then be triggered
to perform the actions that were demonstrated by the user using
a source from another application such as a notification from a
motion sensor application or even the launch of another applica-
tion. The client component of the proposed system is an Android
application which has been designed to work on any smartphone
with Android 4.4 or higher. We infer that these scripts are stored
in memory on the mobile device itself, introducing a user lock-in
as the created rules will only be available on the mobile device.
Further, recorded actions will just be valid for the devices in the
environment where the configuration took place and the scripts
will not work on other platforms such as iOS or Windows.

Some EU-led initiatives have also sought to tackle the interop-
erability issue of IoT platforms. One such project, called symbloTe,
aims to address the problem by creating a framework which enables
the discovery and sharing of resources for rapid cross-platform ap-
plication development and facilitates the blending of the next gen-
eration of smart objects with surrounding environments. symbloTe
aims to provide a unified view on various platforms and their re-
sources, so that application designers and developers have a trans-
parent view of these resources and can easily access them [7]. An-
other project called bloTope proposes a marketplace enabling devel-
opers and businesses to discover IoT services. Platforms can expose
their services as Open Messaging Interface (O-MI)? nodes, mak-
ing them discoverable via the marketplace. Developers can then
gain access to these services by paying for them via the market-
place and directly connecting to the O-MI service nodes [3]. As
can be seen, these projects do not focus on the interoperability of
user-defined rules across platforms, but rather on abstracting the
services provided by different platforms and making them accessi-
ble to developers when creating their solutions.

Uhttps://ifttt.com
Zhttp://www.opengroup.org/iot/omi/p8.htm

https://doi.org/10.1145/3460418.3479311
https://doi.org/10.1145/3460418.3479311
https://ifttt.com
http://www.opengroup.org/iot/omi/p8.htm

UbiComp-ISWC 21 Adjunct, September 21-26, 2021, Virtual, USA

Corno et al. [1] introduced EUPont, a high-level semantic model
for end-user IoT development. With EUPont, users are able to create
rules at a higher level of abstraction, eliminating the need to con-
figure them for specific devices or environments. For example, an
IFTTT rule such as “If my smart sensor X detects that I am home and
the outside temperature is less than 10 degrees, then turn on my smart
heater H”, will have to be configured multiple times for each new
environment and device. With EUPont, this rule can be transformed
to “If I am in an indoor place and the outside temperature is less than
10 degrees, then start heating the indoor place”. With this higher level
of abstraction, any device capable of heating will simply be used to
perform the required action. We see this solution as a good starting
point for our work on cross-platform interactions, but also note
some limitations. Most IoT users already have tools which they are
familiar with and have existing rules they have authored using these
tools. We posit that users should have the flexibility to use any tool
of their choice and they should not have to switch to a completely
new solution in order to author their IoT rules. We also note that the
functionality exposed by task automation or IoT platforms, such as
the one proposed by Corno et al., are often quite simple and prevent
users from creating richer reusable situations [8]. For example, in
state-of-the-art platforms the If side of a rule such as “If my heart
rate is higher than 100 bpm, then change the colour of the smart light
in my living room to red” will have to be re-defined each time the
user wants to perform an action based on their heart rate value.
With the solution proposed by Trullemans et al. [8], the If side can
also lead to the definition of a reusable situation rather than simply
triggering an action. For example, the condition “If my heart rate is
higher than 100 bpm” might lead to the situation “My heart rate is
high”. This situation can then be used on the If side to create other
rules, without the need to re-define the threshold for a high heart
rate. This functionality, which is missing in other state-of-the-art
platforms, can serve as a building block for enabling cross-platform
interactions. A user having defined what a high heart rate is on
platform A can simply rely on this definition and use the high-level
abstraction (“If my heart rate is high”) on a different platform B.

