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Abstract 10 

Acrylamide formation is nowadays one of the major concerns of the potato-processing agriculture industry. We 11 

investigate the use of broadband reflection spectroscopy (400 – 1700 nm), in combination with machine learning, 12 

to optically classify raw potatoes inducing different levels of acrylamide after frying, covering concentrations 13 

between 200 ppb and 2000 ppb. Using the full spectral range, we obtain a correct classification of a dataset of 200 14 

samples and using 10-fold cross-validation, while applying Linear Discriminant Analysis and Extreme Learning 15 

Machine. To reduce the amount of data and increase processing speeds, a sequential feature selection search was 16 

performed to identify the critical wavelengths (450 nm, 488 nm, 504 nm, 783 nm, 808 nm, 1310 nm, 1319 nm 17 

and 1342 nm) that enable classification performances exceeding 92 % when applying Linear Discriminant 18 

Analysis. We therefore demonstrate a non-destructive identification of the potatoes unsuited for French fries 19 

production, enabling to increase food safety, while limiting food waste.  20 

Keywords: reflection spectroscopy, acrylamide, potato, optical sensing, linear discriminant analysis, machine 21 

learning 22 

 23 

1. Introduction 24 

Acrylamide is a 2A-classified carcinogenic chemical that forms during high-temperature processing (>120°C) of 25 

starch-rich food products, as potatoes, cereals and coffee (EFSA, 2015; Mottram et al., 2002). It forms as a side 26 
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product of the Maillard reaction, during which reducing sugars and asparagine interact and which contributes to 27 

the browning, flavor and aroma of the food products. To limit the human acrylamide exposure, the European 28 

Commission provides toolboxes raising awareness on the reduction of acrylamide in manufacturing processes and 29 

identifies benchmark acrylamide levels for a number of food categories, as French fries, crisps, breakfast cereals 30 

and coffee (European Commission, 2017). For ready-to-eat French fries an indicative limit of 500 ppb was 31 

defined. To compare the contamination level of the French fries with these recommendations, the acrylamide 32 

concentrations are nowadays determined using chemical analysis, like liquid chromatography – tandem mass 33 

spectrometry (LC-MS/MS). Despite the guidelines, high acrylamide concentrations (up to 3240 ppb) are still 34 

reported in potato-based food (Mousavi Khaneghah et al., 2020), indicating the need for continuous development 35 

of novel acrylamide sensing technologies. 36 

To increase food safety while minimizing food waste, we focus on the potato quality evaluation and acrylamide 37 

precursors concentration prior to frying. As such, the potatoes unsuited for frying can still be used for low-38 

temperature processing, like mashed potatoes and potato soup. Within industry, the quality of raw potatoes is 39 

currently mainly evaluated by underwater weight tests. However, until now, no consistent relationship between 40 

the underwater weight and acrylamide formation could be established (Brunt et al., 2010; Helgerud et al., 2012). 41 

In addition, several best practice guidelines are being applied to minimize the acrylamide formation, as for 42 

example a reduction of the frying temperature, an optimization of the storage conditions, the use of thicker fries 43 

and the application of pre-treatment techniques with chemical or natural additives (De Wilde et al., 2005; Gökmen 44 

et al., 2006; Jung et al., 2003; Medeiros et al., 2012; Morales et al., 2014; Pedreschi et al., 2007). However, as a 45 

main drawback, these methods influence the colour, taste and structure of the resulting French fries. 46 

We pursue a non-destructive optical detection of raw potatoes susceptible to an excessive acrylamide formation 47 

during frying. Specifically, we target the use of ultraviolet – visible – near-infrared (UV-VIS-NIR) reflection 48 

spectroscopy to obtain an accurate identification of the potatoes unsuited for frying, minimizing the amount of 49 

French fries containing acrylamide concentrations above 500 ppb in the food chain, without affecting the taste, 50 

structure or composition of the French fries. The composition of potatoes is already widely investigated by the 51 

use of visible and near-infrared spectroscopy (Helgerud et al., 2015; Rady et al., 2014; Subedi and Walsh, 2009). 52 

Rady et al. used the 446 – 1125 nm spectral range to sense glucose and sucrose in potato tubers. Helgerud et al. 53 

and Subedi et al. illustrated the monitoring of the dry matter content, using the 449 – 1040 nm and the 54 

