A new potential anti-cancer beta-carboline derivative decreases the expression levels of key proteins involved in glioma aggressiveness

Carvalho, Annelise; Viaene, Johan; Vandenbussche, Guy; De Braekeleer, Kris; Masereel, Bernard; Wouters, Johan; Souard, Florence; Vander Heyden, Yvan; Van Antwerpen, Pierre; Delporte, Cédric; Mathieu, Véronique

Published in: Drug Delivery Letters

DOI: 10.1002/ddr.21600

Publication date: 2020

License: CC BY-NC-ND

Document Version: Accepted author manuscript

Link to publication

A new potential anti-cancer beta-carboline derivative decreases the expression levels of key proteins involved in glioma aggressiveness: A proteomic investigation

Annelise Carvalho1,2 | Johan Viaene3 | Guy Vandenbussche4 | Kris De Braekeleer5 | Bernard Masereel6 | Johan Wouters6 | Florence Souard5,7 | Yvan Vander Heyden3 | Pierre Van Antwerpen5,8 | Cédric Delporte5,8 | Véronique Mathieu1,2

1Department of Pharmacotherapy and Pharmaceuticals, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
2ULB Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
3VUB – Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Pharmaceutical Institute, Vrije Universiteit Brussel – VUB, Brussels, Belgium
4Laboratory for the Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
5Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Department of Research in Drug Development (DRD), Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
6NAMEDIC, Department of Pharmacy, University of Namur, Namur, Belgium
7Université Grenoble Alpes, CNRS, DPM, Grenoble, France
8Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium

Correspondence
Véronique Mathieu, Department of Pharmacotherapy and Pharmaceuticals, Faculté de Pharmacie, Université Libre de Bruxelles [ULB], biology, Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium.
Email: vemathie@ulb.ac.be

Cédric Delporte, Unity of Pharmacognosy, Bioanalysis and Drug Discovery, Department of Research in Drug Development (DRD), and Analytical Platform of the Faculty of Pharmacy and Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles [ULB], LC MS and auto-MS/MS, Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium.
Email: cedric.delporte@ulb.ac.be

Funding information
Belgian Brain Tumor Support; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Grant/Award Number: 0674-13/3; Fonds De La Recherche Scientifique - FNRS, Grant/ Award Numbers: N° 3.4553, T.0136.13 PDR; Université Libre de Bruxelles, Grant/Award Number: FER-207

Abstract
Gliomas remain highly fatal due to their high resistance to current therapies. Deregulation of protein synthesis contributes to cancer onset and progression and is a source of rising interest for new drugs. CM16, a harmine derivative with predicted high blood–brain barrier penetration, exerts antiproliferative effects partly through translation inhibition. We evaluated herein how CM16 alters the proteome of glioma cells. The analysis of the gel-free LC/MS and auto-MS/MS data showed that CM16 induces time- and concentration-dependent significant changes in the total ion current chromatograms. In addition, we observed spontaneous clustering of the samples according to their treatment condition and their proper classification by unsupervised and supervised analyses, respectively. A two-dimensional gel-based approach analysis allowed us to identify that treatment with CM16 may downregulate four key proteins involved in glioma aggressiveness and associated with poor patient survival (HspB1, BTF3, PGAM1, and coflin), while it may upregulate galectin-1 and Ebp1. Consistently with the protein synthesis inhibition properties of CM16, HspB1, Ebp1, and BTF3 exert known roles in protein synthesis. In conclusion, the downregulation of HspB1, BTF3, PGAM1 and coflin bring new insights in CM16 antiproliferative effects, further supporting CM16 as an interesting protein synthesis inhibitor to combat glioma.

KEYWORDS
beta-carboline, BTF3, cancer, glioma, HspB1, PGAM1, protein synthesis
Although primary brain tumors account for just 1.4% of all cancers, they have a high fatality rate of 60% (Strong et al., 2015). Gliomas are the most common type (~80%), accounting for the majority of the brain tumors with a poor prognosis (Ostrom et al., 2014). The poor survival rate of glioma patients has been attributed to various features, including their high invasion level (Paw, Carpenter, Watabe, Debinski, & Lo, 2015), resistance to pro-apoptotic stimuli triggered by radio- and chemotherapies, especially observed with glioma stem cells (Beier, Schulz, & Beier, 2011; Frosina, 2009), and the lack of drugs crossing the blood–brain barrier (BBB) (Azad et al., 2015).

