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Chaos in solitary VCSELs: Exploring the parameter
space with advanced sampling

Martin Virte, Member, IEEE, Francesco Ferranti, Senior Member, IEEE

Abstract—We explore the parameter space of the so-called
spin-flip model by advanced sampling techniques to analyze the
requirements leading to polarization chaos in solitary Vertical-
Cavity Surface-Emitting Lasers (VCSELs). We first investigate
the performances of different sampling techniques for multi-
dimensional parameter space exploration. Purely random sam-
pling and tensor-product grids require a large amount of samples
to uniformly cover the whole space, and we show that other
schemes are highly superior to this regards, hence allowing a
reduced number of samples and computation to be used to reach
the same level of insight in the system behaviour. Considering
the scarcity of the chaotic regions and their sharp boundaries,
combined with quite involved computations to identify chaotic
dynamics, the proposed approach is shown to be highly beneficial.
Here, we are able to highlight two thresholds limiting the range
of injection current for which chaos can be observed, and to link
them to a fine balance between the spin relaxation rate and the
birefringence.

Index Terms—Semiconductor Laser, VCSEL, chaos, optical
chaos, parameter space exploration, sampling schemes.

I. INTRODUCTION

NUMERICAL modelling is the keystone of system op-
timization. A good model can be used to optimize the

system parameters to reach a certain level of performances or
to find the most robust configuration for a given application.
Numerical modelling has become more and more complex,
hence requiring significant amount of computing power and
time. Simultaneously, the number of system parameters has
also seen a substantial increase, and it has now become a real
challenge to efficiently explore those highly multidimensional
parameter spaces. Using a number of linearly spaced values for
each parameter in an N-D parameter space, and then forming
the full grid by taking all possible combinations of the different
parameter values leads to a quite large number of samples: for
a system with 6 parameters, taking 10 different values for each
parameter leads to 106 samples. On the other hand, a random
sampling can be more efficient, but its intrinsic randomness
cannot guarantee that the samples will uniformly cover the
whole parameter space. To overcome this difficulty, advanced
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sampling techniques are a promising alternative combining a
good distribution of samples and a reduced number of points,
hence much less simulations and computations. Among ad-
vanced sampling methods for computer experiments, the Latin
hypercube sampling (LHS) [1] and quasi-random sequences
(also called “low discrepancy sequences”), such as Halton and
Sobol sequences, are widely used solutions [2], [3].
The issue of parameter space exploration is particularly acute
in the field of nonlinear dynamics and chaotic systems where
extremely sudden dynamical changes can appear, hence form-
ing ragged chaotic regions. Such cases are therefore the
most challenging situations which typically requires a dense
sampling grids to precisely identify the set of parameters
corresponding to chaotic dynamics. Nowadays, the compu-
tation of 2-D grids (maps) remains a standard exploration
techniques in the field [4]–[6]. As previously mentioned,
extending this grid approach to N-D parameter spaces is
very inefficient. Advanced sampling techniques can therefore
represent a significant boost of efficiency in this field. Here, as
a test-bed, we look into polarization chaos dynamics generated
by solitary laser diodes [7]. Even though an excellent quali-
tative agreement has been obtained between numerical and
experimental results, the conditions bringing up polarization
chaos in Vertical-Cavity Surface-Emitting Lasers (VCSELs)
remain quite unclear especially as it has only been observed,
so far, in peculiar structures using quantum dot as gain medium
[8] and in strained VCSELs [9]. Parameter space exploration
can therefore provide a substantial insight to determine which
parameters are the most critical and in which range chaos
is most likely to be found. To investigate the polarization
dynamics of VCSELs, we use the well-known Spin-Flip Model
(SFM) [10], [11] which takes into account the competition
between polarization modes and accurately reproduces the
chaotic dynamics that has been observed experimentally [7].
In this work, we tackle the following two aspects. We first eval-
uate the performances of different sampling schemes adapted
to generate a set of values for the parameters of the VCSEL
model. Second, we apply the best sampling scheme (best
with respect to a figure of merit called discrepancy measure)
to investigate the problem of chaotic free-running VCSELs.
We unveil essential conditions for the emergence of chaotic
dynamics, and thus validate the suggested approach based on
advanced sampling techniques. We are able to highlight two
thresholds limiting the range of injection current for which
chaos can be observed, and to link them to a fine balance
between the spin relaxation rate and the birefringence.
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TABLE I
QUADRATIC DISCREPANCY ESTIMATIONS. ALL VALUES HAVE BEEN