750 – 950 nm spectral range respectively. In addition, all acrylamide precursors show clear absorption 55 
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characteristics, indicating optical spectroscopy as a promising detection method. Water typically has a high 56 

absorbance around 1400 – 1490 nm (Büning-Pfaue, 2003; Curcio and Petty, 1951), starch has a high absorbance 57 

around 1200 nm (Lopez et al., 2013; Nawrocka and Lamorska, 2013), reducing sugars have a high absorbance 58 

around 800 – 1000 nm and 2100 – 2500 nm (Ozaki et al., 2007; Rady et al., 2014), while asparagine shows a 59 

higher absorbance around 200 – 230 nm and 3000 – 4000 nm (National Institute of Standards and Technology, 60 

2020). Despite these known spectra, connecting the absorption characteristics of the raw potatoes to the 61 

acrylamide formation after frying remains a challenging research question. In general, potatoes with slightly 62 

different compositions only show minor differences in their spectral characteristics, often hidden by the natural 63 

variation and harvest-dependent influences (soil, temperature, irrigation). In a preceding study, we presented the 64 

use of spatially resolved spectroscopy to identify potatoes giving rise to an excess of acrylamide, indicating a 65 

promising identification based on the separate measurement of NIR specular reflected and scattered light signals 66 

(Smeesters et al., 2017). Using this detection methodology, a clear separation could be obtained between the 67 

suitable and unsuitable potatoes for frying. However, this measurement configuration requires a high-power 68 

supercontinuum light source and a sensitive detector to capture the weak scattered light signals, imposing strict 69 

requirements for its industrial integration.  70 

We propose an alternative approach to non-destructively identify raw potatoes that induce high acrylamide 71 

formation during frying, based on UV-VIS-NIR reflection spectroscopy in combination with machine learning, 72 

enabling to obtain a precise classification while limiting food waste and offering an easier integration in an 73 

industrial configuration. We demonstrate this approach by successfully classifying five different potato batches 74 

which led to different acrylamide concentrations after frying (200 ppb, 240 ppb, 640 ppb, 890 ppb, 2000 ppb). In 75 

general, spectroscopic data are traditionally processed using multivariate methods (Adedipe et al., 2016; Ayvaz 76 

et al., 2013; Pedreschi et al., 2010; Segtnan et al., 2006) such as Principal Component Analysis (PCA) and Partial 77 

Least Squares (PLS). More recently, an increasing interest is given to the application of non-linear machine 78 

learning techniques for the evaluation of food products, as for chicken meat evaluation (Barbon et al., 2018), 79 

peach variety detection (Rong et al., 2020) and the pectin content determination in orange juice (Bizzani et al., 80 

2020). In this work, we investigate whether machine learning algorithms can improve the acrylamide monitoring 81 

and classification performance. Insight is given in the considered potato batches, the reflection spectroscopy 82 

measurement setup and data processing methodology (Section 2). First, the full UV-VIS-NIR reflection spectrum 83 

is considered during the processing of the data. Second, in view of data reduction and to obtain higher processing 84 

speeds, a processing algorithm based on a limited number of wavelengths is used, for which the most significant 85 
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wavelengths were defined using a sequential feature selection. In both cases, outstanding classification 86 

performances are obtained (Section 3), indicating a successful sensing of raw potatoes giving rise to an excessive 87 

acrylamide formation during frying.  88 

 89 

2. Materials and methods 90 

To accurately study the optical differences between raw potatoes giving rise to low (<500 ppb) and high 91 

(≥500 ppb) acrylamide concentrations during frying, the availability of reliable samples and the development of 92 

a sensitive measurement methodology are of major importance. In this section, we first give an overview of the 93 

investigated potato batches, after which we explain the operation of our developed reflection spectroscopic 94 

measurement configuration. Finally, the chemometrics and machine learning steps are described that are 95 

considered during the post-processing of the spectroscopic data.  96 

 97 

2.1 Sample preparation 98 

We investigate raw potatoes of the subtype Bintje (Solanum tuberosum L.), typically used for French fries 99 

production. To obtain reliable potato samples with a different acrylamide formation during frying, while ensuring 100 

an efficient and repeatable measurement procedure, we generated our own samples using optimized storage 101 

procedures. The potato samples inducing low acrylamide formation (samples A and B) were obtained by 102 

controlled storage of the potatoes in a farmer’s root cellar, taking into account the best known practices for long-103 

term potato storage, guaranteeing a good quality preservation of the fresh potatoes (Linsinska and Leszczynski, 104 

