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On perturbations of non-diagonalizable stochastic matrices of order

3

P.J. PAUWELYNa and M.A. GUERRYb

Abstract

In this paper, the interest lies with the non-diagonalizable stochastic matrices. We show that it
is possible for every non-diagonalizable stochastic 3 × 3 matrix to be perturbed into a diagonalizable
stochastic matrix with the eigenvalues, arbitrarily close to the eigenvalues of the original matrix. More-
over, this perturbed matrix is a stochastic matrix with the same principal (left and right) eigenspaces
as the original matrix. An algorithm is presented to determine a perturbation matrix, which preserves
these spectral properties. Additionally, a relation is proved between the eigenvectors and generalized
eigenvectors of the original matrix and the perturbed matrix.

Keywords: Stochastic matrices; Non-diagonalizable matrices; Perturbation theory; Markov chains
MSC: 15B51, 15A18, 47A55, 60J10

1 Introduction and main result

In general, perturbation theory deals with the following question [2],[5],[7],[8],[11],[12],[13]: What happens
to certain matrix quantities or properties if the matrix is perturbed in a certain way? The present paper
examines another question: Which perturbation do we need in order to attain certain matrix properties?
In particular, we start from a non-diagonalizable stochastic 3 × 3 matrix A with eigenvalues 1 and λ. We
determine a perturbation matrix E such that the perturbed matrix Ã suffices the following conditions:

(a) Ã = A+ E is an additive perturbation of A.

(b) Ã is a stochastic matrix.

(c) spec
(
Ã
)

= {1, µ, ν} ⊂ R, µ 6= ν and ∀δ > 0,∃E ∈ R3×3 : |µ− λ| < δ ∧ |ν − λ| < δ.

(d) The eigenspaces corresponding to the eigenvalue 1 of the matrices A and Ã coincide.

These conditions are all chosen with good reason. Condition (a) allows to directly see and interpret the
effects of a perturbation on A, especially in an applied situation. By condition (b), after perturbation, the
matrix remains stochastic. Condition (c) demands that Ã is a diagonalizable matrix with real eigenvalues.
Each eigenvalue of Ã can be arbitrary close to an eigenvalue of A, depending on the perturbation matrix E.
Condition (d) implies that the principal (left and right) eigenspaces of A and Ã coincide. A side-effect of
this condition is that the corresponding Markov chains of A and Ã have the same stationary distribution.
We obtained the result that for all non-diagonalizable stochastic 3 × 3 matrices A it is possible to find a
perturbation matrix E such that A+ E suffices the conditions (a)-(d).

2 Construction of a perturbation matrix

We have to translate the conditions (a)-(d) into conditions on the perturbation matrix E or conditions on
the matrixelements εij of E. We consider additive perturbations of A such that the stochastic property of

A can be easily preserved. In order to preserve the rowsums of A, the condition A~1 = Ã~1, (where ~1 ∈ R3 is
the columnvector with all components equal to 1) must be fullfilled. This equality implies

E~1 = (Ã−A)~1 = Ã~1−A~1 = 0
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Therefore the rowsums of the perturbation matrix E should be zero. Otherwise said:

∀i ∈ {1, 2, 3} :

3∑
j=1

εij = 0 (1)

Implementing condition (d) goes as follows. The eigenspaces corresponding to the eigenvalue 1, are the left
eigenspace VL(1) =

{
v ∈ R1×3|v(A− I3) = 0

}
and the right eigenspace VR(1) =

{
w ∈ R3×1|(A− I3)w = 0

}
,

with I3 the identity matrix of order 3. From here on we use the notation VL(λ) for the left eigenspace
corresponding to the eigenvalue λ of the matrix A and VR(λ) for the right eigenspace corresponding to the
eigenvalue λ of the matrix A. For the left and right eigenspaces corresponding to the perturbed matrix Ã, we
use the notation ṼL(λ) and ṼR(λ). Since Ã must have the same eigenspaces as the matrix A corresponding
to the eigenvalue 1, the equalities v(Ã− I3) = 0 and (Ã− I3)w = 0 should hold for all v ∈ VL(1) and for all
w ∈ VR(1). Since A and Ã are both stochastic matrices, their right eigenspaces are both VR(1) = ṼR(1) ={

(k, k, k)T |k ∈ R
}

and coincide. To obtain coinciding left eigenspaces VL(1) and ṼL(1), the perturbation
matrix E should suffice the equality v(A+E − I3) = 0, for all v ∈ VL(1). A method to determine such E is
given by the following lemma:

Lemma 2.1. Given a matrix A with an eigenvalue λ and corresponding left eigenvector u and a perturbation
matrix E. Then λ is also an eigenvalue of A+E with corresponding left eigenvector u if and only if uE = 0.