Harmane is a natural β-carboline displaying antiproliferative and antitumor effects (Dai et al., 2012; Radhakrishnan et al., 2016; Zhang et al., 2014) through DNA intercalation and DYRK1A inhibition (Cao et al., 2005; Pozo et al., 2013; Radhakrishnan et al., 2016; Seifert, Allan, & Clarke, 2008). Despite its antitumor potential, the neurotoxicity caused by harmane in vivo limited its development for therapeutic uses (Cao et al., 2004; Chen et al., 2004). Thus, other harmane derivatives with different number of substituents were synthesized and tested for their antitumor potential in vitro and in vivo displaying lower toxicity than harmane and interfering with different cancer cell processes, such as cell cycle, apoptosis, angiogenesis, and production of ROS (Cao et al., 2010; Guo et al., 2019; Han et al., 2012; Li et al., 2015; Luo et al., 2008; Ma, Chen, & Chen, 2016; Zhang et al., 2013; Zhang et al., 2016). In that context, the previously synthesized harmane derivative CM16 (Figure 1a) (Meinguet et al., 2015) has been shown to display in vitro antiproliferative activity on various cell types including glioma models via, at least partly, an alteration of the initiation phase of protein translation (Carvalho et al., 2017).

Protein synthesis plays a pivotal role in the regulation of gene expression, especially affecting homeostasis, controlling cell proliferation, and metabolism (Hershey, Sonenberg, & Mathews, 2012). Cancer cells are characterized by a metabolic reprogramming that contributes to the different phases of tumor biogenesis including gliomas (Masuia, Cavenneb, & Mischel, 2016). In these cancers in particular, the PI3K-Akt–mTOR pathway appeared to play pivotal roles to that aim: by activating mTORC2, it contributes to Warburg effect and resistance to therapy, while it also controls protein synthesis through mTORC1 (Strickland & Stoll, 2017). Indeed, mTOR controls eIF4F assembly while MNK (MAP kinase interacting serine/threoninekinase) controls eIF4E phosphorylation (Ruggero, 2013). In addition, the deregulated expression and activation status of translational factors has also been associated with cancer onset and progression (Hershey et al., 2012). Therefore, development of cancer cell protein synthesis inhibitory strategies is arousing growing interest in cancer research (Bhat et al., 2015).

Such strategies include inhibition of specific targets in the translation machinery (Itoha Malga et al., 2019) as well as inhibitors of upstream signaling pathways involved at different stages of cancer development (Bhat et al., 2015; Xie, Merrett, Jensen, & Proud, 2019).

Importantly, CM16, in addition to being selective to cancer cells, has been designed to meet the physicochemical properties required for drug development and is predicted to penetrate the blood–brain barrier (Meinguet et al., 2015), making this compound of potential interest against gliomas. Our previous study suggested that the inhibition of protein synthesis by CM16 might involve modification to euarkyotic initiation factor 2α (eIF2α) phosphorylation status and/or EIF1AX, EIF3E, and EIF3H gene expression levels as the latter were found to be differently expressed at the mRNA level between highly and poorly sensitive cancer models among the 60 cancer cell lines panel of the National Cancer Institute (Bethesda) (Carvalho et al., 2017). To gain further insights in the effects of CM16 treatment, we investigated herein the early proteomic changes triggered by CM16 in glioma cells by means of two complementary strategies i.e. a gel-free (shotgun proteomics) and a gel-based (2-D electrophoresis, 2-DE) approach using the Hs683 human glioma cell model. We identified thereby that CM16 affects the expression levels of four proteins that play key roles in glioma progression, metabolism and migration. These potential targets could partly explain why cancer cells exhibit a higher sensitivity to CM16 than noncancerous cell lines, even if translation per se has been shown to be similarly affected (Carvalho et al., 2017).

2 MATERIALS AND METHODS

2.1 Cell line and compound

The human glioma cell line Hs683 (ATCC code HTB-138) was cultivated at 37 °C and 5% CO2 in RPMI cell culture medium (10% FBS,
200 U penicillin–streptomycin, 0.1 mg/ml gentamicin, and 4 mM L-glutamine). The compound CM16 was synthesized as described earlier (Meinguet et al., 2015).

2.2 | Protein extraction from cells and precipitation

Proteins were extracted from Hs683 cells by homogenization after addition of protease inhibitors in PBS (Roche, Brussels, Belgium). Lysates were centrifuged (100 g, 5 min) and the protein content measured by the bicinchoninic acid assay (Thermo Scientific, Leuven, Belgium). Volumes corresponding to 1 mg (LC–MS shotgun) or 3 mg (2-DE) were collected and proteins precipitated in 13.3% (w/v) trichloroacetic acid (Sigma Aldrich, Overijse, Belgium) in acetone containing 0.2% (w/v) dithiothreitol (DTT; Promega, Leiden, The Netherlands) according to the modified protocol from Görg et al. (Görg et al., 2000). The protein pellet was air dried and re-suspended in the appropriate solution, depending on the method of analysis (2-DE or LC–MS shotgun). For the LC–MS shotgun approach, 100 μg of ovalbumin was added to the samples as an internal standard (IS) before precipitation. Three independent experiments were carried out for the 2-DE approach and five for the LC–MS shotgun approach.