1989; Voss et al., 2015). Potato samples susceptible to the formation of high acrylamide contents during frying 105 

were artificially created by storage of different potato batches at 4°C, all of which originated immediately from 106 

the farmer and were obtained shortly after the harvest. According to previous research, the latter storage procedure 107 

influences the acrylamide precursors, inducing a boost in the acrylamide formation, depending on the storage time 108 

(De Wilde et al., 2005; Hebeisen et al., 2007; Matsuura-Endo et al., 2006). Samples C, D and E were obtained 109 

after 12, 22 and 28 weeks of storage, giving rise to increasing acrylamide precursor concentrations. Samples A 110 

and E were originating from the same field and harvest, as well as samples B, C and D. A total of 200 potatoes 111 

were considered in this study, of which 17 in sample A, 15 in sample B, 12 in sample C, 136 in sample D and 20 112 

in sample E. No potato samples from the supermarket were considered, since we target to apply our sensing 113 
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technology immediately after the harvest. The potatoes that are offered in the supermarket are already quality 114 

screened using underwater weight tests, thus giving no complete view on the natural variation of the potato 115 

samples after the harvest.  116 

The reflection spectroscopy measurements were performed on freshly cut fries, immediately after peeling and 117 

cutting. The potatoes were cut with a fry cutter, in a cuboid shape with a height and thickness of 9 mm and a 118 

length between 20 mm and 90 mm, depending on the size of the potato tuber. After performing the non-destructive 119 

spectroscopy measurements, the concentration of acrylamide precursors in the raw potatoes and the corresponding 120 

acrylamide content in the French fries were determined using chemical analysis, which were outsourced to SGS, 121 

a company specialised in testing and certification. In both the potatoes and the French fries, the fructose, glucose 122 

and asparagine concentration were measured using high-performance liquid chromatography, while the starch 123 

concentration was determined using Ewers method and the moisture concentration was measured with a 124 

dehydrator. In addition, for the French fries, the acrylamide concentrations are determined using LC-MS/MS. The 125 

French fries were obtained by frying the potatoes using a 2000 W fryer with 3.5 l natural frying oil, while 126 

following the procedure explained by De Wilde et al.. The cut potatoes were fried in a 2-stage frying process: 127 

during the first stage, the potatoes were fried for 3 minutes at 180°C, while during the second stage, they were 128 

fried for 2 minutes at 180°C. In-between both frying stages, the fries were cooled down for 10 minutes at room 129 

temperature (De Wilde et al., 2005).  130 

 131 

2.2 Reflection spectroscopy measurement setup 132 

The reflection spectra of the potatoes were measured independently of the reflection angle or surface scattering 133 

using a reflection integrating sphere (AvaSphere-30 of Avantes). The integrating sphere contains a single sample 134 

port, on which the potato can be positioned, and two fibre connectors to connect the illumination light source and 135 

the detection optical spectrum analyser (Figure 1). For the illumination of the sample, we use a combination of 136 

deuterium and halogen pigtailed light sources, emitting light from 200 nm to 2500 nm, enabling to study the UV, 137 

visible and NIR spectral region. To direct the illumination light bundle to the integrating sphere, the end of the 138 

pigtailed source fibre is coupled into the illumination fibre (Avantes FC-UVIR600-2) via the use of an SMA-139 

terminated collimating lens, enabling a light coupling efficiency of > 90%. The illumination fibre is connected to 140 

the sample port of the integrating sphere, illuminating a surface area of 28.3 mm² under an angle of 8° (to avoid 141 
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back reflections). All reflected light of the sample is subsequently collected by the integrating sphere, which is 142 

coated with a 98 % diffuse reflective coating ensuring that all collected light enters the detection fibre (Avantes 143 

FCB-UVIR600-2) guiding the light to the spectrum analyser. The spectrum analyser consists of two different 144 

channels with linear detector arrays simultaneously measuring the UV, visible and NIR light. The first channel 145 

contains the Avantes AvaSpec3684 spectrometer, able to measure the optical spectrum between 200 nm and 146 

1100 nm with a resolution of 1.4 nm. The second channel contains the Avantes AvaSpec256 spectrometer, 147 

enabling to measure the spectrum between 1000 nm and 1700 nm, with a resolution of 4 nm.  148 

 149 

Figure 1: Reflection spectroscopy measurement configuration:  150 

(a) schematic of the measurement setup; (b) general overview of the lab setup. 151 

 152 

Prior to the reflection measurements, the reference and dark spectrum were determined. The reference spectrum, 153 

corresponding to the source spectrum, was measured after positioning a calibrated 99.9 % reflective tile 154 