Corno et al. also stated that 295’156 IFTTT rules have been
automatically translated to EUPont rules. This means that rules
which were authored using another platform cannot yet be used
on the proposed system. Another limitation we wish to point out
is the fact that the rules are stored on the EUPont server. It is not
mentioned whether there is any possibility to transfer the rules to
a different system, thus the EUPont server retains ownership of the
created rules, as it is the case with existing popular IoT platforms.

A final limitation is the fact that with this higher level of ab-
straction, users will lose the ability to define specific environments
and/or devices where their rules should be executed. Using this
model, rules will be executed anywhere a device supporting the
required action is detected. This could lead to unpleasant scenar-
ios, such as personal rules being executed on public devices and a
notification to take some medication being displayed on a public
screen.

2 PROBLEM STATEMENT

Based on the analysis of existing work and the state-of-the art in
implicit human-computer interaction for IoT environments, we

Ekene Attoh and Beat Signer

identified the following two major problems to be addressed in our
research in order to enable interactions across IoT platforms.

2.1 Rule Ownership

As stated in Section 1, state-of-the-art task automation and IoT plat-
forms retain the ownership of the user-generated rules. This is due
to the fact that data is coupled to the platform and thus stored on
the platform. The authors in [1, 4] proposed systems which enable
users to create rules in a novel way, but both systems retain own-
ership of the rules created due to the fact that the rules are tied
to the platform. We note that with the solution in [4], the created
rules will be stored in the mobile device application, while the au-
thors in [1] make no mention on whether the rules created by their
system can be completely transferred to a different system. This
platform data ownership might thus prevent users from running
their rules across different platforms, since they are unable to move
their rules from the platform they were created on.

2.2 Rule Interoperability

The work in [3, 7] aims to tackle platform interoperability by mak-
ing IoT services discoverable and accessible to developers and busi-
nesses through a marketplace. However, this still leaves the interop-
erability of (end-)user rules an open issue. The solutions proposed
by the authors do not address the fact that a rule created by a user
on one platform and for specific devices might be completely un-
usable on a different platform and for a different set of devices.
Since platforms might have differing means for enabling users to
compose rules for their IoT devices—platform A might for instance
use a trigger-action programming paradigm to allow users declare
rules [9] while platform B uses a programming by demonstration
paradigm [4]—rules which have been created on platform A might
not be understood by platform B and vice versa. Therefore, tackling
this issue is vital to improve the user experience in IoT interac-
tions. Corno et al. [1] introduced a high-level semantic model for
10T rules but as we demonstrated in Section 1, it lacks support
for richer rule definitions such as the concept of situations intro-
duced by Trullemans et al. [8], which might improve cross-platform
interoperability.

3 METHODOLOGY

Our research is conducted by following the Design Science Re-
search Methodology (DSRM) for information systems research by
Peffers et al. [5]. This methodology fits well with our research as it
was designed for the creation of theoretical artefacts such as models
and algorithms as well as more concrete outcomes including soft-
ware frameworks and user interfaces. As our research covers end-
user software, (end-)user interfaces as well as information storage,
management and visualisation, the DSRM’s focus on information
systems research makes it a suitable methodology. The DSRM pro-
cess model builds on prior research in design science and consists
of six steps, including the problem identification and motivation, the
definition of objectives for a solution, the design and development, the
demonstrating, the evaluation, and the communication.

As described earlier, we have already identified the main prob-
lems of rule ownership and rule interoperability, and motivated our
planned research in these areas. Our objective is to tackle these

A Middleware for Implicit HCI Across loT Platforms

loT

Smart Home
service

solid-pod-read-write-access

| @a)
(3)
Middleware -
(5a) (6a) .
solid-pod-read-write-access /,
ll ’
P
ro
P
ro
loT loT (6b) P
Smart Health Smart Health B N cy
service service K
(public) (private) R
.
solid-pod-read-write-access ~ solid-pod-read-write-access N
' ll

UbiComp-ISWC 21 Adjunct, September 21-26, 2021, Virtual, USA

Solid server

\ \ L a)
N RN Task

automation/loT

|) platform

Solid pods

solid-pod-read-write-access
(2b)

