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Abstract

Carbon/phenolic ablators are successfully used as thermal protection material

for spacecraft. Nevertheless, their complex thermal degradation is not yet

fully understood, and current pyrolysis models do not reproduce important

features of available experimental results. Accurate and robust thermal

degradation models are required to optimize design margin policy. We

investigate whether the competitive kinetic schemes commonly used to model

biomass pyrolysis are appropriate to describe the thermal degradation of

carbon/phenolic composites. In this paper, a competitive pyrolysis model for

the thermal degradation of the carbon/phenolic ablator PICA is proposed.

Model parameters are then calibrated using a robust two-step methodology:

first deterministic optimization is used to obtain the best estimation of the

calibration parameters based on the experimental data, then a stochastic
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Bayesian inference is performed to explore plausible set of solutions taking

into account the experimental uncertainties. The calibrated model provides

an accurate description of the pyrolysis process at different heating rates. The

model shows great flexibility and robustness at a similar computational cost

as the traditional devolatilization models. This opens the possibility for more

complex mechanisms when more experimental data becomes available.

Keywords: Carbon/phenolic composite, Kinetics, pyrolysis, optimization

Nomenclature

Acronyms

CV Coefficient of Variation

DTGA Differential TGA

GA Genetic Algorithm

MCMC Markov Chain Monte Carlo

MSL Mars Science Laboratory

PDF Probability Distribution Func-

tion

PICA Phenolic Impregnated Carbon

Ablator

RWMH Random Walk Metropolis Hast-

ings

SCE Shuffled Complex Evolution

TACOT Theoretical Ablative Compos-

ite for Open Testing

TGA Thermogravimetric Analysis

TPS Thermal Protection System

Greek Symbols

η Numerical model

γ Stoichiometric coefficient

[−]

π Probability density function

Σ Covariance Matrix

τ Weighting factor

ε Observation error

Indexes

0 Initial condition

∞ Final conditions

amb Ambient conditions
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obs Observed

P Product

r Reactant

sim Simulated

Roman Symbols

A Pre-exponential factor [s−1]

E Activation energy [J mol−1]

G Gas

Pad Set of admissible solutions

R Universal gas constant

[J K−1 mol−1]

S Solid

A Matrix of reaction rates

d Data set

p Calibration parameter set

W Weighting operator

J Proposal distribution

k Reaction rate [s−1]

m Order of reaction [−]

np Number of competitive branches

from a given component

r Acceptance ratio

S Objective function

1. Introduction

Pyrolysis of phenol-formaldehyde resins is extensively studied due to

ubiquitous use of the resins in industrial processes, and manufacturing

of composite materials. A niche application is in the use of these resins

in thermal protection materials. An example application is their use in

composites materials in spacecraft heatshields. During atmospheric entry

at hypersonic speeds, most of the kinetic energy due to drag deceleration

is transformed into thermal energy, resulting in substantial heat transferred

to the spacecraft. Extreme temperatures reached at the surface require an

efficient Thermal Protection System (TPS) to insulate the spacecraft and

protect the payload. For systems that need superior insulation capabilities

3



and low mass, lightweight carbon/phenolic ablators are preferred material

architecture. This class of ablators consists of composite materials made of

carbon fibers bound together into rigid or flexible preforms [1] and infused

with a high surface area phenolic resin phase [2]. A notable example within

this class is the Phenolic Impregnated Carbon Ablator (PICA) developed by

NASA which has been successfully used in missions such as Mars Science

Laboratory (MSL) [3] or Stardust Sample Return Capsule [4]. The high

porosity and surface area of the composite results in low conductivity that

retards the heat fluxes towards the interior of the material, ensuring thermal

insulation of the vehicle. In addition, the phenolic resin decomposes via

globally endothermic pyrolysis resulting in flux of pyrolysis gases [5] blown

into the boundary layer that partially block the incoming heat. Understanding

the process of pyrolysis is fundamental to improve physical models that are

used in numerical simulations of thermal protection systems response to

high-enthalpy environments.

Thermal degradation via pyrolysis involves a series of complex chemical

interactions [6]. In these processes, the long polymeric chains of the solid

phenolic break up with the consequent release of gases and leading to a

carbonaceous char. In ablator response models for PICA, pyrolysis has

been traditionally modeled assuming the presence of several solid phases of

density ρi that decompose following a set of independent parallel reactions [7–

12]. Arrhenius-type reactions are used and reaction constants are calibrated

based on experimental measurements of mass loss versus temperature from

thermogravimetric analysis (TGA) [13]. In rare instances calibration accounts

for species or elemental production measured with gas sampling techniques
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[12]. This approach that assumes independent reactions is strictly valid for

a given (and usually narrow) range of heating rate conditions for which the

model was calibrated. However, it lacks in generality and fails when applied to

largely different heating rates. For ablation modeling at varying heating rates

this is a substantial limitation, no longer acceptable as we aim at physics-based

predictions of the ablation phenomenon [14]. Indeed, a broad range of heating

rates is found in ablative heat shields used in atmospheric entry. Consider

the case of MSL as an example [15]: heating rates vary dramatically in space

across the heat shield, both span-wise and in-depth, and in time at different

phases of an entry trajectory. Values as high as 60 000 K min−1 and as low as

60 K min−1 can be found. In addition, most of flight heating rates are outside

the realm of legacy TGA measurements used for calibration, rarely exceeding

tens of K min−1.

In solid-phase pyrolysis, it is usually observed that as the heating rate

increases, the decomposition curves shift towards higher temperatures [12].

