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ABSTRACT  53 

 54 

Background: Previous studies suggest that obesity (OB) is associated with disrupted brain network 55 

organization, however, it remains unclear whether these differences already exist during childhood. Moreover, it 56 

should be investigated whether deviant network organization may be susceptible to treatment. 57 

Methods: Here, we compared the structural connectomes of children with OB with age-matched healthy weight 58 

(HW) controls (aged 7-11 years). Additionally, we examined the effect of a multidisciplinary treatment program, 59 

consisting of diet restriction, cognitive behavioral therapy and physical activity for children with OB on brain 60 

network organization. After stringent quality assessment criteria, 40 (18 OB, 22 HW) datasets of the total sample 61 

of 51 participants (25 OB, 26 HW) were included in further analyses. For all participants, anthropometric 62 

measurements were administered twice, with a five-month interval between pre- and post-tests. Pre- and post T1- 63 

and diffusion-weighted imaging scans were also acquired and analyzed using a graph theoretical approach and 64 

network-based statistics. 65 

Results: Global network analyses revealed a significantly increased normalized clustering coefficient and small-66 

worldness in children with OB compared to HW controls. Additionally, regional analyses revealed increased 67 

betweenness centrality, reduced clustering coefficient and increased structural network strength in children with 68 

OB, mainly in the motor cortex and reward network. Importantly, children with OB lost a considerable amount 69 

of their body mass after the treatment; however, no changes were observed in the organization of their brain 70 

networks. 71 

Conclusion: This is the first study showing disrupted structural connectomes of children with OB, especially in 72 

the motor and reward network. These results provide new insights into the pathophysiology underlying 73 

childhood obesity. The treatment did result in a significant weight loss, which was however not associated with 74 

alterations in the brain networks. These findings call for larger samples to examine the impact of short- and long-75 

term weight loss (treatment) on children’s brain network organization.  76 
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1. INTRODUCTION 77 

Childhood obesity (OB) is a challenging threat to global health, because it is often associated with other health 78 

diseases, such as type 2 diabetes and cardiovascular diseases (1,2). Excessive eating behavior and reduced levels 79 

of physical activity have shown to be the main causes of this multifactorial health problem (1,3,4) and weight 80 

loss programs are recommended to be multidisciplinary with focus on eating and exercise behavior. Optimal 81 

regulation of these behaviors relies on an integrated and efficient information processing of the brain network 82 

(5,6). For example, in a daily life context, the individual is challenged to ignore or inhibit unhealthy stimuli (e.g., 83 

eating a chocolate bar) that would instantly trigger the reward center and instead opt for the less “rewarding” 84 

bout of physical activity (7). Previous neuroimaging studies suggest that childhood OB is associated with 85 

differences in grey matter density (8,9) and white matter organization (8,10), mainly in frontal and temporal 86 

brain regions. Moreover, previous work from our lab has shown that a multidisciplinary treatment program at the 87 

Zeepreventorium (De Haan, Belgium) resulted in a significant increase in total and cerebellar gray matter 88 

volume in children with OB, while no change was observed in the healthy weight (HW) controls (11). These 89 

findings indicate that typical unhealthy behavior in individuals with OB indeed may be related to altered brain 90 

structures in specific regions. Nevertheless, to understand the impact of childhood OB on the global organization 91 

of brain networks, it is important to move beyond isolated brain regions and evaluate the brain as a large-scale 92 

network (12). 93 

 94 

Graph theory is a mathematical framework which represents the brain as a connectome consisting of nodes (i.e., 95 

brain regions) and edges (i.e., functional or structural connections between brain regions) (13). Graph metrics 96 

can be calculated to identify highly efficient brain networks, known as small-world networks, which are 97 

characterized by high local segregation (i.e., dense local clustering between neighboring nodes) and high global 98 

integration (i.e., short path lengths between any pair of nodes) (14). Graph theory enables to quantify interactions 99 

between brain regions, rather than assuming that brain areas act as independent processers. In this way, graph 100 

metrics can provide complimentary characterization of brain development in childhood obesity and related 101 

behaviours (12,15,16). Moreover, graph theory has been useful for detecting disease-related differences and 102 

alterations in brain network organization across a wide range of clinical populations (see Griffa et al. (17) for a 103 

review).  104 

 105 
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To date, only a few studies have used graph theory to examine brain network organization in relation to OB, 106 

albeit in adults. Chao et al. (18) and Baek et al. (19), for example, observed reduced small-world characteristics 107 

in brain networks of adults with OB (NChao=20 / NBaek=40; 22-58 years old) compared to HW controls, using 108 

resting state functional magnetic resonance imaging (MRI). Specifically, OB was associated with reduced local 109 

segregation characterized by a lower normalized clustering coefficient and altered (i.e., increased or decreased) 110 

global integration characterized by a lower global efficiency and normalized characteristic path length in the 111 