Figure 1: Cross-Platform IoT architecture

problem areas by proposing a solution that enables users to main-
tain the ownership of their rules and offers them the flexibility to
either retain their current platforms for rule authoring or use any
platform of their choice. Our proposed solution will further enable
users to have their rules executed across different platforms of their
choice to support cross-platform IoT solutions. Our design and
development step consists of creating the necessary architectural
design in order to conceptualise how such cross-platform IoT sys-
tems might be realised. Based on the proposed architecture, we
then plan to develop a proof-of-concept middleware for implicit
human-computer interaction across IoT platforms. The utility and
value of our conceptual architecture will be demonstrated through
concrete use cases and the usefulness of the proof-of-concept mid-
dleware solution will be demonstrated in a similar way. We further
plan to evaluate our conceptual architecture and proof-of-concept
middleware implementation by conducting a user study in order to
gain feedback on its usefulness and get further insights about its
limitations and potential future improvements. Last but not least,
we plan to publish our findings and contributions at international
peer-reviewed conferences and journals.

4 PROPOSED SOLUTION

Our proposed architecture, which we also use to introduce the core
components that we propose to tackle the problems identified in
Section 2, is illustrated in Figure 1. We explain the components with
the help of a hypothetical user scenario of a user making use of a
smart health IoT service. They expect that they will be reminded to
take their medication when their heart rate is above 100 bpm and
have the following requirements for a solution:

o The user wants to have exclusive access to their rules con-
taining sensitive information about their health

o The user wants to be reminded by a light bulb flashing red
in their living room

e The user is expected to go on holiday but still expects the
same kind of reminder (light bulb flashing red) when it is
necessary to take their medication at the holiday destination

4.1 Rule Storage

In the context of the World Wide Web, researchers have identi-
fied a similar vendor lock-in problem as we identified in Section 2.
With so-called centralised web platforms, users cannot easily move
data between platforms or switch between similar applications
that could reuse their data. The Solid project [6], which stands for
Social Linked Data, aims to provide data independence as well as
simple yet powerful data management mechanisms. With Solid,
users store their data in an online storage space called personal
online data store (pod). A pod is a web-accessible storage service
which can be deployed on servers hosted by users themselves or
by pod providers [6]. A user is able to have multiple pods from
one or different providers and they are the exclusive owner and
administrator of their pods. Applications no longer store data them-
selves but can get the data they require from Solid pods as shown
in Figure 2. The user is in control of their pod(s) and can grant or
revoke applications access to their pods.

We thus use the concept of pods as offered by Solid to separate
user-defined IoT rules and even IoT data from task automation
and IoT platforms. This separation is a first step in addressing the
vendor lock-in of state-of-the-art IoT solutions, as a user’s Solid
pod becomes the exclusive data store. As shown in Figure 1, the
user creates a rule “If my heart rate is above 100 bpm, make the smart
light bulb in my living room flash red” using their task automation
platform (1). There are then two possible flows following the rule
creation. With the first flow (2a), the user’s task automation plat-
form enables them to define rules with a high level of abstraction
such as with EUPont [1]. Note that the user has granted the task
automation platform write permission to their Solid pod such that

UbiComp-ISWC 21 Adjunct, September 21-26, 2021, Virtual, USA

o

Parking application

Solid server

Solid pod

Social Networking application

Solid pod
Meeting application

Fitness application

Figure 2: Applications making use of Solid pods

it can directly store rules in the pod. In the second flow (2b), the
user’s task automation platform enables them to define rules in
a proprietary format. In order to enable these proprietary rules
to work across different platforms, they have to pass through our
middleware component which is explained in the next section.

