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Mining Change Histories for
Unknown Systematic Edits

Tim Molderez, Reinout Stevens and Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium

Email: {tmoldere, resteven, cderoove}@vub.be

Abstract—Software developers often need to repeat similar
modifications in multiple different locations of a system’s source
code. These repeated similar modifications, or systematic edits,
can be both tedious and error-prone to perform manually. While
there are tools that can be used to assist in automating systematic
edits, it is not straightforward to find out where the occurrences
of a systematic edit are located in an existing system. This
knowledge is valuable to help decide whether refactoring is
needed, or whether future occurrences of an existing systematic
edit should be automated. In this paper, we tackle the problem
of finding unknown systematic edits using a closed frequent
itemset mining algorithm, operating on sets of distilled source
code changes. This approach has been implemented for Java
programs in a tool called SysEdMiner. To evaluate the tool’s
precision and scalability, we have applied it to an industrial use
case.

Index Terms—Systematic edits; change distilling; frequent
itemset mining.

I. INTRODUCTION

While developing software, developers can repeatedly per-
form similar, non-identical changes to a system’s source code.
Such a group of similar changes, also called systematic edits or
systematic code changes [1], can be performed for several rea-
sons: adapting code to a changed API, migrating to a different
library/framework, refactoring, performing routine code main-
tenance tasks, fixing multiple occurrences of the same bug,
implementing/modifying crosscutting concerns, code cloning,
making changes in multiple branches/variants of a system, ...

An example of a systematic edit is given in Fig. 1. It
illustrates a small refactoring of the XmlParser class, where
the file to be parsed is now passed in via the parse method
instead of the constructor. As the application may have several
locations where an XmlParser is used, each of them must be
changed in a similar manner. In other words, Fig. 1 shows two
instances of the same systematic edit.

In this paper we present an automated approach that can
find existing systematic edits in a given source code repos-
itory. This information is valuable in a number of different
applications:

Detecting error-prone code - Due to their repetitive nature,
performing systematic edits manually can be tedious and error-
prone. By repeating a change that is similar, but not always
identical, it is understandable that mistakes are easy to make.
While these mistakes are often also easy to fix once found,
finding them can be difficult. Knowing where the systematic
edits are in a system gives developers an idea of which areas
of the source code are prone to this type of errors.

public User createUser(String userXml){
- XmlParser uP = new XmlParser(userXml);
+ XmlParser uP = new XmlParser();

uP.setSchema(userXsd);
- uP.parse();
+ uP.parse(userXml);

...
}

public Event createEvent(String eventXml){
- XmlParser eP = new XmlParser(eventXml);
+ XmlParser eP = new XmlParser();

eP.setSchema(eventXsd);
eP.setVerbose(false);

- eP.parse();
+ eP.parse(eventXml);

...
}

Fig. 1. Two instances of a systematic edit

Informed refactoring - A closely related application:
knowing where systematic edits are located can also be helpful
to decide whether or not refactoring the system is beneficial.
If a similar change needs to be made in many locations, this
can indicate the system’s design should be improved. For
example, in an application that generates reports, if changing
the formatting of the entries in a report requires a change for
every entry, this should be refactored.

Transformation generation - Finally, it also is possible
that a systematic edit that was found can recur in the future.
That is, the similar change performed in this systematic edit
may need to be repeated again, e.g. because it is part of
a routine maintenance task. In such a case, automating the
systematic edit by means a program transformation would be
beneficial. Knowledge of all existing instances of a systematic
edit can be used to reduce the effort of specifying a program
transformation. All instances could be (semi-) automatically
generalized into a program transformation with tools such as
LASE [2] or RASE [3].

While developers may have some notion of the systematic
edits they performed in their own code, it would require a lot
of effort to manually locate all existing systematic edits in a
project. Consequently, an automated approach is required. Our
approach to finding existing systematic edits involves using
two techniques: first, we make use of a change distiller for
Java that obtains all fine-grained source code changes that
occur in a given git repository. To be more precise, source



code changes at the level of abstract syntax tree (AST) nodes:
inserting nodes, removing them, moving them or updating their
value. These fine-grained changes provide an additional level
of precision compared to traditional, more coarse-grained,
line-based diffs. Second, we use these fine-grained changes as
the input to a closed frequent itemset mining algorithm, which
looks for similar sets of fine-grained changes according to
certain criteria to group such changes into sets, and a definition
of what is considered similar. These similar sets of fine-grained
changes then correspond to a systematic edit.

