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Abstract The present paper examines matrix root properties and embedding
conditions for discrete-time Markov chains with three states and a transition
matrix having complex eigenvalues. Necessary as well as sufficient conditions
for the existence of an m-th stochastic root of the transition matrix, are inves-
tigated. Matrix roots are expressed in analytical form based on the spectral
decomposition of the transition matrix and properties of these matrix roots
are proved.
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1 Introduction

The embedding problem for Markov chains is initially introduced in [1]. A
discrete-time Markov chain with transition matrix P is embeddable in the
Markov chain with transition matrix A in case there exists an integer m ∈
N\ {0, 1} such that Am = P. Since transition matrices are stochastic matrices,
the embedding problem for discrete-time Markov chains can be reformulated
in terms of m-th stochastic roots [2,6]. An m-th stochastic root A of P is
an m-th matrix root that is nonnegative and has all its row sums equal to
1. Within the set of discrete-time Markov chains, the embedding problem
and necessary conditions for the existence of stochastic roots of the transition
matrix are examined by Singer and Spilerman [12], and also in [3,6]. More
recently, nonnegative roots of matrices are studied in [9,13].
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For a Markov model, the transition matrix P can be estimated in case
data on stocks and flows are available for time intervals with length equal to
the time unit of the Markov model. In practice however, it could happen that
data is only available on yearly base while one is interested to know semiannual
transition probabilities. In these situations there is a lack of data to estimate
the semiannual transition probabilities. Nevertheless, for an embeddable ma-
trix P, a square root stochastic matrix could give insight in the semiannual
transition probabilities.

For (2× 2) matrices the embedding problem is examined in detail: Neces-
sary and sufficient conditions for the existence of stochastic roots are formu-
lated. Furthermore, for embeddable Markov chains, the stochastic roots of the
transition matrices are described in analytical form [2,5,7].

For (3 × 3) stochastic matrices He and Gunn (2003) describe all possible
real valued m-th root matrices that are functions of the original matrix, in
the case of real as well as complex eigenvalues [5]. The expressed m-th root
matrices have all row sums equal to 1 but are not necessarily nonnegative and
therefore do not result automatically in m-th stochastic roots. Higham and
Lin (2011) examine necessary conditions for the existence of stochastic matrix
roots based on the set of all possible eigenvalues for a (3 × 3) nonnegative
matrix [6].

The case of (3 × 3) stochastic matrices with real eigenvalues is investi-
gated in detail and sufficient embedding conditions are presented in [4]. The
present paper aims closing the gap for the (3× 3) case, and studies therefore
m-th stochastic roots of (3× 3) stochastic matrices with complex eigenvalues.
Necessary embedding conditions are proved in section 2. Section 3 presents
row-normalized roots based on the spectrum decomposition and the projec-
tions of the original stochastic matrix. Sufficient embedding conditions are
formulated in section 4. An example is presented to illustrate how the theo-
retical findings can be used in a beneficial way. Finally, section 5 formulates
some suggestions for further research.

2 Necessary embedding conditions

In case P is embeddable there does exist a stochastic matrix A such that, for
some m ∈ N\ {0, 1}, A is an m-th root of P, i.e. Am = P. Higham and Lin
(2011) present necessary conditions for the existence of m-th stochastic roots
based on the inverse eigenvalue problem [6]. In what follows those findings
are recapitulated with a focus on (3 × 3) stochastic matrices and are further
specified for the particular case of complex eigenvalues.

Let P be a (3 × 3) stochastic matrix with eigenvalues λ1, λ2 and λ3 that
are not all real numbers. According to the Perron-Frobenius Theorem, each
stochastic matrix has an eigenvalue λ1 = 1. Since the characteristic equation
has real coefficients, the complex eigenvalues λ2, λ3 are complex conjugates,
i.e. λ3 = λ2. In this way the spectrum of P can be described as the set
σP =

{
1, λ, λ

}
with λ ∈ C\R eigenvalue of P.
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The eigenvalues 1, µ2, µ3 of a stochastic matrix A, with Am = P, satisfy
µm2 = λ and µm3 = λ. Since µm2 = λ with λ ∈ C\R, the eigenvalue µ2 is neither
a real number. The spectrum of an m-th stochastic root A of P is therefore
equal to σA = {1, µ, µ} with µ ∈ C\R and µm = λ.

A stochastic root A is a nonnegative matrix root. The inverse eigen-
value problem is helpful in formulating necessary conditions on the spectrum{

1, λ, λ
}

of P such that {1, µ, µ}, with µm = λ, is the set of eigenvalues of
a nonnegative matrix B. From Loewy and London (1978) it is known that
{1, µ, µ} is the spectrum of a nonnegative matrix if and only if the three
eigenvalues 1, µ and µ belong to the closed triangle Θ3 with vertices (1, 0),

e
2πi
3 and e

−2πi
3 [8].