2.3 | Shotgun proteomics

2.3.1 | Digestion, data acquisition, and analysis

Each sample was re-suspended in 50 μl 100 mM ammonium bicarbonate (Sigma Aldrich) buffer (pH 7.8). Proteins were then denatured, reduced, alkylated and digested overnight and finally reaction was stopped, samples evaporated, and re-suspended in 100 μl 0.1% aqueous formic acid (v/v) prior to analysis as earlier described (Delporte et al., 2014). Ten microliters of the digested samples were injected into the LC-system. Analyses were performed with a rapid resolution liquid chromatograph in reversed phase mode coupled to an electrospray ion source - quadrupole time-of-flight for the MS and auto MS/MS analyses, using the same parameters as in (Delporte et al., 2014). Data were acquired by the Mass Hunter Acquisition® software (version B.04 patch 3; Agilent Technologies) and analyzed by the Spectrum Mill® Workbench software (Rev B.04.01.141; Agilent Technologies) with the last updated UniProt (SwissProt, November, 2016) database. Peptides and proteins were identified and validated using parameters described in (Delporte et al., 2014). Samples were injected three times in MS mode and once in autoMS/MS mode. For chemometrics and statistical analysis, LC–MS data were converted from .d format (Agilent) to either .mzXML (MS Converter from ProteoWizard) or .mzData type (exported by MH Qual; Agilent Software).

2.3.2 | Multivariate data analysis

each replicate was injected three times for LC–MS analysis, totaling 75 runs. Four outliers were excluded, thus 71 chromatograms were analyzed. The data matrix X [m x n] considered for the multivariate analyses consists of n = 71 samples and m = 12,701 variables, with the latter representing the number of time points at which a signal intensity was measured (0–105 min). Preprocessing of the data was performed before further analysis. Peak alignment was applied for the 71 samples, using the correlation optimized warping (COW), with the warping toolbox in MatLab (The Mathworks, MA). Normalization to the IS ovalbumin was also performed as described in the formula below:

\[S_{\text{norm}} = \frac{S_i}{\sum_{i=1}^{m} S_{i}^{\text{IS}}} \cdot X_n \]

For the unsupervised and supervised multivariate analyses, the data obtained from the LC–MS was considered. Five different treatment conditions, that is, nontreated control (1), treated with 0.1 (2) or 1.0 μM (3) CM16 for 15 hr, or with 0.1 (4) or 1.0 μM (5) CM16 for 24 hr, were tested in Hs683 cells in five independent replicates and where each normalized sample \(S_{\text{norm}} \) was obtained by dividing each original individual chromatogram \(S_i \) at each condition by the sum of the IS chromatogram (extracted ion chromatogram of ovalbumin) added to each condition \(\frac{P_m}{P_m} S_{\text{IS}} \), where \(m \) is the peak intensity measured for each time point \(m = 1..12,701 \) multiplied by the average sum \(X_i \) of the n 71 IS chromatograms.

Unsupervised principal component analysis (PCA) allows visualizing the information contained in the matrix X in a new space, represented by principal components (PCs), which are linear combinations of the original variables. The contribution of each original variable to a PC is given by its loading. Hierarchical Clustering Analysis (HCA) also allows visualization of (dis)similarity among samples that were merged in clusters based on a distance, for example, the Euclidean distance in the present study. The objects linked first are the most similar and clustering continues until all samples are clustered (Klein-Jünior et al., 2016). PCA and HCA analyses were performed to investigate whether the source of variance in the samples could be attributed, at least partly, to CM16 treatment. Both analyses were performed in MatLab with the ChemoAC v. 4.1 toolbox.