(Spectralon® diffuse reflectance standard SRS-99-10) at the sample port of the integrating sphere. The dark 155 

spectrum was obtained by measuring the light intensity in case no sample is present at the sample port of the 156 

integrating sphere, measuring the illumination light that might reach the spectrum analyser without reflections on 157 

the sample. Next, the reflectance of the potato samples is calculated as the ratio of the reflected light intensity on 158 

the sample and the reference spectrum, both corrected for the dark spectrum. All measurements were performed 159 

in a dark environment, without the presence of ambient light, to maximize the dynamic range.  160 

  161 
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2.3 Chemometrics and Machine Learning  162 

The measured reflection spectra are processed using chemometrics and machine learning data processing 163 

techniques, targeting to design a multi-class classifier able to distinguish 5 classes corresponding to the 5 distinct 164 

potato batches described earlier that induce different acrylamide concentrations after frying. In a first stage, the 165 

whole reflection spectrum is used as input for the post processing. Second, a reduction of the number of 166 

wavelengths is considered, to limit the processing time and ease the implementation in an industrial setting. 167 

Particularly, the reflectivity at specific commercially available laser lines are taken into consideration.  168 

In general, different steps are followed during the processing of the spectroscopic date. First, pre-processing of 169 

the data is executed, including normalization and smoothing. Second, a multi-class classifier is trained, after which 170 

an evaluation of the classification is performed. The Statistics and Machine Learning toolbox of MATLAB® was 171 

used to process the data. 172 

 173 

2.3.1 Broadband spectral evaluation 174 

To obtain an optimal classification of the potato batches, different pre-processing and classification algorithms 175 

were studied and compared. Pre-processing of the raw spectroscopic data is crucial in obtaining satisfying 176 

classification results (Gautam et al., 2015; Gorry, 1990). Therefore, 7 classical techniques, and their combinations, 177 

were implemented and compared: (1) no pre-processing, (2) standard normal variate (SNV), (3) multiplicative 178 

scattering correction (MSC), (4) Savitsky-Golay (SG) filtering, (5) 1st derivative of SG, (6) 2nd derivative of SG 179 

and (7) feature standardization (FS). The SG filtering was applied using a 3rd order polynomial and window size 180 

of 101 points in the UV-VIS region and 11 points in the NIR region. The polynomial order and window size were 181 

carefully chosen to decrease the noise, but without affecting the underlying signal characteristics. A larger window 182 

size was considered for the UV-VIS region than for the NIR region, in correspondence with the measurement 183 

resolution. 184 

In the next step, different classifiers were trained. All available data are used as training data, without the use of 185 

an external hold-out set, while the evaluation is done using repeated cross validation. Particularly, ten stratified 186 

fold cross-validation was used to create the training and validation sets. We considered 10 of the most popular 187 

chemometric and machine learning techniques (Gautam et al., 2015; Zareef et al., 2020), being Naïve Bayes (NB), 188 



  

8 
 

Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), 189 

Extreme Learning Machine (ELM), K-Nearest Neighbours (KNN), Decision Tree (DT), Random Forest (RF), 190 

Boosted Tree (BT), Partial Least Squares (PLS) and Neural Network (NN). The LDA was trained using a 191 

regularized, pooled covariance matrix, while QDA used the pseudoinverse of the covariance matrix. The SVM 192 

used the one-vs-one approach and the radial basis function as a kernel, with the box-constraint as hyperparameter. 193 

The ELM was operated with randomly assigned weights for the hidden layer, using 50 neurons together with the 194 

rectified linear unit (ReLU) as activation function and a regularization factor of 10-2. To reduce the effect of the 195 

randomly assigned weights, an ensemble of 10 ELM classifiers was formed. The KNN used the Euclidean distance 196 

and number of neighbours as hyperparameter. The tree-based classifiers were trained using the Gini impurity, 197 

with the maximum number of splits and learning rate as hyperparameter for the DT and BT respectively. The RF 198 

and BT used 100 trees with 15 and 5 maximum splits each. The PLS classifier used binary encoding for the 199 

different classes and the number of principal components as hyperparameter. The NN analysis was executed using 200 