global brain network. Additionally, network-based statistics (i.e., edge-wise comparisons) revealed a decreased 112 

functional network strength (i.e., lower functional connectivity) in the cortico-striatal/cortico-thalamic network 113 

of adults with OB (19). Finally, a diffusion MRI study showed reduced (structural) node strength (i.e., sum of the 114 

weights of all the edges connected to each node) and normalized clustering coefficient (i.e., segregation) in 115 

subjects with OB (N=31, 12-39 years old) compared to HW controls, with more pronounced results in the reward 116 

network (20). Altogether, these studies suggest that OB is associated with an imbalance between local 117 

segregation and global integration and disrupted networks, which may lead to less efficient information 118 

processing in the brain network. However, it remains unclear whether these network differences also exist in 119 

(young) children with OB, because graph theory studies in relation to OB have only focused on adolescents and 120 

adults so far. Moreover, no research is available on the effect of a specialized multidisciplinary weight reduction 121 

OB program on structural brain connectivity and network organization. As previous neuroimaging studies in 122 

other clinical populations (such as traumatic brain injury) have shown that graph metrics and structural network 123 

strength show promising validity as ‘biomarkers’ to examine training-induced alterations (21–25), examining the 124 

effect of multidisciplinary treatment on structural brain connectivity and network organization in children with 125 

OB can provide greater insight into the structural neuroplasticity underlying weight loss.  126 

 127 

Therefore, this study set out to examine global and regional brain network properties in children with OB using 128 

graph theoretical analysis (i.e., graph metrics; node-wise comparisons) and network-based statistics (i.e., 129 

structural network strength; edge-wise comparisons) (26). Our first aim was to compare structural segregation, 130 

global integration and structural network strength between children with OB and HW controls. The second aim 131 

of this study was to determine the effect of a specialized multidisciplinary weight reduction OB program on 132 

structural brain connectivity and network organization. Based on previous studies in adults with OB (18–20), we 133 

expected that children with OB would display reduced clustering coefficient, characteristic path length and 134 

small-worldness compared to HW controls and that these alterations would resolve following treatment. At the 135 
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regional level, significant differences in brain network organization were expected to be most pronounced in the 136 

reward network.  137 
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2. METHODS 138 

2.1. Participants 139 

Fifty-one children (20 girls, 9.5±1.0 years, range 7.8–11.6 years) participated in this study. The children with OB 140 

(N=25, 12 girls, 9.6±0.9 years) were recruited via a local rehabilitation center, where they attended a 141 

multidisciplinary OB program. This group of children was classified as obese according to the internationally 142 

accepted age- and sex-specific cut-off points for children (27). An age-matched (i.e., within 6 months) control 143 

group (N=26, 8 girls, 9.5±1.1 years) was recruited through local primary schools. These participants were 144 

classified as healthy weight according to the same cut-off points and were not involved in any kind of treatment 145 

during the course of the study (see Figure S1 in Supplemental Material 1 for an overview of the study sample). 146 

The protocol of the study was approved by the Ethical Committee of the Ghent University Hospital prior to data 147 

collection. The children and their parent(s) or legal caretaker(s) were fully informed about the study and parents 148 

always discussed with their child if they were willing to participate, before signing the informed consent.  149 

 150 

2.2. Procedure 151 

All participants were assessed on two occasions with a five month time interval between pre- and post-test (OB: 152 

147±21 days; HW: 154±12 days). For the children with OB, measurements at the pre-test were taken at the start 153 

of the multidisciplinary OB program. A detailed description of the program can be found in our previous work 154 

(28,29). Briefly, children with OB followed a multidisciplinary OB program at the rehabilitation center 155 

Zeepreventorium (De Haan, Belgium). During the treatment, children were full-time residents at the center and 156 

only went home (i.e., three times a month) during weekends. The program focused on three central pillars, 157 

including moderate diet restriction, cognitive behavioral therapy, and regular physical activity. The duration of 158 

the treatment program was 10 months in total; however, previous studies from our lab observed a considerable 159 

amount of weight loss after only 4 months of treatment with the Zeepreventorium (i.e., 11.7 kg / 17.9 % on 160 

average; 28, 29). This weight loss was further accompanied by significant improvements in children’s gross and 161 

fine motor competence. These findings, in combination with methodological (e.g., stability of the scanner) and 162 

practical issues (e.g., minimizing drop-out rate, planning with the rehabilitation center), motivated our decision 163 

to select a 5-month time interval between pre-measurement (i.e., prior to the start of the treatment program) and 164 

post-measurement. 165 

 166 

 167 
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 168 

2.3. MRI acquisition 169 

In the present study, T1-weighted and diffusion-weighted images were acquired on a 3T Siemens Magnetom 170 

Trio MRI scanner system (Siemens, Erlangen, Germany). All MRI analyses were performed on the high 171 

performance computing infrastructure of Multi-modal Australian ScienceS Imaging and Visualization 172 