Supervised analysis for classification was made with Soft Independent Modeling by Class Analogy (SIMCA), in which PCA models are created for each class individually (Smit et al., 2009). The entire data set was applied as calibration set and models were evaluated based on cross validation by leave-more-out with Venetian blinds as well as by the calculation of class sensitivity and specificity (ratio). Three PCs were selected to model classes 1 (controls) and 5 (1 μM CM16 for 24 hr), four PCs to model classes 2 and 3 (0.1 μM CM16 for 15 and 24 hr, respectively), and five to model class 4 (1 μM CM16 for 15 hr).
of 3 mg of protein per sample, samples were solubilized in rehydration buffer (7 M urea; 2 M thiourea; 2% CHAPS; 20 mM DTT; 0.5% IPG buffer pH 3–10 NL) and proteins were quantified with a Pierce detergent compatible Bradford assay kit (Thermo Scientific, Leuven, Belgium). A volume of 340 μL rehydration buffer containing 1 mg proteins was used to hydrate the Immobiline DryStrip gels (18 cm, pH 3–10, NL) overnight at room temperature. The isoelectric focusing (IEF) was performed at 20 °C in a Multiphor II system (GE Healthcare, Diegem, Belgium) using a step-wise voltage ramp according to the manufacturer’s instructions. After IEF, proteins were reduced and alkylated by incubation with agitation in two equilibration buffers (6 M urea, 50 mM Tris–HCl, pH 8.8, 30% glycerol, 2% Sodium dodecyl sulfate (SDS)) containing 1% DTT (w/v) and 2.5% iodoacetamide (w/v), respectively. Equilibrated strips were then applied onto 12.5% SDS-PAGE and the proteins were separated in the second dimension in a Protean II multi-cell system (Bio-Rad, Temse, Belgium).

Proteins were visualized by Coomassie Brilliant Blue R-250 staining. Gels were scanned on a GS-800 (BioRad) and protein spots were analyzed quantitatively using the PDQuest software v. 8.0 build 035 (BioRad). The selection of the spots for sequencing and identification by mass spectrometry was made on the basis of a twofold change and/or a significant t-test analysis (p < .05) of their densitometry. The selected protein spots were digested in-gel with sequencing grade trypsin (Promega, Leiden, The Netherlands) and analyzed by mass spectrometry as previously described (Nguyen, Volkov, Vandenbussche, Tompa, & Pauwels, 2018). Based on the peptide sequences, the protein was identified using the MASCOT Sequence Query. In the sequence query search parameters, a MS/MS tolerance of 0.6 Da and only one missed cleavage was allowed per peptide. Cysteine carbamidomethylation and methionine oxidation were also taken into account. The criterion for acceptance of protein identification was a score above the MASCOT threshold, set at a significance level of p < .05.

3 | RESULTS

3.1 | Unsupervised analysis of the proteome of glioma cells under CM16 treatment

Given the effects of CM16 on the protein synthesis of cancer cells (Carvalho et al., 2017), we first investigated how the whole proteome of glioma cells was affected by this treatment. Therefore, we used an LC–MS and MS–MS shotgun proteomic approach on the Hs683 human glioma model left untreated or treated with CM16 at 0.1 μM (IC50 concentration as determined by means of the MTT assay over 72 hr, (Carvalho et al., 2017)) or 1 μM (10 times higher concentration) for 15 and 24 hr. The 309 proteins that we were able to identify and were possibly present in whole Hs683 cell extracts of the different conditions were classified according to their localization, biological and molecular functions (Figure S1). Briefly, all cell compartments are represented and samples are enriched in proteins involved in their own biogenesis, including ribosome-related and RNA-binding proteins (RBPs), folding and metabolism.

The protocol described below is an adaptation of Berkelman and Stenstedt (Berkelman & Stenstedt, 1998). Briefly, following precipitation

To conduct unsupervised multivariate analysis on those data, we first reduced dimensionality, by condensing the complex MS data obtained at each retention time into a fingerprint total ion current (TIC) chromatogram. Figure 1b shows the overlay of the mean TICs of each experimental condition.

Thanks to HCA that groups the samples into clusters based on the Euclidean distance, we observed a high similarity between the three injections of each sample, and a tendency of the TICs to group according to the treatment concentration (Figure 2a). Indeed, most of the 1 μM treated samples (thicker bars) grouped into one cluster at the right of the tree while most of the negative controls and samples treated with the low concentration (0.1 μM) are grouped into one cluster on the left of the tree.

The TIC data were then submitted to PCA. The PC2-PC3 plot allowed distinction between the treatment conditions even if they account together for only ~1% of the overall variation in the data (Figure 2b). This means that while the treatments induced limited changes to the whole proteome of the cells during the first 24 h of treatment, those changes can be detected using an LC–MS approach. Considering that CM16 is a cytostatic agent used here over short periods (i.e., 15 and 24 hr) and that changes in the proteome depend not only on the protein synthesis process but also on gene expression, protein half-life, recycling, and degradation (Chen, Smeerks, & Wu, 2016) it is not surprising that the effects induced by CM16 treatment contributed to such few variation of the data.