This behavior is commonly attributed to the thermal lag effects and can

be usually reproduced assuming independent parallel reactions. However,

different experimental evidences [16, 17] show that this is not the case for

the pyrolysis of carbon/phenolic. For example, Stokes [17] observed that at

heating rates higher than 300 K min−1 the pyrolysis peak shifted towards lower

temperatures. The same effect was also observed in recent pyrolysis experi-

ments from Wong et al. [18] and Bessire and Minton [19], further discussed in

Sect. 4. This shift towards lower temperatures suggests that several reactions

consuming the same reactant are occurring simultaneously, or in other words,

that two (or more) reactions are in competition. Legacy pyrolysis mechanisms
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do not account for such behavior because of their parallel and independent

reaction formulation [8–12]. Effects of competitive reactions are not only

observed in the degradation of carbon/phenolic composites, but also in the

pyrolysis of biomass materials [20]. In order to model the devolatilisation of

various biomass feedstocks, many competitive reaction mechanisms have been

developed which are capable of assessing these variations for different wood

species as well as different levels of detail [21–23].

Given the differences in the pyrolysis models found in aerospace engineering

literature, the lack of generality of the existing models to reproduce different

experimental observations, this work intends to: (1) propose a generalized

pyrolysis scheme by including competitive mechanisms to the classical parallel

reactions used for modeling the thermal degradation of carbon/phenolic

material, (2) provide a robust methodology for parameter calibration based

on experimental data, and finally, (3) present a reaction scheme based on the

two first items for the decomposition of PICA based on modern experimental

data [18, 19].

This paper is organized as follows. Firstly, we generically describe the

thermal degradation of a solid under the hypothesis of competitive reactions

in Sect. 2.1. We then establish a general notation for multicomponent

competitive mechanisms, highlighting the link between this general mod-

eling with the classical independent parallel reactions used for TPS as a

particular case. Secondly, in Sect. 3, the methodology for the calibration in

a deterministic and a probabilistic framework is described and, in Sect. 4

the experimental datasets used in this work are presented. Following, we

propose a competitive mechanism which phenomenologically can describe
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the experimental observations in Section Sect. 5. Then, the kinetic rates

constants are calibrated using both the deterministic and the probabilistic

optimization framework. Finally, the resulting scheme is evaluated at a broad

range of heating rates in order to assess its performance and compared with

other experimental data from Bessire and Minton [19] to assess extrapolation

capabilities of the model.

2. Pyrolysis Model

2.1. Simple competitive kinetics scheme

A competitive kinetic model can be represented as a branching tree. An

initial solid reactant may react producing pyrolysis gases and other solid

products. These products, in turn, may become reactants thus following

a branched process. Let us consider a solid reactant of density ρr that

generates np products as sketched in Fig. 1. These reactions can either

refer to elementary processes or to global reactions. While elementary

processes describe in detail the decomposition of each molecule, in a global

approach the chemistry is encapsulated in phenomenologically coherent steps.

Elementary processes are more accurate but they are difficult to resolve

with current experimental methods. Therefore, global reaction schemes are

the most common approach in pyrolysis modeling [22]. In addition, global

reactions reduce the number of calculations which enables these schemes to

be conveniently integrated in material degradation codes.

The evolution of each reaction i is controlled by its kinetic rate ki. In the

present case, kinetic rates are modeled using a first order Arrhenius equation
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Figure 1: Illustration of a competitive mechanism. A solid ρr reacts producing np products.

of the form

ki = Ai exp(−Ei/RT ), (1)

where R is the universal gas constant, Ai is the pre-exponential factor, and Ei
is the activation energy for the i-th reaction. The solid reactant will degrade

generating product, ρp
i at a rate given by

dρp
i

dt = ki(ρr)mi , (2)

where the exponent mi (sometimes referred to as the reaction order) is often

set to 1 in pyrolysis applications [24] and will be omitted in the following

analysis for simplicity and clarity.

Now, considering np simultaneous reactions that the solid reactant may

undergo, the total decomposition rate of the solid can be expressed as

dρr

dt = −
np∑
i=0

dρp
i

dt = −
np∑
i=0

kiρ
r. (3)

2.2. Generalized competitive kinetics model

Generalized pyrolysis scheme of multicomponent competitive reaction

mechanisms is represented in Fig. 2. Let Ai be all the species expected in the

system of reactions, i = 1, .., n, which can be either a gaseous species i ∈ IG
or solid species (reactant or product) i ∈ IS , thus i ∈ IS ∪ IG are all of the

species that are in the system considered. The number of species in each
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set is |IG| = nG and |IS | = nS respectively with the total number of species

n = nG + nS . The density of the solid phase is then expressed as,

ρS =
nS∑
i=1

εiρi (4)

where εi is the volume fraction of solid species.

Competitive mechanisms occur on the i-th component with density ρi

following the reaction rate ki,j where j is the index for its j-th competitive

branch. The number of competitive reactions for the component ρi (Fig. 2)

is np
i . Each reaction may generate more than one product species, Al from

either, IS or IG,

pi,j,l →
n∑
l=1

ζi,j,l Al, ∀i ∈ [1, n] (5)

where ζi,j,k are the stoichiometric coefficients. Thus mass coefficients γi,j,l are

introduced,

γi,j,k = ζi,j,k∑np
i
j=1

∑n
l=1 ζi,j,l ρl

. (6)

We have from stoichiometry and mass conservation

γi,j,k = 0, ∀i = k,∀j ∈ np
i . (7)

For i ∈ IS, the variation of a component ρi is given by the balance between

the production and destruction of component ρi as

dρi
dt

= −
np

i∑
j=1

ki,j ρi︸ ︷︷ ︸
destruction of ρi

+
n∑
j=1

np
j∑

l=1
kj,l γj,l,i ρj︸ ︷︷ ︸

production of ρi

. (8)

The first term on the right-hand side (RHS) is the destruction of ρi, which

is the sum over all reaction branches from the solid component ρi towards

products. This term is zero for gases since it is assumed that only solid
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γ1,1,1 ρ1 + γ1,1,2 ρ2 + · · · + γ1,1,n ρn

γ1,2,1 ρ1 + γ1,2,2 ρ2 + · · · + γ1,2,n ρn

...

