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▪ Detailed calculations of the effective heat conductivity in packed beds were made 

▪ Silica cores contribute less than previously assumed to the effective conductivity 

▪ Even high conductivity cores can only be expected to have a minimal effect 

▪ A physically more sound alternative for the Zarichnyak-model is proposed 

▪ Two conceptual other strategies to enhance the effective conductivity are discussed 
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Abstract  12 

We report on a numerical study of the thermal conductivity of core-shell particle packed bed 13 

columns. Covering a variety of packing structures and a broad range of mobile phase and porous 14 

zone conductivities, it was in all cases found that switching to particles with a highly conducting 15 

core (e.g., with a gold or copper core instead of a silica core) would produce a much smaller 16 

increase of the effective heat conductivity of the bed (keff) than previously expected in literature. 17 

We found maximal increases on the order of some 20-70%, which is much lower than the 18 

potential increases up to 2000% assumed in literature. The overestimation in literature could be 19 

attributed to the fact that this literature was based on an incorrect extrapolation of the 20 

Zarichnyak-model which was the heat conductivity model predominantly used up till now. On the 21 

other hand, the computed relationships between keff and the core conductivity obtained in the 22 

present study are in good agreement with an analytical solution derived from the effective 23 

medium theory, a theory which is physically much more relevant for the case at hand than the 24 

Zarichnyak-model. The results also show that the observed increase in effective bed conductivity 25 

between fully porous and core-shell particle beds frequently observed in literature is not only 26 

due to the presence of the core, but that differences in the shell layer conductivity can play an 27 

equally important role. In addition, it could also be demonstrated that, if ways could be found to 28 

increase the conductivity of the shell layer, this would produce a much stronger increase of the 29 

overall bed conductivity than will ever be possible by increasing the conductivity of the cores. 30 

 31 

Keywords: Thermal conductivity; Computational Fluid Dynamics; Core-shell particles; Effective 32 

Medium Theory  33 
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1. Introduction  34 

Ever since the emergence of liquid chromatography, an evolution towards the use of smaller 35 

sized particles exists. Nowadays, (U)HPLC columns packed with sub 2 µm particles are being used 36 

in routine separations. These smaller particles induce higher backpressures, which lead to 37 

increased frictional heating. In this evolution, frictional heating poses an important problem, as 38 

it is one of the reasons preventing a further increase of the operating pressures that can be used 39 

in UHPLC. For example, for an operating pressure of 2500 bar, a temperature increase up to 54°C 40 

(water) or 85°C (methanol) is expected for a perfectly insulated column. Although this will in 41 

practice be lower due to heat losses from the column to the surrounding air in the thermostatted 42 

column compartment, temperature increases up to 56°C on a 10 cm long column (2.1 mm ID) 43 

have recently been measured when using methanol as a mobile phase at an operating pressure 44 

of 2600 bar [1]. For such large temperature increases, it is clear that near the end of the column, 45 

retention, and thus separation, will disappear [2]. Any attempt to remove the heat from the 46 

column will however cause a radial variation of the temperature in the particle bed, which in turn 47 

causes a radial variation of both viscosity and retention factor. As a result, the main velocity 48 

profile will no longer be plug flow-like but will be warped and parabolic-like, causing a very strong 49 

extra band broadening which can even lead to peak splitting [3]. 50 

Although coupled columns with intermediate cooling provide a potential solution [4], there is still 51 

a lot of interest in developing solutions for a more efficient heat removal in single column 52 

systems. One frequently cited solution is based on the concept of core-shell particles. Whereas 53 

the core does not contribute anything to the separation, it has been suggested to use this zone 54 

to increase the overall heat conductivity of the bed by replacing the conventional silica core by a 55 

core of a material with a much higher conductivity. Whereas silica typically has a heat 56 

conductivity of 1.38 W/(m·K) [5], materials such as gold and copper have a much higher 57 

conductivity (resp. 315 and 398 W/(m·K)) at room temperature [6].  58 

As expressed by Fourrier’s heat transfer law, the thermal conductivity (k) of a medium relates the 59 

flux of heat (𝑞⃗ [W/m²]) to the spatial gradient of the temperature (∇𝑇):  60 

     𝑞⃗ = 𝑘∇𝑇      (1) 61 

The relevant gradient for the removal of frictional heat in a chromatographic column is the radial 62 

gradient, because this is the one leading to the formation of a radial trans-column velocity 63 

gradient [7], in turn leading to an additional contribution to band broadening [8-10].  64 

Although a few studies exist where attempts were made to assess the importance of radial heat 65 

transfer in contemporary UHPLC columns [9,11,12], the present study aims at investigating the 66 

problem at the microscopic level, using numerical methods and establishing analytical 67 

expressions for the effective heat conductivity of the bed based on the detailed geometry of the 68 

particles and the packing. 69 
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As a physical validation of our numerical results, they have been compared with the effective 70 

conductivity predicted by the effective medium theory [13,14]. This theory has already proven to 71 

be of great use to predict the effective diffusion in packed bed media [15-19]. 72 