To further evaluate the distinction between treated and non-treated samples, we compared the TICs of the nontreated and treated samples by drawing effect plots. Those are obtained by subtracting the average treated-cell TIC profile from the average untreated-cell TIC profile. Applying Dong’s algorithm (Vander Heyden, Nijhuis, Smeyers-Verbeke, Vandeginste, & Massart, 2001), we set an error threshold above or below which the effects can be considered significant (Klein-Júnior et al., 2016). Significant effects appear to be time and concentration-dependent (Figure 2c and Figure S2). Additionally, we observed some similarities between the significant changes exceeding the critical margins of the difference TIC profiles and the PC2 and PC3 loadings: the peaks detected around 20 min on the differential TIC profile of cells treated with 1 μM for 15 hr (see arrows on Figure 2c) contribute to the PC2 loadings (Figure 2d) while those identified in the region between 60 and 80 min seem to contribute to the PC3 loadings (Figure 2e). Thus, the effect plots and the PC2 and PC3 loadings show certain specific peaks of the original variables that are different between CM16 treated and untreated samples.

3.2 | Sensitive shotgun MS approach to discriminate CM16 treatment conditions of glioma cells

SIMCA supervised analysis and modeling were then used to investigate the possibility to properly classify the samples according to their treatment on the basis of LC–MS data. SIMCA is a technique that selects a number of PCs to model each experimental treatment, named class, individually. Cross validated classification of the model assigned 61 of 71 injections to the correct class (Table 1). The success
Loadings
PC3 (0.08%)
Euclidean distance

Effect (a)

15h–0.1 μM
15h–1.0 μM
24h–0.1 μM
24h–1.0 μM

Injection number

PC2 (0.13%)

Time (min)

CT-Non-treated

Effect (c)

Time (min)

Loadings

Time (min)

Loadings
FIGURE 2 Results of the unsupervised analysis. (a) Dendrograms obtained with the total ion current (TIC) of all conditions with color code attributed to the CM16 treatments. The numbers on the x axis correspond to the samples injected (1–71). The three replicate injections of a sample are clustered together (e.g., 16-17-18 are three injections of one 15 hr-1.0 μM sample). (b) PC2-PC3 score plot of the TIC of all conditions with color code attributed to the CM16 treatments. The black, orange and purple ellipses indicate the clustering tendency of the untreated control samples and of those treated with 0.1 and 1 μM CM16, respectively. (c) Graphical representation of the effects at each time point (effect plot), presented as the difference between the mean TIC profile of samples treated by CM16 for 15 hr at 1 μM and the nontreated samples (horizontal solid lines: Critical effect values obtained by Dong’s algorithm). (d and e) Loadings of the original variables to PC2 and PC3, respectively. Arrows indicate the peaks on the loadings, detected around 20 min (PC2) and between 60–80 (PC3), that were also indicated as significant effects in the differential TIC profile effect plot in 2c.

TABLE 1 Supervised SIMCA classification results, sensitivity and specificity attributed to each class (experimental condition)

<table>
<thead>
<tr>
<th>Class number</th>
<th>Type of samples</th>
<th>Number of samples</th>
<th>Correct classification (cross validation)</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CT (untreated control)</td>
<td>15</td>
<td>15</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>2</td>
<td>15 hr - 0.1 μM</td>
<td>15</td>
<td>13</td>
<td>0.87</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>15 hr - 1.0 μM</td>
<td>15</td>
<td>13</td>
<td>0.87</td>
<td>0.95</td>
</tr>
<tr>
<td>4</td>
<td>24 hr - 0.1 μM</td>
<td>14</td>
<td>10</td>
<td>0.71</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>24 hr - 1.0 μM</td>
<td>12</td>
<td>10</td>
<td>0.83</td>
<td>0.90</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>71</td>
<td>61</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbreviation: SIMCA, Soft Independent Modeling by Class Analogy.

TABLE 2 Proteins identified in the gel-based approach (2-DE), their regulation and information from sequencing. Proteins highlighted in gray were also found in the shotgun approach data set.