MULTIPLIED BY 104 TO IMPROVE THE READABILITY.

number of samples 50 100 300

Halton 6.46 2.77 0.38

Halton - scrambled 2.56 1.1 0.21

Sobol 4.58 1.65 0.19

Sobol - scrambled 2.43 1.07 0.19

LHS 2.51 1.38 0.48

Random 3.48 1.62 0.73

II. COMPARISON OF SAMPLING TECHNIQUE

In this work, we consider four different sampling
techniques: two based on quasi-random sequences using
Halton and Sobol sequences, the LHS technique and the
classical purely random sampling method with uniform
probability density function. To evaluate the performances
of each technique, we rely on visual confirmation and the
discrepancy as an objective figure of merit, i.e., a quantity used
to describe how well the samples are geometrically equally
separated (geometric uniformity) in the parameter space. There
are several mathematical definitions of discrepancy [12]–[14],
and in this paper, we chose the quadratic discrepancy as
defined in [13].

Each approach is used to generate samples in the 6-
dimensional unity hypercube [0, 1)6, since 6 parameters will
be considered in the SFM for VCSELs in Section III. The
generated samples will then be scaled to fit the required
physical range for each parameter. In the results we show
in this section, we consider samples in the 6-dimensional
unity hypercube (without rescaling) for three different sample
sizes: 50, 100 and 300 samples.
In the case of Halton and Sobol sequences, scrambling
techniques can be used to reduce correlation effects and
improve the quality of the sequences [15], [16]. Fig. 1 shows
that patterns (correlation effects) appear for both Halton and
Sobol quasi-random sequences when the sample size is small
(50 or 100 points). As shown in Fig. 1(a), the shape of the
pattern prevent a good coverage of the whole space and might
therefore be detrimental for parameter space exploration. A
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Fig. 1. Example of patterns (correlation effects) appearing in the distribution
of samples generated by a 50 samples Halton sequence. (a) shows the
correlation effect, and (b) shows the distribution after scrambling.
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Fig. 2. Example of the evolution of sample distribution for the different
sampling techniques. Each line correspond to a sampling technique: (a)
Halton - scrambled, (b) Sobol - scrambled, (c) LHS, and (d) MC, and the
corresponding sample distribution is shown for an increasing number of
samples from left to right: (1) 50, (2) 100 and (3) 300 samples.

common solution thus consists in scrambling the generated
sequences to reduce this effect. Fig. 1(b) shows the results
after scrambling. In Table I, we present the estimated
discrepancy value for the different sampling schemes and
number of samples, which confirms that scrambling has
a beneficial impact especially for smaller sample sizes.
Otherwise, the discrepancy clearly shows that quasi-random
sequences with or without scrambling outperform the other
schemes considered in this work.

Finally, we compare the sample distribution for a represen-
tative dimension pair as displayed in Fig. 2. Of course this only
gives a brief overview of the results, but it was not possible
to plot all possible combinations for each sampling methods
due to the limited amount of space available. Yet, for the
sake of completeness, we made it available in [17]. Visually,
we confirm previous observations: overall, Halton, Sobol and
LHS provide well-distributed samples, with a significantly
better distribution than a purely random approach. Although
no pattern is observed even for a small number of samples,
LHS has the significant drawback that the samples cannot be
generated incrementally, unlike Halton and Sobol techniques,
and as such requires a full re-computation to increase the
sample size. Overall, Halton and Sobol sequences appear to be
the most suitable advanced sampling techniques to generate 6-
D samples for the exploration of the VCSEL model parameter
space.
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III. SPIN-FLIP MODEL FOR VCSELS