Proof. If λ is an eigenvalue of A+E with corresponding left eigenvector u, then u(A+E) = λu. Consequently
(since uA = λu):

uE = u(A+ E)− uA = λu− λu = 0

Vice versa, if uE = 0, then:
u(A+ E) = uA+ uE = λu+ 0 = λu

With this lemma, condition (d), the preservation of the eigenspaces corresponding to the eigenvalue 1 becomes
vLE = 0 for vL ∈ VL(1). If vLE = 0 for some vL ∈ VL(1), then vE = 0 for all v ∈ VL(1), since VL(1) is
one-dimensional. This constraint vE = 0 combined with the constraint E~1 = 0 implies the following form
of E:

E =

v2(ε22 + ε23) + v3(ε32 + ε33) −v2ε22 − v3ε32 −v2ε23 − v3ε33
−v1(ε22 + ε23) v1ε22 v1ε23
−v1(ε32 + ε33) v1ε32 v1ε33

 (2)

with v = (v1, v2, v3) for some v ∈ VL(1).
The eigenvalues of the perturbed matrix Ã should remain real after the perturbation of A. A has two real
eigenvalues 1 and λ, 1 is always a semisimple eigenvalue[9]. Therefore λ must have multiplicity 2, if A is
non-diagonalizable[4]. In order for Ã to have three distinct eigenvalues, its characteristic equation needs to
have 3 distinct roots. Since Ã is also a stochastic matrix, 1 is an eigenvalue of Ã.
For the characteristic equation of Ã, we have:

− λ3 + tr(Ã)λ2 + [1− tr(Ã)− det(Ã)]λ+ det(Ã) = 0

⇔ (λ− 1)
[
−λ2 + (tr(Ã)− 1)λ− det(Ã)

]
= 0

For Ã to have three distinct real eigenvalues, the equation −λ2 + (tr(Ã)− 1)λ− det(Ã) = 0 must have two
distinct real roots. This is only the case if the discriminant ∆(Ã) is strictly positive.

∆(Ã) =
[
tr(Ã)− 1

]2
− 4 det(Ã) > 0 (3)

We consider the discriminant of a stochastic matrix as a function of its matrixelements. Therefore we define
the set U = {(b12, b13, b22, b23, b32, b33) |∀i, j : bij ≥ 0 ∧ bi2 + bi3 ≤ 1},which is isomorph with the set of the
stochastic 3× 3 matrices. Now, we can define the discriminant in function of six variables on the subset U
of R6.

∆ : U → R : (b12, b13, b22, b23, b32, b33) 7→ ∆(B) = ∆

1− b12 − b13 b12 b13
1− b22 − b23 b22 b23
1− b32 − b33 b32 b33
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Next, the discriminant function can be written in fully as:

∆(B) = ∆

1− b12 − b13 b12 b13
1− b22 − b23 b22 b23
1− b32 − b33 b32 b33

 = [tr(B)− 1]
2 − 4 det(B)

= (b12 − b13 − b22 + b33)
2

+ 4 (b12 − b32) (b13 − b23)

According to (3), the discriminant of Ã must be positive. To determine what happens with the discriminant,
when A is perturbed into Ã = A+E, the directional derivative of ∆(A) will be examined. Since the rowsums
of E must be 0 (see (1)), E can be mapped on a direction ~ε = (ε12, ε13, ε22, ε23, ε32, ε33) ∈ R6. The directional
derivative[1] of a non-diagonalizable stochastic 3× 3 matrix B in a direction ~ε, D~ε∆(B) is

