ABSTRACT

This study provides a composite record of $^{87}\text{Sr}/^{86}\text{Sr}$, $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ for three sections in the Tethyan Lower Cretaceous Maiolica formation, a pelagic limestone from the Umbria-Marche Apennines of Italy, carefully tied to a magnetostratigraphically and biostratigraphically calibrated timescale. Although the $^{87}\text{Sr}/^{86}\text{Sr}$ record accurately follows the trend of the global marine $^{87}\text{Sr}/^{86}\text{Sr}$ reference curve, individual Sr isotope ratio values are relatively high for their inferred stratigraphic position, with all $^{87}\text{Sr}/^{86}\text{Sr}$ ratios yielding a fairly uniform +0.00007.
to +0.0001 discrepancy. This offset likely results from incorporation of excess ^{87}Sr through isotopic re-equilibration with interstitial pore waters during progressive lithification of the calcareous ooze. Although the process occurs principally through dissolution-reprecipitation, buffering the contemporaneous seawater Sr isotopic signature, diffusive communication with the overlying water column and porous sediments will compete with the dissolution-reprecipitation process, homogenizing pore fluid concentrations and isotope ratios throughout the sediment column. Because the secular trend in $^{87}\text{Sr}/^{86}\text{Sr}$ throughout the Maiolica timeframe is one of constant increase before rebounding to lower $^{87}\text{Sr}/^{86}\text{Sr}$ ratios in the Barremian, the ratios of the Maiolica carbonates are systematically displaced from that of the seawater in which it was deposited towards more radiogenic (higher $^{87}\text{Sr}/^{86}\text{Sr}$) values. In addition, the carbon and oxygen isotope record of the Maiolica allows identification of the Mid-Valanginian Weissert event, characterized by a positive excursion in the $\delta^{13}\text{C}$ and the $\delta^{18}\text{O}$ record. Furthermore, the Weissert event correlates with a positive spike (+0.0001) in $^{87}\text{Sr}/^{86}\text{Sr}$, Both the Sr and O isotopic peak signal pre-date the maximum peak in the $\delta^{13}\text{C}$ excursion. This is likely a diagenetic artefact and may support the hypothesis of diffusive communication during lithification of the calcareous ooze.
1. INTRODUCTION

1.1 The Umbria-Marche sequence

The stratigraphic sequence of the Umbria-Marche Apennines in central Italy offers a world-class archive of information about Earth history from the Pliensbachian, in the early Jurassic, to the Miocene in the Neogene (Cresta et al., 1989; Montanari and Koeberl, 2000; Alvarez, this volume). This is due to the pelagic character of these limestones, marls, and cherts, which were deposited on the thinned, subsided Italian continental crust at moderate oceanic depth, just above or just below the calcite compensation depth. Because of these conditions, the Umbria-Marche sequence lacks terrigenous inputs until the Oligocene, is free of wave erosion, and was rarely affected by current scour. Equivalent pelagic oozes have been cored by scientific drilling ships at many sites throughout the world ocean, where they have the advantage of not having been compacted, uplifted, or placed in contact with non-marine pore waters. In compensation, the Umbria-Marche carbonate rocks are extensively exposed across whole mountain sides in a region of broad anticlinal folds covering about 5,000 km², so that lateral relationships can be studied and two-dimensional sampling can be carried out, neither of which is possible with deep-sea cores. Because pelagic carbonate rocks have usually either stayed at depth below the sea or been strongly deformed during tectonism and uplift, the Umbria-Marche Apennines are ideal for the study of pelagic carbonates in outcrop.

The great majority of stratigraphic research in the Umbria-Marche Apennines has focused on the ca. 600 m thick Scaglia formations — the Scaglia bianca, rossa, variegata, and cinerea — beginning with white pelagic limestone in the Cenomanian, then pink pelagic limestone from the Turonian to the Eocene, and transitioning to a grey pelagic marl in the Oligocene. The
Scaglia has been of great stratigraphic use because of the abundance of recognizable lithologic contacts and marker beds and of planktic foraminifera, and has led to advances in magnetic polarity stratigraphy, radioisotopic dating of intercalated volcanic ash beds, isotopic stratigraphy, event stratigraphy, including recognition of the Cretaceous-Palaeogene boundary impact event, and cyclostratigraphy (Coccioni and Montanari, this volume).