A nonnegative matrix B is not necessarily a stochastic matrix. Neverthe-
less, in case there exists a nonnegative matrix B with spectrum {1, µ, µ},
there also exists a stochastic matrix A with the same spectrum. Indeed, ac-
cording to Rojo and Soto (2003), for a positive eigenvector X = (x1, x2, x3)
corresponding with the maximal eigenvalue 1 of B, the diagonal matrix D =
diag (x1, x2, x3) gives rise to a nonnegative matrix A = D−1BD with all its
row sums equal to 1 [11]. In this way A = D−1BD is a stochastic matrix
with the same spectrum {1, µ, µ} as the nonnegative matrix B. This remark
let us conclude that formulating necessary conditions for the existence of a
stochastic matrix or for the existence of a nonnegative matrix are equivalent
problems.

The closed triangle Θ3 is the convex hull Conv
{

(1, 0), e
2πi
3 , e−

2πi
3

}
and can

be described in an alternative way as the following set of points:

Θ3 =
{

(x, y) ∈ R2
∣∣ x ≥ −0.5; x− 1 ≤

√
3y ≤ 1− x

}
(1)

The description (1) results in a practical way to verify the necessary condi-
tion for the existence of an m-th stochastic root of P as formulated in Theorem
1. For λ = r(cos θ + i sin θ), we introduce the notation m

√
λ(k):

m
√
λ(k) = m

√
r e

θ+2πk
m = m

√
r

(
cos

θ + 2πk

m
+ i sin

θ + 2πk

m

)
Theorem 1 If for the stochastic matrix P with spectrum σP =

{
1, λ, λ

}
an

m-th stochastic root does exist, then at least one m-th root of λ belongs to Θ3.
This results in the following necessary embedding condition:

∃m ∈ N\ {0, 1} and ∃k ∈ {0, 1, ...,m− 1} :
m
√
λ(k) ∈ Θ3

Proof In case the eigenvalue λ of P has a modulus r and an argument θ, the
spectrum of P equals σP = {1, r(cos θ + i sin θ), r(cos θ − i sin θ)}.

An m-th stochastic root A of P has then the spectrum {1, µ, µ}, with µm =
λ. According to [8] the set {1, µ, µ} is the spectrum of a nonnegative matrix
under the condition that {1, µ, µ} ⊂ Θ3. Because of the X-axis symmetry of
Θ3, this condition is equivalent with µ ∈ Θ3.
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Since the eigenvalue µ of the m-th matrix root A of P satisfies µm = λ,
the eigenvalue µ of A is an m-th root of λ. In the set C of complex numbers,
λ has exactly m m-th roots, being m

√
λ(k) for k = 0, 1, ...,m− 1. That proves

the theorem.

The findings of Theorem 1 let formulate directly the insight that no effort
has to be made to find an m-th stochastic root of the matrix P in case for all
k ∈ {0, 1, ...,m− 1} holds that m

√
λ(k) /∈ Θ3.

Furthermore, it is interesting to remark that not all stochastic matrices
with spectrum {1, µ, µ}, satisfying µm = λ, result in an m-th root matrix of
P. Besides the conditions formulated on the eigenvalues, also the eigenvectors
of a root matrix of P satisfy some properties. An m-th root A of P has the
same eigenvectors as the matrix P itself. Lemma 1 summarizes these insights.

Lemma 1 For an m-th root A of P holds:
E is eigenvector of P corresponding with eigenvalue ρ
⇐⇒ E is eigenvector of A corresponding with eigenvalue τ satisfying τm = ρ

Remark that, since λ ∈ C\R, the matrix P with spectrum
{

1, λ, λ
}

has 3
eigenspaces all of dimension 1.

3 Row-normalized matrix roots

In what follows, for the stochastic matrix P with σP =
{

1, λ, λ
}

row-normalized
m-th roots are described analytically based on its spectral decomposition.
Row-normalized roots have all row sums equal to 1 and are therefore candi-
dates to result in stochastic roots.

Since λ is assumed to be no real number, the stochastic matrix P has 3
distinct eigenvalues and is therefore diagonalizable:

P = QDPQ−1 with DP = diag(1, λ, λ) =

1 0 0
0 λ 0

0 0 λ


The transformation matrix Q and its inverse Q−1 satisfy:
Q =

(
R1 Rλ Rλ

)
with R1,Rλ,Rλ column vectors that are right eigenvectors

of P with respectively eigenvalue 1, λ, en λ; and

Q−1 =

L1

Lλ
Lλ

 with L1,Lλ,Lλ row vectors that are left eigenvectors of P

with respectively eigenvalue 1, λ, en λ.
An m-th root A of P has spectrum σA = {1, µ, µ} with µm = λ and

has the same eigenvectors as P (according to Lemma 1). Therefore, P =
Q×diag(1, λ, λ)×Q−1 implies A = Q×diag(1, µ, µ)×Q−1. Consequently,
all m-th root matrices of P are of the form Q×diag(1, µ, µ)×Q−1 with µm = λ
[10]. This insight is summarized in Lemma 2.
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Lemma 2 For a stochastic matrix P = Q × diag(1, λ, λ) × Q−1 and m ∈
N\ {0, 1} holds that all m-th stochastic roots of P belong to the set

Sm(P) =
{
Q× diag(1, µ, µ)×Q−1 |µm = λ

}
This result points out that it is worth to examine the properties of the

matrices of the form Q×diag(1, µ, µ)×Q−1 in detail since no other possibility
exists to become an m-th stochastic root of P.