Environment (MASSIVE) (30). An overview of the processing pipeline is shown in Figure 1. Please refer to 173 

Supplemental Material 2 for acquisition parameters, preprocessing, and tractography pipeline.  174 

 175 

2.4. Network construction 176 

Connectivity matrices were weighted by the number of reconstructed streamlines (NOS), which represents the 177 

total number of interregional connections (i.e., edges) between each pair of nodes. These NOS were calculated 178 

using a probabilistic tractography algorithm, which can improve sensitivity (i.e., low number of false negatives), 179 

but often results in spurious connections known as false positives and yields almost fully connected matrices 180 

with a connection density of ~0.9-0.95 (refs. 31,32). Since fully connected structural networks are more than 181 

likely non-biological plausible (i.e., connection density >0.5) (refs. 31,33), the following thresholding procedure 182 

was applied to eliminate spurious and discarded connections: (i) On the one hand, an edge was set to zero for 183 

connections with NOS lower than k (here: k=115), whereby k was the lowest NOS for which the highest 184 

connection density did not exceed 0.5 (ref. 34) and the lowest connection density did not result in fragmented 185 

networks; (ii) On the other hand, a group threshold of 60% was applied across all subjects and all time points, 186 

whereby a connection needed to be present in at least 60% of the subjects across time points to be included (35). 187 

This resulted in a mean connection density of 0.4. Since results can differ across connection densities, this 188 

thresholding procedure was repeated using group thresholds ranging from 30-90% (interval 15%) to check the 189 

robustness of the results (density-range: ~0.3-0.5).  190 

 191 

2.5. Anthropometric measurements 192 

Body height (0.1 cm, Harpenden, Holtain, Ltd., Crymych, UK), body weight (0.1 kg) and fat percentage (0.1%, 193 

Tanita, BC420SMA, Weda B.V., Naarden, Holland) were assessed in minimal clothing on the day of the MRI 194 

scanning. Children were classified as being HW or obese by calculating the body mass index (BMI, kg/m2) (27). 195 

Additionally, children’s waist circumference (0.1 cm) was measured using a flexible tape measure. Socio-196 

economic status was self-assessed by the parents based on family income level. In a pediatric sample there may 197 
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be a great variation in maturity, which also affects brain development. To control for these maturity effects, 198 

Tanner staging for puberty was self-assessed by the children and their parents based on breast development in 199 

girls (stage 1-5) and testicular size in boys (stage 1-5)  (36).  200 

 201 

2.6. Statistical analyses 202 

2.6.1. Network-based statistical analysis 203 

The network-based statistic (NBS) toolbox version 1.2 (ref. 26) was used to (i) test for group differences in 204 

structural network strength at the pre-test; and (ii) test for time by group interaction effects in connectivity 205 

strength of the structural brain networks. The NBS toolbox is a validated method to deal with the multiple 206 

comparisons problem by using a nonparametric statistical approach (26).  The following multistep procedure was 207 

performed: First, the hypothesis of interest was tested with a single univariate test statistic for every connection 208 

in the network. Second, a test statistic threshold was determined, whereby a test statistic value exceeding the 209 

threshold of t=2.5, 3 and 3.5 was admitted to a set of supra-threshold connections. Third, connected components 210 

(i.e., subnetworks) were identified, whereby a component was defined as a group of supra-threshold connections 211 

for which a path can be found between any pair of nodes. Finally, a p-value was computed for each connected 212 

component using permutation testing (i.e., 5000 permutations) with a family-wise error rate (FWE) correction 213 

for multiple comparisons. For each permutation testing, data of all subjects were randomly assigned to the group 214 

of OB or HW. In addition to the NBS analyses, a repeated measures ANOVA (time by group interaction effect) 215 

was performed to compare the global network strength (i.e., total NOS; structural) between groups and across 216 

time points. For all the analyses, age was included as a nuisance covariate. 217 

 218 

2.6.2. Graph theoretical network analysis 219 

Complementary to NBS analyses (i.e., edge wise comparison), network properties were compared using the 220 

cross-sectional batch (group differences) and longitudinal pipeline (time by group interaction effects) of the 221 

Graph Analysis Toolbox (GAT) (34). First, 20 null networks were generated for network normalization by 222 

comparing each edge weight to the mean edge weight across the network. Then, the following graph metrics 223 

were extracted using the Brain Connectivity Toolbox (13): normalized characteristic path length, normalized 224 

clustering coefficient and small-worldness (see Table 1 for a detailed description of these graph metrics). 225 