100 neurons in the hidden layer and a sigmoid as activation function. A grid search was used to find the optimal 201 

hyperparameters of the classifiers. 202 

Finally, evaluation was performed using 10-fold cross validation, in combination with a receiver operating 203 

characteristics (ROC) curve metric (Brownlee, 2014). More precisely, an extension of the ROC used in binary 204 

problems was used as metric, based on the misclassification rates (MCR) of each class. A ROC value equal to 205 

zero is targeted, meaning that all samples are correctly labelled, thus corresponding to an accuracy of 100 %.  206 

𝑅𝑂𝐶 =  √∑ (𝑀𝐶𝑅𝑘
5
𝑘=1 ) 2          (1) 207 

 With 𝑀𝐶𝑅𝑘 = 1 −
𝐶𝑀(𝑘,𝑘)

∑ 𝐶𝑀(𝑘,𝑖)5
𝑖=1

            (2) 208 

and CM the 5x5 confusion matrix, of which each row represents the actual class and each 209 

column the predicted class, and the numbers in the matrix correspond with the classification 210 

rate. In case all samples are correctly classified, this corresponds to a diagonal matrix.  211 

  212 
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2.3.2 Selected wavelengths evaluation 213 

After investigation of the performances using all data available and to increase the computation speed, we focused 214 

on data reduction techniques, enabling to obtain an as good as possible classification performance when only 215 

considering a limited number of features; that is, here, a limited number of wavelengths of the reflectance 216 

measurement. In this work, the classification is optimized when limiting the total number of wavelengths to 8 217 

commercially available laserlines, to enable the potential integration into industrial optical sorting machines. 218 

In a first step, the original broadband spectral data matrix (200 x 605) is downscaled to 200 x 18 by only 219 

considering 18 common commercially available laser wavelengths, being: 405 nm, 450 nm, 488 nm, 505 nm, 220 

520 nm, 532 nm, 633 nm, 660 nm, 783 nm, 808 nm, 830 nm, 850 nm, 1030 nm, 1064 nm, 1310 nm, 1319 nm, 221 

1342 nm and 1550 nm (Integrated Optics, 2020). Furthermore, to obtain a stable detection criterion, eliminating 222 

the influence of environmental changes that might be present in an industrial setting, e.g. variable object distance 223 

and laser power variations, the reflectance ratios will be used instead of the raw values. This results in 306 possible 224 

ratios, giving rise to a modified 200 x 306 data matrix. No other pre-processing or data transformation is applied.  225 

As a second step, the feature selection is applied, targeting to reduce the number of wavelengths from 18 to 8, 226 

while determining the most important reflectivity ratios. Since the feature selection only needs to be executed 227 

once and the best performance was targeted, the greedy sequential forward selection (SFS) search was used, which 228 

is a very strong, but time consuming wrapper technique (Aha and Bankert, 1996). The idea is to start by selecting 229 

each feature individually, train for each of them a classifier and evaluate its performance using cross-validation. 230 

The feature that maximizes the performance criterion is retained. In the next step, all possible pairs comprising 231 

the first retained feature and one other feature are selected, used for training, and evaluated. The best pair is now 232 

retained, all triplets are formed, and so on. This continues until the performance does not increase anymore, or a 233 

maximum number of features is reached. If we would not work with the reflectance ratios, the SFS algorithm can 234 

be easily used to sequentially select the best 8 wavelengths, since a single feature then corresponds to a single 235 

wavelength. In our case, however, selecting a feature means selecting a ratio of wavelengths. The SFS algorithm 236 

was therefore adapted to allow the sequential selection of the best wavelengths, while using features consisting of 237 

ratios of wavelengths. The functionality of SFS that enables to specify both a set of wavelengths that always must 238 

be included, as well as a set of wavelengths that must be excluded from the search, was used. The first iteration 239 

searches the best wavelength ratio by including all wavelengths. The second iteration searches the best ratios by 240 

including the previously selected wavelengths, and by excluding certain wavelengths such that the total number 241 
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of wavelengths is increased by exactly one. Iterations three to eight search first the best ratios by including the 242 

selected wavelengths of the previous iteration, and which increases the total number of wavelengths by exactly 243 

one. Second, it searches the best ratios by including the selected wavelengths of 2 iterations ago, and which 244 

increases the total number of wavelengths by exactly 2. Finally, the performance of the latter two calculations are 245 

compared and the set of features that give the best performance are retained. At the end of each iteration, additional 246 

ratios that do not increase the total number of wavelengths are also added, but only if they further improved the 247 

performance. 248 

As a third step, the classifiers are trained, considering NB, LDA, QDA, SVM, ELM, KNN, PLS and NN. 249 