To investigate the polarization dynamics of VCSELs, we
use the well-known SFM model [10], [11] which takes into
account the competition between polarization modes and
accurately reproduces the chaotic dynamics that has been
observed experimentally [7]. Since only the phase difference
between the two polarization modes plays a role on the
system dynamics, we use the phase-amplitude decomposition
proposed in [18]:
dR+

dt
=κ(N + n− 1)R+ − (γacos(Φ) + γpsin(Φ))R− (1)

dR−

dt
=κ(N − n− 1)R− − (γacos(Φ)− γpsin(Φ))R+ (2)

dΦ

dt
=2καn−

(
R−

R+
− R+

R−

)
γpcos(Φ)

+

(
R+

R−
+
R+

R−

)
γasin(Φ) (3)

dN

dt
=− γ

(
−µ+ (N + n)R2

+ + (N − n)R2
−
)

(4)

dn

dt
=− γsn− γ

(
(N + n)R2

+ − (N − n)R2
−
)

(5)

with R± the amplitude of the right and left circular polariza-
tions, Φ the phase difference between them, N the total carrier
population and n the carrier population difference between the
two carrier reservoirs for each circular polarization [10]. The
parameters are as follows: κ and γ are the field and carrier
decay rates respectively, γs is the spin flip relaxation rate,
α is the linewidth enhancement factor, γp and γa are the
phase and amplitude anisotropies respectively. For simplicity,
no misalignment between amplitude and phase anisotropies is
considered [19], [20].
As previously discussed, we explore the 6-D parameter space
composed of the parameters discussed above. Fixing the value
of γ in the model is equivalent to normalizing the SFM
equations in time with respect to the carrier lifetime 1/γ. We
therefore fix γ = 1ns−1 and do not consider this parameter
further in this work. The variation range for the remaining 6
parameters have been defined taking into account experimental
estimates in [21]–[23] and the references therein:

• The α-factor is typically around 3 for semiconductor
lasers. For completeness, we consider α ∈ [1, 5].

• we consider injection currents up to 10 times the laser
threshold i.e. µ ∈ [1, 10], which is, in practice, already
a very high level that might be close to the damage
threshold of the device

• The birefringence is typically of the order of a few tens of
GHz, but values beyond 100 GHz have also been reached
using strain techniques [24], [25]. To include all these
aspects, we use γp ∈ [0, 100]ns−1

• Amplitude anisotropies have typically been reported
around a few ns−1. For completeness, we consider
both positive and negative values - which changes the
steady-state that is stable at threshold [26] - and take
γa ∈ [−5, 5]ns−1

• For the spin-flip relaxation rate, values between a few
tens up to a few thousands of ns−1 have been reported.
Thus, we use here γs ∈ [50, 2000]ns−1.
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Fig. 3. Schematic of the method used to compute the Largest Lyapunov
Exponent for each set of parameters based on Wolf’s algorithm [27].

• The field decay rate is typically on the order of a few
hundreds ns−1, i.e. a photon lifetime of a few ps, and
we take here κ ∈ [200, 2000]ns−1. It should be noted
however that for long-wavelength VCSELs significantly
smaller field decay rate, of the other of tens of ns−1,
have been observed [23].

To identify whether the system exhibits chaotic dynamics or
not for a given set of parameters, we compute the Largest
Lyapunov Exponent (LLE) of the dynamics obtained for each
sample using Wolf’s algorithm [27]. The central idea here
is to simulate two identical systems using slightly different
initial conditions. Comparing the dynamical evolution of these
two systems, i.e. the convergence or divergence of the two
systems’ trajectories in the phase space, provides a direct
estimation of the LLE. It is however important to remark that
the Largest Lyapunov Exponent is a time-averaged value for
a given dynamical behaviour. The finite-time Lyapunov Ex-
ponents, i.e. Lyapunov Exponents computed on a short time-
scale, can experience large variations and therefore extremely
long simulations are required for the time-averaged value to
converge, i.e. to obtain a reliable estimation of the LLE. Hence,
in this context, it appears to be more efficient to perform
shorter simulations but average the estimated LLE over several
realizations with different initial conditions. To do so, we use
a two step process as schematically displayed in Fig. 3:

• Step 1: we use noisy simulations, including a complex
stochastic term modelling spontaneous emission noise for
the amplitude and phase for each electrical field as done
in [28], to randomly select new starting points.