Subsequently, a non-parametric permutation test with 5000 repetitions was used to test for statistical significant 226 

between-group differences (in changes) of graph metrics (slope). For each permutation, regional data of each 227 
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participant (at both time points) were randomly allocated to one of two groups with the same number of subjects 228 

as the initial groups. The differences in slope between randomized groups were then calculated and compared 229 

with the actual differences in the slope between the original groups to obtain a p-value. The same permutation 230 

procedure was applied to test for regional differences in clustering coefficient. For these regional analysis, the 231 

false discovery rate or FDR-corrected p-values were obtained to control for multiple comparisons. The 232 

significance threshold was set at p<0.05. Finally, network hubs, which are the most important regions in the 233 

brain, were defined based on betweenness centrality (mean + two standard deviations). Since the longitudinal 234 

plugin of the GAT toolbox does not include network hub analysis, the network hubs were only identified at the 235 

pre-test. To check the robustness of significant results across all group thresholds (30-90%), the area under the 236 

curve (AUC) was calculated by summing the value of the graph measures at each threshold. Additionally, one-237 

way and/or a repeated measures ANCOVAs, with age as covariate, were performed to test for between-group 238 

differences (in changes) of graph metrics across thresholds.  239 

 240 

2.6.3. Anthropometric measurements 241 

Statistical analyses were performed using SPSS Statistics (Version 22.0). Before analysis, data was checked for 242 

normality. Changes in anthropometric measurements were evaluated using a 2 (group) X 2 (time) repeated 243 

measures ANOVA. Additionally, partial correlations (controlling for age) were performed between: (1) 244 

structural network strength or graph metrics and anthropometric measurements at the pre-test; (2) structural 245 

network strength and/or graph metrics at the pre-test and changes in weight-related measures (
post-pre

post
*100%); and 246 

(3) changes in brain network strength (structural) and/or graph metrics (post-pre) and changes in weight-related 247 

measures. FDR corrections were made to control for multiple comparisons. The significance threshold was set at 248 

p<0.05.   249 
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3. RESULTS 250 

3.1. Participants 251 

From the initial sample of 25 children with OB, MRI-data of seven participants (3 girls, 9.9±0.8) had to be 252 

excluded due to claustrophobia, scanner/motion artefacts, or low quality of the image registration. This resulted 253 

in a final OB sample of 18 children (9 girls, 9.4±1.0 years) with good quality pre- and post-MRI data. Of the 26 254 

children with a HW, two children (1 girl, 8.5±0.3 years) dropped out during the course of the study and MRI-255 

data of two children (2 boys, 9.1±0.4) had to be excluded due to scanner artefacts or low quality of the image 256 

registration. This left us with a final control sample of 22 children with a HW (7 girls, 9.6±1.2 years). As shown 257 

in Table 2, children with OB had significant lower socio-economic status compared to HW controls. No 258 

significant group differences were observed for height, age and pubertal status at the pre-test (p>0.05).  259 

 260 

3.2. Network based statistical analysis 261 

At the pre-test, the NBS (t=3.5) revealed a significant higher connected sub-network in children with OB 262 

compared to the HW control group (p=0.046; see Figure S2 in Supplemental Material 3 for results with a t-263 

statistic threshold of t=3 and t=2.5). Specifically, this sub-network consisted of 3 edges connecting 4 nodes, 264 

including the right accumbens area, right putamen and bilateral caudate (see Figure 2B-C). This higher 265 

connected sub-network remained significant for all group thresholds considered (p’s: 0.0354–0.0492, FWE-266 

corrected), except for a group threshold of 30% (p=0.0568). Results from the longitudinal NBS analysis revealed 267 

no significant time by group interaction effects in structural network strength (p>0.05), indicating that the 268 

between-group difference in structural network strength did not change after OB treatment. Additionally, the 269 

repeated measures ANOVA revealed that total NOS did not differ between both groups across time-points 270 

(p>0.05; see Figure 2A). The analyses were repeated with sex as fixed factor. No significant group by sex 271 

interaction effects were observed. We can tentatively conclude that sex did not significantly influence the 272 

observed group differences in structural connectivity. 273 

 274 

3.3. Graph theoretical network analysis 275 

3.3.1. Global network properties 276 

Small-worldness (σ = normalized clustering coefficient (γ) / normalized characteristic path length (λ) > 1) was 277 

observed in all children, indicating that all participants had high local interconnectivity of the nodes (γ>>1) and 278 

an equivalent shortest path length (λ≈1) compared with the random networks at both time points (pre- and post-279 
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tests). At the pre-test, small-worldness (p=0.0028) was higher in the children with OB compared to HW controls 280 

because of the higher normalized clustering coefficient (p=0.0022; see Figure 3A). These between-group 281 

differences remained significant across different group thresholds (pAUC=0.002; see Figure 3B). No differences 282 

were observed for normalized path length (p=0.2318). Results of the longitudinal plugin of the GAT-toolbox 283 

revealed no significant time by group interaction effects (p>0.05). In other words, the differences in graph 284 

metrics between both groups did not change after OB treatment. The analyses were repeated with sex as fixed 285 

factor. No significant group by sex interaction effects were observed. We can tentatively conclude that sex did 286 

not significantly influence the observed group differences in structural connectivity. 287 