2. Numerical methods  73 

2.1. Geometry  74 

Fig. 1 gives an overview of all considered packed bed geometries. The three first ones (Figs. 1a-75 

c) represent three possible ordered sphere packings: the face centered cubic packing (fcc), the 76 

body centered cubic packing (bcc) and the simple cubic packing (sc). By mirroring the cubic cell 77 

in the figure over its six outer surfaces, an infinitely wide fcc, bcc or sc sphere packing is obtained. 78 

In each of the three cases, the geometries were attributed an external porosity (e) of 0.40. An 79 

extra unit cell representing an fcc packing with porosity 0.24 (resulting in contacting particles, 80 

see detailed description further on) was considered as well (Fig. 1d). To investigate one of the 81 

hypotheses made in Section 3.3, a variant of the sc packing (also with e=0.40) was constructed 82 

by connecting the core of each particle with the cores of its six closest neighboring particles using 83 

a cylindrical connection bridge (radius rb=1.61x10-7 m) having the same properties as the core 84 

(Fig. 1e). A version with a smaller cylinder radius (rb=1.15x10-7 m) was used as well. 85 

Besides these ordered packings, a random packing was considered as well (Fig. 1f). For this 86 

purpose a random packing, already used in earlier work on mass diffusion [18], was reused in this 87 

study. The packing was generated with a numerical packing simulator (Macropac, Intelligensys) 88 

using a dynamic drop and roll algorithm to fill a container of square section with spheres of 89 

constant diameter. Because the first and last particle layers pack differently, these layers were 90 

discarded by only considering the middle section of the container, resulting in a cube packed with 91 

73 spheres and an external porosity of 0.39. To avoid wall effects on the 4 sidewalls (besides the 92 

top and bottom), periodic sidewalls were used during packing.  93 

To avoid numerical problems with singular contact points in the closest fcc packing case in Fig. 94 

1d, the distance between neighboring particles was shrunk by 1%, thus creating a slight overlap 95 

and resulting in an actual external porosity of 0.24 and a contacting area between the spheres of 96 

3% of the cross sectional area of an individual particle. It should be remarked that in a real column 97 

particles probably also make contact over a finite area rather than only in a singular point. The 98 

actual value of the contact surface is to the best of our knowledge not known. Extra information 99 

on this procedure can be found in the Supplementary Material. For the random packing a similar 100 

procedure was used, leading to maximal contact areas of 7.5% of the cross-sectional area of an 101 

individual particle. In this case, smaller contact areas were present as well, originating from 102 

particles that were not yet, but almost in contact before the procedure. In case of the sc packing 103 

(e=0.40) shown in Fig. 1c, particles overlap automatically and no shrinkage was applied (contact 104 
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surface is 10% of the particles’ cross sectional area). Note that for this packing geometry the 105 

contact areas are located at the side walls of the cubic cell. 106 

All packings studied contained uniformly sized particles with a diameter (dp) of 2.00 µm and a 107 

core of 1.26 µm, corresponding a core to particle ratio  of 0.63. The resulting unit cell sizes are 108 

given in Fig. 1. 109 

2.2. Computational mesh 110 

The investigated geometries were meshed with Ansys® Meshing, version 17.1 from Ansys, Inc. In 111 

case of the ordered packings, the mesh cell sizes were chosen such that each eighth of a particle 112 

contained at least 225.000 tetrahedral cells. Cell sizing was similar in the fluid zones. At the 113 

interfaces (core/shell and shell/mobile zone) 3 thin layers of triangular prism cells (inflation 114 

layers) and a sizing function was used to ensure smaller cells near these regions as here the 115 

steepest temperature gradients were expected. The sizing of the mesh cells was such that 116 

quadrupling the number of cells had an impact of less than 0.1% on the measured effective 117 

conductivity coefficient. The random packing contained 3.2x106 tetrahedral cells, resulting in 118 

2.4x103 cells per particle. Cells sizes were smallest near the interfaces. 119 

As a grid check, the sc packing was meshed with the same settings as the random packing (also 120 

yielding 2.4x103 cells per particle) and used with some typical material conductivities, resulting 121 

in a maximal error on the effective conductivity of 1.2%. This is a good measure for the accuracy 122 

of the effective thermal conductivities determined for the random packing. 123 

2.3. Boundary conditions 124 

Velocity was zero throughout the entire domain. At velocities typically employed in HPLC 125 

separations, fluid motion has no influence on the effective conductivity [20]. The top and bottom 126 

were assigned a temperature of 400 K and 300 K respectively. A symmetry boundary condition 127 

(
𝑑𝑇

𝑑𝑛
= 0) was applied at the four other outer surfaces for the ordered packings, while a periodic 128 

boundary condition was applied to the side walls of the random packing.  129 

2.4. Simulation procedure 130 

The energy equation (which describes the conservation of energy principle) [21] was solved using 131 

the finite volume solvers of Ansys® Fluent, version 17.1 from Ansys, Inc. to find the steady-state 132 

temperature field (see Fig. 2 for example). Because of the steady-state and because fluid velocity 133 

was zero at any point the only relevant term left in the energy equation is the heat conduction 134 

term, yielding: 135 

 (2a) 136 

Or shorthand with ∇ ∙ for divergence, ∇ for gradient and T the temperature field: 137 