This approach has been implemented as an Eclipse plugin
called SysEdMiner1, which supports git repositories containing
Java source code. To evaluate the tool, we have applied it
to multiple repositories of TP Vision Belgium, an industrial
partner for the research project this work is part of, to gauge
the tool’s correctness, usefulness and scalability (in terms of
project and commit size).

After presenting an introduction to the ChangeNodes change
distiller in Sec. II, this paper makes the following contribu-
tions:

• An automated approach to find systematic edits (Sec. III)
• Grouping and equivalence criteria (Sec. IV) to configure

how fine-grained and strict a systematic edit should be
• An evaluation of the approach on an industrial use case

(Sec. V)

II. BACKGROUND ON CHANGE DISTILLING

There are three main options to obtain changes to source
code, so we can analyze them to find any systematic edits:
traditional line-based diffs, change distilling and change log-
ging. Line-based differencing (e.g. through the git diff
command) can be used to indicate which lines have been
added or removed between two versions of a file. While it is a
relatively simple and fast way to obtain changes, the changes
themselves are rather coarse-grained. For example, when only
a variable name is changed in a lengthy statement, the entire
line still is considered to be changed. Both change logging and
change distilling are more fine-grained techniques, as changes
are expressed at the level of AST nodes. Nodes can be inserted
into an AST, removed, moved, as well as updated. A change
distiller can compare two versions of a piece of source code;
it will infer a possible sequence of AST-level changes, also
called an edit script. When the changes in an edit script are
applied in order, the original code is transformed into the
modified code. Whereas a change distiller obtains its changes
after-the-fact, a change logger will record all changes “live”,
as the developer is making changes to the code. Given these
three options, we opted for change distilling, as it produces
fine-grained changes, and can be applied to any existing source
code repository without requiring additional software (i.e. a
change logger) during development. Note that throughout this
paper, we will refer to the output of a change distiller as fine-
grained changes, or simply changes.

1The source code of SysEdMiner is available online at:
https://gitlab.soft.vub.ac.be/tmoldere/sysedminer

The change distilling tool used in our approach is called
ChangeNodes [4], [5] , which is an adaptation of ChangeDis-
tiller [6] that operates on Eclipse JDT AST nodes. Both
ChangeNodes and ChangeDistiller implement the tree differ-
encing algorithm presented by Chawathe et al. [7].

A. JDT abstract syntax trees

We will first discuss the representation of Eclipse JDT
ASTs, followed by more precise definitions of each type of
changes to these ASTs, produced by ChangeNodes. Accessing
the children of AST nodes is done through properties. For ex-
ample, an IfStatement has three properties; an expression

property, a thenStatement and an elseStatement prop-
erty. Some properties may return a collection instead of a
single item. These are called list properties. Some properties
are mandatory, meaning that the AST node must always
have a non-null value for them. The name property of a
MethodDeclaration node is an example of a mandatory
property. Mandatory properties ensure that every AST always
represents syntactically legal Java code. Because ChangeN-
odes takes this into account when applying a sequence of fine-
grained changes to an AST, all intermediate steps are valid
Java ASTs as well.

We also require the notion of a minimal representation of
an AST node. A minimal representation of a node is that node
with no values for its non-mandatory properties, and a minimal
representation of the values of mandatory properties. For ex-
ample, the minimal representation of a MethodDeclaration

is a method with a name, but without arguments, body, etc. . .

B. ChangeNodes edit scripts

Having discussed the representation of Eclipse JDT ASTs,
we can now have a closer look at the output of ChangeNodes.
The tool produces the following four types of changes:

• insert(node,parent,property,index)
An AST node node is inserted as property in node
parent. In case property is a list property, the node
is inserted at index. Note that parent may not initially
exist yet, and is only created by another insertion change.
In this case, parent refers to that change.

• move(node,parent,property,index)
A node is moved to location property of parent. In
case property is a list property, the node is moved to
index.

• update(node,property,value)
The value of node node at location property is updated
to value. This property must be a simple property,
indicating that value is not an AST node but a literal
(of type String, int, double, boolean, ...).