 288 

3.3.2. Regional network properties 289 

At the pre-test, a significantly reduced clustering coefficient of the left hippocampus was observed in children 290 

with OB compared to HW controls (p=0.0168, FDR corrected; see Figure 3A). The clustering coefficient in this 291 

node remained significant for the other group thresholds (pAUC=0.003; see Figure 3B). The longitudinal analysis 292 

did not reveal significant time by group interaction effects for the clustering coefficient at the nodal level 293 

(p>0.05, FDR corrected). The analyses were repeated with sex as fixed factor. No significant group by sex 294 

interaction effects were observed. We can tentatively conclude that sex did not significantly influence the 295 

observed group differences in structural connectivity. 296 

 297 

3.3.3. Hubs 298 

The hub network analyses revealed that both groups exhibited hubs at the pre-test. Specifically, increased 299 

betweenness centrality (i.e., mean + two standard deviations) was observed in the bilateral superior frontal gyrus 300 

and the right lateral orbitofrontal cortex. Additionally, two regions, including the left lateral orbitofrontal cortex 301 

and the left precentral gyrus, could be identified as hubs in the children with OB but not in the HW controls. 302 

These results indicate a different hub distribution at the pre-test in children with OB compared to HW controls.  303 

    304 

3.4. Changes in weight-related measures 305 

The repeated measures ANOVA showed significant time by group interaction effects for body weight, 306 

percentage body fat, waist circumference and BMI (p’s≤0.001). Post-hoc analysis revealed a significant decrease 307 

in each of the weight-related measures in children with OB (p≤0.001) after the program. In the HW control 308 

group, no significant changes in these measures (p>0.05) were observed between the pre- and post-test, except 309 
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for a small increase in body weight (p=0.005). Children with OB lost, on average, 18.8% (±4.4%) of their 310 

baseline BMI and 5 out of 18 children could be identified as overweight instead of obese after the intervention.  311 

 312 

3.5. Partial correlations 313 

No significant correlations were observed between (changes in) graph metrics or total strength and (changes in) 314 

anthropometric measurements (p>0.05; FDR-corrected). Using an exploratory uncorrected threshold of p<0.05 315 

(37), significant positive correlations were observed between graph metrics and weight-related measures at the 316 

pre-test (see Figure 4). Specifically, in the group of children with OB, a higher percentage of body fat at the start 317 

of the program was associated with higher network segregation (i.e., normalized clustering coefficient; r=0.515, 318 

p=0.034). Additionally, higher total fat mass was associated with higher normalized clustering coefficient 319 

(r=0.523, p=0.031) and small-worldness (r=0.509, p=0.037). In children with a HW, a higher body weight and 320 

BMI at the pre-test was associated with higher normalized clustering coefficient (r’s: 0.480-0.498; p’s: 0.028-321 

0.022) and higher small-worldness (r’s: 0.522-0.521; p’s: 0.015-0.015). Since an outlier was detected for 322 

normalized clustering coefficient and higher small-worldness in the HW control group (see Figure 4), the 323 

analyses were repeated without this outlier. The previously observed positive correlations between normalized 324 

clustering coefficient / small-worldness and body weight / BMI remained significant (r’s: 0.461-0.614; p’s: 325 

0.004-0.041), except for the correlation between normalized clustering coefficient and body weight (r=0.403, 326 

p=0.078).   327 
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4. DISCUSSION 328 

To the best of our knowledge, this is the first study exploring differences between the structural connectomes of 329 

children with OB and those of HW controls using a GAT and NBS approach. Our results demonstrated an 330 

altered whole-brain network organization in children with OB compared to HW controls. Moreover, regional 331 

analyses revealed that regions and pathways of the motor cortex and reward network were affected in children 332 

with OB. No changes were observed in their structural connectomes after following a standard five month 333 

multidisciplinary OB treatment program.  334 

 335 

Global network analyses revealed that both groups (OB & HW) exhibited a small-world organization, reflecting 336 

an optimal balance between local segregation and global integration (14). The structural connectomes of children 337 

with OB, however, showed a significantly higher normalized clustering coefficient compared with the HW 338 

controls. Moreover, partial correlations showed that a higher BMI was significantly associated with a more 339 

segregated brain network in the HW controls, albeit using an uncorrected p-value (p<0.05). Overall, these 340 

findings suggest that the structural connectomes of children with a higher BMI are more segregated into local 341 

clusters of connections. Previous neuroimaging studies reported a reduced normalized clustering coefficient in 342 

adolescents and adults with OB compared to HW controls (18–20), whereby the majority of participants reached 343 

pubertal stage. The different findings between child and adult studies may be due to the effects of brain 344 

maturation (38,39). Studies in the field of growth connectomics reported that brain networks mature from a 345 