Turning to the Lower Cretaceous, less attention has been paid to the Aptian-Albian Fucoid marls (Grippo et al., 2004). The Tithonian-to-Albian Maiolica limestone (Sprovieri et al., 2006) has been particularly intractable, because of the 1) 400 m thickness of uniform lithology of white limestone with beds and nodules of black chert, 2) the presence of only a single recognizable marker bed, and 3) the absence of the planktic foraminifera, which had not yet evolved. Although the Maiolica yields good palaeomagnetic directions, magnetic-polarity stratigraphy has been difficult to apply to the Maiolica because the M-sequence reversals, covering almost all of the Maiolica, contain many short polarity zones with no distinctive long zones, making it hard to correlate a particular set of polarity zones in the Maiolica to the M-sequence reversals (Lowrie et al., 1980).

The overall architecture of the Maiolica shows a division into basinal sequences, typically ~400 m thick, and thinner sequences, ~100 m thick, on the tops and margins of fault-block seamounts (Alvarez, 1989). The seamount sequences are incomplete because of stratigraphic hiatuses, and in compensation, the basinal sequences commonly contain frequent levels of slumps. In the present paper we report on the study of one seamount and two basinal sequences.

The present study began with an attempt to use $^{87}\text{Sr}/^{86}\text{Sr}$ ratios as a correlation tool for the Maiolica. Specifically it aimed at providing a detailed stratigraphic framework to investigate
near-vertical walls of shattered breccia in the Maiolica formation, for which a hydraulic fracturing mechanism seems likely. In two companion papers (Alvarez et al., this volume; Belza et al., this volume), we detail the structural observations and geochemistry of these breccia walls, which are exposed along the anticlines of the Umbria-Marche Apennines thrust-and-fold belt. The breccias are mostly confined to the Maiolica formation, and are characterized by bodies of shattered pelagic limestone. Our goal was to determine, using $^{87}\text{Sr}/^{86}\text{Sr}$ ratios, whether the Maiolica breccia fragments have moved up or down, and how far, relative to the stratigraphic level where they now reside. The standard global marine $^{87}\text{Sr}/^{86}\text{Sr}$ reference curve (McArthur et al., 2012, Fig. 7.2) shows a monotonic rise from ~0.70715 to ~0.70750 in the first 80% of the Maiolica, followed by a decrease to ~0.70740 at the top of the formation. The long monotonic increase gave reason for hope that the strontium isotope ratio values in breccia fragments could identify their original stratigraphic position.

First, however, it would be necessary to test whether the Maiolica accurately records the global strontium-isotope reference curve for the Lower Cretaceous. The present study was undertaken to do this testing, and it unexpectedly showed that the $^{87}\text{Sr}/^{86}\text{Sr}$ values in the Maiolica, although they show the same pattern of a long rise followed by a shorter fall, are systematically offset by about +0.0001 relative to the global curve. Thus, our attempt to study the origin of the Maiolica breccias has been diverted into an attempt to understand the offset in the Maiolica strontium isotope ratio curve.

Our attempt to tie the $^{87}\text{Sr}/^{86}\text{Sr}$ record to the global Sr seawater reference curve was only possible because of the unique stratigraphic control of the sections studied: the pelagic limestones in the Umbria-Marche Apennines have been extremely well dated because of 1) the presence of microfossils and nanofossils 2) magnetic minerals recording the geomagnetic
polarity3) and the presence of levels of distal volcanic ejecta that can be dated radiometrically, which made it possible to tie all three major geological dating methods in one sedimentary succession (Alvarez, 2009). As such the stratigraphic positions of our samples were accurately determined by tying them to the magnetic polarity stratigraphy (Channel et al., 1995; Lowrie and Alvarez, 1984) and biostratigraphy (Cecca et al., 1994, Fig. 2, column 22; Faraoni et al., 1997 Coccioni et al., 1998). This was accomplished by identifying the old paleomagnetic drill holes in the succession and using the core orientations provided James E. Channel (personal communication).