• delete(node,property,index)
A node and its complete subtree are removed. If
property is a list property, index indicates the index
of node’ in its list.



public class Point {
private int x;
private int y;
public double computeDistance(Point p) {

+ if (this.equals(p)) return 0;
double dX = this.computeDeltaX(p);
double dY = this.computeDeltaY(p);
return Math.sqrt(Math.pow(dX, 2) + Math.pow(dY, 2));

}
public double computeDirection(Point point) {

+ if (this.equals(point)) return 0;
double dX = this.computeDeltaX(point);
double dY = this.computeDeltaY(point);
return Math.atan2(dY, dX) * 180 / Math.PI;

}
... }

Fig. 2. Running example: add equality test

Both a move and insert produce minimal representations of
an AST node; inserting a node will only result in a minimal
representation of that node being added, and thus not the
complete subtree. A move results in moving the minimal
representation of that node. Its original location is replaced
by a placeholder node that still contains the subtree located
at node’. The subtrees of these nodes will be introduced by
later change operations.

To make these fine-grained changes more concrete, consider
the example in Fig. 2, where two new IfStatements are
inserted. Note that we will reuse this example throughout
the paper. A valid sequence of fine-grained changes that the
change distiller may produce for this example is the following:

C1: insert(IfStatement if(){}, body of computeDistance,
statements, 0)
C2: insert(MethodInvocation equals(), C1, expression, -)
C3: insert(ThisExpression this, C2, expression, -)
C4: insert(SimpleName p, C2, arguments, 0)
C5: insert(ReturnStatement return;, C1, thenStatement, -)
C6: insert(NumberLiteral 0, C5, expression, 0)
C7-C12: (Analogous to C1-C6)

Note that each of these changes insert a minimal representa-
tion of an AST node. For example, in change C1, a new empty
IfStatement is created. As the thenStatement property of
an IfStatement is mandatory, the minimal representation
also includes a Block node to represent the empty then-
branch.

III. OVERVIEW OF THE APPROACH

Given a specific commit from a source code repository, we
can now use ChangeNodes to obtain all fine-grained changes
that occur within that commit. The next step of our approach
is to use these changes as input to a mining algorithm. This
section will first give an overview of our approach to finding
systematic edits. Next, we go into more detail why we opted
for closed frequent itemset mining, and how it maps to our
problem domain.

Fig. 3. Overview of the approach

A. Overview

The main steps of our approach are illustrated in Fig. 3.
First, from a given git repository, each commit is analyzed
separately to search for any systematic edits. For a given
commit, the before and after version of each file in that commit
is passed to the ChangeNodes change distiller. This results
in an edit script, i.e. a sequence of fine-grained changes that,
when applied in order, replays all modifications in this commit.

Before we can start mining these changes for systematic
edits, a preprocessing step is needed to create suitable input for
the mining algorithm. This preprocessing step consists of two
components: first, it separates all changes into transactions. A
transaction essentially is a set of changes. This separation into
transactions happens according to a grouping criteria. In this
paper, we chose to create a transaction for each method that
was modified in a commit. That is, all fine-grained changes
that occur within one method are grouped together in one
transaction.

The second component of the preprocessing step consists
of “generalizing” all transactions, according to equivalence
criteria. Equivalence criteria determine when two changes are
considered equivalent. Because a transaction represents a set of
changes, and a set cannot contain duplicate/equivalent items,
the equivalence criteria are needed to generalize this transac-
tion. That is, to remove changes from the transaction until the
transaction no longer contains any equivalent changes. Both
the grouping and equivalence criteria are detailed in Sec.IV-A.

Finally, once the preprocessing step is complete, the trans-
actions can be mined for systematic edits. To do this, we
make use of the CHARM [8] closed frequent itemset min-
ing algorithm. This algorithm will look for sets of changes
that frequently occur together in different transactions, which
effectively corresponds to a systematic edit.

B. Context

Before describing our approach in more detail, we should
motivate our choice for using closed frequent itemset min-
ing [9]. This choice is explained by two main characteristics
of our problem domain: change ordering and discontinuity.

Ordering - A change distiller returns a sequence of
changes, i.e. their order matters. For a change logger, this
sequence corresponds exactly to the changes performed by the



developer. However, a change distiller typically produces only
one of the many possible orderings of these changes, which
may or may not correspond to what a developer would do. For
example, when adding a new method, the insertions of each
statement can happen in any order, as long as the target AST
is produced at the end. To favour finding more systematic edits
(at the trade-off of finding more false positives as well), we
opted to disregard the ordering of changes in the edit script
we obtained from the change distiller.

Discontinuity - It also is possible that, within a change
sequence, a developer may perform changes that are unrelated
to a systematic edit. For example, a systematic edit may
involve inserting logging statements in multiple methods, but
other unrelated statements may have been inserted in some
of these methods as well. In other words, it is possible that
edit scripts interleave changes related to a systematic edit with
changes that are not related.