The matrix P = QDPQ−1 can be expressed by its spectral decomposition.
Since P is diagonalizable its spectral decomposition is of the form P = P1 +
λP2 + λP3. The k-th projection is defined as Pk = QIkkQ

−1 with Ikk the
(3×3) matrix with the kk-th element equal to 1 and all the other elements equal
to 0. In general, the projections satisfy by definition the following properties:

PiPi = Pi for i = 1, 2, 3 and PiPj = 0 for i 6= j (2)

In the case of a matrix P with spectrum σP =
{

1, λ, λ
}

Lemma 3 holds
additionally.

Lemma 3 For a matrix P with spectrum σP =
{

1, λ, λ
}

, the projections P2

and P3 are related and satisfy:

P3 = P2

In searching for an m-th root of P, it is interesting to mention that the
complex eigenvalues λ = r(cos θ+ i sin θ) and λ = r(cos(−θ) + i sin(−θ)) have
both m m-th roots in C, namely

m
√
λ(k2) = m

√
r

(
cos

θ + 2πk2
m

+ i sin
θ + 2πk2

m

)
m
√
λ(k3) = m

√
r

(
cos
−θ + 2πk3

m
+ i sin

−θ + 2πk3
m

)
with k2, k3 ∈ {0, 1, ...,m− 1}

An m-th stochastic root of P has eigenvalues µ and µ that are complex

conjugates. The m-th roots m
√
λ(k2) and

m
√
λ(k3) are complex conjugates for

k3 = m− k2 since in that situation the argument of
m
√
λ(k3) equals

−θ + 2πk3
m

= 2π − θ + 2πk2
m

For P = P1 + λP2 + λP3, k2 = k ∈ {0, 1, ...,m− 1} and k3 = m − k, the
matrix A(m, k) is introduced:

A(m, k) = P1 +
m
√
λ(k) P2 +

m
√
λ(m− k) P3

Eq.(2) results in:

(A(m, k))
m

= P1+
(
m
√
λ(k)

)m
P2+

(
m
√
λ(m− k)

)m
P3 = P1+λP2+λP3 = P
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In this way, for k ∈ {0, 1, ...,m− 1}, the matrices A(m, k) are m-th roots
of P. Moreover, in accordance to Lemma 2, an m-th root of P is necessarily
one of the matrices A(m, k) = Q× diag(1, µ, µ)×Q−1 with µ = m

√
λ(k) and

µ =
m
√
λ(m− k).

For a diagonalizable stochastic matrix P = P1+λP2+λP3 all row sums of
the projections P2 and P3 are equal to zero ([4], lemma 1) and P1 is a stochas-

tic matrix. Consequently, all row sums of A(m, k) = P1+ m
√
λ(k)P2+

m
√
λ(m−

k)P3 are equal to one. All matrices A(m, k) are therefore row-normalized m-th
roots of P. Theorem 2 summarizes these findings.

Theorem 2 For the stochastic matrix P = P1 + λP2 + λP3 holds:
A is a row-normalized m-th root of P ⇐⇒ A = A(m, k) for some k ∈
{0, 1, ...,m− 1}

Remark that a matrix A(m, k) is not necessarily an m-th stochastic root
of P since A(m, k) can have negative elements.

4 Sufficient embedding conditions

Since all m-th roots of the stochastic matrix P are of the form A(m, k), a
sufficient embedding condition concerns a condition under which at least one
of the matrices A(m, k) is a stochastic matrix. According to Theorem 2, all
A(m, k) are row-normalized and therefore a nonnegative matrix A(m, k) is au-
tomatically a stochastic matrix. Besides, in studying embedding conditions, it
is useful to point out that in case a stochastic matrix P has an m-th stochastic
root A for some even number m, it has automatically also a stochastic square
root, namely A

m
2 . Theorem 3 formulates these insights.

Theorem 3 The stochastic matrix P is embeddable if and only if

– there exist m ∈ N\ {0, 1} and k ∈ {0, 1, ...,m− 1} with A(m, k) nonnega-
tive or

– P has a stochastic square root or an m-th stochastic root for some odd m.

In the case a stochastic matrix P has no stochastic square root, one can
conclude according to Theorem 3 that P has neither an m-th stochastic root
for whatever even number m. In what follows further properties of the matrices
A(m, k) are investigated.

Theorem 4 For the stochastic matrix P = P1 + λP2 + λP3, m ∈ N\ {0, 1}
and k ∈ {0, 1, ...,m− 1}, the matrix

A(m, k) = P1 +
m
√
λ(k) P2 +

m
√
λ(m− k) P3

is a real valued matrix with for h, l ∈ {1, 2, 3} the (h, l)-th element equal to

(A(m, k))hl = (P1)hl + 2rhl
m
√
r cos

(
θhl +

θ + 2πk

m

)
(3)

r and θ are respectively the modulus and the argument of λ; rhl and θhl are
respectively the modulus and the argument of (P2)hl.
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Proof For h, l ∈ {1, 2, 3} and (P2)hl = rhl(cos θhl + i sin θhl) holds:

(A(m, k))hl = (P1)hl + 2<[
m
√
λ(k)(P2)hl]

= (P1)hl + 2rhl
m
√
r

[
cos (θhl) cos

(
θ + 2πk

m

)
− sin (θhl) sin

(
θ + 2πk

m

)]
= (P1)hl + 2rhl

m
√
r cos

(
θhl +

θ + 2πk

m

)
since m

√
λ(k) and

m
√
λ(m − k) are complex conjugates and (P3)hl = (P2)hl

according to Lemma 3. That proves the theorem.