1.2 Chemostratigraphy

Changes in ocean chemistry are controlled by fluctuating global weathering rates, by changes in volcanic and hydrothermal activity and by sedimentological and tectonic processes (Weissert et al., 2008). The variation in the past composition of seawater over geological time is recorded in the δ\(^{13}\)C, δ\(^{18}\)O, \(^{87}\)Sr/\(^{86}\)Sr ratios of marine carbonates, and serves as a reliable stratigraphic tool for global correlation. In addition, the Sr, O and C isotopic signatures are useful in constraining post-depositional diagenetic events, an important factor that may obscure the targeted stratigraphic resolution. This is especially relevant for the oxygen isotopic system, as the δ\(^{18}\)O of the carbonate depositing from the fluid is temperature-dependant.

1.2.1 Carbon Isotope Ratio Stratigraphy

Because the δ\(^{13}\)C of carbonate is relatively insensitive to changes in temperature, the δ\(^{13}\)C isotopic signature of inorganically and biologically precipitated carbonate will reflect the (fractionated) δ\(^{13}\)C of dissolved inorganic carbon (DIC) of seawater at the point of calcification and can be used to trace changes in ocean circulation and palaeoproductivity (Zeebe and Wolf-
Gladrow, 2001; Edgar et al., 2013). The δ^{13}C value of whole-ocean DIC has not been constant over geologic time. Variations in δ^{13}C in the DIC in the oceans over time reflect redistribution of carbon among the Earth’s surface carbon reservoirs such as the atmosphere, oceans, biosphere and lithosphere (Sundquist and Visser, 2003). This includes factors driven by changes in atmospheric CO$_2$ or DIC levels in the ocean, such as changes in bioproductivity and organic carbon burial.

1.2.2 Oxygen Isotope Ratio Stratigraphy

Oxygen isotope ratios in marine carbonate vary as a function of both the temperature and the δ^{18}O composition of the parent seawater (; Shackleton, 1967). The strongly temperature-dependent calcite-water oxygen isotope fractionation has been well-established by numerous empirical, experimental and theoretical studies. Increasing temperatures shift δ^{18}O values in marine calcite to more negative values. Combined with palaeontological information, δ^{18}O values serve as a reliable proxy for changes in palaeo-ocean temperatures, salinity, and global ice volumes (Shackleton, 1967; Veizer et al., 1986; Rohling and Bigg, 1998; Veizer et al., 1999; Edgar et al., 2013). As ocean temperatures vary with depth and latitude, oxygen isotope records will depend on palaeogeography and depth habitat of the calcifying microorganisms (Grossman, 2012).

Because the oxygen and carbon isotope signals in this study were measured on bulk carbonates, they might be sensitive to changes in the community of carbonate producers and diagenesis. This will be highlighted in the Discussion section.

1.2.3 Strontium Isotope Ratio Stratigraphy

The 87Sr/86Sr value of seawater has been recognized to be a diagnostic tool for stratigraphic correlations, reconstruction of global tectonics, palaeo-climatic perturbations, and
understanding of diagenetic processes (Burke et al., 1982; Veizer, 1989; McArthur et al., 2001; McArthur et al., 2012). The principle of strontium isotope ratio stratigraphy relies on the fact that the Sr isotopic composition of the oceans has varied throughout geological time, due to variation of two main sources contributing Sr to the oceans: (1) hydrothermal exchange of seawater with volcanic rocks on the ocean floor (Frijia and Parente, 2008), and (2) diagenesis and continental weathering of old marine limestones and weathering of old granitic rocks delivering strontium to the oceans by river influx (Faure and Powell, 1972).

Because the residence time of Sr in the oceans (10^6 years) is much longer than the time it takes currents to mix the oceans (10^3 years), oceans are thoroughly mixed on time scales that are short relative to the rates of gain and loss of strontium. As a result, the isotopic composition of strontium is considered to be constant throughout the global ocean at any one time (Veizer, 1989; Palmer and Edmond, 1989). Because Sr^{2+} substitutes for Ca^{2+} during precipitation of marine carbonates and sulphates with minor isotope fractionation, the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of marine carbonates will reflect the isotopic ratio of the contemporary seawater during precipitation (Faure and Powell, 1972,). Based on this assumption, Howarth and McArthur (1997) and McArthur et al. (2001) have compiled $^{87}\text{Sr}/^{86}\text{Sr}$ data and fitted to them a nonparametric LOWESS statistical regression function (Locally, Weighted Scatterplot Smoother), resulting in a global strontium seawater reference curve (McArthur et al., 2012).