γ1,np
1 ,1 ρ1 + γ1,np

1 ,2 ρ2 + · · · + γ1,np
1 ,n ρn

ρ1

k1,1

k1,2
k
1,n p

1

...

γn,1,1 ρ1 + γn,1,2 ρ2 + · · · + γn,1,n ρn

γn,2,1 ρ1 + γn,2,2 ρ2 + · · · + γn,2,n ρn

...

γn,np
n,1 ρ1 + γn,np

n,2 ρ2 + · · · + γn,np
n,n ρn

ρn

kn,1

kn,2
k
n,n p

n

Figure 2: Generalized pyrolysis scheme of a multicomponent competitive mechanisms.

components pyrolyze while gas phase reactions will be computed elsewhere,

thus ki,j = 0 for i ∈ IG. The second term represents the production term

of component ρi coming from all other components (except from j = i for

which this term is zero from Eq. 7) arrows pointing towards the components

ρi, from which we sum over all reaction component and all parallel branches.

Eq. 8 defines a system of first order Ordinary Differential Equations

(ODEs) that can be written under a matrix formalism as

dρ

dt = Aρ, (9)

where ρ is a column vector with all the components ρi and A is the matrix of

coefficients. Diagonal terms of A, aii, are given by the first term on the RHS of

Eq. 8 while off-diagonal terms by the second term (note that γj,l,i = 0 for j = i,

i.e. no self-production term). This system is linear and the coefficients will

be generally non-constant due to the temperature dependence of the reaction

rates, rendering the solution hard to obtain analytically. When the coefficient

matrix A is constant (isothermal pyrolysis) the matrix-exponential method
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can be used. For a non-constant coefficient matrix A, as in multi-component

reactions, the ordinary differential equation system, Eq. 9, will have to be

integrated numerically. A is of full rank if all the dependent variables are

removed, which are all the gaseous products and solid products that do not

further react. Once this is removed from the system of equations, it can be

shown that A can be written under the form of a lower triangular matrix

if no backward reactions are considered [24]. Such backward loops are not

observed in practice for pyrolysis reactions because they are highly dissipative

and irreversible. The system of equations can be easily solved using the

Gauss-Jordan method, as the matrix is already triangular.

In addition, it can be shown that the generalized model degenerates in a

parallel model if the second term on the RHS (Eq. 8) is 0 [25], in that case,

the system becomes a diagonal matrix and analytical solutions can be found

[25].

Generating different products from the same reactant provides great

flexibility to the competitive reaction mechanisms. This means that different

kinetic pathways may become dominant depending on the heating conditions

leading to the possibility of “selecting” the pathway. This is intensively used

in biomass pyrolysis where this selectivity allows to predict which products

(gas, char or tar) will be mostly produced [20].

Due to the nature of competitive schemes, a component ρi can be produced

and consumed during the pyrolysis process (non diagonal matrix A). This

makes that the advancement of reaction becomes irrelevant to describe the

evolution of a particular reaction. A workaround to this is to describe the

state of the reaction in terms of densities and if required define a global
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advancement of reaction from virgin to char [24, 26].

3. Model calibration and uncertainty quantification

Calibration of kinetic models is usually performed in a deterministic

framework using optimization algorithms to achieve fits to experimental

data [12, 26]. In addition, we intend here to provide a calibrated model

that takes into account the experimental uncertainties for a more robust

characterization of model parameters using methods from statistics and

Bayesian inference. Literature on Bayesian inference for chemical kinetics is

scarce and most of it is on homogeneous reactions in a mixture for combustion

applications [27–30]. For pyrolysis applications, one can cite the work of

Bruns [31] who applied Bayesian inference on dependent non-competitive

pyrolysis reactions for high-impact polystyrene, bisphenol-A polycarbonate

and polyvinyl chloride based on TGA data at two different heating rates (3

and 10 K min−1) relevant to fire applications.

In the following, we describe a two-step methodology for parameter

calibration based first on a deterministic approach and then a probabilistic

(Bayesian) approach. A robust methodology which ensures a global optimum is

particularly important for competitive mechanisms due to the large parameter

space and the possibility of getting trapped in a local minimum [24, 26].

The relationship between the observed data dobs
k and the computer model

η(· , ·), here the pyrolysis model, is represented as

dobs
k = η(xk,p) + εk, (10)

where εk is the observation error for the k-th observation among the nobs

observations (model structure error not considered here). The computer model
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η is a function of two inputs: 1) the calibration parameters p, which we wish

to learn about or optimize and 2) the variable inputs xk whose values may

change during the calibration process. For the pyrolysis decomposition model

(Eqs. 1 and 8) the uncertain parameter set is the vector of the calibration

parameters p = {Aij, Eij, γijl}. The variable inputs xk are, in this case, the

time or temperature assumed to be known with certainty from experiments.

In the following, we denote dobs as the vector of experimental observations

dobs
k .

In a deterministic inverse problem, one estimates a single value p0 for the

parameters with a best fit approach. Conversely in Bayesian inference, the

observation errors and the parameters p are considered as random quantities

and the result of the identification process is the so-called Bayesian posterior

probability density π(p|dobs) on the parameters given the observations [32,

33]). These two approaches are described in the following sections.