Since P = P1+λP2+λP2 and since the projections sum up to the identity
matrix I, the following equations hold:

P1 + 2<(λP2) = P and P1 + 2<(P2) = I (4)

Hereby is <(P2) the matrix with elements <((P2)hl). The real and imaginary
part of the elements of the projection P2 can then be expressed as follows:

<(P2) =
1

2
(I−P1) and =(P2) =

1

2=(λ)
[P1 −P + <(λ)(I−P1)] (5)

In this way the projection P2 is written in terms of P, P1 and λ. The modulus
rhl can then be expressed as:

rhl =
1

2

√
r2(δhl − αl)2 + (αl −Phl)2 + 2<(λ)(αl −Phl)(δhl − αl)

(=(λ))2
(6)

and the argument θhl satisfies tan θhl = =((P2)hl)
<((P2)hl)

.

An alternative for Eq. (3) to express the matrix A(m, k) is then:

A(m, k) = P1 + 2 m
√
r

[
cos

(
θ + 2πk

m

)
<(P2)− sin

(
θ + 2πk

m

)
=(P2)

]
(7)

with <(P2) and =(P2) as in Eq. (5).
For a root m

√
λ(k) satisfying the necessary conditions formulated in The-

orem 1 holds x ≥ −0.5; x − 1 ≤
√

3y ≤ 1 − x with x = <( m
√
λ(k)) =

m
√
r cos θ+2πk

m and y = =( m
√
λ(k)) = m

√
r sin θ+2πk

m . Theorem 5 formulates

further linear conditions on m
√
λ(k) to guarantee that A(m, k) is a stochastic

matrix root of P.
It is useful to remark that the rows of the first projection P1 are identical

stochastic vectors. Denoting this row vector as (α1, α2, α3) results in 0 <
(P1)hl = αl < 1.

Theorem 5 For the stochastic matrix P, the m-th root A(m, k) is a stochastic
matrix if and only if m

√
λ(k) satisfies

x− 1 ≤ chly ∀h 6= l and clly ≤ x+
αl

1− αl
∀l

with chl = (P1−P)hl
=(λ)(I−P1)hl

+ <(λ)
=(λ) ∀h, l.
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Proof The matrix A(m, k) is row-normalized and therefore it is a stochastic
matrix root of P if and only if it is nonnegative.
On the one hand for all h 6= l holds that (P1)hl + 2<((P2)hl) = 0 according
to Eq. (4). Consequently, (A(m, k))hl ≥ 0 is equivalent with (A(m, k))hl ≥
(P1)hl + 2<((P2)hl). Furthermore, Eq. (7) results in (A(m, k))hl = (P1)hl +

2<( m
√
λ(k)).<(P2)hl−2=( m

√
λ(k)).=(P2)hl and according to Eq. (5) holds that

<(P2)hl = − 1
2 (P1)hl < 0. Therefore the following equivalence holds:

(A(m, k))hl ≥ 0 ⇐⇒ <(
m
√
λ(k))− 1 ≤ =((P2)hl)

<((P2)hl)
=(

m
√
λ(k)) ∀h 6= l

On the other hand for all l = 1, 2, 3 is (A(m, k))ll = (P1)ll+2<( m
√
λ(k)).<(P2)ll−

2=( m
√
λ(k)).=(P2)ll and <(P2)ll = 1

2 (1 − (P1)ll) > 0 (according to Eq. (5)),
resulting in:

(A(m, k))ll ≥ 0 ⇐⇒ =((P2)ll)

<((P2)ll)
=(

m
√
λ(k)) ≤ <(

m
√
λ(k))+

(P1)ll
2<((P2)ll)

∀l = 1, 2, 3

with (P1)ll
2<((P2)ll)

= αl
1−αl .

Consequently, the sufficient condition to have (A(m, k))hl nonnegative is that

the root m
√
λ(k) satisfies x−1 ≤ chly ∀h 6= l and clly ≤ x+ αl

1−αl ∀l with

chl = =((P2)hl)
<((P2)hl)

∀h, l. These conditions in combination with the expressions

for <((P2)hl) and =((P2)hl) as in Eq. (5) prove the theorem.

Theorem 6 formulates a sufficient embedding condition relating the mod-
ulus r of λ, the moduli rhl of the elements of P2 and the elements αl of the
first projection P1. The formulated condition is easy to implement in practice:
The values of rhl can be computed by Eq. (6) and the vector (α1, α2, α3) can
be determined as the unique stochastic fixpoint of P.