With carbon isotope ratio data providing information on the evolution and perturbation of the global carbon cycle, and $\delta^{18}\text{O}$ isotope data, combined with palaeontological information, potentially serving as a palaeotemperature proxy (Weissert and Erba, 2004), the combination with strontium isotopic data provides a powerful chemostratigraphic tool to constrain the link between (continental) weathering, volcanism, tectonics and palaeoclimatic perturbations, and
document the temporal response of different isotopic systems on the Tethys carbonate sedimentation to the environmental perturbations.

1.3 Sections sampled

Most of the detailed sampling of Umbria-Marche pelagic limestone formations over the years has been done along roads because of the long, continuous sections, the fresh outcrops, and the exposure of easily erodible marl and shale layers (Lowrie et al., 1980; Alvarez et al., 1977, Lowrie and Alvarez, 1977; Cecca, 1994; Cecca, 1995; Alvarez, 2009; Coccioni and Montanari, 2018) There are many such road-cut sections of the Scaglia, notably the Bottaccione and Contessa sections at Gubbio (several papers in this volume). The Maiolica offers fewer such usable sections; we have studied three of those available. The Monte Acuto (MMA) and Frontale (FRO) sections expose parts of the thick, basinal facies Maiolica, while the Presale (PRE) section exposes the thin, seamount facies. Sample localities are shown in Fig. 1.

1.3.1 Monte Acuto section (MMA)

The Monte Acuto section (MMA in this paper), located along the road from Chiaserna up to the pass between Monte Acuto and Monte Catria, exposes the lower 240 m of the Maiolica, with the upper part covered (Fig. 2). The complete stratigraphic record of the section extends from the middle Berriasian to the upper Hauterivian. Three thin black shale layers occur interbedded within the limestone beds (Sprovieri et al., 2006). The Maiolica sequence at the Monte Acuto section is cut by calcite-filled veins.

This excellent section represents the thick, basinal Maiolica, and it has been important for previous stratigraphic research on the Maiolica. The magnetic polarity stratigraphy together
with ammonite and nannofossil biostratigraphy were studied by Channell et al. (1995), the rare ammonites by Cecca (1995) and Faraoni et al. (1997), and the cyclostratigraphy by Sprovieri et al. (2006).

In October 2012, we collected 24 samples, from MMA-1 (at the lowest road elevation, but highest in the stratigraphy, at 43°27'49.80"N, 12°40'16.17"E), to MMA-24 (at the highest road elevation, but lowest in the stratigraphy, at 43°27'50.52"N, 12°40'44.70"E; coordinates from Google Earth, not from GPS). Our sample sites are marked with small numbers in green paint. The positions of our samples MMA-1 to MMA-10 have been tied to the magnetic polarity stratigraphy of Channell et al. (1995) and thus dated, based on identifying the palaeomagnetic drill holes, using the core orientations supplied by James E. Channell (personal communication, 2013). Stratigraphically, below MMA-10 there is a 20-30-m-wide covered interval which marks the bottom of the palaeomagnetic section of Channell et al. (1995).

In subsequent work by Faraoni et al. (1997) and Sprovieri et al. (2006), a prominent chert marker bed was recognized on both sides of the covered interval and painted blue, making it possible to continue the section downward below the base of the palaeomagnetic section, and this lower part of the section was tied to the global biostratigraphy using very rare ammonites Faraoni et al. (1997). Our samples MMA-11 to MMA-24 were taken in this lower part of the section, and were dated using the biostratigraphy of Faraoni et al. (1997).

1.3.2 Frontale section

A second section was sampled on the road from Frontale to Pian dell’Elmo. This basinal Maiolica was well exposed when the road cuts were fresh and was used for a palaeomagnetic stratigraphy study by Lowrie and Alvarez (1984). Sometime in the 30 years since that study,
the road cuts were covered by heavy screening. During the screening work, many core holes were cut away, and subsequently many others were covered by debris trapped behind the screen. However, we were able to identify enough of the remaining cores holes by their orientations (data from William Lowrie, personal communication, 2013) to re-measure the original section, confirming the location of two faults noted by Lowrie and Alvarez (1984). The meter levels of the recovered section have now been marked with green paint on the outcrop behind the screen, and on the metal guardrail on the opposite side of the road.