• Step 2: we apply the so-called Wolf’s algorithm with
the starting points obtained at step 1. We simulate twice
the same system - with an identical set of parameters -
but in one instance we add a small random shift to the
initial condition obtained in Step 1. We then evaluate the
divergence of the two trajectories to estimate the Largest
Lyapunov Exponent.

We follow this process 80 times and take the average LLE
obtained over all realizations. This approach typically gives
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an accuracy of ±0.01ns−1 for the LLE. Nevertheless, some
sets of parameter values gave atypical non-chaotic behaviour
for which the estimated LLE was finite and clearly positive.
To avoid these false positives, we set a threshold at 5ns−1 for
the LLE instead of 0.
Finally, it should be noted that the goal of the noisy simu-
lation at Step 1 is also to dismiss cases for which chaotic
attractors coexist with a stable steady-state as described in
[28]. Although these are expected to be relatively rare, such
occurrence cannot be simply neglected. In [28], starting from
the chaotic attractor, the system typically reached the stable
steady-state within a few ns, to be compared with the 100
ns simulation horizon that we use here. If, despite the noisy
simulation, the system remain on the chaotic attractor we can
obviously conclude that the chaos is stable enough to justify
its inclusion in our analysis. At the limit, i.e. when the system
sometimes remain on the chaotic attractor and sometimes
reaches the stable steady-state, it is clear that the estimated
LLE value would be in itself meaningless. However, the co-
existence of the two dynamical behaviour would justify its
classification in both chaotic and non-chaotic groups. Either
way, these points can be expected to be outliers but would
not invalidate the interpretation of the data. Although further
refinements of our classification technique might be needed
for future more detailed analysis, the current approach seem
to be sufficient at this stage and provide significant insight as
presented below.

IV. INSIGHT ON CHAOTIC VCSEL BEHAVIOR

Using the sampled values of the parameters based on
the advanced sampling techniques previously discussed, we
compute the Largest Lyapunov Exponent (LLE) at each mul-
tidimensional sample in the parameter space and we can thus
easily identify two groups: parameter values for which chaotic
dynamic is observed and the others. In the following, consider-
ing the discrepancy figure of merit and results of the previous
section, we will use the 300 values of parameters generated
using the Sobol sequence (without additional scrambling). It
has the best geometrical distribution in the parameter space
and 14 samples have been identified as leading to chaotic
dynamics. The outcome of other sampling schemes can be
found in [17]. Because, all 6 dimensions of the parameter
space are being explored simultaneously, we obtain a general
overview of the impact of each parameter on the chaotic
behaviour. We show below that this allows us to identify two
general conditions which needs to be fulfilled in order to obtain
polarization chaos dynamics.

Obviously, the representation of the data over 6 dimensions
is a challenge, and a straigthforward way remains the so-called
scatter plots as shown in Fig. 4. The 6-D sets of parameters
values are projected on 2-D planes, and the sets for which
chaos is obtained are identified by an orange square. For
simplicity and because κ and γa show less impact on the
chaotic dynamics, only 4 out of the 15 possible 2-D plane
projections are shown. In Fig. 4, the most striking feature is
probably that no chaos is observed for γs > 500ns−1 (see
the two panels on the right side). Chaos can be more easily
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Fig. 4. 2D scatter plots of the generated parameter samples. Values leading
to chaotic behaviour are identified as orange squares, while those for which
no chaos is obtained are represented by black dots. On the horizontal axis,
we show γp on the left and γs on the right. On the vertical axis, α is at the
top while µ is at the bottom.
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Fig. 5. 2-D scatter plots with vertical axis showing µ−µx
µx

. As in Fig.
4, chaotic samples are identified as an orange square, while the others are
represented by a black dot. The blue horizontal dotted line gives the limit of
µ = µx.

observed for lower values of γs. Second, even though it could
be expected, more chaotic samples are observed for larger
values of α.