Subsequently, as in the broadband setting, the different classifiers are evaluated using 10-fold cross validation and 250 

the MCRs of each class are again combined in the single ROC metric. To obtain insight in the confidence of the 251 

developed classifiers, the variance was calculated by considering a 10 times repetition of the 10-fold cross-252 

validation. 253 

 254 

3. Results and discussion 255 

We aim at linking the reflection spectroscopic data of the raw potatoes to the measured acrylamide formation 256 

during frying by using chemometrics and machine learning, while identifying the most optimal sensing 257 

wavelengths. First, insight is given in the chemical analysis results and the measured reflection spectra. Then, the 258 

different processing algorithms are compared, and their classification performance is evaluated, leading to the 259 

determination of the optimal sensing methodology. 260 

 261 

3.1 Chemical analysis results  262 

The chemical analysis of the raw potatoes and French fries gives insight in the acrylamide precursors content, and 263 

their resulting acrylamide formation after frying (Table 1). The optimally stored potatoes, sample A and B, show 264 

only low acrylamide formation during frying, below the European guidelines (European Commission, 2017). The 265 

fridge-stored potatoes, sample C, D and E, show an excessive acrylamide formation between 640 ppb and 266 

2000 ppb. Considering the acrylamide precursors, no accurate conclusions can be drawn when considering each 267 

precursor individually. Comparing the acrylamide precursor concentrations before and after frying, a decreasing 268 
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moisture and increasing asparagine concentration can be observed for all samples. Considering the reducing 269 

sugars, a decreasing percentage is observed for sample A and B, and an increasing percentage for sample C, D 270 

and E. The determination of a correlation between the precursor concentrations and the formed acrylamide 271 

concentration is, however, hampered by the complexity of the Maillard reaction and the large variability between 272 

potato tubers. The acrylamide formation is a complex process that can follow different paths (Parker et al., 2012). 273 

This is also reflected in the chemical analysis, when comparing the precursor concentrations of the raw potatoes. 274 

Sample C and D show a comparable asparagine concentration, but sample D shows a higher acrylamide 275 

concentration due to its higher reducing sugar content. In contrast, sample E shows a high asparagine content in 276 

combination with a lower reducing sugar concentration. Consequently, only small differences in acrylamide 277 

precursors concentrations lead to extensive differences in acrylamide formation, indicating the need for a sensitive 278 

and accurate potato quality evaluation tool.  279 

Table 1: Substituents concentrations of the analysed raw potatoes and French fries. 280 

 281 

 282 

3.2 Reflection spectra 283 

The measured reflection spectra of the raw potato batches, giving rise to different acrylamide levels after frying, 284 

show in general similar absorption bands (Figure 2). A first absorption dip can be identified within the 400 – 285 

525 nm wavelength range, induced by a combination of different potato constituents, including lutein, a pigment 286 

showing a strong absorbance between 440 – 480 nm, and riboflavin, a vitamin exhibiting a large absorbance 287 

between 400 – 500 nm (Gross, 1991; Krinsky, 2002; Orlowska et al., 2013). To date, only preliminary 288 

interpretations of the relationship between the 400 – 600 nm wavelength region, the internal potato composition 289 

and the acrylamide formation were presented (Segtnan et al., 2006; Singh, 2005). Singh presented similar optical 290 

spectra and stated that the 400 – 699 nm wavelength range can be used for the quality determination of potatoes, 291 
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allowing to differentiate between shrivelled and non-shrivelled potatoes. Segtnan et al. observed that the 292 

400 – 600 nm wavelength range might be related to the acrylamide concentration in potato crisps. The NIR 293 

wavelength range, on the other hand, indicates the typical absorbance of reducing sugars, starch and water at 294 

980 nm, 1220 nm and 1440 nm respectively, all of which are known as acrylamide precursors influencing the 295 

Maillard reaction.  296 

Based on a visual interpretation of the potato spectra, no clear contrast between the potato batches can be deduced. 297 