3.1. Deterministic inverse problem

In the following, we denote d(p) = (η(x1,p), . . . , η(xnobs ,p)) the vector

of simulation results at different values of xk for the parameters p, W a

weighting matrix and use the concept of weighted norms defined as
1
2‖d(p)− dobs‖2

W = 1
2
(
d(p)− dobs

)
W

(
d(p)− dobs

)>
, (11)

where ‖ · ‖W denotes the weighted norm. In the deterministic inverse problem,

one generally minimizes a measure of the mismatch, or objective function, S(p)

between the computer model outputs and the observed data. Considering

the norm as a measure of this mismatch, we have

S(p) = 1
2‖d(p)− dobs‖2

W. (12)
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The deterministic inverse problem consists then in finding the best solution

that minimizes this misfit function

p0 = arg min
p∈Pad

2S(p), (13)

where Pad is the set of admissible solutions and p0 is the best estimate for

which the model fits the observed data best. In the case of the misfit stated

in Eq. 12, and considering the weighting matrix to be the identity matrix,

the optimization problem in Eq. 13 is the standard least-squares problem.

Because of nonlinearities induced by the kinetic rates, the objective

function may not necessarily be convex in this case. This means that multiple

local minima can provide satisfactory combinations of kinetic parameters [26].

Therefore, gradient-based optimization algorithms may get “trapped” in one

of these local minima. In addition, traditional Genetic Algorithms (GA) have

proven to be slow when applied in large search spaces and less precise [26].

Considering this, the optimization method chosen in this work is the

“Shuffled Complex Evolutionary Algorithm” (SCE) included in the optimization

package SPOTPY [34]. This optimization method, proposed by Duan et

al. [35] performs an optimization at two levels: a global and a local search.

Similarly to a GA, an initial population of individuals is randomly generated

from admissible set of solutions or search space. For each parameter pi ∈ p

this search space is defined as pi ∈ [pmin
i , pmax

i ] = {pi ∈ R | pmin
i ≤ pi ≤ pmax

i }.
An individual refers to a realization of the parameter set p. At each iteration

of the algorithm, the population is grouped into a user-defined number of

local search groups. A local search is performed within these groups, using a

swarm-like optimization [35]. Once this process is finished for the different

groups, the individuals are shuffled (hence the name of the method) such
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that the most promising individuals will have higher chances of continuing

the optimization process, thus exchanging information about the search

space in a similar way to traditional GA. An individual is evaluated through

comparison with the experimental data (Eq. 12). Here, for each experimental

measurement, a simulation of the pyrolysis is carried out using the proposed

mechanism with a realization of the parameter set p. Then, this result

is compared to the experiments providing a measure of the fitness of the

individual similarly to Eq. 12. Two observation sets from the experiments

that contribute to the objective function S that are the TGA data and its

derivative (DTGA) [26]. While the TGA curve provides the general shape of

the curve, its derivative accurately captures the maxima of the production

rates and a weighting factor τ = 10000 is set to scale the two contributions

up to the same order of magnitude, leading to the final vector of simulation

results, vector of observations and weighted operator

d(p) = dsim = (dsim
TGA dsim

DTGA), (14)

dobs = (dobs
TGA dobs

DTGA), (15)

W =

Inobs/2 0

0 τInobs
DTGA

 , (16)

which is equivalent to the following objective function

S = ‖dsim
TGA − dobs

TGA‖2
Inobs/2

+ τ‖dsim
DTGA − dobs

DTGA‖2
Inobs/2

, (17)

and where the superscripts “sim” and “obs” refer to the simulated and the

experimental observations respectively.

In addition to its advantages regarding the efficient exploration of large

search spaces, the SCE algorithm can be also considered trivially parallel since
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the different local groups can run independently, thus reducing the overall

computational time.

3.2. Stochastic inverse problem

The optimization process previously described provides a way to find the

parameters p0 that best fit the observations dobs. However, this deterministic

framework does not take into account the uncertainties on the observations

that could lead to a different value of p0. Although it is possible to use regu-

larization techniques in the deterministic approach, the Bayesian probabilistic

framework briefly described below provides a natural way of incorporating

those uncertainties.

In Bayesian inference, the posterior probability density, namely the result

of the identification process, is given by the Bayes’ formula:

π(p|dobs) = π(dobs|p)π0(p)∫
<m π(dobs|p)π0(p)dp . (18)

Here, π0(p) is the prior probability density and π(dobs|p) is the likelihood

function. The likelihood function evaluates the plausibility of a value p of

the parameters by calculating the density of probability of observing the data

dobs given that value of the parameters. It is assumed the observation errors

to be independent and identically distributed following a Gaussian density

of known variance σk. The likelihood function provided the observations is

given by

π(dobs|p) = 1
(Πkσk)(2π)nobs/2 exp

(
−1

2‖d(p)− dobs‖2
W

)
(19)
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and the weighting factor is given by

W =

Σ−1
TGA 0

0 Σ−1
DTGA

 , (20)

where the covariance matrices ΣTGA and ΣDTGA are diagonal matrices and

are directly obtained from the experimental measurements as will be described

in Sect. 4. The prior density should compile all the information about the

parameters before taking into account the data. Because of the absence of

prior knowledge about the distribution of the parameters, it is assumed a

joint uniform prior distribution whose upper bounds are large enough so that

the result of the inference is not influenced and lower bounds come from

physical constraints (strictly positive), which results in the same expression

as for the search space in the optimization method. The posterior density is

what we know about the parameters after observing the data and it is the

objective of the inference. In Bayesian inference, computations with Bayesian

posteriors are performed by random explorations of the posterior distribution

that provide samples directly drawn from it. These samples can then be used

to estimate statistics of the posterior distribution (e.g. mean, variance, etc)

using Monte Carlo integration, or for propagation through numerical solvers

for uncertainty quantification.

Markov Chain Monte Carlo (MCMC) methods are a general class of

sampling methods to draw samples from a target distribution, here the

posterior distribution π(p|dobs) [36]. A robust MCMC method is the

Metropolis–Hastings algorithm, first proposed by Metropolis et al. [37] and

later generalized by Hastings [38]. Starting from a value p0, this algorithm

draws samples from a distribution, J , thereon called proposal distribution,

17



that is easier to simulate. The proposed samples p∗ are then accepted or

rejected according to an acceptance probability [33, 39]. The accepted

samples pl characterize fully the posterior distribution.