𝜕

𝜕𝑥
(

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(

𝜕𝑇

𝜕𝑧
) = 0 
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 (2b) 138 

The least squares cell-based method was used for gradient evaluation. 139 

2.5. Calculation of keff 140 

Fourier’s heat transfer law (Eq. 1) can be used to express the steady-state heat transfer (Q [W]) 141 

through an infinitely wide slab of finite thickness Δ𝑥 and consisting of a homogeneous material 142 

with thermal conductivity keff [21]: 143 

 (3) 144 

with T the temperature difference between the top and bottom surface of the slab.  145 

Taking the steady-state heat flux Q reported by the software, and using the known T (=100 K) 146 

and Δ𝑥 (see Fig. 1 for values), Eq. (3) readily allows to calculate keff.  147 

2.6. Hardware 148 

All simulations were performed on Dell Power Edge R210 RackServers each equipped with an 149 

Intel Xeon x3460 processor (clockspeed 2,8 GHz, 4 cores) and 16 Gb, 1333 MHz ram memory, 150 

running on Windows server edition 2008 R2 (64-bit). Simulations of the steady-state temperature 151 

field in the aforementioned geometries took about 100s for the random geometry (parallel on 3 152 

cores), while the ordered packings took about 40s (on a single core). 153 

 154 

2.7. Numerical validation  155 

The effective medium theory provides a number of well-established and highly accurate solutions 156 

for the effective thermal conductivity keff in a composite medium [13,22-26]. For an fcc packing 157 

of fully porous spheres for example, keff can be very accurately calculated using [27]:  158 

 159 

 (4a) 160 

 161 

 162 

 (4b) 163 

 164 

 165 

 (4c) 166 

𝑄 = −𝑘𝑒𝑓𝑓𝐴
ΔT

Δ𝑥
 

D = −𝛽1
−1 + (1 − 𝜀𝑒) + 𝑐1𝛽3(1 − 𝜀𝑒)

10
3⁄ + 𝑐2𝛽5(1 − 𝜀𝑒)

14
3⁄  

       +𝑐3𝛽3
2(1 − 𝜀𝑒)

17
3⁄ + 𝑐4𝛽7(1 − 𝜀𝑒)6 + 𝑐5𝛽3𝛽5(1 − 𝜀𝑒)7 

                          +𝑐6𝛽9(1 − 𝜀𝑒)
22

3⁄ + 𝑂 ((1 − 𝜀𝑒)
25

3⁄ ) 

 

𝛽𝑖 =
𝛼 − 1

𝛼 +
𝑖 + 1

𝑖

 

 

𝑘𝑒𝑓𝑓 = 𝑘𝑚 (1 −
3(1 − 𝜀𝑒)

D
) 

 

𝑖 = 1, 3, 5, … 

 

∇ ∙ (𝑘∇𝑇) = 0 
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 167 

 (4d) 168 

 169 

with kpz the thermal conductivity of the porous zone. For a fully porous particle, the porous zone 170 

refers to the entire particle (while for a core-shell particle this refers only to the shell). The values 171 

of the constants c1-c6 can be found in [16]. 172 

Comparing our computed keff-values for non-contacting fcc sphere packings with the result 173 

derived from Eq. (4) shows our results have an accuracy on the order of 0.1%.  174 

3. Results and discussion  175 

3.1. Limits of thermal bed conductivity enhancement resulting from an increased core 176 

conductivity 177 

In this part of the study, simulations were done using kpz-values ranging between 0.36 W/(m·K) 178 

and 1.40 W/(m·K) to cover and exceed the typical range of possible heat conductivity values for 179 

a mesoporous silica layer filled with the typical mobile phases used in RPLC. The cited kpz-values 180 

values were obtained by representing the shell layer as a packing of touching and even slightly 181 

overlapping nanospheres fully impregnated with mobile phase liquid (see SM). Fortunately, the 182 

degree of particle overlap and nanosphere arrangement only has a weak effect on the overall kpz-183 

value (see SM), such that all obtained values are in the same range. The kpz-range considered for 184 

the simulations also comprises the values cited in [28].  185 

Fig. 3a shows, for several typical values of the mobile and porous zone conductivity, how the 186 

effective bed conductivity can be expected to increase in an fcc packing with porosity 40% when 187 

the core conductivity would be raised from the current solid silica case (kcore1.40 W/(m·K)) to 188 

that of materials that are extremely good heat conductors such as gold (k=320 W/(m·K)) and 189 

copper (k=400 W/(m·K), out of scale on Fig. 3a). As can be noted, the increase in keff with respect 190 

to the case of a silica core is typically only of the order of some 40%. This is much less than 191 

assumed in [3] (where a 21-fold increase of the conductivity is anticipated). The strongly 192 

saturating trend of the curves also implies that any attempt to raise the core conductivity above 193 

that of alumina (kcore30 W/(m·K)) would be completely futile. Taking the derivative of the data 194 

in Fig. 3a (approximated through the first order forward difference) shows these decrease to 195 

zero, suggesting keff tends to an asymptotic value. 196 

The height of the plateaus in Fig. 3a strongly depends on the thermal conductivity of the mobile 197 

phase. This effect is filtered out in Fig. 3b by making a dimensionless representation of the data 198 

shown in Fig. 3a, completed with a set of additional results for other kpz/km-values. The data show 199 

that, for each given value of kpz/km, there is always one unique curve describing how the relative 200 