Given the two characteristics of ordering and discontinuity,
we opted to use a closed frequent itemset mining algorithm [9]
over related techniques to look for frequent patterns, such as
frequent sequence [10], episode [11] or substring [12] mining.
While frequent episode and sequence mining can find patterns
in discontinuous data, frequent itemset mining, being set-
based, is an order-insensitive technique.

The specific mining algorithm that we used is the
CHARM [8] algorithm by Zaki and Hsiao. We chose CHARM
as it does not involve candidate generation. Candidate gen-
eration mining algorithms would not scale for our problem
domain, as modifying only a few lines of code can already
result in a substantial amount of fine-grained changes.

C. Representing systematic edits as itemsets

To define the mapping between frequent itemset mining and
finding systematic edits, we will first describe the terminology
used in frequent itemset mining in more detail.

In frequent itemset mining, the aim is to find sets of items
that frequently occur together in different transactions. In our
case, we aim to find sets of changes that frequently occur to-
gether. To be more precise, let the item base I = {i1, . . . , im}
be a set of items. Any subset T of I is an itemset. A
transaction t = 〈tid, T 〉 , where tid is a unique transaction
identifier and T is an itemset. A transaction 〈tid, T 〉 contains
an itemset S if S ⊆ T . A transaction database D is a set of
transactions. The support of an itemset in D is the number
of different transactions in D that contain that itemset. A
frequent itemset is an itemset where its support is above a
certain threshold c. The problem of frequent itemset mining
can now be defined as: given a transaction database and a
threshold, identify all frequent itemsets.

In our context of finding systematic edits, an item corre-
sponds to a fine-grained change and a systematic edit is a
frequent itemset. That is, a systematic edit is represented as a
set of changes that frequently occurs in different transactions.
An instance of a systematic edit then corresponds to an occur-
rence of a frequent itemset in one transaction. The transaction
database is obtained by dividing all fine-grained changes into

groups. As mentioned before, the grouping criteria we used is
to group all changes by method: all changes that occur within
a method form the itemset T of a transaction 〈tid, T 〉. The
method itself can serve as the transaction identifier tid.

Finally, note that CHARM is a closed frequent itemset min-
ing algorithm. The algorithm will only report closed frequent
itemsets, which are frequent itemsets for which there are no
superitemsets with the same support. In other words, there
is no redundant information in the algorithm’s output: it will
only report systematic edits such that there are no larger/super
systematic edits with the same number of instances.

IV. GROUPING AND EQUIVALENCE CRITERIA

As mentioned in Sec. III-A, a preprocessing step is needed
to produce transactions that can be mined by the CHARM
algorithm. The grouping and equivalence criteria that are
involved in this step can greatly influence which systematic
edits will be found during the mining process. Sec. IV-A first
focuses on grouping criteria, followed by Sec. IV-B to discuss
equivalence criteria.

A. Grouping criteria

To separate the changes produced by ChangeNodes into
transactions, we chose to group all changes by method. That
is, given a specific commit, there is one transaction for every
method that is modified in that commit. Any change that
inserts, removes, moves or updates a node within a particular
MethodDeclaration, is part of the transaction for that
MethodDeclaration. The method that a change is part of,
also is referred to as the container of that change.

To illustrate, consider the example of Fig. 2. Recall
that a transaction is denoted 〈tid, T 〉, with tid a transaction
identifier and T a set of changes. In this example, grouping the
changes by the method they affect results in two transactions:
〈Point.computeDistance, {C1, C2, C3, C4, C5, C6}〉 and
〈Point.computeDirection, {C7, C8, C9, C10, C11, C12}〉.

In general, the grouping criteria can be configured such that
changes are grouped by the subtree in which they occur, rooted
at a specific type of AST node. The type of this root, i.e. the
type of the container, has an influence on the systematic edits
found by the mining algorithm.

First, changes can be discarded due to the grouping cri-
teria. In our case, any changes that do not occur in a
MethodDeclaration are lost. For example, changes to field
declarations or import declarations.

Second, a frequent itemset cannot contain more items than
the transactions in which it is found. Consequently, because
changes are grouped per method, an instance of a systematic
edit can only contain changes in one MethodDeclaration.
If each instance of a systematic edit would involve changes in
multiple methods, the approach would find multiple system-
atic edits instead. However, if transactions are grouped per
CompilationUnit, this case would be handled correctly.