In practice, we only need to sample from J for determining the new

value of the estimate p∗. Finally, when the proposal distribution is of the

form J(p∗|pl−1) = J(|p∗ − pl−1|) such as a Gaussian distribution, then the

algorithm is called Random Walk Metropolis-Hastings (RWMH). We choose

the proposal distribution to be a multivariate Gaussian distribution centered

on pl−1 with covariance matrix Σ

J(p∗|pl−1) = 1√
(2π)npdetΣ

exp
(
−1

2
(
p∗ − pl−1

)T
Σ−1

(
p∗ − pl−1

))
. (21)

The initial covariance matrix Σ will be assumed to be a diagonal matrix where

the diagonal elements are tuned by trial-and-error to reach a good acceptance

rate.

The starting value p0 of a MCMC chain can seriously deteriorate the

convergence of the chain causing a large burn-in phase. This is especially true

for multimodal likelihood functions as the chain can get trapped into a local

minimum. The number of iterations it remains trapped will depend strongly

on the goodness of approximation of the proposal function to the posterior

distribution. To overcome this problem, the Markov chain is initialized with

the best estimates p0 resulting from the global optimization search on the

whole parameter space.

The overall Bayesian procedure is implemented within an in-house python

package: PYthon Bayesian Inference Toolbox and Uncertainty Propagation

(PYBITUP). This package includes standard MCMC methods such as the
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RWMH used in this work. In Sect. 6.4, uncertainty propagation is performed

to other heating rates using the results of the Markov chains obtained from

the calibration using direct Monte Carlo simulations.

4. Description of experimental data

To calibrate the model for PICA we used two sets of data obtained

from independent experimental efforts [18, 19]. While other data exist on

the pyrolysis of the SC1008 phenolic system [40] and similar resins [41],

the selected sets constitute the most modern data on the material. These

experiments measured the actual aerogel formulation of PICA’s resin and

covered a wide range heating rates.

The first data-set comes from Wong et al. [18], who performed traditional

TGA measurements using a commercial TGA device (SEIKO SSC/5200

TG/DTA220). In this experiment, the mass loss of a 2.2 mg sample of

PICA was monitored during the temperature ramp at a low heating rate

of 10 K min−1. For convenience of the present analysis, the noise of the

decomposition curve from [18] is smoothed using a Savitzky-Golay filter

[42] and corrected for possible TGA buoyancy effects. This noise gives a

measure of the variance on the mass loss appearing in Eqs. 19 and 20 which

is approximately a linear function of temperature. About its derivative, it is

not straightforward on how to obtain the experimental noise as the derivative

of the signal depends mainly on the quality of the filter, which is itself noisy.

Therefore, this quantity will not be used in the Bayesian inference.

The second data-set is from the experiments of Bessire and Minton at

366 K min−1[19]. Their experiments consisted of a PICA sample which was
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resistively heated by passing a high current through the carbon fiber preform

substrate of PICA. Monitoring the temperature using a thermocouple located

in the center of the material and using a control system, the authors were able

to achieve heating rates much higher than those of traditional TGA systems.

The pyrolysis products from the PICA sample were collected and analyzed with

a time-of-flight mass spectrometer, which allowed to quantify 14 characteristic

molecules from the pyrolysis of PICA. This included permanent gases, water

and hydrocarbons (up to C8). The authors measured the experimental

variability by repeating three times their experiments. They expressed the

results with a mean and a standard deviation. The global mean value is

obtained by summing all the curves and the standard deviation is obtained by

assuming Gaussian independent noises for each production curve. As a first

approximation, we will use this variance in the likelihood function that we

will further relax to account for additional variability. Finally, TGA-like mass

loss versus temperature (or time) curves were reconstructed by integrating the

measured gas production rates. Again, variance on reconstructed curves is

not trivial to estimate due to numerical errors and we do not use this quantity

in the Bayesian inference. However, estimated variance from resampling will

be used to asses the accuracy of the extrapolated curves with uncertainties in

Sect. 6.4.

It can be seen in Fig. 3 that the low heating rate data (in blue, Wong et

al. [18]) is shifted towards substantially higher temperatures compared to

the high heating rate data (orange, Bessire and Minton [19]). This effect has

been reported in the literature [16, 17] for carbon/phenolic composites, but

has never been considered in traditional kinetic models for PICA. Indeed, the
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devolatilization mechanisms based on parallel reactions currently in use are

not able to reproduce this effect due to their mathematical formulation as

proven in previous work [25].
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Bessire and Minton

Figure 3: Experimental data used for model calibration. In blue, TGA (10 K min−1) data

from Wong et al.[18] filtered to reduce noise and buoyancy effect. In orange, the data from

Bessire and Minton (366 K min−1) [19].

5. Reaction scheme proposed for PICA

The proposed kinetic model needs to be coherent with the experimental

data presented in Sect. 4. The observation that at high heating rates the

decomposition curve shifts towards lower temperatures suggests the need

to segregate the model into a “low heating rate” and a “high heating rate”

pathway as depicted in Fig. 4.

In the following, the superscripts G and S are used to clarify which

components are gaseous or solids respectively. In addition, the superscript “∗”
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highlights intermediate solids that are produced without release of pyrolysis

gases in a depolimerization process [21]. The initial reactant ρS1 decomposes

into two different branches: a slow k1,1 process for low heating rates and a

fast one k1,2 for high heating rates. The slow branch progressively depletes

the reactant starting at lower temperatures (E1,1 < E1,2) and requires time to

be completed. Therefore, at low heating rates, decomposition is dominated by

such process and the intermediate solid ρS,∗2 is produced. At high heating rates,

the fast process k1,2 becomes active and dominant. This process decomposes

most ρS1 , producing the intermediate ρS,∗3 , while impeding the production

of ρS,∗2 . Each intermediate solid (ρS,∗2 and ρS,∗3 ) will further react at rates

k2,1 and k3,1 into charred solids ρS4 and ρS6 , with the corresponding release of

pyrolysis gases ρG5 and ρG7 , respectively.