Although some interesting spectral features can be identified, as the variation of the local maxima between 450 nm 298 

and 488 nm, no consistent change can be identified when taking the acrylamide generation into account. For 299 

example, in this wavelength range, the reflectance of the samples inducing high acrylamide contents are 300 

encapsulated by the spectra of the good potato samples, sample A and B. Within the 525 – 1700 nm range, the 301 

mean spectra of the potato samples inducing the lowest (200 ppb) and highest acrylamide content (2000 ppb) are 302 

quasi perfectly coinciding. As indicated by the chemical analysis, a direct interpretation is hampered by the 303 

variability of the acrylamide precursors and the complexity of the Maillard reaction. Therefore, there is a clear 304 

need for a robust classification algorithm retrieving the minor spectral variation between the sample batches, while 305 

dismissing the large natural variation and harvest-dependent influences. 306 

 307 

Figure 2: Normalized mean reflection spectra of the raw potatoes according to their acrylamide level after frying. The raw 308 

potatoes inducing low acrylamide content during frying (sample A, B) are indicated by dashed lines. The spectra of the raw 309 

potatoes inducing high acrylamide contents (sample C, D, E) are completely entangled with the spectra of the good ones. 310 

 311 

 312 
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3.3 Classification based on broadband spectral evaluation 313 

The processing of broadband spectral data is often performed using PCA. With this analysis technique, a clear 314 

separation between the outer product batches, the raw potatoes inducing 200 – 240 ppb and 2000 ppb, can be 315 

observed (Figure 3). The raw potatoes inducing 890 ppb acrylamide show a minor overlap with the healthy 316 

batches, while the potatoes inducing 640 ppb completely coincide with the healthy samples hampering a correct 317 

classification. Consequently, the obtained classification is insufficient, motivating the need for more advanced 318 

data processing.  319 

 320 

Figure 3: PCA performed on raw potato spectra indicating a clear separation between batch A-B and E, but an insufficient 321 

classification of samples C and D: (a) PC2 as function of PC1; (b) PC3 as function of PC2. 322 

 323 

As explained in section 2.3.1, several chemometric and machine learning classifiers were trained, after application 324 

of different pre-processing techniques. Ten-fold cross-validation and the ROC metric were used to evaluate the 325 

performance of the classifiers. In general, a satisfying performance is obtained, indicating different possibilities 326 

to obtain a perfect classification on the validation sets (Figure 4). Best results were obtained using the LDA 327 

classifier, while the ELM, PLS and NN classifiers also indicated satisfying performances. The best performing 328 

PLS algorithm made use of 11 principal components. Considering the raw data, perfect classification can be 329 

obtained using the LDA and ELM classifiers. Even though the ELM classifier did not overfit (overfitting only 330 

occurs for >150 neurons, while we use 50 neurons), we would recommend using the simpler and linear LDA 331 

classifier in practice. In contrast, the QDA was generally the worst performing classifier. This is because the 332 

covariance matrix is singular when using all features, since pseudo-inverse had to be used in the algorithm, which 333 

is not a satisfying approximation of the inverse when the number of features is significantly larger than the number 334 

of measurements. Evaluating the influence of the pre-processing techniques on the general performance, for each 335 

of the classifiers, the use of SNV and MSC generally led to the most satisfying results. The performance of the 336 
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NB classifiers is the most susceptible to the applied pre-processing technique, while the LDA barely indicates any 337 

influence of the pre-processing. The superior performance of LDA originates from the fact that the features in 338 

every class approximately follow a multivariate normal distribution, each of them with a different mean but with 339 

a similar covariance. 340 

 341 

Figure 4: Classification performance evaluation of the validation sets using the ROC metric, when considering the 342 

broadband spectra. Each row corresponds to a classification algorithm, while each column represents a pre-processing 343 

technique. Optimal classification is obtained for ROC values equal to zero (indicated in bold), indicating LDA as the best 344 

classifier. 345 

 346 

3.4 Classification based on selected wavelengths evaluation 347 

In the next step, the classification was re-evaluated when limiting the number of wavelengths to 8, by application 348 

of our above described SFS wrapper method. This selection algorithm indicated 450/783 nm, 488/505 nm, 349 

488/808 nm, 504/488 nm, 504/783 nm, 504/1319 nm, 783/450 nm, 783/808 nm, 808/450 nm, 808/783 nm, 350 

1310/450 nm, 1310/505 nm, 1319/1342 nm and 1342/808 nm as key ratios. Consequently, this also implies that 351 