We took 23 samples for isotopic analysis, numbered with their meter levels, from FRO-470 (at the highest road elevation, but lowest in the stratigraphy, at 43° 20.949'N, 13° 5.055'E), to FRO-597 (at the lowest road elevation, but highest in the stratigraphy, at 43° 20.885'N, 13° 5.348'E; coordinates from Google Earth, not from GPS). Because of the presence of two prominent faults in the section (Lowrie, 1984— the “Big Fault” and the “Culvert Fault,” the latter with its lowest exposure at a road culvert — not all of the samples were useful for the present stratigraphic study. The useful samples are FRO-470 through FRO-561, located in the long, unfaulted lower part of the section, which is dated by the magnetic polarity zones of Lowrie and Alvarez (1984), and FRO-565, 566, and 568, located in the block between the two faults, datable because it contains the upper Hauterivian Faraoni level (Cecca et al., 1994, Fig. 2, column 22; Coccioni et al., 1998).

1.3.3 Presale section

Since neither the Monte Acuto nor the Frontale section extends to the top of the Maiolica, we also sampled the Presale section, which seems to have been studied previously only by Lowrie and Alvarez (1984). This section is exposed along a trail 3.15 km southeast of the bridge at the main road junction in Piobbico. We were able to relocate several of the original painted
numbers corresponding to every 5 m in the 1984 magnetic stratigraphy section, although these
green numbers are very faded and hard to see. Also recognizable are some of the supplementary
green-painted meter marks (a line and 1, 2, 3, or 4 dots, corresponding to that many meters
above a painted number).

We collected 10 samples, from the stratigraphically lowest, PRE-1 (43° 34.159'N, 12° 32.295'E,
170 m in the 1984 section), to PRE-10 (43° 34.195'N, 12° 32.346'E, 260 m in the 1984 section;
coordinates from Google Earth, not from GPS). These samples are well dated because they are
tied to the polarity stratigraphy of Lowrie and Alvarez (1984). It should be noted that the
Presale Maiolica section is only about 100 m thick, which is typical of the thin Maiolica on the
Jurassic fault-block seamounts, rather than the ~450 m found in basinal sections like Monte
2. METHODS

Bulk carbonate sample powders were extracted using a dental drill with a tungsten-carbide drill bit. In between drilling of different samples, the drill and drill bit were carefully cleaned with pressured air, ethanol and ultrapure 18.2 MΩ.cm water to avoid cross-contamination. Drilling was carried out using a drill bit of 0.5 mm in order to prevent sparry calcite cement from visible calcite veins- yielding a different isotopic signature, to mix with the limestone powders. Furthermore, sparry, calcite-cemented veins were separately sampled as well.

2.1 \(^{87}\text{Sr}/^{86}\text{Sr}\)

For Sr isotopic analysis of the carbonates, 100 mg of sample powder was accurately weighed in pre-cleaned Teflon® beakers. Next, 5 mL of 1M HCl was added to dissolve the samples. Along with the samples, one NIST SRM 987 SrCO\(_3\) standard (National Institute for Standards and Technology, USA), several procedure blanks and sample duplicates were dissolved as well. Sample solutions appeared clear after dissolution with almost no visible residue. However, to fully eliminate any possible contribution from radiogenic \(^{87}\text{Sr}\) leached from clay fractions in following steps involving concentrated strong acid attack, the solutions were centrifuged. After centrifugation, clear supernatant solutions were pipetted off and transferred to clean Teflon® vials. Next, the solutions were evaporated to near-dryness on a hotplate at 70°C and redissolved in 2mL of 7 M HNO\(_3\). In addition, two samples (MMA-1tris and MMA-20tris) were subjected to a different dissolution procedure by adding 2 mL of 7 M HNO\(_3\) instead of 5 mL of 1 M HCl. This was done in order to evaluate the influence of the use of highly concentrated acids (such as concentrated nitric acid) throughout the extraction procedure on the possible leaching of radiogenic Sr from the remaining clay fraction in the carbonate powders. Also, two international (silicate) rock reference standards (the basalt BE-N and micro gabbro PM-S obtained from the
Centre de Recherches Petrographiques et Géochimiques) were prepared following a different digestion protocol: 100 mg of sample powder was accurately weighed in clean Teflon® beakers and digested by addition and subsequent evaporation of 1) HF:HNO$_3$ (in a ratio of 2:4, 14 M HNO$_3$ and 28M HF), (2) *Aqua regia*, (3) 14 M HNO$_3$ (4) 14 M HNO$_3$. Finally, the sample was redissolved in 7 M HNO$_3$.