<table>
<thead>
<tr>
<th>Protein name</th>
<th>Regulation in CM16 treated Hs683 cells</th>
<th>Swiss-Prot ID</th>
<th>Mass (kDa/pI)</th>
<th>Mascot score (sequence query search)</th>
<th>% C (sequence coverage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat shock protein beta-1</td>
<td>Down</td>
<td>P04792</td>
<td>22.78/5.98</td>
<td>779</td>
<td>75</td>
</tr>
<tr>
<td>Cofilin-1</td>
<td>Down</td>
<td>P23528</td>
<td>18.50/8.22</td>
<td>264</td>
<td>59</td>
</tr>
<tr>
<td>Transcription factor BTF3</td>
<td>Down</td>
<td>P20290</td>
<td>22.17/9.41</td>
<td>785</td>
<td>53</td>
</tr>
<tr>
<td>Phosphoglycerate mutase 1</td>
<td>Down</td>
<td>P18669</td>
<td>28.80/6.67</td>
<td>492</td>
<td>45</td>
</tr>
<tr>
<td>Galectin-1</td>
<td>Up</td>
<td>P09382</td>
<td>14.71/5.34</td>
<td>284</td>
<td>38</td>
</tr>
<tr>
<td>Keratin, type I cytoskeletal 18</td>
<td>Down</td>
<td>P05783</td>
<td>48.06/534</td>
<td>790</td>
<td>42</td>
</tr>
<tr>
<td>Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial</td>
<td>Down</td>
<td>P33316</td>
<td>26.56/9.46</td>
<td>405</td>
<td>26</td>
</tr>
<tr>
<td>Proliferation-associated protein 2G4/Ebp1</td>
<td>Up</td>
<td>Q9UQ80</td>
<td>43.79/6.13</td>
<td>767</td>
<td>29</td>
</tr>
</tbody>
</table>
rate of 86% confirms that the model was indeed able to correctly classify most samples. Importantly, the nontreated control (class 1) had no misclassification, that is, no control sample was classified as treated (Table 1). Misclassifications (n = 10/71) occurred mainly between treatment concentrations or between samples treated by the same CM16 concentration but for different periods of time. Interestingly, five misclassifications occurred between class 3 (15 hr - 1 μM) and class 5 (24 hr - 1 μM), which agrees with the results from the unsupervised analysis, in which the two treatment conditions at 1 μM clustered together (Figure 2a).

Thus the gel-free approach appeared sensitive enough to detect that the cytostatic agent CM16 induces significant minimal changes in the proteome of glioma cells, even after a short incubation period, for example, 15 hr. Although the proteomic variation induced by CM16 is significant in both unsupervised and supervised analyses, the complexity of the data contained in the TICs profiles did not allow us to identify specific proteins, whose expression are affected by CM16.

3.3 | CM16 treatment affects the expression of specific proteins involved in protein synthesis and aggressiveness of glioma cells

To analyze CM16-induced effects on the protein expression profile of Hs683 cells, we thus moved to classical two-dimensional (2D) electrophoresis. Untreated glioma cells were compared with CM16 treated ones for 15 hr at 1 μM, the latter condition having been selected on the basis of the earliest time point showing a marked differential TIC profile in the LC–MS analysis (Figure 2c and Figure S2). Representative gels of each condition are provided in Figure S3. An average of 357 spots per gel was detected with a matching rate ranging from 53 to 97% between gels corresponding to a correlation coefficient of about 0.7. According to the applied cut-off (twofold change and/or p < .05 from t-test analysis), eight spots showed significant changes in CM16-treated cells compared to the nontreated glioma cells (Figure S3).

These spots were cut and analyzed through MS and MS/MS. Eight proteins were assigned to the 8 spots as follows: HspB1 (heat shock protein beta-1), Ebp1 (Erbb3-binding protein 1), PGAM1 (Phosphoglycerate mutase 1), CK-18 (cytokeratin-18), transcription factor BTF3, galectin-1 (Gal1), cofillin, and dUTPase (Table 2, with their respective recovery rates). Two were upregulated, that is, Gal1 and Ebp1, while the other six were downregulated (see Table 2). When searching for those specific proteins in the LC–MS data, four of them could be retrieved: HspB1, cofillin, PGAM1 and keratin 18 (Table 2, highlighted in gray). Importantly, they displayed the same trend (up/downregulation) as verified by relative quantification of the peptides analyzed (data not shown).

In order to address the possible molecular interactions among these eight proteins as well as the initiation factors highlighted in the previous study—EIF1AX, EIF3E, and EIF3H gene products and elf2a—(Carvalho et al., 2017), the STRING tool was used. This database collects information of protein–protein association from different sources which enables to map out interactions of physical and functional types that are biologically meaningful for the proteins of interest (Deutsch, Lam, & Aebersold, 2008; Szklarczyk et al., 2017).