𝛼 =
𝑘𝑝𝑧

𝑘𝑚
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bed conductivity keff/km varies with the relative ratio of kcore/km. The relative conductivity keff/km 201 

gives the increase in bed conductivity relative to the case of a tube without particles and only 202 

filled with mobile phase. This dimensionless representation has been added to show that an 203 

increase of the core conductivity beyond that of silica can never be expected to lead to more 204 

than a 25 to 50% increase in overall bed conductivity (for km=0.15 and 0.58 resp.).  205 

Fig. 4 confirms the above observations (again showing an increase in keff with respect to the silica 206 

core case on the order of some 20-70% and asymptotic behavior at high kcore), but now for a 207 

broader range of packing geometries, including two ordered and one random sphere packing, all 208 

with contacting spheres. At this point, it should be noted that the e=0.40 fcc-packing 209 

corresponds to a physically unrealistic case where the spheres are not in direct contact and are 210 

hanging without suspension in the medium. The same holds for the e=0.40 bcc-packing. The 211 

e=0.40 sc-case and the random packing case on the other hand correspond to cases where the 212 

spheres are in direct contact. As can be noted, the existence of a direct contact has some effect 213 

(maximally 7% at high kcore as can be derived from the difference between the e=0.40 fcc-packing 214 

and the random packing case), but certainly not a huge one. The effect of the porosity itself is 215 

clearly much more important, as can be derived from the difference between the e=0.40 fcc- 216 

and the e=0.24 fcc-curves. Admittedly, this shift also includes a transition from a non-contacting 217 

to a contacting sphere case, but this effect is rather limited, as can be understood from the 218 

relatively small difference between the e=0.24 fcc-curve and the e=0.24 fcc (insulated)-curves, 219 

whereby the latter corresponds to a case where the contact zones between the spheres were 220 

insulated to eliminate the contribution of the contact effect. Given this relatively small difference, 221 

the main difference between the e=0.40 fcc- and the e=0.24 fcc-curves can be attributed to the 222 

fact that the latter corresponds to a case with significantly higher packing density and hence also 223 

with a higher density of (relatively strongly conducting) silica. The relatively strong e-effect 224 

shows that, in order to properly investigate the effective conductivity of packed beds, it is more 225 

relevant to work at the proper external porosity than to correctly represent the contact mode of 226 

the spheres. 227 

Despite the above, the literature reports [12,28-30] wherein core-shell particle columns have 228 

been shown to display a markedly larger effective conductivity than fully porous particle columns 229 

remain fully relevant. To investigate this with our numerical approach, Fig. 5 compares how keff 230 

varies with the porous zone conductivity kpz in a fully-porous particle and a core-shell particle 231 

case. A first important observation from Fig. 5 is that the curves cross at some given kpz-value. 232 

This crossing point originates from the fact that, when the porous zone becomes equally 233 

conductive as the core (kpz=kcore), a core-shell particle will behave thermally as if it was a fully 234 

porous particle. It is then obvious to see that beds with the same packing arrangement and 235 

porosity consisting of either particle type have the same keff. In Fig. 5 the external porosities of 236 

both beds slightly differ causing the crossing point to shift (from kpz=1.4 to 1.1 W/(m·K)). Another 237 
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important observation from Fig. 5 is that the fully porous and core-shell particle case curves lie 238 

relatively close to each other in the range of kpz-values pertaining to porous silica (greyed area).  239 

The black upward arrows added to Fig. 5 indicate the kpz-value assumed in a recent study [28] for 240 

respectively a typical fully porous (kpz=0.40) and a typical core-shell particle (kpz=0.60 W/(m·K)). 241 

Comparing the keff-values corresponding to these values (resp. keff=0.28 W/(m·K) and keff=0.42 242 

W/(m·K), see upward arrows), it can be concluded that the difference in effective conductivity 243 

observed between fully porous and core-shell columns is not only caused by the effect of the 244 

core but also because of the predicted difference in conductivity of the porous zone material of 245 

which the particles are composed. Because of the differences in production process, the shell of 246 

core-shell particles is typically denser in silica than fully porous particles. Comparing the shift in 247 

keff one can expect solely from the presence of a core (upward arrow vs. downward arrow), it can 248 

be concluded the presence of the core can only be expected to lead to an increase from keff=0.28 249 

W/(m·K) to keff=0.36 W/(m·K), considerably less than that expected based on the difference in 250 

kpz. 251 

3.2. Limitations of the Zarichnyak-model and improved modelling 252 

The reason for the strong deviation between some literature reports [3,12,28-30] and the results 253 

of the present study (up to a 2000% increase expected in literature [3] vs. a 68% increase to be 254 

expected upon an increase of the core conductivity from silica to gold) is that these few available 255 

literature reports are mainly based on a simple model that was reported in a series of models by 256 