D~ε∆(B) = D~ε (b12, b13, b22, b23, b32, b33) =
~ε

‖~ε‖
•
(
∂∆

∂b12
,
∂∆

∂b13
,
∂∆

∂b22
,
∂∆

∂b23
,
∂∆

∂b32
,
∂∆

∂b33

)
=

2

‖~ε‖
[(b12 − b13 − b22 + b33) (ε12 − ε13 − ε22 + ε33) + 2 (b13 − b23) (ε12 − ε32)

+2 (b12 − b32) (ε13 − ε23)]

If the calculation of the directional derivative is applied on a direction ~ε corresponding to E as in (2), we have
that the directional derivative of the discriminant is a function of four perturbation variables, ε22, ε23, ε32
and ε33 and then the directional derivative becomes:

D~ε∆(A) = (a12 − a13 − a22 + a33) (−v2ε22 − v3ε32 − v2ε23 − v3ε33 − v1ε22 + v1ε33)

+ 2 (a13 − a23) (−v2ε22 − v3ε32 − v1ε32) + 2 (a12 − a32) (−v2ε23 − v3ε33 − v1ε23)

= Kε22 + Lε23 +Mε32 +Nε33

with

K = (a12 − a13 − a22 + a33)(v1 + v2) + 2(a13 − a23)v2 ∈ R
L = (a12 − a13 − a22 + a33)v2 − 2(a12 − a32)(v1 + v2) ∈ R
M = (a12 − a13 − a22 + a33)v3 + 2(a13 − a23)(v1 + v3) ∈ R
N = (a12 − a13 − a22 + a33)(v1 + v3)− 2(a12 − a32)v3 ∈ R

From here, we consider the direction ~ε to be the vector (ε22, ε23, ε32, ε33).
For the given non-diagonalizable stochastic matrix A, we need to determine a direction ~ε such that D~ε∆(A) >
0. This means solving the following inequality:

D~ε∆(A) > 0

Since D~ε∆(A) is a homogeneous polynomial of degree 1 for its variables ε22, ε23, ε32 and ε33, the inequality
D~ε∆(A) > 0 has a solution, unless K = L = M = N = 0. If K = L = M = N = 0, then the second order
directional derivative D2

~ε∆(A) must be calculated[1]. If the first order directional derivative D~ε∆(A) is zero
in a direction and the second order directional derivative D2

~ε∆(A) is positive, then ∆(A) will increase in the
direction of ~ε. The inequality for D2

~ε∆(A) is:

D2
~ε∆(A) = (ε22(v1 + v2) + ε23v2 + ε32v3 + ε33(v1 + v3))

2
+ 4 (ε32ε23 − ε22ε33) v1 (v1 + v2 + v3) > 0

The left hand side is a non-zero homogeneous polynomial of degree 2, thus the existence of a solution to this
inequality is guaranteed.
Before we can conclude that for every non-diagonalizable stochastic 3× 3 matrix there exists a perturbation
matrix E such that the conditions (a)-(d) are sufficed, we have to verify that after perturbation no negative
elements or elements greater than 1 arise in the matrix Ã. This is shown in a working paper[10].
And since the eigenvalues of a matrix depend continuously on the matrix-elements[12], the eigenvalues of A
and Ã can be arbitrary close. Therefore, we can conclude that for every non-diagonalizable stochastic 3× 3
matrix A, there exists a perturbation matrix E such that the matrix A+ E suffices the conditions (a)-(d).

3 SCEP-algorithm

The algorithm to determine a 3 × 3 perturbation matrix, which suffices conditions (a)-(d) is called the
Stochastic Conserving Eigenspace Perturbation algorithm (SCEP-algorithm) and goes as follows:
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Algorithm 1 SCEP-algorithm

Calculate a principal eigenvector v of A
Define vi, (i = 1, 2, 3) as the components of v.
Define K := (a12 − a13 − a22 + a33)(v1 + v2) + 2(a13 − a23)v2
Define L := (a12 − a13 − a22 + a33)v2 − 2(a12 − a32)(v1 + v2)
Define M := (a12 − a13 − a22 + a33)v3 + 2(a13 − a23)(v1 + v3)
Define N := (a12 − a13 − a22 + a33)(v1 + v3)− 2(a12 − a32)v3
if K 6= 0 or L 6= 0 or M 6= 0 or N 6= 0 then