Analysis of the functional enrichment in the network of the 12 proteins showed enrichment of 10 of these proteins for only one annotation, that is, RNA binding (Figure 3). Interestingly these 12 proteins were identified in a large study defining the mRNA interactome of HeLa cells as possible RBPs, yet to be validated (Castello et al., 2012). RBPs are associated with RNAs throughout their entire life cycle and participate in many functions from RNA synthesis to decay (Castello et al., 2012). Moreover, the eight proteins found in the 2D gel-based approach play various roles in cancer as discussed below, with respect to their specific roles in glioma biology. Therefore the fact that they appear to be down or upregulated in Hs683 glioma cells when treated with CM16 could help understanding how this compound displays some selectivity towards cancer cells as earlier reported (Carvalho et al., 2017).

4 | DISCUSSION

Harmine cannot be used as such for its anti-cancer properties because of its neurotoxicity (Cao et al., 2004; Chen et al., 2004) but its scaffold is still of great interest for drug development. By example a N2-benzylated β-carboline derivative was recently shown to trigger apoptosis through PI3K/Akt inhibition and ROS production provoking thereby tumor growth inhibition in a colorectal cancer model in vivo (Zhang et al., 2016). In vitro, a series of trisubstituted compounds showed efficiency against a cervical cancer cell line and induced cell cycle arrest and apoptosis through inhibition of the polo-like kinase...
1, which participates in the cell cycle progression (Han et al., 2012). Also, different trisubstituted β-carboline derivatives promise with some of them having already been described to display antiproliferative effects both in vitro and in vivo, notably in lung cancer and sarcoma bearing mice with lower acute toxicity and neurotoxicity than harmine (Li et al., 2015; Zhang et al., 2013). We previously reported CM16 as another trisubstituted harmine derivative with potent cytostatic protein synthesis inhibitory properties on cancer cells (Carvalho et al., 2017). We herein conducted a proteomic investigation to gain further insights into its anti-cancer effects in glioma cells. Proteomics in cancer research has been successfully applied in the search for biomarkers as well as in drug target discovery (Dias, Kitano, Zelanis, & Iwai, 2016).

In this study, the shotgun approach appeared sensitive enough to discriminate the treated from the untreated cells by both unsupervised and supervised analyses even when the variations induced by the treatments did not account for more than 1% of the total variation among the samples (Figure 2b). However, the identification of specific proteins involved in the changes observed in TIC profile was not possible due to the reduction of the data. Moreover, evaluation of low-abundance proteins is limited with shotgun proteomics due to the dynamic range of protein concentrations (Matalanis-Surget, Leroy, & Wattiez, 2010). This could, for instance, be the case with respect to the E1F1AX, EIF3E, and EIF3H gene products that we identified previously through transcriptomic analysis as possible drivers of cancer cell sensitivity to CM16 (Carvalho et al., 2017). We thus used also the 2DE-gel-based conventional approach to identify differentially expressed proteins under CM16 treatment. Among these, the heat shock protein beta-1 (HspB1 or, alternatively, HSP 27), is induced in stress conditions and works as a molecular chaperone, conferring protection against protein misfolding (Arrigo & Gibert, 2013). Because of its chaperone role, HspB1 interacts with a variety of proteins involved in cancer cell growth, migration, transcription, translation, apoptosis, and senescence suppression (Arrigo & Gibert, 2013). Inhibiting HspB1 leads to decrease in proliferation, migration and invasion of cancer cells as already shown with anticancer drugs such as imatinib and actinomycin D (Wu et al., 2017). Moreover, HspB1 also modulates chemotherapeutic drug resistance and is related to poor prognosis in cancer (Wu et al., 2017). Accordingly, although it is constitutively expressed in most tissues, HspB1 expression increases with World Health Organization (WHO) grading of astrocytic glioma (Mäkelä et al., 2014) and is correlated with poor survival of glioma patients (Gimenez et al., 2015). Furthermore, it has been associated with resistance to temozolomide in vivo (Jakubowicz-Gil, Langner, Bądziul, Wertel, & Rzeski, 2013), making CM16 a possible good candidate to be used in combination to overcome this chemoresistance. Importantly, HspB1 has also been associated to translation inhibition by its capacity to bind elf4G, preventing thereby the assembly of the elf4F complex required for cap-dependent protein synthesis (Cuesta, Larioa, & Schneider, 2000). Further investigations should be conducted to determine whether the possible HspB1 downregulation observed after CM16 treatment is confirmed and contributes to its antiproliferative and protein synthesis inhibitory activity.