Zarichnyak and Novikov [31]. This particular model was originally developed for heterogeneous 257 

materials and assumes the material consists of two types of cubical zones, resp. with conductivity 258 

k1 and k2. The cubes are arranged in two layers. In each layer, the cubes are perfectly arranged in 259 

a rectangular grid. They obtained:  260 

(5) 261 

with 1 and 2 being the respective volumetric fractions of cubes with conductivity k1 and k2. 262 

Extensions of this model that take in account a third material and an infinite number of layers 263 

exist, but are not used in chromatography literature. In the latter, Eq. 5 is typically used in two or 264 

more consecutive steps to combine several materials with different thermal conductivities.  265 

 266 

(6a) 267 

 268 

(6b) 269 

𝑘𝑒𝑓𝑓 = 𝑘1(𝜙1)2 + 𝑘2(𝜙2)2 + 4
𝑘1𝑘2

𝑘1 + 𝑘2
𝜙1𝜙2 

𝑘𝑒𝑓𝑓 = 𝑘𝑚(𝜀𝑒)2 + 𝑘𝑝𝑎𝑟𝑡(1 − 𝜀𝑒)2 + 4
𝑘𝑚𝑘𝑝𝑎𝑟𝑡

𝑘𝑚 + 𝑘𝑝𝑎𝑟𝑡

(𝜀𝑒)(1 − 𝜀𝑒) 

𝑘𝑝𝑎𝑟𝑡 = 𝑘𝑝𝑧(𝜙𝑠ℎ𝑒𝑙𝑙)
2 + 𝑘𝑐𝑜𝑟𝑒(𝜙𝑐𝑜𝑟𝑒)2 + 4

𝑘𝑝𝑧𝑘𝑐𝑜𝑟𝑒

𝑘𝑝𝑧 + 𝑘𝑐𝑜𝑟𝑒
𝜙𝑠ℎ𝑒𝑙𝑙𝜙𝑐𝑜𝑟𝑒 
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 270 

    with:  shell = fraction of shell volume on particle volume 271 

core = fraction of core volume on particle volume 272 

        = 1- shell 273 

        = ³  274 

 = the ratio of core diameter to particle diameter 275 

 276 

As can be noted from the modelling lines (dashed lines) added to Fig. 3b and 4, the curve 277 

representing Eq. (6) fits nicely to the data in the region of the silica conductivity, but completely 278 

deviates from the numerically computed values in the range of larger conductivities where gold 279 

and copper are situated. 280 

The failure of the Zarichnyak-model in case of highly conducting cores can be explained by the 281 

fact the model assumes only two layers of cubes resulting in a considerable fraction of two-cube 282 

piles consisting of only the high conducting material. These then form a continuous, high 283 

conducting path through the entire model. The occurrence of such a high conductivity path 284 

running across the entire bed obviously does not apply to a bed of particles with high conductivity 285 

cores, as these cores are insulated from their surroundings by the lower conductivity shell and 286 

the mobile phase in the interstitial particle space. Because of the simplicity of its underlying 287 

assumptions, the Zarichnyak-model doesn’t discriminate between the different packing 288 

arrangements. Therefore, Fig. 4 only shows two Zarichnyak-based curves: one for the low 289 

porosity fcc packing and another for all four (fcc, bcc, sc and random) high porosity (e=0.39-0.40) 290 

packings. 291 

Given the large similarity between the conduction of heat and the diffusion of species, and 292 

building upon our previous work regarding the improved modelling of the effective longitudinal 293 

diffusion using the so-called effective medium theory [16-18], it seemed straightforward to 294 

investigate how well this general theoretical framework can be used to model the trends 295 

observed in Figs. 3-4. The effective medium theory is based upon the seminal work of James Clerk 296 

Maxwell on the prediction of the effective electrical conductivity in composite media with high 297 

and low conductivity zones, and has later been extended to cover a broader range of geometries 298 

and to other conduction modes in a vast body of literature [13,14,22-27]. In this work, we have 299 

adapted the effective medium theory expressions originally derived by Torquato [32] to account 300 

for the geometry of the presently considered ternary system consisting of a first discrete medium 301 

with conductivity k1, surrounded by a shell consisting of a second medium with conductivity k2, 302 

embedded in a continuous medium with conductivity k3. The resulting expression is given by: 303 
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 304 

     (7a) 305 

 306 

 307 

with: (7b) 308 

 309 

(8a) 310 

  311 

(8b) 312 

 313 

wherein 2 is the three-point parameter. To arrive at Eq. (7), we started from a formula derived 314 

by Hashin and Shtrikman in [33] that gives the effective conductivity of a sphere consisting of a 315 

spherical core surrounded by a concentric shell (Eq. 8). The resulting average or effective thermal 316 

conductivity of the particle (kpart) is subsequently used in Torquato’s expression (Eq. 7) to average 317 

this particle conductivity with the conductivity of the mobile phase (km) present in the interstitial 318 

space between the particles. Eq. (7) can be used for different types of particle arrangements by 319 

using the appropriate value for the three-point parameter (2). This value depends, evidently on 320 

the type of arrangements (fcc, bcc, random, …) and also on the external porosity. 2-values for 321 

different packing arrangements can be found in [16,34].  322 

As can be noted from the full line curves added to Figs. 3b and 4, Eq. (7) is much better suited 323 

than the Zarichnyak-model (Eq. 6) to represent the effective heat conductivity over the entire 324 

range of possible kcore-values. The remaining differences between the numerical data and the 325 

model curves based upon Eq. (7) are not due to simulation errors (cf. the 0.1% accuracy of the 326 

data shown in Section 2.2) but are a consequence of the limitations of the assumptions 327 

underlying Eq. (7). Although the theory is less well developed for cases where the high 328 

conductivity zones are in direct contact, the superiority of Eq. (7) over Eq. (6) is undisputed. The 329 