Lemma 4 In case m
√
r ≤ minh,l

{
αl
2rhl

, 1−αl2rhl

}
then A(m, k) is a stochastic

matrix for all k ∈ {0, 1, ...,m− 1}.

Proof Since the matrix A(m, k) is row-normalized, Eq. (3) results in:

A(m, k) is a stochastic matrix ⇐⇒ m
√
r cos

(
θhl + θ+2πk

m

)
∈
[
−αl
2rhl

, 1−αl2rhl

]
∀h, l.

Therefore A(m, k) is a stochastic matrix in case m
√
r ≤ minh,l

{
αl
2rhl

, 1−αl2rhl

}
.

Theorem 6 The stochastic matrix P = P1 + λP2 + λP2 is embeddable in
case

√
r ≤ min

h,l

{
αl

2rhl
,

1− αl
2rhl

}
Proof According to Theorem 3, P is embeddable if and only if the matrix
A(m, k) is stochastic for at least one pair (m, k) with m ∈ N\ {0, 1} and k ∈
{0, 1, ...,m− 1}. Therefore lemma 4 let conclude that P is embeddable in case

there exists a value for m satisfying m
√
r ≤ minh,l

{
αl
2rhl

, 1−αl2rhl

}
. This condition
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is less restrictive for m = 2 since m
√
r is increasing with m. Thus in case

m
√
r ≤ minh,l

{
αl
2rhl

, 1−αl2rhl

}
for somem > 2 then also

√
r ≤ minh,l

{
αl
2rhl

, 1−αl2rhl

}
.

Furthermore, the condition
√
r ≤ minh,l

{
αl
2rhl

, 1−αl2rhl

}
guarantees that A(2, k)

is a stochastic square root of P.

Corollary 1 In case m
√
r ≤ minh,l

{
αl
2rhl

, 1−αl2rhl

}
then P has at least m(m+1)

2 −1

stochastic roots.

This corollary results directly from Lemma 4 and Theorem 6 since m
√
r ≤

minh,l

{
αl
2rhl

, 1−αl2rhl

}
implies that A(m̃, k) is a stochastic matrix for all 2 ≤

m̃ ≤ m and for all k ∈ {0, 1, ..., m̃− 1}.

In searching for further sufficient embedding conditions, let us introduce
for h, l ∈ {1, 2, 3} and k ∈ N, the function

fkhl(t) = αl + 2rhlr
t cos (θhl + (θ + 2πk)t)

= αl + 2rt [cos ((θ + 2πk)t)<((P2)hl)− sin ((θ + 2πk)t)=((P2)hl)]

This function satisfies according to Eq. (3):

fkhl

(
1

m

)
= (A(m, k))hl (8)

Furthermore holds:

fkhl(0) = αl + 2rhl cos θhl = (P1)hl + (P2)hl +
(
P2

)
hl

= Ihl = δhl (9)

fkhl(1) = αl + 2rhlr cos (θhl + θ + 2πk) = (P1)hl + λ (P2)hl + λ
(
P2

)
hl

= Phl

(10)
In this way, the value of the function fkhl is nonnegative in t = 0 as well as in
t = 1.

In what follows further insights are gained on the m-th roots A(m, k) of
the stochastic matrix P by examining properties of fkhl(t) for t ∈ [0, 1]. A
pertinent question is under what condition at least one of the roots A(m, k)
results in a stochastic matrix. Lemma 5 describes the critical values of the
function fkhl(t). The notation arctan refers to the arctangent function.

Lemma 5 The critical values of fkhl(t) = αl+2rhlr
t cos (θhl + (θ + 2πk)t) are

elements of the set

Shl =

{
1

θ + 2πk

[
arctan

(
ln r

θ + 2πk

)
− θhl + πq

]
| q ∈ Z

}
Proof The derivative of fkhl(t) equals:
d
dtf

k
hl(t) = 2rhlr

t [ln r cos (θhl + (θ + 2πk)t)− (θ + 2πk) sin (θhl + (θ + 2πk)t)].

In solving the equation d
dtf

k
hl(t) = 0 we can take into account that θ+2πk 6= 0

since θ is the argument of the eigenvalue λ ∈ C\R. Furthermore a value for
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t satisfying cos (θhl + (θ + 2πk)t) = 0 cannot be a solution of the equation
d
dtf

k
hl(t) = 0 since this would imply that also sin (θhl + (θ + 2πk)t) = 0, which

is impossible. Therefore:

d

dt
fkhl(t) = 0 ⇔ tan (θhl + (θ + 2πk)t) =

ln r

θ + 2πk

with solutions tkhl(q) = 1
θ+2πk

[
arctan

(
ln r

θ+2πk

)
− θhl + πq

]
(q ∈ Z).

The m m-th roots m
√
λ(k) of λ correspond with k ∈ {0, 1, ...,m− 1}. The

fact that k ≤ m − 1 implies 1
m ≤

1
k+1 . Since (A(m, k))hl = fkhl

(
1
m

)
and

1
m ∈]0, 1

k+1 ], in examining for a particular value for k conditions that guarantee
that the m-th root A(m, k) is a stochastic matrix, only the critical values
tkhl(q) that belong to ]0, 1

k+1 ] are of importance. The following lemma gives

information on the number of critical values tkhl(q) ∈ Shl∩]0, 1
k+1 ].