Previous reports highlighted that the scenario towards deter-
ministic polarization dynamics always follow the same steps
[11], [26]: 1) a pitchfork bifurcation destabilizes the linear
polarization stable at threshold and creates two elliptically
polarized states, 2) Hopf bifurcations destabilize these two
states, and trigger oscillations, 3) a cascade of period doubling
bifurcation pushes the system towards chaos. Determining the
injection current at which the Hopf bifurcation and following
period doubling bifurcations can be achieved using continua-
tion techniques, but doing so systematically for all 300 samples
would be quite time-consuming. Here, as a first approximation,
we use the current value at which the pitchfork bifurcation
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occurs for γa = 0, which can be calculated analytically [11]:

µx = 1 +
1

γ

γsγp
κα− γp

(6)

For γa 6= 0, the expression becomes much more complicated
[29], yet (6) remains an excellent approximation in practice.
Thus, µx would therefore be a lower bound of the region of
chaotic dynamics in terms of injection current. To confirm it,
we again use scatter plots shown in Fig. 5 but this time with
(µ − µx)/µx instead of µ. As expected, µx indeed seems
to be a lower bound for the chaotic regions as no chaotic
sample is observed for µ < µx, i.e. below the blue dotted
line. Although our 300 samples are well distributed across
the parameter space, only a fraction of these samples meets
the condition µ > µx: only 74 out of 300 samples. This
therefore suggests that only a small part of the 6D parameter
space would be of interest to generate polarization chaos.
Considering the expression of µx in (6), large values of γp
and γs will lead to higher values of the lower bound. As
a result, a balance between the two parameters are needed
to obtain chaos within a realistic range of injection currents
which is exactly what we observe: chaos appears for low
values of γs and relatively large values of γp simultaneously.
Here, it is worth reminding the reader that we only consider
currents up to 10 times the laser threshold, which is already
quite large in practice. Similarly, larger values of α and
κ will help decrease the value of µx hence favouring the
emergence of chaotic dynamics. Last, we see in the middle
panel of Fig. 5 that non chaotic samples with µ > µx mostly
appear for lower values of γp. Besides the low-value of µx,
this can also be explained by a comparatively short region
of chaotic dynamics for small birefringence values [26], but
also possibly by the coexistence of a chaotic attractor and a
steady-state as discussed in [28].

Similarly, we can try to find an upper bound of the chaotic
region with respect to the injection current. After the complex
polarization dynamics, when increasing the injection current,
the laser is expected to settle on a steady-state with a linear
polarization, orthogonal to the polarization at threshold. Typ-
ically this steady-state becomes stable via a Hopf bifurcation.
Again, the current value at which the bifurcation occurs can
be obtained analytically for γa = 0 [11]:

µy = 1− γs +
2αγp
γ

(7)

This expression is hardly valid for γa 6= 0 [11], and the
bifurcation itself is not always an upper limit for the chaotic
region as seen for γp = 4ns−1 in [26]. Nevertheless, the
corresponding scatter plots using µ − µy in the vertical
axis give an interesting output. Thus, apart from two clear
outliers, all other samples are below the µ = µy limit.
|µy| appears to be quite large compared to µ, hence the
system’s position in the planes of Fig. 6 will be mostly
determined by the value of −µy . Positive values of µy

(µ − µy < 0) seem to overall favour the emergence of
chaotic dynamics. From the analytical expression (7), we
can quickly reach the following approximated condition
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Fig. 6. 2-D scatter plots with vertical axis showing µ − µy . As in Fig.
4, chaotic samples are identified as an orange square, while the others are
represented by a black dot. The blue horizontal dotted line gives the limit of
µ = µy .