Find a solution ~ε∗ = (ε∗22, ε
∗
23, ε

∗
32, ε

∗
33) of Kε22 + Lε23 +Mε32 +Nε33 > 0

Define E :=

v2(ε∗22 + ε∗23) + v3(ε∗32 + ε∗33) −v2ε∗22 − v3ε∗32 −v2ε∗23 − v3ε∗33
−ε∗22 − ε∗23 ε∗22 ε∗23
−ε∗32 − ε∗33 ε∗32 ε∗33


while A+ E 6≥ 0 do

Find another solution ~ε′ = (ε′22, ε
′
23, ε

′
32, ε

′
33) of Kε22 +Lε23 +Mε32 +Nε33 > 0, linear independent of

~ε∗

Define E :=

v2(ε′22 + ε′23) + v3(ε′32 + ε′33) −v2ε′22 − v3ε′32 −v2ε′23 − v3ε′33
−ε′22 − ε′23 ε′22 ε′23
−ε′32 − ε′33 ε′32 ε′33


end while
Define Ã := A+ E

else
Find a solution ~ε∗ = (ε∗22, ε

∗
23, ε

∗
32, ε

∗
33) for (ε22(v1 + v2) + ε23v2 + ε32v3 + ε33(v1 + v3))

2
+

4 (ε32ε23 − ε22ε33) v1 (v1 + v2 + v3) > 0

Define E :=

v2(ε∗22 + ε∗23) + v3(ε∗32 + ε∗33) −v2ε∗22 − v3ε∗32 −v2ε∗23 − v3ε∗33
−ε∗22 − ε∗23 ε∗22 ε∗23
−ε∗32 − ε∗33 ε∗32 ε∗33


while A+ E 6≥ 0 do

Find another solution ~ε′ = (ε′22, ε
′
23, ε

′
32, ε

′
33) of Kε22 +Lε23 +Mε32 +Nε33 > 0, linear independent of

~ε∗

Define E :=

v2(ε′22 + ε′23) + v3(ε′32 + ε′33) −v2ε′22 − v3ε′32 −v2ε′23 − v3ε′33
−ε′22 − ε′23 ε′22 ε′23
−ε′32 − ε′33 ε′32 ε′33


end while
Define Ã := A+ E

end if
return Ã
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4 Further spectral properties

If we consider the set DPδ(A) of all matrices Ã (for a given δ in condition (c)) which suffice the conditions
(a)-(d), then DPδ(A) ∪ {A} is starconvex, according to the following theorem.

Lemma 4.1. If a perturbation matrix E suffices the conditions (a)-(d) for a given non-diagonalizable matrix
A, then does also tE, for all t ∈ (0, 1).

Proof. If we consider the form (2) of E, then conditions (a), (b) and (d) are immediately sufficed for tE.
The multiplication with t ∈ (0, 1) preserves also the positivity of the directional derivatives.

Dt~ε∆(A) = Ktε22 + Ltε23 +Mtε32 +Ntε33 = t (Kε22 + Lε23 +Mε32 +Nε33) > 0

D2
t~ε∆(A) = [tε22(v1 + v2) + tε23v2 + tε32v3 + tε33(v1 + v3)]

2
+ 4 (tε32tε23 − tε22tε33) v1 (v1 + v2 + v3)

= t2
[
(ε22(v1 + v2) + ε23v2 + ε32v3 + ε33(v1 + v3))

2
+ 4 (ε32ε23 − ε22ε33) v1 (v1 + v2 + v3)

]
> 0

Therefore, we have that if D~ε∆(A) > 0, then Dt~ε∆(A) > 0 and if D2
~ε∆(A) > 0, then D2

t~ε∆(A) > 0, both
implications are valid for all t ∈ (0, 1).

The starconvexity of DPδ(A) ∪ {A} is a necessary fact to be able to state the following theorem. In section
2, we already showed that every non-diagonalizable stochastic 3 × 3 matrix A can be perturbed such that
the conditions (a)-(d) are sufficed for A+E. Moreover, according to lemma 4.1, the matrices Ã(t) = A+ tE
suffice the condition (a)-(d), ∀t ∈ (0, 1).