Lemma 6 For k fix, the number of critical values tkhl(q) ∈ Shl∩]0, 1
k+1 ] of fkhl

is at most equal to 2. In particular for k = 0, the number of critical values is
at most equal to 1.

Proof For two subsequent critical values tkhl(q) and tkhl(q + 1) holds that∣∣tkhl(q + 1)− tkhl(q)
∣∣ = π

|θ+2πk| . Therefore expressing the length of the interval

]0, 1
k+1 ] proportionally to the length of the interval [tkhl(q), t

k
hl(q+1)] results in

1
k+1
π

|θ+2πk|
=

∣∣∣∣ θ + 2πk

(k + 1)π

∣∣∣∣
The argument θ of the eigenvalue λ ∈ C\R satisfies θ ∈] − π, π[. Therefore
θ+2πk
(k+1)π ∈] 2k−1k+1 ,

2k+1
k+1 [ with 2k+1

k+1 < 2. Consequently the number of critical

values tkhl(q) ∈ Shl that belong to ]0, 1
k+1 ] is at most equal to 2.

In particular for k = 0 holds
∣∣∣ θ+2πk
(k+1)π

∣∣∣ =
∣∣ θ
π

∣∣ < 1.

For the root matrices A(m, k) under study is k ≤ m−1 and thus m ≥ k+1.
The following theorem presents a sufficient condition that guarantees that the
(h, l)-th element of A(m, k) is nonnegative for all m ≥ k+ 1. The condition is
formulated on the value of bhl(k):

bhl(k) =
ln r · <((P2)hl)− (θ + 2πk) · =((P2)hl)

(θ + 2πk) · <((P2)hl) + ln r · =((P2)hl)
(11)

with <((P2)hl) and =((P2)hl) as in Eq. (5).

Theorem 7 In case for h, l ∈ {1, 2, 3} and k ∈ N holds that bhl(k) /∈ Conv{0, =(λ)<(λ)}
then (A(m, k))hl ≥ 0 for all m ≥ k + 1.
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Proof Critical values t∗ of fkhl(t) satisfy tan(θt∗) = bhl(k) with bhl(k) defined as

in Eq.(11). Since tan(θ) = =(λ)
<(λ) , the condition bhl(k) /∈ Conv{0, =(λ)<(λ)} implies

that fkhl(t) has no critical value in [0, 1]. As a result, fkhl(t) is monotonously
evolving on [0, 1]. Moreover, according to Eq.(9) and Eq.(10), both fkhl(0) and
fkhl(1) are nonnegative. Consequently (A(m, k))hl = fkhl(

1
m ) ≥ 0 ∀m ≥ k + 1.

The following theorem formulates a sufficient embedding condition for P
by ensuring that the row-normalized root A(m, k) is a stochastic matrix.

Theorem 8 In case fkhl

(
1
k+1

)
∈ [0, 1] as well as fkhl

(
tkhl(q)

)
∈ [0, 1], for all

tkhl(q) ∈ Shl∩]0, 1
k+1 ] and for all (h, l) ∈ {1, 2, 3} × {1, 2, 3}, then A(m, k) is

an m-th stochastic root of P, for all m ≥ k + 1.

Proof According to Eq.(9) holds that fkhl(0) ∈ [0, 1]. Therefore in case fkhl

(
1
k+1

)
∈

[0, 1] as well as fkhl
(
tkhl(q)

)
∈ [0, 1] for all tkhl(q) ∈ Shl∩]0, 1

k+1 ], the infimum

and the supremum of fkhl on ]0, 1
k+1 ] are elements of [0, 1]. Consequently fkhl(t)

is an element of [0, 1] for all t ∈]0, 1
k+1 ]. Furthermore for the m-th root A(m, k)

holds (A(m, k))hl = fkhl(
1
m ). In this way, under the stated conditions, the m-th

root A(m, k) is a stochastic matrix.

In what follows the study regarding the stochastic property of the row-
normalized matrix A(m, k) is approached in a geometrical way. Let us there-
fore denote the ith row of the matrix A(m, k) by ai(m, k) for i = 1, 2, 3. Then
by definition:

ai(m, k) =

(
fki1

(
1

m

)
fki2

(
1

m

)
fki3

(
1

m

))
and

A(m, k) is a stochastic matrix ⇐⇒ ai(m, k) ∈ Conv {e1, e2, e3} for i = 1, 2, 3

with Conv{e1, e2, e3} the convex hull of e1 = (1 0 0), e2 = (0 1 0) and e3 =
(0 0 1).
For i ∈ {1, 2, 3} and k ∈ N, the path with parametric equation

(
fki1 (t) fki2 (t) fki3 (t)

)
and t ∈ [0, 1] is denoted by Pki . Then, for m ∈ N with m ≥ k + 1, the row
vectors ai(m, k) correspond with discrete points on the path Pki . Furthermore,
according to Eq.(9) and Eq.(10) the row vector ei and the ith row pi of P
satisfy

ei =
(
fki1 (0) fki2 (0) fki3 (0)