The Sr was extracted using pre-packed BioRad columns, filled with 400 µL of the commercially available strontium-specific extraction chromatographic resin Sr spec$^\text{TM}$, and following an optimized procedure of De Muynck et al. (2009). $^{87}\text{Sr}/^{86}\text{Sr}$ ratios were subsequently measured using a Neptune multi-collector ICP-mass spectrometry (MC-ICP-MS) instrument at the Department of Chemistry at Ghent University. All samples were run in a sample-standard bracketing sequence with a 100 µg/L Sr isotopic standard solution of NIST SRM 987 SrCO$_3$. The Sr content in the samples and the standard was matched within ±10% to avoid any effect from the analyte content on the extent of instrumental mass discrimination. After every run, the sample introduction system was rinsed thoroughly with 2% HNO$_3$ to minimize memory effects. The results were mathematically corrected for mass bias using internal normalization to $^{86}\text{Sr}/^{88}\text{Sr}=0.1194$ by the exponential fractionation law. The intensities obtained for $^{82}\text{Kr}^+$, $^{83}\text{Kr}^+$, and $^{85}\text{Rb}^+$ were used to correct for the Kr interferences on the m/z ratios of 84 and 86, and for the Rb interference on the m/z ratio of 87. The mean, long-term $^{87}\text{Sr}/^{86}\text{Sr}$ ratio obtained for NIST SRM 987 SrCO$_3$ was 0.710287 ± 0.000024 (2s.e., with N = 44). This is in full agreement with the accepted $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of 0.710248 ±0.000011 (2s.d.) for this reference material (Thirlwall, 1991).

2.2 Carbon and oxygen isotope ratios
Carbon and oxygen isotope ratios were measured both with a Kiel-III-device coupled to a Thermo Delta plus XL isotope ratio mass spectrometer, and a a NuCarb automated carbonate preparation device coupled to a Nu Perspective Isotope Ratio Mass Spectrometer. Small quantities of carbonate powder were reacted with H$_3$PO$_4$ at a temperature of 75°C and the CO$_2$ generated was cryotrapped. Every set of six samples was bracketed by an international calcite standard (NBS-19 with δ^{18}O = -2.20 ± 0.01, δ^{13}C =+1.95 ± 0.02, or the NCM with δ^{18}O = -1.9 and δ^{13}C= +2.09). Moreover, every sample was analysed three or four times on different measurement days. Carbon and oxygen isotopic results are reported on a per mil (‰) basis relative to the Vienna Pee Dee Belemnite (VPDB) standard. External analytical precision yielded values better than ± 0.015 ‰ for δ^{13}C and ±0.033‰ for δ^{18}O based on replicate analysis of the international calcite standards NBS-19 (US Geological Survey-USGS) and the in-house NCM (Cararra Marble, Nu instruments). Precision is reported as 1-sigma standard deviation.
3. RESULTS

3.1 Strontium, oxygen and carbon isotopic results

3.3.1 87Sr/86Sr

87Sr/86Sr ratios vary between 0.70733 and 0.70758 (Tables 1, 2). The Sr isotopic trend accurately follows the McArthur seawater reference curve for the inferred stratigraphic interval (Late Berriasian ~141 Ma to Late Barremian ~127 Ma), but individual Sr isotope ratios are offset by +0.00007 to +0.0001 (Fig. 3). The 87Sr/86Sr of the calcite veins is much higher than the values of their host rock, yielding values between 0.70762-0.70777.

3.3.2 $\delta^{13}C$

Carbon isotope ratios cluster around plateau values of ~1.5‰ in the Berriasian to Early Valangian (Table 1, Fig.4). In The Mid-Valangian, $\delta^{13}C$ values rise rapidly to ~3‰. This positive C-isotopic of 1-1.5‰ excursion starts in the Valanginian campylotoxus ammonite zone, reaches peak values in the verrucosum zone and ends in the Hauterivian radiatus zone, corresponding to polarity chrons CM12–CM9 (Channell et al. 1993; Hennig et al. 1999; Weissert and Erba, 2004). Furthermore, this carbon isotopic excursion correlates with the well-defined Weissert Event, which is characterized by a positive $\delta^{13}C$ excursion of about 1 to 2‰ in marine carbonates. (Weissert and Erba, 2004), the first of four positive excursions recorded in the Cretaceous carbon isotopic record. In the Hauterivian, the $\delta^{13}C$ isotopic signature falls back to a background value of approximately ~2‰. Furthermore, carbon isotopic values in calcite veins reflect values of their host rock, suggesting they were buffered by the host rock during deposition of secondary calcite.