2-values used in Fig. 4 are given in the caption. These were taken from [32] for the e=0.40 bcc 330 

and fcc packing and from [18] for the random packing. In case of the fcc packing with e=0.24 and 331 

the sc packing (with e=0.40), no values are available in literature at these porosities. Therefore, 332 

2 was determined by fitting Eq. 7 to the simulation data. 333 

3.3. Other possibilities for thermal bed conductivity enhancement 334 

𝑘𝑒𝑓𝑓 =
1 + 2𝛽1(1 − 𝜀𝑒) − 2𝛽1

2𝜁2𝜀𝑒

1 − 𝛽1(1 − 𝜀𝑒) − 2𝛽1
2𝜁2𝜀𝑒

𝑘𝑚 

𝛽1 =

𝑘𝑝𝑎𝑟𝑡

𝑘𝑚
⁄ − 1

𝑘𝑝𝑎𝑟𝑡

𝑘𝑚
⁄ + 2

 

𝑘𝑝𝑎𝑟𝑡 =
1 + 2𝛾1(1 − 𝜙𝑠ℎ𝑒𝑙𝑙)

1 − 𝛾1(1 − 𝜙𝑠ℎ𝑒𝑙𝑙)
𝑘𝑝𝑧 

𝛾1 =

𝑘𝑐𝑜𝑟𝑒
𝑘𝑝𝑧

⁄ − 1

𝑘𝑐𝑜𝑟𝑒
𝑘𝑝𝑧

⁄ + 2
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Since the preceding results have made it clear that the use of highly conducting cores cannot be 335 

expected to lead to the predicted strong increase of the overall bed conductivity, we found it 336 

instructive to investigate which other alternatives would be better suited. The first alternative 337 

we explored was the use of highly conductive shells, as opposed to using highly conductive cores. 338 

As can be observed from Fig. 6, the use of highly conductive shells would indeed be much more 339 

effective than the use of highly conducting cores, if ever such highly conducting porous material 340 

could be made. The increase in keff that could be expected if the conductivity of the porous shell 341 

material could be freely increased would extend over at least two orders of magnitude, hence 342 

completely overshadowing the potential increase in conductivity that can be expected when 343 

using highly conductive cores (cf. the saturating trend in Figs. 3-4). Interestingly, the Zarichnyak-344 

model does not fail here and is capable of representing the observed, almost linear increase. This 345 

makes sense because the two layer variant of the Zarichnyak-model implies a bicontinuous 346 

medium, meaning both phases are continuous. When this assumption is applied in a first step to 347 

the core and shell, the error is small because the cores are not continuous but anyhow contribute 348 

little compared to the high conducting shells. In the second step, the particles and mobile zone 349 

are both continuous (in agreement with the model assumption). In case of highly conducting 350 

cores (Figs. 3-4) the error introduced by using the Zarichnyak equation in the first step is much 351 

larger, as can be observed from Fig. 3b-4.  352 

Returning to the case of highly conducting shells, it is now the Torquato-model given by Eq. (7) 353 

that completely fails (data not shown). This is due to the fact that the particles are in contact and 354 

hence form a continuous phase, while this model assumes one continuous (the mobile zone) and 355 

one discontinuous phase (the particles) in the second step. This leads to small errors for poorly 356 

conducting particles (Figs. 3-4), but to large errors for well conducting particles. To correct for 357 

this, an inverted Torquato-expression, in which the well-conducting particles are treated as the 358 

continuous phase and the poorly conducting mobile phase is treated as the discontinuous phase, 359 

can be derived: 360 

 361 

     (9a) 362 

 363 

 364 

with: (9b) 365 

 366 

wherein kpz is calculated using Eq. (8a-b) and 1 is the three-point parameter of the mobile zone 367 

and is equal to 1-1 according to [32]. 368 

𝑘𝑒𝑓𝑓 =
1 + 2𝛽1

′(𝜀𝑒) − 2𝛽1
′ 2

𝜁1(1 − 𝜀𝑒)

1 − 𝛽1
′(𝜀𝑒) − 2𝛽1

′ 2
𝜁1(1 − 𝜀𝑒)