)
and pi =

(
fki1 (1) fki2 (1) fki3 (1)

)
Consequently, the path Pki has starting point ei and ending point pi.
Since the boundary of Conv{e1, e2, e3} is ∪r 6=sConv{er, es} and the points of
Conv{er, es} have equal (zero) lth component for l /∈ {r, s}, lemma 6 guaran-
tees that the path Pki intersects the segment Conv{er, es} at most twice. In-
deed, a part of the path Pki where the lth component is evolving monotonously,
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intersects Conv{er, es} at most once. Those intersection points are important
in determining stochastic row vectors ai(m, k) that are laying on parts of
the path Pki within Conv{e1, e2, e3}. This path-approach is useful in exam-
ining geometrically the stochasticity of a root A(m, k): in case for all the 3
paths Pk1 , Pk2 and Pk3 the point with t = 1

m is on a part of the paths within
Conv{e1, e2, e3}, the matrix A(m, k) is a stochastic root of P.

Example
The following discussion and example illustrate how the theoretical find-

ings can be useful in the context of stochastic matrix roots and for the em-
bedding problem. The roots A(m, k) are examined for the stochastic matrix

P =

0.31 0.49 0.2
0.29 0.61 0.1
0.2 0.59 0.21

 that has eigenvalues λ1 = 1, λ2 = 0.065 +
√
0.0279
2 i,

with modulus r = 0.10583 and argument θ = arctan
√
0.0279
0.13 ≈ 0.9095, and λ3

the complex conjugate of λ2.

The first projection P1 equals P1 =

 0.2827 0.5732 0.1441
0.2827 0.5732 0.1441
0.2827 0.5732 0.1441


For the projection P2 the moduli rhl and the arguments θhl of the elements

(P2)hl are as follows

(rhl) =

 0.3768 0.3972 0.3972
0.2089 0.2202 0.2202
0.4101 0.4323 0.4323

 and

(θhl) =

 0.3118 2.3768 −1.7532
−2.3140 −0.2480 1.9042
1.9226 −2.2955 −0.1424


The projection P3 satisfies P3 = P2, according to Lemma 3.

For some particular values of m and k, and for Θ3 as specified in (1), the
necessary condition m

√
λ(k) ∈ Θ3 (as formulated in Theorem 1) let conclude

that A(m, k) cannot be a nonnegative matrix and therefore cannot be an m-th
stochastic root of P. For example for m = 6 and k = 1, the corresponding
m-th root of λ results in 6

√
λ(1) = 6

√
r cos θ+2π

6 + i 6
√
r sin θ+2π

6 that does not

satisfy the condition x − 1 ≤
√

3y ≤ 1 − x. Since 6
√
λ(1) /∈ Θ3, A(6, 1) is a

row-normalized 6-th root of P that has some negative elements and therefore
does not result in a stochastic root of P.

The sufficient embedding condition formulated in Theorem 6 is not satis-

fied since 0.3253 ≈
√
r > minh,l

{
αl
2rhl

, 1−αl2rhl

}
≈ 0.1667 and gives therefore, for

the example under study, no information on whether or not the matrix P is
embeddable.
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Fig. 1 Graphical presentation of Θ3 (in light grey) and of the region where
m
√
λ(k) satisfies

the sufficient condition (according to Theorem 5) to have for P the stochastic root A(m, k)
(in dark grey)

Theorem 5 formulates a sufficient condition on m
√
λ(k) to have the matrix

root A(m, k) nonnegative. This condition is expressed in terms of chl =
(P1−P)hl
=(λ)(I−P1)hl

+ <(λ)
=(λ) ∀h, l. For the example under consideration these chl are

as follows:

(chl) =

 0.3226 −0.9597 5.4232
1.0875 −0.2541 −2.8861
−2.7245 1.1292 −0.1436


The region determined by the sufficient condition (according to Theorem 5) is
graphically presented in Figure 1. For each m

√
λ(k) belonging to this region, the

matrix A(m, k) is a stochastic root of P. The square root
√
λ(0), for example,

has x = 0.2923 and y = 0.1429 that satisfy the formulated sufficient condition.
Consequently, we can conclude that A(2, 0) is a stochastic root of P.

In examining whether the row-normalized roots A(m, k) of P result in
stochastic roots, and for what values of m this would be the case, the behav-
ior of the function fkhl and the sufficient conditions formulated in Theorem
8 and Theorem 7 can provide useful insights. For example in analyzing the
root matrices A(m, k) for k = 0, the values of bhl(0) as in Eq. (11) and the
condition formulated in Theorem 7, let us conclude that (A(m, 0))hl ≥ 0 for
all m ≥ 2 and (h, l) /∈ {(1, 3), (2, 3), (3, 1)}. The reason for this is that for
(h, l) /∈ {(1, 3), (2, 3), (3, 1)} the function fkhl has no critical value in [0, 1] and
is therefore monotone in [0, 1]. Moreover, according to Eq.(9) and Eq.(10), both
f0hl(0) and f0hl(1) are elements of [0, 1]. Consequently, for all m ∈ {2, 3, 4, ...}
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the m-th root A(m, 0) of P has for all (h, l) /∈ {(1, 3), (2, 3), (3, 1)} elements
that belong to [0, 1].