Third and finally, an itemset can only be considered frequent
if it is found in multiple transactions. This means that, if the
example of Fig. 2 would be grouped per CompilationUnit,



the similar modifications to both methods would end up in
one transaction, and no systematic edit would be found.

Given these limitations, we opted for grouping by methods
in this paper, as it seems reasonable that instances of system-
atic edits most commonly occur between different methods.

B. Equivalence criteria

Aside from grouping changes into transactions, equivalence
criteria are needed to determine when two changes should
be considered equivalent. Without equivalence criteria, each
change is different from all other changes. Consequently, no
transactions would share changes with other transactions, and
no frequent itemsets could be found. As such, equivalence
criteria make it possible to relate fine-grained changes to each
other by searching for shared commonalities.

The equivalence criteria we have used in this paper are
a conjunction of three conditions. In short, two changes are
considered equivalent, if: their change type is equal, the node
being modified is structurally equal, and the path between the
container and the node being modified should be equal. We
will now describe these conditions in more detail:

• Change type equality - The change type of both changes
(insert, remove, move or update) must be equal.

• Structural subject equality - The subject of a change
refers to the node being modified. In case of an insert,
it is the new node being inserted. For a removal, it is
the node being removed. For a move, it is the node
being moved. For an update, it is the node for which
an attribute is updated. To test whether two subjects are
structurally equal, their ASTs (with the subject as root)
are traversed. Both ASTs must be fully equal, except that
the value of simple properties (identifiers, literal values,
..) are not compared. Everything else is compared: node
types, property names and indices (for list properties).

• Context location equality - Whereas change type equal-
ity focuses on how a change was made, and change
subject equality takes care of what was changed, the
context condition is about where a change is applied. This
context equality is useful to prevent noise/false positives.
For example, when context is taken into account, several
insertions of null literals will not automatically result in
a systematic edit. The context of a change corresponds
to the container that a change is part of. Two changes
have an equivalent context if and only if they have the
exact same location within the transaction. This location
is specified as the path between the change’s container
node and the subject node, i.e. a list of property names
(including indices for list properties).

The equivalence criteria are used directly after the grouping
criteria have created transactions. At this point, these
transactions contain the changes produced by ChangeNodes
as-is. After applying the equivalence criteria, the changes in
each transaction will be generalized. That is, an abstraction
will be applied to each change, such that it is now represented
by a triple 〈changeType, structuralSubject, location〉,
where the three elements respectively correspond to the

equivalence criteria’s conditions: change type, structural
subject AST and change location. As an example, changes
C1 - C6 of Fig. 2 are generalized as follows:2

C1: 〈insert, if(){}, body : statements− 0〉
C2: 〈insert, equals(), body : statements− 0 : expression〉
C3: 〈insert, this,

body : statements− 0 : expression : expression〉
C4: 〈insert, ∗,

body : statements− 0 : expression : arguments− 0〉
C5: 〈insert, return;, body : statements− 0 : thenStatement〉
C6: 〈insert, ∗,

body : statements− 0 : thenStatement : expression〉

Recall that, in this example, there are two transactions:
〈Point.computeDistance, {C1, C2, C3, C4, C5, C6}〉 and
〈Point.computeDirection, {C7, C8, C9, C10, C11, C12}〉.
Once the second transaction is generalized, the generalized
representation of C7-C12 will look identical to C1-C6. For
example, C1 is identical to C7: both are inserts of if(){}
at location body:statements-0. This means that, when
using the generalized representations, it is clear that C1 and
C6 are equivalent changes.

By using the equivalence criteria to generalize changes,
we can establish an equivalence relation between different
changes. We define an equivalence relation ∼ over the set of
fine-grained changes, which considers two changes equivalent
if they share certain commonalities. The equivalence relation
has to fulfill certain requirements to yield valid results. In
general, there are three basic properties that should hold. Given
changes a,b and c:

• Reflexivity (a ∼ a). Each change is equivalent with itself.
• Symmetry (a ∼ b→ b ∼ a). If a is equivalent to b, then

b must also be equivalent to a.
• Transitivity (a ∼ b ∧ b ∼ c → a ∼ c). If a is equivalent

to b, and b equivalent to c, then a must be equivalent to
c.

Finally, it is important to note that, when generalization is
applied, it is possible that two changes in the same transaction
will have the same generalized representation. Because a
transaction represents a set of items, generalization can reduce
the number of changes in a transaction.