Theorem 4.1. Suppose that A is a non-diagonalizable stochastic 3×3-matrix. For all perturbation matrices
E, resulting from the SCEP-algorithm hold the following statements:

(a) The eigenspaces of the non-principal eigenvalues of Ã(t) = A+ tE converge 1 to the eigenspace of the
non-principal eigenvalue of A, as t tends to zero (considering E fixed as a result of the SCEP-algorithm
and t > 0).

(b) The space spanned by the eigenvectors of the non-principal eigenvalues of Ã(t) = A + tE coincide
with the space spanned by the eigenvector corresponding to the non-principal eigenvalue of A and it’s
generalized eigenvector. This statement is true for both left and right eigenvectors.

Proof. (a) The analytic matrix function Ã(t) has corresponding eigenvalues 1, µ(t) and ν(t). The eigen-
values µ(t) and ν(t) can be expanded as Puiseux series[3], being the branches of one Puiseux series. Both
the eigenvalues µ(t) and ν(t) tend to λ as t tends to 0. Since the eigenvalues µ(t) and ν(t) are branches
of one Puiseux-series, we can choose[6] corresponding normalized left eigenvectors vµ(t) ∈ VL(µ(t)) and
vν(t) ∈ VL(ν(t)) such that vµ(0) = vν(0). Now we have that µ(0) = ν(0) = λ, A(0) = A and{

vµ(0)A(0) = µ(0)vµ(0)
vν(0)A(0) = ν(0)vν(0)

Since λ has geometric multiplicity 1, it follows that an eigenvector v corresponding the eigenvalue λ
is a multiple of vµ(0), since both v and vµ(0) are eigenvectors corresponding to the eigenvalue λ of
A = A(0). The same goes for vν(0). Thus:

Span[vµ(0)] = Span[vν(0)] = Span[v]

which proves part (a) of the theorem.

(b) It is known that the eigenvectors vµ(t) and vν(t) which correspond to different eigenvalues, are linear
independent. Since Ker(A− λI) ⊂ Ker(A− λI)2, the remainder to show is:

vµ(t) (A− λI)
2

= 0 and vν(t) (A− λI)
2

= 0

1Convergence of one-dimensional eigenspaces is defined here as follows:
The eigenspace is spanned by one eigenvector v(t), depending on a continuous parameter t. As this parameter t approaches a
certain value a, the corresponding normalized vector v(t) might converge to a certain vector v. If this limit for v(t) as t → a
converges to v, the eigenspace VL(v(t)) converges to the space spanned by to the limit vector v.
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Then we have two linear independent vectors, vµ(t) and vν(t), in the two dimensional kernel Ker
[
(A− λI)

2
]
,

thus those form a basis.
Therefore we consider first the matrix (A− λI)2:

(A− λI)2 =
(
TJT−1 − λI

)2
=
[
T (J − λI)T−1

]2
= T (J − λI)

2
T−1 = (1− λ)2wu

where TJT−1 is the corresponding Jordan decomposition of A, J being the corresponding Jordan-
matrix, w ∈ VR(1) and u ∈ VL(1) . Since Ã(t) is also a stochastic matrix, its eigenvector corresponding
to 1, w(t) is also a multiple of (1, 1, 1)T and thus w = cw(t), for some c ∈ R. We have:

vµ(t) (A− λI)
2

= (1− λ)2vµ(t)wu = c(1− λ)2vµ(t)w(t)u = 0

since vµ(t)w(t) = 0, which follows from:

vµ(t)w(t) = vµ(t)
[
Ã(t)w(t)

]
=
[
vµ(t)Ã(t)

]
w(t) = µvµ(t)w(t)

⇒ (1− µ)vµ(t)w(t) = 0

⇒ vµ(t)w(t) = 0

The proof for the right eigenvectors is completely analogue.

The presented procedure has many advantages. If we would compare this well-chosen perturbation, found
by using the SCEP-algorithm, to a random generated perturbation matrix, this well-chosen perturbation
preserves spectral properties from the original matrix A onto the perturbed matrix Ã. Therefore the be-
haviour of the perturbed matrix Ã resembles the behaviour of the matrix A. Another advantage, via this
procedure, we know that for every non-diagonalizable stochastic 3× 3 matrix A , there exists a sequence of
diagonalizable stochastic 3 × 3 matrices which all have coinciding principal eigenspaces and this sequence
has A as its limit. This is helpful for proving matrix identities for non-diagonalizable matrices.
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