For (h, l) ∈ {(1, 3), (2, 3), (3, 1)} the properties of f0hl and (A(m, 0))hl are
examined separately in what follows. Regarding the critical values t0hl(q) =
1
θ

[
arctan

(
ln r
θ

)
− θhl + πq

]
(q ∈ Z) of the functions f0hl(t), there can be re-

marked that the only critical values that belong to [0, 1] are t013(0), t023(1) and
t031(1).
For (h, l) = (1, 3), the critical value t013(0) = 0.6237 > 1

2 and therefore f013
is monotonous in

[
0, 12
]
. Furthermore f013(0) = 0 and f013( 1

2 ) = 0.0425 so
that for all t = 1

m the value of f013(t) is in between 0 and 1. Consequently,
(A(m, 0))13 ∈ [0, 1] for all m ≥ 2.
For (h, l) = (2, 3), the critical value t023(1) = 0.0565 with f023(t023(1)) =
−0.0015. The function f023 is monotonous in

[
t023(1), 1

]
. Furthermore f023(1) =

P23, f023( 1
8 ) > 0 and f023( 1

9 ) < 0. Since f023(1) and f023( 1
8 ) are both elements of

[0, 1], also (A(m, 0))23 ∈ [0, 1] for all m-th roots A(m, 0) of P with 2 ≤ m ≤ 8.
A similar reasoning for (h, l) = (3, 1) results in the insight that (A(m, 0))31 ∈
[0, 1] for all m-th roots A(m, 0) of P with 2 ≤ m ≤ 9.
In accordance with Theorem 8 these insights regarding the functions f0hl let
conclude that all A(m, 0) with m = 2, ..., 8 are stochastic roots of P. For
m = 2, ..., 8 the m-th stochastic roots A(m, 0) of P are as follows:

A(2, 0) =

 0.4593 0.3271 0.2136
0.2440 0.7134 0.0426
0.0900 0.4982 0.4118

 A(3, 0) =

 0.5739 0.2367 0.1894
0.1985 0.7812 0.0203
0.0463 0.4059 0.5478



A(4, 0) =

 0.6516 0.1839 0.1645
0.1652 0.8243 0.0105
0.0266 0.3379 0.6355

 A(5, 0) =

 0.7062 0.1499 0.1439
0.1408 0.8536 0.0056
0.0164 0.2882 0.6954



A(6, 0) =

 0.7463 0.1264 0.1273
0.1225 0.8746 0.0029
0.0105 0.2507 0.7388

 A(7, 0) =

 0.7770 0.1091 0.1139
0.1082 0.8905 0.0013
0.0069 0.2217 0.7714



A(8, 0) =

 0.8011 0.0960 0.1029
0.0969 0.9028 0.0003
0.0046 0.1986 0.7968


The path-approach provides additionally a graphical presentation of the

evolution of the row vectors ai(m, 0): The i-th row of A(m, 0) corresponds
with the point on the path P0

i with parametric equation
(
f0i1 (t) f0i2 (t) f0i3 (t)

)
for t = 1

m ∈ [0, 1]. For the example under study, the paths P0
1 , P0

2 and P0
3

are graphically presented in Figure 2. In accordance to the above computed
results, the path P0

1 lie within the triangle Conv{e1, e2, e3} for the whole
range of t-values in [0, 1], while for the path P0

2 the points corresponding with
t ≤ 1

9 (i.e. m ≥ 9) are lying outside Conv{e1, e2, e3}.
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Fig. 2 Graphical presentation of the paths P0
1 , P0

2 and P0
3

5 Further research questions

For Markov chains with two states and that satisfy the necessary and sufficient
embedding conditions, stochastic roots of the (2 × 2) transition matrices are
known in analytical form from previous work [2,5,7]. For (3×3) transition ma-
trices with real eigenvalues the embedding problem is discussed in [4–6]. The
present paper examines matrix roots and the embedding problem for Markov
chains with three states in the case the transition matrix P has complex eigen-
values. Necessary embedding conditions are formulated, row-normalized roots
A(m, k) are constructed and sufficient conditions for the existence of an m-th
stochastic root are presented. In this way, the (2 × 2) and (3 × 3) case are
examined in depth.
For an (n×n) transition matrix that is a block diagonal matrix P = diag(P1, ..., Pk),
the matrix A = diag(A1, ..., Ak) is an m-th root of P if and only if for
all i ∈ {1, ..., k} holds that Ai is an m-th root of Pi. Therefore, for P =
diag(P1, ..., Pk) with all blocks Pi of order (2 × 2) or (3 × 3), the known in-
sights for the (2×2) and (3×3) case are useful in examining matrix roots and
the embedding problem. For future research it would be interesting to find out
whether the dissemination of the presented approaches could result in insights
for matrix roots and for the embedding problem in the case of general (n×n)
stochastic matrices.
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