4.2 Middleware

A next step for tackling the problem area of rule interoperability is
the introduction of a middleware component. In order to enable
rules created by the user to work on different platforms, we pro-
pose the flow where the user’s task automation system sends the
proprietary rule to the middleware component (2b). In order to
meet the user’s requirement of having exclusive ownership and
administrative rights of their rules, we propose that the middleware
component then translates their rule to a high-level format such as
EUPont [1]. We plan to introduce the missing concepts we identified
in this high-level format, including the situations proposed in [8] as
well as regaining the possibility of specifying environments and/or
devices where certain user-defined rules should be executed.

It is assumed that the middleware component has been granted
write access to the user’s Solid pod such that it is able to store the
translated rules (3). In our example, the translated stored rule might
be “If my heart rate is high, flash a red light in my current location”.
The user can now grant read-write access to the rule in their pod to
their smart home and smart health IoT applications. There are two
possible flows for each IoT application. For the flows (4b) and (5b),
it is assumed that the IoT applications understand the high-level
rule format by default and are thus able to directly read and execute
the rules from the pod. This means that the smart health service
(public) will read the rule “If my heart rate is high, flash a red light
in my current location” from the user’s pod. In order to trigger a
flashing red light, we need a way to notify the smart home service.
We will investigate different approaches on how this could be done
but one proposal is, given that the smart home and smart health
services understand the high-level format, the smart health service
can simply trigger the lighting action in the smart home service. For

Ekene Attoh and Beat Signer

the flows (4a) and (5a), it is assumed that the IoT applications do not
understand the high-level rule format by default. We thus propose
that the middleware component translates the high-level rules back
to the proprietary format understood by the IoT applications. This
means that the smart health service (public) having read the rule
“If my heart rate is high, flash a red light in my current location”,
will forward it to the middleware for the translation back to “If
my heart rate is above 100 bpm, make the smart light bulb in my
living room flash red”. Again, in order to trigger a flashing red
light, we need a way to notify the smart home service. Since both
IoT application use different rule formats, we need to investigate
the best approach to handle this notification but one proposition is
to let the smart health application notify the middleware, which in
turn notifies the smart home application to trigger the light action.

The benefit of having the rules stored in a high-level format in
a user’s Solid pod also helps in fulfilling the user’s requirement of
being notified while on holiday. The flows described above remain
the same for the user during their holiday. The applications at the
holiday destination which have been granted access by the user
can either execute the user’s rules directly if they understand the
high-level rule format or they can send the rules to the middleware
for re-translation in order to execute them.

We also introduce the concept of a user-managed run-time envi-
ronment in order to enable end-to-end ownership of IoT rules. With
this concept, the user can opt to host an IoT application provided
by a vendor themselves as indicated in Figure 1 with the private
IoT Smart Health service and flows (6a) and (6b). This ensures that
users do not just own their rules but also the environment in which
these rules are executed.

5 CONCLUSIONS AND FUTURE WORK

We have identified two key problems in state-of-the-art IoT solu-
tions, being rule ownership and rule interoperability. We demon-
strated that with existing IoT platforms users lose the ownership of
their rules and that the rules often written in a proprietary format
are not transferable to different IoT platforms. As a step towards
cross-platform IoT interaction, we proposed a cross-platform IoT ar-
chitecture addressing the issues of rule ownership and rule inter-
operability via an IoT middleware as well as the use of Solid pods.
Our proposed architecture allows each component to be developed
independently, be decoupled from the users’ data and be replaced
at the will of the user. We are currently developing the proof-of-
concept IoT middleware component introduced in Section 4 and
expect to make various contribution in terms of a cross-platform
IoT middleware, a user-managed run-time environment for the
private execution of rules as well as a rich model for IoT rules.
We realise that our proposed solution might lead to a user’s
IoT solution being distributed across multiple IoT platforms. This
in turn increases the complexity and intelligibility of implicit inter-
actions in such a heterogeneous IoT environment. In this context,
intelligibility calls for providing insights into a system’s past and
current states [2]. Rules that are possibly created with different
tools and run on multiple platforms make it more difficult for a user
to have an overview about which rules might possibly be in conflict
with one another. We therefore also plan to further investigate
intelligibility in the particular case of cross-platform IoT solutions.