ρS,∗
2

ρS,∗
3

γ2,1,4 ρ
S
4 + γ2,1,5ρ

G
5

γ3,1,6 ρ
S
6 + γ3,1,7ρ

G
7

ρS1

k1,1

k1,2

k2,1

k3,1

Figure 4: Proposed competitive mechanism for the thermal degradation of PICA.

The reaction scheme depicted in Fig. 4 can be written as ODEs’ system
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of the form shown in Eq. 9 as

d
dt



ρS1

ρS,∗2

ρS,∗3

ρS4

ρG5

ρS6

ρG7



=



−(k1,1 + k1,2) 0 0 0 0

k1,1 −k2,1 0 0 0

k1,2 0 −k3,1 0 0

0 γ2,1,4k2,1 0 0 0

0 γ2,1,5k2,1 0 0 0

0 0 γ3,1,6k3,1 0 0

0 0 γ3,1,7k3,1 0 0



·



ρS1

ρS,∗2

ρS,∗3

ρS4

ρG5

ρS6

ρG7



(22)

This system of equations can be reduced removing dependent variables

such that matrix A is full rank. In addition, the mass conservation constraint

γi,j,l+1 = (1− γi,j,l) allows to remove the two unknown mass coefficients for

the pyrolysis gases. In total, considering the four reaction rates ki,j, each

of them having two free parameters, the four mass coefficients and the two

consistency relations, the total number of parameters to be calibrated is thus

equal to 10.

6. Results

In the following, the parameter optimization results based on the afore-

mentioned kinetic model using the deterministic and Bayesian approaches

are presented. Then, the result of this newly calibrated model is compared

with current models from literature. Finally, the extrapolation capabilities

of our calibrated model are explored by propagating and comparing with

experimental results from the literature carried out at other heating rates.
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Figure 5: Comparison between the experiments and the calibrated model for the two

different heating rate scenarios. On the left (a) are the curves for the normalized sample

density and on the right (b) the normalized production rate curves as a function of

temperature.

6.1. Deterministic approach

Fig. 5 shows that the calibrated model captures the behavior of the

experimental data. Both the final state and its evolution are well reproduced

by the proposed model. The shift in the production peak (Fig. 5b) towards

lower temperatures with increasing heating rate is also well captured. This is

in contrast with kinetic mechanisms based solely on parallel reactions that

cannot achieve this match as it will be shown later.

The Arrhenius parameters for the calibrated model are summarized in

Table 1. Consistently with the proposed model (Sect. 5), the activation energy

E1,1 is lower than E1,2 (Table 1), indicating that the conversion towards ρS,∗2

starts earlier than the conversion towards ρS,∗3 . The pre-exponential factor

A1,1 is lower than A1,2 which indicates that the production of ρS,∗2 is slower

than that of ρS,∗3 . In summary, the calibrated kinetic parameters are all

coherent with the underlying hypotheses of the model.

The production and the consumption of the different density variables
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Parameter Value Parameter Value

log10(A1,1) 2.019 E1,1 32618.482

log10(A1,2) 14.292 E1,2 143273.910

log10(A2,1) 0.442 E2,1 51783.980

log10(A3,1) 0.993 E3,1 31087.851

γ2,1,5 0.163 γ3,1,7 0.244

Table 1: Values for the calibrated parameters obtained from the deterministic optimization.
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Figure 6: Evolution of the different solid densities for the calibrated model. It can be

observed how the dominant pathway changes as the heating rate increases.

can also be observed from the plots presented in Fig. 6. At low heating rate

(Fig. 6a), the initial solid is mostly converted into ρS,∗2 , while the opposite

occurs at high heating rates (Fig. 6b). These intermediate steps further react

at higher temperatures generating the char yield.

6.2. Bayesian inference

The Markov chain is initiated using the results from the deterministic

optimization shown Table 1. Owing to the relatively short burn-in enabled

by using the previous optimization result, we run the chain for 104 iterations.

Fig. 7 presents the simulated data obtained from the inference compared
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Figure 7: Mass loss curve at heating rate of 10 K min−1 (a) and production rate curve at

heating rate 366 K min−1 (b) obtained with the uncertain parameters. The continuous

lines are the computed mean at each temperature. The dashed lines are the initial

calibrated model (maximum likelihood estimator). The shaded areas represent the credible

interval (inner-darker shaded area) and the prediction interval (outer-lighter shaded area)

respectively.
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to the observed data to assess the validity of the model. We represented the

mean value (solid line) and the credible and prediction intervals with bounds

at 95% confidence (darker and lighter shadows, respectively). The credible

interval takes only the parameter uncertainties obtained from the Bayesian

inference. It does not take into account experimental uncertainties. By

contrast, the prediction interval considers the experimental errors, and almost

all the experimental data lie within the prediction interval as seen on Fig. 7.

The model features an overall good agreement with the experimental data

but some discrepancies as in Fig. 5 are again observed at high temperatures

for 10 K min−1 and at low temperatures for 366 K min−1. These discrepancies

are not captured by the uncertainties on the parameters and this suggests

that further complexities could be captured by improving models that will

help reducing the overall model error. The negative value for some of the

interval bounds at the onset and tail of the decomposition curves are due to

the choice of the Gaussian additive noise for the error model from Eq. 10 over

the whole temperature interval. Even though this does not occur in actual

experiments.