V. EVALUATION

To evaluate our approach and its implementation in SysEd-
Miner, we have used it on an industrial use case at the
company TP Vision Belgium. TP Vision is a wholly-owned
subsidiary of TPV, an internationally-renowned PC monitor
and TV manufacturer serving as original design manufacturer
for well-known TV and PC brands in the industry. TP Vision
oversees Philips TV business in most regions of the world.

We were contacted by TP Vision Belgium to analyse some
of their projects and get a better idea of to what extent

2Note that the simple properties in C4 and C6 have been abstracted away
with a ∗ wildcard character.



Fig. 4. Systematic edits per support level

Fig. 5. Maximum and average instance sizes

developers perform repetitive modifications: Are there many
systematic edits? How many instances does a systematic edit
usually have? What is the average size of an instance?

We analysed 51 of TP Vision Belgium’s git repositories
with Java code, most of which contain Android applications.
For each repository we had access to a year’s worth of
development activity. The total number of commits of all
projects is 43756. In terms of performance, the actual mining
of changes usually is much quicker than change distilling:
while this greatly depends on how much code was changed
in a commit, change distilling roughly took 30 seconds per
commit on average, whereas mining only requires a second.
If all commits were processed sequentially, the entire analysis
would then take 15 days. However, as multiple commits can
be independently processed in parallel, and we made use of an
(Intel Core i7) 8-core processor, results can ideally be obtained
8 times quicker as well (given sufficient memory, which we
did not measure).

The configuration we used to run our SysEdMiner tool has
been mostly discussed in Sec. IV: changes are grouped into
transactions per MethodDeclaration; changes are equiva-
lent if the change type is equal, the subject is structurally

:body:statements-0:expression:arguments-0

org.droidtv.epg.EpgInfoSingleton.getOperatorAntenna
+ Log.d("getOperatorAntenna() 0-None 1- CAM"+

operatorAntenna);
- Log.d(TAG,"getOperatorAntenna() 0-None 1- CAM"+

operatorAntenna);

org.droidtv.epg.bcepg.epgui.EpgOptionsMenu.
getControllablityOfNode

+ Log.d("getControllablityOfNode");
- Log.d(TAG, "getControllablityOfNode");

org.droidtv.epg.bcepg.epgui.EpgOptionsMenu.
getSelectionIndex

+ Log.d("getSelectionIndex" + nodeIndexValue);
- Log.d(TAG, "getSelectionIndex" + nodeIndexValue);

Fig. 6. Three instances of deleting a parameter

equal and the context location is equal. The minimum support
(minimum number of instances) is set to 3. Note that, while
analysing one commit is single-threaded, the analysis can be
sped up by analysing multiple commits, or multiple projects,
simultaneously.

First, to gauge whether our tool can correctly find systematic



edits, we sampled 100 systematic edits from different projects
with different support levels. These samples were chosen at
random, making sure to include some samples for each project.
We manually inspected these systematic edits by mapping their
fine-grained changes back to the source code, presenting them
in a diff-like format, and comparing the different instances. We
identified that 78 out of 100 samples were indeed systematic
edits. We did not find a particular correlation between support
level and which results were correct. A simple example of
a systematic edit that we found is given in Fig. 6, which
shows 3 (out of 161) instances where the first parameter of a
Log.d call is removed. At the top of the systematic edit, the
context location is shown once, to determine which AST node
exactly is modified. For each instance, the transaction identifier
(method name) is shown, and the line that was affected by the
change.

Those that were not identified would of course still abide
by the grouping and equivalence criteria we chose, but it
occurs that the equivalence criteria can overgeneralize and
abstract away too much information. For example, if a string
parameter is modified in many places, but there is no structure
among the different places regarding the new value of the
string parameter, we do not consider it a systematic edit.
Finally, note that we only studied the tool’s correctness, not
its completeness. As is it is rare to find projects where all
systematic edits are known in advance, and because the tool
already can be quite useful even if it is not complete, we did
not investigate this further.

After manually examining our sample of systematic edits,
we moved onto analysing all data produced by SysEdMiner:
Fig. 4 presents an overview of how many different systematic
edits were found per support level. For instance, there are
2479 different systematic edits at support level 3. In other
words, 2479 systematic edits in which a similar modification
is performed exactly 3 times. When adding up the number of
systematic edits for each support level, we end up with a total
of 5474 systematic edits. While this is a reasonably substantial
number, this figure does indicate that the vast majority of
systematic edits has a low number of instances. Note that we
do not show the entire X-axis; there are a small amount of
additional systematic edits with support levels up to 278.