“local” to a more “distributed” network organization during late childhood (7-11 years) (40). This process is 346 

characterized by a decrease in local segregation and an increase in global integration (38). In addition, previous 347 

network studies have shown that children with developmental disorders, such as attention deficit hyperactivity 348 

disorder and autism spectrum disorder, have higher local segregation compared to typically developing children 349 

(41–43). Thus, our results may suggest delayed network development in children with OB compared to HW 350 

controls, even though no significant group differences in pubertal status were observed. 351 

 352 

The hub network analyses revealed an increased central role of key frontal regions in children with OB. 353 

Although hubs were identified in both groups, a difference in the distribution of hub regions with high 354 

betweenness centrality was observed between children with OB and HW controls. Specifically, the left 355 

precentral gyrus and the left orbitofrontal cortex acted as hubs in the children with OB but not in the HW 356 

controls. The precentral gyrus, corresponding to the primary motor cortex (BA4), receives sensory-motor 357 
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information from (sub-)cortical brain regions and sends this information to lower body parts. Thus, this region 358 

plays an important role in controlling the execution of movements (44). Our recent studies have shown that 359 

childhood OB is associated with reduced gross and fine motor skills (45–47), which hampers their successful 360 

participation in physical activities (4). Moreover, neuroimaging studies have suggested that these motor deficits 361 

in children with OB are accompanied with grey and white matter alterations in motor-related regions in the brain 362 

(8,10). Since hub regions are thought to play a crucial role in the coordination of information flow (48), the 363 

increased importance of the left precentral gyrus in children with OB may be related to their reduced motor 364 

skills. However, further research is needed to understand the precise biophysical processes underlying this 365 

potential association. 366 

 367 

The other hub region found in the OB group but not in the HW group was the left lateral orbitofrontal cortex. 368 

This region receives connections from parts of the limbic system and sensory modalities, and is involved in 369 

behavior-related decision-making (e.g., choice between healthy and unhealthy food, or active and inactive 370 

behavior) (49). Moreover, this region has shown to be a key structure in the reward network, which is a sub-371 

network in the brain that is responsible for the hedonic (“liking”) or incentive (“wanting”) salience of behavior 372 

(20,50). Interestingly, the regional network analyses using both approaches (GAT and NBS) strengthened this 373 

result, with altered local segregation and structural network strength, mainly in regions and pathways of the 374 

reward system. Specifically, children with OB demonstrated lower nodal clustering in the hippocampus and 375 

higher structural network strength of edges connecting regions of the striatum. Moreover, previous studies using 376 

structural or task-related functional MRI have suggested that excessive eating behavior and/or physical inactivity 377 

in children and adolescents with OB is associated with alterations in the reward network (6,9,51–53).  Human 378 

behavior often involves decision making, such as choosing between healthy and unhealthy foods or between 379 

physical activities and sedentary behaviors (8,20,37). These choices can be driven by reward-seeking processes 380 

(“drive”) or executive functions (“control”) (37). Reward-seeking processes are responsible for automatic, 381 

impulsive decisions driven in favor of perceived immediate rewards (e.g., feelings, taste, aroma) and are 382 

regulated by limbic and paralimbic brain regions. Since these reward-seeking processes often drive choices that 383 

may have negative health consequences, executive functions are needed to override automatic, impulsive 384 

responses in order to make health-related decisions (54). Executive functions facilitate goal-directed behavior 385 

(e.g., being more physically active) by suppressing impulsive responses (e.g., watching a movie), changing 386 

habits (e.g., sedentary behavior) or planning (future) behaviors in new or changing situations (e.g., learning a 387 
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new motor skill) (55). This control system is regulated by the prefrontal cortex, which is among the last brain 388 

regions to mature (i.e., mid 20's; refs. 56–58). Given that limbic brain regions mature in an earlier stage of 389 

development, children and adolescents are particularly susceptible to make unhealthy, reward-driven decisions, 390 

especially in the current “obesogenic” environment that fosters unhealthy eating behavior and sedentary 391 

behavior. In this respect, it might be that children with obesity, who have reduced structural connectivity in the 392 

reward network, are more likely to choose for rewarding, but unhealthy, behaviors (e.g., physical inactivity, 393 

sedentary behavior, excess and high-caloric food intake) compared to children with an adequate level of 394 

cognitive control, which in turn increases their risk of developing obesity. Taken together, our findings suggest 395 

that the brain structure of the reward network is affected in children with OB, which further emphasizes the role 396 

of the reward system in this multifactorial health problem.  397 

 398 

Consistent with previous research, the multidisciplinary OB program resulted in a considerable amount of weight 399 

loss (Δ17.9 – 21.7%) (28,29). Although this program has shown to increase levels of physical activity (59), 400 

enhance healthy eating habits (60) and induce local changes in brain structure (11), no significant training-401 

induced changes in the structural connectomes of children with OB were observed after a period of five months. 402 

These findings indicate that a multidisciplinary OB program consisting of diet restriction, cognitive behavioral 403 

therapy and physical activity has no immediate impact on the structural network organization of children with 404 