𝑘𝑝𝑎𝑟𝑡 

𝛽1
′ =

𝑘𝑚
𝑘𝑝

⁄ − 1

𝑘𝑚
𝑘𝑝

⁄ + 2
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As can be noted in Fig. 6, this curve is better suited to describe the almost linear increase of keff 369 

with kpz for well conducting shells (high kpz). Given the very strong dependency of the effective 370 

bed conductivity with the shell conductivity observed in Fig. 6, it is clear that any material with a 371 

higher conductivity than porous silica would have an immediate positive effect on the bed 372 

conductivity. A possible material choice for the shell would be diamond. This material combines 373 

a very high conductivity (k=900-2320 W/(m·K) [35]) with some other properties beneficial for 374 

chromatographic purposes. Diamond has a high chemical inertness, mechanical, thermal and 375 

hydrolytic stability and shows no shrinking or swelling in the presence of inorganic or organic 376 

solvents [36]. It exists in porous forms and its surface can be functionalized [36]. Furthermore, it 377 

can be synthetically produced for a lower cost than natural diamond [36]. The use of diamond as 378 

stationary phase in HPLC is demonstrated in several publications [36-40].  379 

Another approach to increase the overall bed conductivity would be to find a way to connect the 380 

cores of the particles such that they no longer act as insulated “islands”. As shown in Fig. 7, a 381 

system of particles with connected cores (see Fig. 1e for the geometry of the cylindrical 382 

connection “bridges” running between adjacent cores that were considered to make the 383 

calculation) would indeed lead to a situation where the overall bed conductivity would increase 384 

linearly with an increase of the core conductivity. Obviously, such a system is artificial, but it is 385 

the only conceivable way to benefit significantly from the possibility to use cores made from a 386 

highly conducting material such as alumina or cupper. This can be readily observed when 387 

comparing the “no core contact” data set that was added to Fig. 7 (same sc packing as used in 388 

Fig.4) with the two other cases where the cores are linked and for which the keff-values follow a 389 

continuously increasing trend with increasing kcore. Provided the contact area between the cores 390 

would be sufficiently high, this increase would follow a linear dependency (cf. the fact that the 391 

curves for the different contact area values become gradually more linear). Although the 392 

geometry considered here (sc-arranged core-shell particles with “bridges” running between the 393 

cores, see Fig. 1e) is far from realistic, the result suggests that any structure having a backbone 394 

of interconnected highly conducting material (such as for example a monolithic metal skeleton 395 

cladded with a meso-porous silica layer) would provide a good solution to radially remove the 396 

frictional heat from UHPLC columns. 397 

4. Conclusions 398 

The use of highly conducting cores made of materials such as alumina or gold can be expected to 399 

lead to much smaller increases of the overall bed heat conductivity than previously assumed 400 

based on an extrapolation of the Zarichnyak-model. The present, well-validated numerical study 401 

has shown this model severely overestimates the bed conductivity in the case of high 402 

conductivity cores because the model overestimates the probability to form continuous high 403 

conductivity paths through the bed. Other, much more accurate models can be derived from the 404 

Effective Medium Theory. These fit the computed data much more faithfully and provide an 405 
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explanation for the strongly saturating trend in the relation between the overall bed heat 406 

conductivity (keff) and the conductivity of the core (kcore). This saturating trend can be attributed 407 

to the fact that the cores are completely surrounded by less conducting porous zone which acts 408 

as a thermal insulator in that case. 409 

It was also found that the presence of a silica core has a smaller effect on the overall bed 410 

conductivity than previously assumed and that the differences in bed conductivity reported in 411 

literature between fully-porous and core-shell particles are, besides the presence of the core, 412 

also due to differences in the conductivity of the meso-porous material of which commercial 413 

fully-porous and core-shell particles are being composed.  414 

Finally, it was also shown that the most efficient way to increase the bed conductivity would be 415 

to ‘break’ through the thermal insulation around the cores by bringing them in thermal contact 416 

through bridge-like connections or by using highly conducting materials for the shell layer. Both 417 

approaches are at present however still purely speculative, but future developments in 418 

fabrication technology (e.g. 3D printing) could change this situation.  419 
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Figure captions 554 

Figure 1. Computational unit cells of the different considered packing geometries. Core 555 

material: dark grey, porous zone: grey, mobile phase: transparent blue. Red arrow indicates 556 

direction of heat flux from inlet to outlet plane (for all cells). 557 

Figure 2. Example of a 3D steady state temperature profile computed in an fcc packing. 558 

Contours of the particles and cores shown in white. Conditions: kcore=1.4 W/(m·K), kpz=1.4 559 

W/(m·K), km=0.58 W/(m·K). Red=400 K, blue=300 K. Packing density: εe=0.40. Red arrow 560 

indicates direction of heat flux from inlet to outlet plane. 561 

Figure 3a. Effect of the core conductivity (kcore) on the effective conductivity (keff) of an fcc core-562 

shell packing for different porous zone and mobile phase conductivities (shown in figure). 563 

Packing parameters: εe=0.40, ρ=0.63. Model curves: Torquato-model, Eq. (7) with ζ2=0.06 (Black 564 

lines).  565 

Figure 3b: Dimensionless representation of the effect of the relative core conductivity (kcore/km) 566 

on the relative effective conductivity of the packing (keff/km) for different porous zone 567 

conductivities. Conditions: fcc packing εe=0.40, ρ=0.63, mobile phase conductivity: Black dots 568 