Second, in Table 2, the values obtained for the mean, standard deviation

and coefficient of variation (CV) are summarized for the marginal distributions

directly estimated from the Markov chains. The mean values may be different

from the previous deterministic values used to initiate the Markov chains.

The mean value for γ2,1,5 is very close to its deterministic value because this

parameter is found to be the less correlated with all the other ones, as seen

in the following. The CV provides a measure of the relative dispersion of

the plausible parameter values with respect to the mean. The higher values
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Parameter Mean Std CV Parameter Mean Std CV

log10(A1,1) 2.4768 0.3027 0.0.1222 E1,1 26811.37 893.61 0.0333

log10(A1,2) 23.4935 1.1618 0.0494 E1,2 183938.42 2369.64 0.0129

log10(A2,1) 0.2219 0.1238 0.5579 E2,1 48796.41 1723.16 0.03531

log10(A3,1) 1.1969 0.0821 0.0686 E3,1 33566.43 976.07 0.0291

γ2,1,5 0.1648 0.0038 0.0234 γ3,1,7 0.3190 0.0703 0.2202

Table 2: Values for the mean, standard deviation (std) and coefficient of variation (CV)

for the calibrated parameters obtained from the Bayesian inference.

of the CVs for the reaction branch (2,1) for both A2,1 and E2,1 suggest that

these two parameters are more difficult to identify and are more uncertain,

although this reaction produces the component ρS4 at the two heating rates

(Fig. 6) and thus more information is provided from the experimental data.

This higher uncertainty is attributed to the slower process of the reaction

(2,1) characterized by the low value of A2,1.

A graphical representation of the full correlation matrix is provided in

Fig. 9. The correlation matrix is obtained from the estimated covariance

matrix normalized by the standard deviations of the random parameters, such

that diagonal terms of the correlation matrix are equal to one and off-diagonal

terms range between 1 and -1. We note that the Arrhenius parameters A
and E for the equations (2,1) and (3,1) are found to be highly correlated

with a value for the correlation coefficient that is close to 1. This results in

a wide range of values for the pre-exponential factor A and the activation

energy E that can give satisfactory fits to the data. The high correlation is

sometimes referred to as the kinetic compensation effect and has already been

observed in past kinetics studies [31, 43, 44]. However, the pair of parameters
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A and E for reaction (1,1) and (1,2) that are related to the production of

the intermediate components are found to be less correlated. Besides the

kinetic compensation effect for A and E , additional compensation mechanisms

characterized by a high value for the correlation coefficient are observed: this

is the case for example for the pair of parameters A1,1 with γ3,1,7; A2,1 with

γ3,1,7; etc. There is only limited correlation with parameter γ2,1,5 and results

in the marginal distribution for which sampling has well converged (the closer

to a Gaussian distribution). We finally note the high positive correlation

value for the pair or parameters A1,1 with A1,2.

Finally, Fig. 8 represents the evolution of the densities as a function of

the temperature (as in Fig. 6) but now with uncertainty intervals. It is

observed in Fig. 8b that when both mechanisms are in competition, it is more

uncertain to know what goes into which branch, leading to larger intervals

and which also manifests itself in the high positive correlation between A1,1

with A1,2. This strong interaction between A1,1 with A1,2 is intrinsic to the

competitive mechanisms: the uncertainties in these two parameters combine

themselves and result in large uncertainty intervals in the densities when

there is competition between the two reactions. On the other hand, for the

pyrolysis at 10 K min−1 where the competition between the two reactions

is less balanced, uncertainty ranges in the densities are tighter because the

reaction is characterized mainly by the first branch of the mechanisms and is

less influenced by the second one, as it can be corroborated on Fig. 8a.

The results of this section show that other parameter sets p0 can provide

satisfactory results for representing the experimental results with their uncer-

tainties. We were able to obtain samples from the posterior distribution using
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Figure 8: Evolution of the different solid densities for the calibrated model with their

uncertainty intervals.

Markov chain and compare the model evaluations with the experimental data,

thus taking into account the correlations between the input parameters. Not

taking into account the correlation between the input parameters may lead

to wrong results for the propagation and samples drawn directly from the

Markov chain should be used for the uncertainty analysis. It was found that

due to the nature of the competitive scheme and because a component can

be both produced and consumed, there are additional kinetic compensation

effects beyond the pair of parameters A and E , thus making the inference

process even more uncertain.

6.3. Benchmark with other models

The proposed competitive model is compared to two other traditional

devolatilization mechanisms [11, 12] for PICA, that feature parallel reactions

schemes. First is the model of Lachaud et al. [11] developed for the Porous

Material Analysis Toolbox (PATO) is based on a two-equation model built
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Figure 9: Graphical representation of the correlation matrix. The size of the squares is

proportional to the magnitude of the elements of the matrix. On the colored graph, blue

squares represent a positive correlation while red squares represent a negative correlation

and the magnitude of the coefficient is represented on the side bar. The diagonal is

characterized by the value of the correlation equal to 1 and off-diagonal terms vary between

-1 (negative correlation) and 1 (positive correlation).

upon legacy data on the decomposition of phenolic [7–9]. Previous studies

have shown that the model yields equivalent results to the baseline design

model used in Fully Implicit Ablation and Thermal Analysis Program (FIAT)

[10, 45]. Second is the model of Torres-Herrador et al. [12] that features

a six reactions scheme and was calibrated on the pyrolysis experiment of

Bessire and Minton at 366 K min−1. The comparison is based on the same

zero-dimensional chemical reactor simulations as used during the calibration
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Figure 10: Comparison between proposed competitive model, the models of Lachaud [11]

and of Torres-Herrador [12] and the experimental data.

step and is also the same used in [12].