Fig. 5 tells us more about the size of each instance, per
support level. The size of one instance in a systematic edit is
measured in terms of fine-grained changes, which also corre-
sponds to the size of the frequent itemset. This figure shows
both the average and maximum instance size per support
level. We can conclude that the average size remains quite
consistently between 2-4 changes, regardless of the support
level. However, the maximum size is different: it is much
higher in lower support levels. (Support levels 3 and 4 both
have a maximum size of 177.) This indicates that repeating a
larger amount of code a few times can be tolerated sometimes.
It also corresponds to the intuition that it is unlikely that large
amounts of code will be repeated many times, as a developer
would notice quickly.

VI. LIMITATIONS

In this section we discuss the limitations of our approach
to detecting unknown systematic edits in distilled change
sequences.

Section IV-A already discussed some considerations to ap-
plying frequent itemset mining to distilled change sequences.
Currently, we group changes based on a certain AST node
type, such as a method declaration or a class. Consequently,
the approach currently cannot detect systematic edit instances
that span multiple files. To be exact, the instances would still
be detected, but they are split into multiple systematic edits.
As such, we need to investigate whether we are missing other
kinds of groupings that are not based on an encompassing
AST node type. For example, we could incorporate data- and
control flow information to group changes that affect the same
data elements.

Our approach relies on frequent itemset mining. Frequent
itemset mining requires that its itemsets are a set of items.
Currently, our approach discards a change when an equivalent
change is already present in its corresponding itemset. As
a result, multiple instances of the same systematic edit, or
systematic edits consisting of multiple, equivalent edits cannot
be detected. The current evaluation results show that most
systematic edits have quite small instance sizes, which can
indicate that our current equivalence criteria may be too strict.
As a remedy our tool can be easily configured to use different
equivalence criteria.

We rely on a change distiller to procure change sequences.
A change distiller relies on heuristics to determine what nodes
are considered to be equal between two ASTs. Examples
of such heuristics are the Levenshtein distance of a string
representation of an AST node. As a result, two instances of a
systematic edit may be represented by two different change
sequences that do not share equivalent changes. Thus, our
approach relies on the assumption that instances of the same
systematic edits are represented by similar change sequences.

VII. RELATED WORK

One area of related work is that of code clone detection
tools, such as CBCD [13], CCFinder [14], dup [15] or Bax-
ter (1998) [16]. While these tools typically are focused on
analysing one version of the code, cloned code often indicates
a systematic edit. However, clone detection tools cannot detect
all systematic edits: a single instance of a systematic edit can
be spread across different locations of the code. For example,
consider a systematic edit where multiple fields and their
getter/setter methods are added to classes. One instance would
then correspond to the addition a field and its getter/setter,
which may be in different locations of the class. To recognize
this type of systematic edits, change information is necessary.

Another area of related work is that of automated API
migration, which typically involve systematic edits to adapt
all uses of one API into another API. The techniques used in
this area can be related to ours, as it often involves creating a
database of changes, and looking for patterns in this database.
The main difference is that such change databases tend to



be purpose-built for API-level changes only, whereas our
technique is more general-purpose, and can consider any fine-
grained change. Our equivalence and grouping criteria can be
configured to focus on API-level changes, but it is also suitable
to detect a wider range of systematic edits. Diff-Catchup [17]
detects migrations by looking for API differences at the level
of UML models. The SemDiff [18] tool can recommend
changes to API calls by looking for existing methods in which
the call was removed. LibSync [19] extracts an API usage
graph for two versions of a system, and uses frequent itemset
mining to look for migration patterns. The work of Uddin et.
al [20] uses clustering techniques to detect API usage patterns
among all method/field-level changes that reference an API.

The most closely related work, where change data is mined,
is that of Negera et. al [21] and [22] Kreutzer et. al.
First, Negera et. al [21], use frequent closed itembag mining
with overlapping transactions to identify frequent code change
patterns (systematic edits) in a sequence of fine-grained code
changes. The main difference with our work is that the fine-
grained changes are obtained with a change logger rather than
a change distiller. A change logger records all source code
changes as they are performed by the developer, while a dis-
tiller tries to infer fine-grained changes after the fact, based on
VCS information. The mining algorithm used is based on the
CHARM [8] algorithm for closed frequent itemset mining. In
order to allow code change pattern mining, the CHARM algo-
rithm was modified to allow overlapping transactions, making
it possible to process a continuous sequence of code changes
ordered by timestamp, without any previous knowledge of
where the boundaries between patterns of transformations are.
Furthermore, the algorithm was updated to allow itembags
instead of itemsets. This was necessary since a high-level
program transformation may contain several instances of the
same kind of code changes. The algorithm is able to identify
repetitive code change patterns that may correspond to some
previously unknown high-level program transformations. Eval-
uation of the algorithm showed effectiveness, usefulness and
scalability by running the algorithm on previously collected
data involving 23 participants with 1520 hours of development.
Feeding the miner with this data resulted in a set of change
patterns together with all occurrences of each pattern. As such,
they have identified 10 kinds of previously unknown high-level
program transformations.