OB. The absence of significant alterations after treatment in the present study may be due to several factors. 405 

First, it could be that the observed differences at baseline relate to genetic factors that are not amenable to 406 

behavioral intervention. High heritability estimates (ranging from 21-82%) have been observed for network 407 

organization, particularly in the cerebellum (79-82%) and subcortical structures, including the putamen (71%) 408 

and accumbens area (65%), which both showed increased structural network strength in children with OB 409 

compared to HW peers (61). Second, the treatment duration may have been insufficient to induce network-level 410 

changes in the brain. Alternatively, neuroplasticity could conceivably be delayed for weeks or months post-411 

treatment. Thus, follow-up studies are needed to serially test neural responses and long-term network effects 412 

following treatment (37,62). Third, the absence of significant alterations could simply reflect a lack of power due 413 

to the relatively small sample size. Therefore, future longitudinal studies with larger datasets could further 414 

elucidate the impact of treatment on children’s brain structure. 415 

 416 
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This study has some limitations that need to be addressed. First, data of developmental and/or medical factors 417 

(such as number of years being obese, physical activity, socio-economic status and comorbidities) were lacking 418 

and, therefore, it was not possible to control for these potential confounders. Second, the structural connectomes 419 

of children with OB who followed a multidisciplinary OB program were compared with those of HW controls 420 

who were not involved in any kind of treatment. It would be interesting to compare this intervention group with 421 

a control group of children with OB who are not involved in a specific treatment program. This would make it a 422 

Randomized Controlled Trial, instead of a pre-experimental study, on the assumption that children with OB are 423 

randomly assigned to either the intervention or the control group. Third, due to the absence of a field map or a 424 

reverse phase encoding image, it was not possible to correct for EPI distortions during the preprocessing of the 425 

DWI images. To be comprehensive, scans were visually inspected for artefacts, during which DWI scans were 426 

removed from the analysis (4 OB, 1 HW) due to poor image quality (movement artefacts, ghosting, and signal 427 

drops). Finally, the results of the partial correlations were interpreted using an exploratory uncorrected threshold 428 

of p<0.05. Although reporting these results is important to help motivate future studies, interpretation of these 429 

results should be done with caution (37).  430 

 431 

Despite these limitations, this is the first study that provides evidence for affected global network organization in 432 

children with OB compared to HW controls. Moreover, regional analyses revealed significant alterations in local 433 

segregation and structural network strength of brain regions and connections involved in motor and reward 434 

control, suggesting that these brain regions play an important role in this multifactorial health problem and 435 

related behaviors. Although we did not examine children’s motor and reward control directly in the current 436 

study, our findings suggest that clinicians should not only focus on weight loss, but also improve children’s 437 

motor competence and executive functioning, which is in line with previous studies (9,11,52). Finally, the 438 

absence of significant alterations in the structural connectome of children with OB after a five month 439 

multidisciplinary OB program may call for larger datasets to examine the impact of short- and long-term weight 440 

loss on children’s brain network organization.  441 
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9. FIGURE LEGENDS 620 

 621 

Figure 1. Overview of the processing pipeline. [A-B] First, the T1 image and diffusion weighted images (DWI) 622 

were preprocessed using FreeSurfer (http://surfer.nmr.mgh.harvard.edu) and FSL (63). [C] Second, the T1-623 

weighted images were registered to the FA map and then automated whole-brain tractography was performed 624 

using MRtrix3 (64). [D] Symmetric N x N connectivity matrices were generated for each subject and each time 625 

point, whereby N represents 84 cortical and subcortical (including the cerebellum) regions (i.e., nodes) of the 626 

Desikan-Killiany atlas (65). [E] The network strength (structural) and graph metrics were calculated and 627 

compared between groups (cross-sectional) and across time points (longitudinal). 628 

 629 

Figure 2. Overview of the results obtained by the Network Based Statistics (NBS) (26). Bar graphs represent [A] 630 

the total number of reconstructed streamlines (NOS) between children with obesity (OB) and healthy weight 631 

(HW) controls across time points, and [B] the edge-specific NOS of the marginally higher connected sub-632 

network in children with OB compared to HW controls. [C] Sagittal and axial views of the higher connected sub-633 

network in children with OB. Sphere size represents the nodes of the sub-network and edge size represents the t-634 

statistics magnitude, ranging from 3 to 3.7. [D] Table containing the names of the different nodes included in the 635 

sub-network (L = left; R = right).  636 

 637 

Figure 3. The A-panel represents time (pre- vs. post-test) by group (obesity (OB) vs. healthy weight (HW)) 638 

interaction effects of the global and regional graph analyses. The B-panel shows group differences in graph 639 

metrics between children with OB and HW controls at the pre-test across different group thresholds (30%-90%, 640 

interval of 15%) by calculating the area under the curve (AUC). Results of the one-way ANCOVAs, with age as 641 

covariate, are presented (mean ± standard deviation, F, p and eta squared (η2)). Significant group differences at 642 

the pre-test are represented by an asterisk (p<0.05, FDR-corrected).  643 

 644 

Figure 4. Scatterplots showing the partial correlations between graph metrics and weight-related measures in 645 

children with obesity (OB) compared to healthy weight (HW) controls at the pre-test. The results are uncorrected 646 