450 nm, 488 nm, 504 nm, 783 nm, 808 nm, 1310 nm, 1319 nm and 1342 nm can be considered as the 8 most 352 

significant wavelengths. Looking back to the reflection spectra (Figure 2), these wavelengths also coincide with 353 

the main spectral characteristics that are linked to the acrylamide formation. Next, the reflectance ratios were 354 

considered as input for the classifiers, without any further pre-processing. 355 
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Comparing the ROC metric of the different classifiers, optimal performance was obtained using LDA (Figure 5), 356 

indicating that the ratio of reflectances can be sufficiently well approximated by a multivariate Gaussian 357 

distribution, with the same covariance for the different classes. The NN classifier showed the second-best 358 

performance, while the KNN classifier showed the worst performance. 359 

Considering the LDA classification, the classification rates are presented in Table 2. Since the sample size did not 360 

allow for a reliable external validation and to verify if these results give a quasi-unbiased estimate of the complete 361 

model building procedure, nested cross-validation was also applied for this final model. In this technique, both 362 

the selection of the hyperparameters (none in this case of LDA) and the selection of the features (using the 363 

modified SFS) is done inside the cross-validation procedure. The inner and outer loop consisted of 5 and 10 folds 364 

respectively. The results of the nested cross-validation were very similar (within a few percent) to the results of 365 

the standard cross-validation, showing that little bias is present. This is as expected, since the SFS procedure 366 

already includes evaluation using cross-validation.   367 

In general, a satisfying classification is obtained, indicating classification performances exceeding 92%. Sample 368 

A and E, with the lowest and highest acrylamide concentrations respectively, were perfectly classified. Sample C, 369 

inducing 640 ppb acrylamide during frying, shows the highest rate of misclassification. These misclassified 370 

samples, however, ended up in the 890 ppb class, which is a safe misclassification from a food safety point of 371 

view. This was also observed for the other samples, where the misclassified potatoes were also generally identified 372 

as having a higher acrylamide content. Only 1.5% of the samples was classified as being a good potato, while 373 

they induce excessive acrylamide formation. As far as we know, this is significantly better than what can be 374 

achieved using the current potato quality evaluation tools. Furthermore, the misclassifications might originate 375 

from the discrepancy between the chemical analysis, which measure the mean contamination level of a batch, and 376 

the optical measurements that measure the local contamination on the product. Locally, the samples might show 377 

lower or higher contamination levels, resulting in a deviating classification. 378 

  379 
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 380 

Figure 5: Classifier performance evaluation using the ROC metric, when considering 8 wavelengths. 381 

 The LDA algorithm yields the best performance. 382 

 383 

Table 2: Mean confusion matrix presenting the classification when applying LDA, when considering 10 different repeated 384 

10-fold cross-validation runs. The error is a 95% confidence interval calculated using the standard error of the mean. 385 

 386 

 387 

4. Conclusion 388 

We demonstrated the use of reflection spectroscopy (400 – 1700 nm) combined with machine learning as a 389 

successful optical detection technique for the identification of raw potatoes giving rise to an excessive acrylamide 390 

formation during frying. A clear classification between potato batches giving rise to low (<500 ppb) and high 391 

(≥500 ppb) acrylamide concentrations during frying and complying with the European regulations was obtained. 392 

Considering the broadband reflection spectrum, an optimal classification could be obtained using Linear 393 

Discriminant Analysis or Extreme Learning Machine, without any data pre-processing and using cross-validation. 394 

Next, the machine learning processing was performed taking the constraints regarding the practical 395 

implementation into account. First, the use of a machine learning based feature selection algorithm was 396 

demonstrated to identify the most relevant wavelengths, enabling data reduction while easing the industrial 397 

integration. The eight most relevant wavelengths were identified, being 450 nm, 488 nm, 504 nm, 783 nm, 398 

808 nm, 1310 nm, 1319 nm and 1342 nm. The reflectance values at these wavelengths contain the combined effect 399 

of the different acrylamide precursors, resulting in a harvest-independent algorithm coping with the large natural 400 
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variation in the potato batches. When only considering the reflectance values at these commercially available 401 

wavelengths, a classification performance exceeding 92 % could be obtained using Linear Discriminant Analysis. 402 

This implies that when considering an unknown raw potato, our machine learning processing enables to 403 

successfully estimate the acrylamide formation during frying based on the reflection spectroscopic properties of 404 

the raw sample. Only 1.5% of the potatoes inducing high acrylamide contents during frying was wrongfully 405 

identified as a good quality potato. In addition, and in contrast to the colour evaluation of the French fries, our 406 

novel method only requires a non-destructive food evaluation, enabling that the unsuited potatoes for frying can 407 

still be used for low-temperature processing that does not suffer from the Maillard reaction, thus limiting food 408 

waste. As a result, we believe that this research paves the way to a non-destructive identification of potatoes 409 

unsuited for French fries production, without affecting their taste, structure, colour or composition.  410 
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