(●) =0.15 W/(m·K); triangles () =0.58 W/(m·K); squares () =0.21 W/(m·K). Silica range given 569 

by grey box. Model curves: Torquato-model, Eq. (7) with ζ2=0.06 (Black lines). Zarichnyak-570 

model, Eq. (6) (Grey dotted lines). 571 

Figure 4. Effect of the packing geometry on the relative effective conductivity (keff/km) for the 572 

case of kpz/km=2.41. Simulation data: fcc packing (○), fcc packing with insulated contacts (∆), sc 573 

packing (), fcc packing (), random packing () and bcc packing (). Model curves: 574 

Zarichnyak-model, Eq. (6) (dashed grey lines), Torquato-model, Eq. (7) with 2=0.16 (FCC 575 

e=0.24), 0.22 (SC), 0.06 (FCC e=0.40), 0.27 (Random) and 0.08 (BCC) (full black lines).  576 

Figure 5. Variation of the effective conductivity (keff) with the porous zone conductivity (kpz) for 577 

the case of a random packing of fully porous (full line) and a core-shell particles (dashed line), 578 

according to the Torquato-model with 2=0.18 (as in [34]) and e=0.38 and 0.41 for the fully 579 

porous particle and core-shell particle packing respectively (as in [28]). Mobile phase 580 

conductivity km=0.20 W/(m·K) and kcore=1.4 W/(m·K) as in [28]. The grey box represents possible 581 

values for kpz given silica shells filled with mobile phases of various thermal conductivities. 582 

Meaning of arrows is discussed in the text. 583 

Figure 6. Effect of the relative shell conductivity (kpz/km) on the relative effective conductivity 584 

(keff/km). Packing parameters and conditions: fcc εe=0.24; km=0.58 kcore=1.4. Model curves: 585 

Zarichnyak-model, Eq. (6) (grey, dotted line), inverse Torquato-model, Eq. (9) with ζ2=0.84 (black, 586 

dashed line). 587 

Figure 7. Relative effective bed conductivity (keff/km) in an artificial system of particles with 588 

cylindrical thermal bridges connecting the cores of core-shell particles packed in an SC 589 

configuration. Different contacting areas are considered (values of rb shown in figure), and 590 
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compared to the same packing without connected cores (base case).Black lines are no model 591 

lines and solely added for visual support. 592 
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Supplementary material:  1 

Particle contact 2 

To avoid numerical problems with singular contact points in the closest fcc packing case in Fig. 3 

1d, the distance between neighboring particles was shrunk by 1%, thus creating a slight overlap. 4 

For meshing purposes, the sharp edge at the intersection of 2 neighboring particles was slightly 5 

chamfered, resulting in a “collar” of 1.0x10-8 m height between the particles (see Fig. SM1). The 6 

resulting contacting area between the spheres was always 3% of the cross sectional area of an 7 

individual particle. For the random packing a similar procedure (same shrinkage but larger 8 

chamfering, collar height 4.0x10-8 m) was used, leading to maximal contact areas of 7.5% of the 9 

cross-sectional area of an individual particle. In this case, smaller contact areas were present as 10 

well, originating from particles that were not yet, but almost in contact before the procedure. The 11 

chamfering procedure was also used for the sc packing in Fig. 1c. Given the specific packing 12 

geometry, this leads to a bigger contact surface (10% of the particles’ cross sectional area).  13 

 14 

Calculation of porous zone conductivity  15 

While information on the average thermal conductivity of a particle bed is very scarce in 16 

chromatography literature, reports on the thermal conductivity of the particles themselves is 17 

non-existent to our knowledge, except for an estimation with the Zarichnyak-model in [28] which 18 

is questioned in the present publication. Therefore the thermal conductivity of the porous zone 19 

kpz (from which kpart can be calculated with Eq. 8) was estimated through simulations. The porous 20 

zone was considered to consist of a packing of silica nanospheres. These were arranged in bcc 21 

and fcc packing and were slightly overlapping. The degree of overlap is characterized by the cross 22 

section of the overlap (Ai) divided by the cross section of the particle (Ac=dp²/4). In fig. SM2 it 23 

can be seen that the nanosphere arrangement and the amount of overlap have little effect on the 24 

porous zone conductivity. Because of the uncertainty on kpz, the range of kpz-values used in this 25 

study (0.36-1.40 W/(m·K)) comprises all possible values found in our simulations and the values 26 

reported in [28]. 27 

 28 

Figure SM1. (a) Two particles contacting in a single point. (b) Overlap due the shrinkage of the 29 

distance between the particle centers. For visualization purposes the shrinkage shown is 5 times 30 

bigger (5%) than that employed in the simulations (1%) (c) Sharp edge due to overlap (d) Collar 31 

due to chamfering. For visualization purposes a more profound chamfering was employed, 32 

resulting in a 5 times bigger collar height (0.05 µm) than that employed in the simulations (0.01 33 

µm).  34 

Figure SM2. Thermal conductivity of the porous zone (kpz) as a function of the nanosphere 35 

overlap, for different values of km (as indicated on the figure). Nanospheres making up the porous 36 

zone are packed in an fcc arrangement (a) and bcc arrangement (b). 37 
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Figure SM2a 
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Figure SM2b: 
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