Instead of relying on a change logger to provide change
data, we collect change data by comparing version control
snapshots. Consecutively, we use standard frequent itemset
mining instead of frequent closed itembag mining with over-
lapping transactions. Also, our approach allows automatic
transformation of source code according to a change pattern.

In the work of Kreutzer et. al [22], two similarity metrics
are used to detect systematic edits: one based on agglomerative
hierarchical clustering, and one based on the DBSCAN clus-
tering algorithm [23]. The latter tends to find more systematic
edits, but requires significantly more time. Both techniques
operate on distilled changes produced by the ChangeDistiller
tool. However, the notion of code changes used in this pa-

per is more coarse-grained than our work, as the distilled
fine-grained changes are bundled together into higher-level
statement-level changes. Due to this design choice, some
systematic edits may be missed, but this is traded in for better
performance.

Next to Negera et. al and Kreutzer et. al, there also is
less closely related research on applying standard data mining
approaches to source code and source code changes. Both Ying
et. al [24] and Zimmerman et. al [25] address the difficulty
developers face in finding relevant source code fragments
for a certain modification. In their work, change patterns are
defined as files that have changed together frequently enough.
A recommender tool tracks files changed by the developer: if
a developer changes a set of files, the approach recommends
a set of files that will likely need to be changed as well. To
allow recommendation, association rule mining is used over
pre-processed CVS data. Zimmerman et al. [25] use the same
idea but allow working below file-level granularity. Mulder and
Zaidman [26] proposed a method for identifying cross-cutting
concerns in software systems with software repository mining.
As cross-cutting concerns are scattered throughout the code
base, modifying them requires changes in multiple files. This
allows the use of frequent itemset mining for finding files that
were frequently committed simultaneously. Next to this file-
level mining a more expensive, but more fine-grained, method
is proposed for mining methods that are frequently changed
together. Li et. al [27] propose CP-miner, a tool for finding
copy-paste and related bugs in operating system code. CP-
Miner first identifies copy-pasted code and then performs bug
finding. To achieve the former, the program is parsed, resulting
in a stream of tokens. Tokens are then assigned numerical
values, which allows formulation of the problem of identifying
copy-pasted code as a sequential pattern mining problem on
this stream of numerical values.

All of these approaches provide identification and recom-
mendation but do not allow automatically modifying source
code based on earlier code changes.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented our approach to find unknown
systematic edits, using the ChangeNodes change distiller to
obtain fine-grained changes, which are then preprocessed by
grouping and equivalence criteria, and finally mined with
the CHARM algorithm. To evaluate the approach, we have
applied it on 51 git projects in an industrial use case. Our tool
SysEdMiner does find a substantial amount of systematic edits
and, by manually sampling the results, found that 78 out of
100 samples are correct. We also found indications that larger
instances are more likely to occur at low support levels rather
than higher ones.

There are multiple directions of future work: a straight-
forward one is to further explore the design space of using
different grouping and equivalence criteria. The tool was
currently applied to a data set provided by one company;
this can be further expanded with additional data from open-
source projects, for example. Another one is to experiment



with finding changes across multiple, if not all, commits.
This does not fundamentally change our approach, but the
mining algorithm may not scale to such a large set of fine-
grained changes. One option is to use abstraction to reduce the
total number of changes. Another could be to use a sliding
window over a large list of commits. This is based on our
assumption that, if a systematic edit occurs in one commit,
it is most likely that additional instances of that systematic
edit would happen in the next few commits, rather than much
later. Another direction of future work would focus on the
applications of systematic edits that are found. They could
be used as a metric to automatically decide whether or not
refactoring the code is necessary, to avoid future instances of
a systematic edit. Alternatively, the instances could be used to
(semi-)automatically generate a program transformation that
can perform future instances of a systematic edit. Similarly, it
may be possible to create an approach that detects such future
instances, and determine if any errors were made.
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