Similarly, CM16 decreases the expression levels of the transcription factor BTF3 (alternatively, NAC-beta). The name “NAC-beta” relates to its interaction with the nascent polypeptide chain coming from the ribosomes (Kogan & Gvozdev, 2014). In addition, BTF3 is a RNA polymerase II transcription factor involved in apoptosis and cell cycle regulation (Kusumawidjaja et al., 2007), as well as in the endoplasmic reticulum biogenesis (Roy et al., 2010). Thus, the downregulation of BTF3, caused by CM16 in glioma cells, might also contribute to its protein synthesis inhibition effect. Interestingly, BTF3 is overexpressed in high grade glioma (Odernan et al., 2005) and is suggested to be among the top 10 key genes for glioblastoma development (Kunkle, Yoo, & Roy, 2013).

PGAM1 is an enzyme participating in glycolysis by converting 3-Phosphoglycerate to 2-PG (Fothergill-Gilmore & Watson, 1990) whose expression also correlates with glioma grade and patient survival (Gao et al., 2013). Although its role in cancer is still poorly understood, its knockdown increases the survival of glioblastoma bearing mice (Sanze et al., 2015). PGAM1 downregulation appeared thus as an interesting possible event triggered by CM16 to combat glioma.

Other interesting results concern the decrease in mitochondrial dUTPase and cofillin. dUTPase catalyzes the transformation of dUTP into dUMP, eliminating the excess of dUTP and avoiding thereby its incorporation into the DNA. When incorporated, dUTP causes double-stranded DNA breaks leading to cell death (Vertessy & Toth, 2009). Thus, further validation of CM16-induced decrease in dUTPase may be needed to possibly envisage its use for sensitizing cancer cells to DNA targeting chemotherapeutic agents as already proposed with respect to 5-FU (Ladner et al., 2000).

Cofilin downregulation induced by CM16 might confer additional anti-migratory properties to its cytostatic effects. Indeed, this actin filament assembly and disassembly regulator plays an important role in cell migration (Bernstein & Bamburg, 2010) and is overexpressed in glioblastoma (Naryzhy et al., 2014). The effects of CM16 on those five proteins seem thus promising when considering their roles in glioma biology as confirmed by the benefits obtained with their inhibition in glioma models, exemplified by the literature reported here.

Finally, two upregulated proteins were identified in Hs683 cells treated with CM16, that is, Gal1 and the proliferation-associated protein 2G4 (Ebp1). Gal1 is overexpressed in numerous cancer types, including all types of human gliomas, where it is involved in cancer progression and poor prognosis (Le Mercier, Fortin, Mathieu, Kiss, & Lefranc, 2010). Gal1 expression has been shown to increase after radiotherapeutic and chemotherapeutic insults. Because Gal1 has also been reported to be part of the splicesome, participating in the pre-mRNA splicing before its translation (Haudek, Patterson, & Wang, 2010), possible up-regulation of Gal1 by CM16 may be hypothesized as a cancer cell defense mechanism in link with this later function. The other up-regulated protein is the Ebp1, known to promote cell survival and prevent apoptosis by associating with Akt (Co, Chang, Park, & Ahn, 2016). Accordingly, high Ebp1 levels have been associated with poor clinical outcome of glioblastoma patients (Co et al., 2016). Interestingly, Ebp1 is also known to inhibit phosphorylation of elf2α, thus allowing translation to occur (Squarrito, Mancino, Sala, & Draetta, 2006). Given that we previously reported induction of elf2α phosphorylation by CM16 in a breast cancer cell model (Carvalho et al., 2017), possible upregulation of Ebp1 might also be envisaged as a consequent defense of the cancer cell. These hypotheses remain however to be investigated at the cellular and molecular levels.

In conclusion, this proteomic study revealed that CM16 induces significant changes in the proteome of glioma cells in a time- and concentration-dependent manner. In particular, this study showed that CM16 decreases the expression of five proteins associated with glioma aggressiveness and poor clinical outcome. On the contrary, the two upregulated proteins identified might be linked to defense mech-

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

AUTHORS CONTRIBUTIONS
A.C. has performed all the cell culture assays, the 2D and MS/MS experiments and have organized and analyzed the data with the help of C.D. and J.V. J.V. has also performed the multivariate analysis of the data, with the help of K.D.B. and Y.V.H. G.V. has supervised and helped with performing and analyzing the 2D experiments. B.M. and J.W. have provided the compound CM16 for the whole study. CD has performed part of the MS/MS experiments, and helped with the analysis, together with F.S. and P.V.A. V.M. has designed and supervised the study. A.C. and V.M. have written the manuscript draft that has been further improved and reviewed by all co-authors.

ORCID
Annelise Carvalho https://orcid.org/0000-0003-2859-0017

REFERENCES