As it can be seen in Fig. 10, the three models perform differently: the

model calibrated from legacy data (Lachaud et al., [11]) does not agree with

the new experimental measurements at either heating rates. The upgraded

model of Torres-Herrador et al. ([12]) reproduces the degradation at the

high heating rate for which it was calibrated (Fig. 10b), but fails to predict

the behavior at low heating rate (Fig. 10a), under-predicting the pyrolysis

temperature. In contrast, the competitive model can describe both low and

high heating rates accurately.

This comparison shows that devolatilization mechanisms calibrated at a

certain heating rate have limited applicability outside the calibration range

and extrapolation can easily lead to largely erroneous predictions. In contrast,

competitive models can include larger range of conditions, in addition to their

capability to reproduce more complex behaviors. Very complex schemes can

virtually be modeled, by adding bifurcation branches that become predominant

as the heating rate changes.
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6.4. Model behavior with temperature

The scarcity of thermal degradation data is one shortcomings often

encountered when calibrating pyrolysis models. This is particularly true

for specific resin systems such as the SC1008 phenolic of PICA for which

comprehensive data that include quantification of pyrolysis products are

only available at a limited number of conditions. Therefore, in this last

section we finally test the performance of the developed competitive model at

other heating rates than those used for the calibration in order to assess the

prediction capabilities of the model to other conditions.

First, without any comparison to experimental results because of the

lack of data in the literature, we look at how our model behaves when the

heating rate progressively increased from 10 K min−1 up to 366 K min−1, and

in particular we look at how the production curve evolves. As seen on Fig. 11,

when the heating rate increases from 10 K min−1 to 20 K min−1, the expected

shift towards higher pyrolysis temperatures is observed. This is because the

process is still slow enough for the “slow branch” k1,1 to be dominant in the

process, converting most of the original reactant ρS1 to ρS,∗2 . However, at

a higher heating rate (50 K min−1), k1,2 starts to gain importance and the

pyrolysis temperature starts shifting in the opposite direction reaching the

other calibration heating rate (366 K min−1). As the heating rate is increased

even further (extrapolation of the kinetic scheme), the pyrolysis temperature

shifts again towards higher temperatures.

Second, the proposed competitive model is compared to experimental

results in order to assess the extrapolation capabilities of the model. Besides

the 366 K min−1 used for the calibration, three other heating rates for the
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Figure 11: Model behavior at different heating rates. At 50 K min−1, the fast reaction

(corresponding to k1,2 starts becoming dominant shifting the main decomposition peak

towards lower temperatures.)

decomposition of PICA at 186, 762 and 1500 K min−1 are available from

the work of Bessire and Minton [19]. We take advantage of those additional

experimental results that were not used to calibrate our model in order to

compare and assess its validity when extrapolated to those heating rate.

The comparison is presented in Fig. 12. The propagation of the uncertain

parameters allow us to establish whether the observed discrepancies between

the model and the experimental curves come from parameter uncertainties.

For 186 K min−1 (Fig. 12a), it might be the case at low temperature and high

temperature. However, there is a clear discrepancy between 800 K and 1300 K

due to the model. The same behavior is observed at 762 K min−1 (Fig. 12c)

where model discrepancy occurs between 600 and 900 K. At the highest

heating rate (1500 K min−1, Fig. 12d), it shows substantial discrepancies,
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particularly below 800 K, and applying the current calibrated model to this

heating rate is obviously wrong. These results emphasize that care me be taken

when applying a pyrolysis model to other heating rates as unknown physical

mechanisms may appear. Therefore, the model should be refined by adding

more articulated branching evolutions of the present scheme in order to model

these discrepancies and calibrate it with these curves. The new calibrated

results would then look probably closer to the exact experimental results.

Discrepancies could also come from other mechanisms than adding competitive

reaction and we should for instance account for interactions between the

gaseous products and the carbonaceous char, which are unaccounted for in

the present model. We refer the reader to the experimental paper for a

detailed discussion of the complexities that characterize the charring process

of PICA [19]. Developing a dedicated finite rate kinetic model for the pyrolysis

of PICA that fits the experimental results at all heating rates was beyond the

scope of this study, but is the next necessary step towards the development

of a comprehensive predictive material response model.

7. Conclusion

Experimental data from literature of pyrolysis of carbon/phenolic ablators

showed behavior that could not be explained by the current devolatilization

models. Therefore, we have studied the possibility of importing the compet-

itive schemes typically used in biomass pyrolysis for aerospace heat shield

materials.
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Figure 12: Comparison with the different heating rates of Bessire and Minton [19].
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A competitive kinetic mechanism coherent with the experimental measure-

ments has been proposed and calibrated using first a deterministic and then a

Bayesian optimization framework. Both optimization methods provide similar

results, but the Bayesian method provides extra knowledge regarding the

sensitivity of the competitive mechanism to the different kinetic parameters.

The calibrated model closely follows the experimental measurements by

Wong et al. [18] and by Bessire and Minton [19] at two distinct heating rate

conditions.

The Bayesian analysis showed that there were several plausible values

for the calibrated parameters and they were shown to be robust to the

experimental data. However, some discrepancies are still observed between the

physical model and the experiments and it is due to the choice of the physical

model that might not be perfect. It was observed that the Markov chains for

several parameters were slow to converge, even for the relatively simple model

with few parameters considered here. Larger uncertainty intervals are observed

when the two competitive branches are active during the reaction process

and additional interaction effects between parameters. The high complexity

of the parameter correlations, possible non-Gaussian posterior distribution

and large dimensions suggest to investigate in the future more sophisticated

algorithms that adapt the covariance matrix of the proposal distribution to

the posterior distribution for a more efficient parameter inference.

Finally, we have shown the limitation of devolatilization models to pre-

dict the degradation of carbon/phenolic at different heating rates and how

competitive mechanisms can cope with this limitation.
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