(i.e., p<0.05). It is important to note that the correlation coefficients represented are based on partial correlations, 647 

corrected for age.  648 
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Table 1 Description of graph metrics  

Measure Description 

     Connection density 
The proportion of possible connections in the brain network that are actual connections [number of connections / total 

number of possible connections] 

     Global network strength Level of connectivity (defined here as the number of reconstructed streamlines) of the entire brain network. 

     Network strength Level of connectivity (defined here as the number of reconstructed streamlines) between node i and node j. 

Measures of global integration  

     Clustering coefficient 
The number of edges that exist between the nearest neighbours of a node proportionally to the maximum number of 

possible connections. 

     Normalized clustering coefficient (γ) 
The clustering coefficient was normalized by comparing this parameter with the mean clustering coefficient of 5000 

random networks with the same density. 

Measures of local segregation  

     Characteristic path length Mean of shortest paths (L) between all nodes in the network 

     Normalized characteristic path length (λ) 
The characteristic path length was normalized by comparing this parameter with the mean path length of 5000 random 

networks with the same density. 

     Betweenness centrality The fraction of all shortest paths in the network that pass through a given node. 

     Hubs (betweenness centrality) 
Central and highly connected regions in the brain characterized by a betweenness centrality that is two standard 

deviations higher than the mean network betweenness centrality. 

Small-world network  

     Small-worldness 
Small-worldness (σ = γ/λ >1) was characterized by a high local interconnectivity of the nodes (γ>>1) and an equivalent 

shortest path length (λ≈1) compared with the random networks. 

 



Table 2  Descriptive statistics (mean ± standard deviation) for the group of children with obesity and children with a healthy weight at the pre- and post-test (5-months’ time 
 interval between pre and post).  

 TIME 1 (PRE) CHI-SQUARE T-TEST1 TIME 2 (POST) REPEATED MEASURES ANOVA 
 OB (N=18) HW (N=22) χ2 t OB (N=18) HW (N=22) FTIME FGROUP FTIME*GROUP 
Demographics          
  Sex 9♂, 9♀ 15♂, 7♀ 1.364  9♂, 9♀ 15♂, 7♀    
  Age (years) 9.5±1.0 9.6±1.2  -0.380 9.9±1.0 10.0±1.2 2 944.006** 0.164 1.336 
Pubertal status2   2.129       
  Stage 1 11 (61.2%) 18 (81.8%)        
  Stage 2 4 (22.2%) 3 (13.6%)        
  Stage 3 3 (16.7%) 1 (4.5%)        
  Stage 4 0 0        
  Stage 5 0 0        
Income level (SES)   11.810*       
  Missing 1 (5.6%) 1 (4.5%)        
  <20.000 / year 7 (38.9%) 1 (4.5%)        
  20.000-30.000 / year 6 (33.3%) 4 (18.2%)        
  >30.000 / year 4 (22.2%) 16 (72.7%)        
Anthropometric measurements         
  Body height (cm) 142.0±6.8 139.9±9.2  0.823 144.5±7.3 142.8±9.4 385.201** 0.533 2.281 
  Body weight (kg) 64.1±11.3 33.3±5.8  10.470** 53.7±9.4 34.8±6.1 129.699** 91.529** 236.554** 
  Body fat (%) 45.4±6.0 17.6±4.5  16.818** 33.6±6.5 17.6±4.2 83.121** 201.014** 85.077** 
  Total fat mass (kg) 29.3±7.6 5.8±1.7  12.833** 18.3±6.3 6.2±2.0 112.015** 148.369** 127.880**

  Total fat free mass (kg) 34.7±5.8 27.5±5.2  4.197** 35.4±5.6 28.6±5.0 13.973** 17.216** 1.100 
  Waist circumference (cm) 94.5±8.4 61.3±4.3  15.228** 82.1±6.4 60.1±8.8 264.211** 178.146** 277.096** 
  Body mass index (kg/m2) 31.64±4.35 16.85±1.15  14.030** 25.66±3.68 16.93±1.19 30.076** 208.810** 20.444** 
 
1 Independent sample t-test, 2 Tanner staging for puberty was based on breast development in girls (stage 1-5) and testicular size in boys (stage 1-5). For analysis purposes, 
stages 2-5 were combined into a larger group (0 = stage1, 1 = stages2-5). OB = obesity, HW = healthy weight, SES = Socio-economic status, ǂ p<0.1, * p<0.05, ** p≤0.001 
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