(γs − 1)γ > 2αγp that should be fulfilled to obtain µy < 0.
Interestingly this expression characterizes again the balance
between γs and γp. Of course, the existence of outliers
highlights the imperfection of this condition, but, even though
further confirmation would be required, the data at hands
suggest that this condition is in practice a good approximation.

From the perspective of VCSEL dynamics, we highlight
that chaotic dynamics is relatively rare, from a statistical
point of view with an occurrence of the order of only 5%
in the range of parameters considered here. However, we are
able to come up with a few general conditions that need to be
fulfilled in order to obtain chaos in a free-running VCSEL.
At first glance, γs seems to be the limiting parameter for
which extremely small values are required. However, going
a bit further, the injection current is in fact the parameter
which seems to be the most constrained. First, in VCSELs,
the maximal value of the injection current is limited to about
5 to 10 times the current threshold to avoid damaging the
device [30], [31]. Second, the polarization mode at threshold
needs to be unstable, i.e. µ > µx. Third, the system needs to
remain in the chaotic region for which the upper boundary
can be approximated by µ < µy . Both µx and µy are strongly
dependent on the balance between two main parameters: the
spin-flip rate γs and the birefringence γp, hence motivating
more in-depth investigation focusing on these two parameters.
Even though the spin-flip rate can be relatively large (in the
order of 1000ns−1 [23]), the possibility to efficiently tune
the birefringence, e.g. through strain techniques [24], [25],
[32], suggest that polarization chaos could potentially be
achieved in any VCSEL devices.

V. CONCLUSION

We have shown that it is possible to gain a significant and
general insight on the complex behaviour of VCSELs with a
reduced number of samples in the parameter space by using
advanced sampling schemes, and thus a reduced amount of
computing time. Here, only 300 samples has been used to
cover a 6-D parameter space. As a comparison reference,
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3 samples per dimension in a standard tensor-product grid
would already lead to 729 samples (more than twice the
number of samples considered here) and this approach would
be very unlikely to bring the same level of information.
In fact similar discrepancy values are only obtained when
millions of points are considered. On the other hand, with
a purely random sampling there are no guarantees that the
samples will indeed be uniformly distributed across the whole
parameter space. Hence, this scheme might again require
much more samples to give a sufficient coverage. Sobol and
Halton sampling schemes result to better choices to explore
the parameter space.
From the perspective of chaotic dynamics in VCSELs,
this approach allowed us to confirm that µx and µy can
be reasonably used as an approximation of the lower and
upper bound of the chaotic region in terms of injection
current. Moreover, we showed that the balance between the
birefringence and the spin-flip rate seems to be the key
to effectively achieve polarization chaos hence motivating
the use of birefringence tuning techniques to potentially
trigger the dynamics in commercial VCSELs [24], [25],
[32]. This solution has been recently demonstrated in [9]
as strain-induced polarization chaos was obtained in a
commercial VCSEL. Unfortunately, in this experimental
work, the birefringence and the spin-flip relaxation rate could
not be measured. Yet, the reported features are coherent with
the theoretical framework described here. Future work will be
focused on further enhancing the discussed parameter space
exploration methodology by adding a feature of adaptivity
in order to refine an initial sampling distribution and add
samples in an adaptive loop. This will allow focusing more
samples in the regions where chaos is most likely to appear.
Finally, we should emphasize that, independently of the
method used, sampling-based techniques can only provide
a partial overview of the system behaviour, since only a
finite number of samples is used. Thus, as it can be seen in
the supplementary information [17], the different sampling
schemes can uncover different regions of chaotic dynamics.
Our approach aims to minimize the number of samples and
maximize the insight in the system behaviour. This could
represent a significant advantage for investigations of various
complex systems, such as other types of semiconductor lasers
subject to feedback or injection [4]–[6], nonlinear fiber-based
polarization scrambler [33], fiber-lasers [34] or chaos-based
reinforcement learning systems [35].
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de Paris-Saclay, France) and the M.Sc. in Physics from Supélec and the
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