A Middleware for Implicit HCI Across loT Platforms

REFERENCES

[1] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019. A High-
level Semantic Approach to End-User Development in the Internet of Things.
International Journal of Human-Computer Studies 125 (2019), 41-54. https://doi.
0rg/10.1016/j.ijhcs.2018.12.008

[2] Timo Jakobi, Gunnar Stevens, Nico Castelli, Corinna Ogonowski, Florian Schaub,
Nils Vindice, Dave Randall, Peter Tolmie, and Volker Wulf. 2018. Evolving Needs
in IoT Control and Accountability: A Longitudinal Study on Smart Home Intelli-
gibility. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 4 (2018), 1-28. https://doi.org/10.1145/3287049

[3] Sylvain Kubler, Jérémy Robert, Ahmed Hefnawy, Kary Framling, Chantal Cherifi,
and Abdelaziz Bouras. 2017. Open IoT Ecosystem for Sporting Event Management.
IEEE Access 5 (2017), 7064-7079. https://doi.org/10.1109/ACCESS.2017.2692247

[4] Toby Jia-Jun Li, Yuanchun Li, Fanglin Chen, and Brad A Myers. 2017. Programming

IoT Devices by Demonstration Using Mobile Apps. In Proceedings of IS-EUD 2017,

International Symposium on End User Development. Springer, Eindhoven, The

Netherlands, 3-17. https://doi.org/10.1007/978-3-319-58735-6_1

Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee.

2007. A Design Science Research Methodology for Information Systems Research.

)

UbiComp-ISWC 21 Adjunct, September 21-26, 2021, Virtual, USA

Journal of Management Information Systems 24, 3 (2007), 45-77. https://doi.org/
10.2753/MIS0742-1222240302

Andrei Vlad Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola Greco,
Abdurrahman Ghanem, Dmitri Zagidulin, Ashraf Aboulnaga, and Tim Berners-
Lee. 2016. Solid: A Platform for Decentralized Social Applications Based on Linked
Data. Technical Report. MIT CSAIL & Qatar Computing Research Institute.
Sergios Soursos, Ivana Podnar Zarko, Patrick Zwickl, Ivan Gojmerac, Giuseppe
Bianchi, and Gino Carrozzo. 2016. Towards the Cross-Domain Interoperability of
IoT Platforms. In Proceedings of EuCNC 2016, European Conference on Networks
and Communications. IEEE, Athens, Greece, 398-402. https://doi.org/10.1109/
EuCNC.2016.7561070

Sandra Trullemans, Lars Van Holsbeeke, and Beat Signer. 2017. The Con-
text Modelling Toolkit: A Unified Multi-layered Context Modelling Approach.
Proceedings of the ACM on Human-Computer Interaction 1, EICS (2017), 1-16.
https://doi.org/10.1145/3095810

Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L Littman. 2014. Prac-
tical Trigger-Action Programming in the Smart Home. In Proceedings of CHI 2014,
ACM Conference on Human Factors in Computing Systems. Association for Com-
puting Machinery, Toronto, Canada, 803-812. https://doi.org/10.1145/2556288.
2557420

https://doi.org/10.1016/j.ijhcs.2018.12.008
https://doi.org/10.1016/j.ijhcs.2018.12.008
https://doi.org/10.1145/3287049
https://doi.org/10.1109/ACCESS.2017.2692247
https://doi.org/10.1007/978-3-319-58735-6_1
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1109/EuCNC.2016.7561070
https://doi.org/10.1109/EuCNC.2016.7561070
https://doi.org/10.1145/3095810
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2556288.2557420

	Abstract
	1 Introduction and Related Work
	2 Problem Statement
	2.1 Rule Ownership
	2.2 Rule Interoperability

	3 Methodology
	4 Proposed Solution
	4.1 Rule Storage
	4.2 Middleware

	5 Conclusions and Future Work
	References