3.3.3 $\delta^{18}O$
Oxygen isotope ratio values range between -2.25‰ and -1.5‰ (Table 1). Compared to palaeogeographically comparable, selected sections from the Southern Alps (Weissert et al., 1985; Weissert and Channell, 1989), the oxygen values are depleted by approximately -1‰. On the other hand, oxygen isotope ratio values of the calcite veins document significant enrichment in the heavy 18O and mostly yield positive δ^{18}O values, ranging between -0.65 to 2.44 ‰.

3.3.4 87Sr/86Sr, δ^{18}O, δ^{13}C composite record

A composite strontium, carbon and oxygen isotope ratio record from Middle Berriasian to Late Barremian is presented in Fig. 4. Although broad and not very sharply bounded in our section, we can pinpoint the Mid-Valanginian positive excursion in the carbon isotopic record, identified as the Weissert Event, which correlates with a small (+0.0001), but resolvable positive spike in the 87Sr/86Sr curve. This excursion is very brief (~1 Ma). In addition, the oxygen isotopic data yield a positive excursion with peak values corresponding exactly with the Sr spike. In the composite diagram, it can be seen that peak value of the carbon excursion, which covers approximately 5 Ma, is delayed with respect to the oxygen and Sr isotopic signal, which, in addition, cover a much smaller interval of time.
4. DISCUSSION

4.1 Reliability of the 87Sr/86Sr, δ^{13}C and δ^{18}O values

Before interpreting the isotopic records, it is important to assess whether the primary seawater isotopic values have been altered during post-depositional diagenetic processes and/or sample pre-treatment.

4.1.1 Oxygen isotope ratios

The process of recrystallization-dissolution will cause the δ^{18}O and the δ^{13}C of the carbonate to reequilibrate with the dissolved bicarbonate and the oxygen of the pore water. The Oxygen isotope ratios are most easily affected by diagenetic alteration. This is not solely because of a strong temperature-dependent fractionation, driving the δ^{18}O toward lower values as in situ temperature increases with sample depth in the sediment column (Matter et al., 1975; Schrag et al., 1995; Edgar et al., 2013). The lack of a “buffering” potential for oxygen during fluid-rock interaction is also due to huge amount of oxygen in water compared to the amount of dissolved carbonate in solution, and the relatively fast isotopic re-equilibration of oxygen in bicarbonate with oxygen in water.

4.1.2 Carbon isotope ratios

Compared to δ^{18}O, the carbon isotope ratio values in carbonate rocks are less affected by diagenetic alteration. There is no (significant) temperature-dependent fractionation, and the δ^{13}C value is only measurably affected when recrystallization and cementation occur in the presence of pore water bicarbonate in which the δ^{13}C has been altered due to the addition of 12C-enriched CO$_2$ derived from the oxidation of organic matter and microbial activity (Marshall, 1992; Maliva et al., 1995; Maliva and Dickson, 1997; Madhavaraju et al., 2013).

Also, because the carbonate contains considerably more carbon than the pore waters, the δ^{13}C
value of the recrystallized carbonates will be buffered by the host limestone and remain relatively unaltered. Indeed, excellent agreement between our data and the established δ^{13}C reference curves ([Fig.4]; Weissert and Erba, 2004; Sprovieri et al., 2006) from the Palaeo-Tethys indicates that the δ^{13}C value of the carbonate was not altered by the contribution of carbon from a secondary source.

4.1.3 Strontium Isotope ratios

Several processes may account for the elevated $^{87}\text{Sr}/^{86}\text{Sr}$ with respect to the seawater reference curve. In the following paragraph, these processes are discussed in light of diagenetic modifications, analytical bias and sample contamination.

As a first possible explanation, if the modified $^{87}\text{Sr}/^{86}\text{Sr}$ ratios were derived from pressure solution deeper in the stratigraphic column or expulsion of fluids derived from structurally lower formations, we would expect a shift to more negative $^{87}\text{Sr}/^{86}\text{Sr}$ ratios, based on the Sr seawater reference curve (McArthur et al., 2001), (Fig. 1). On the other hand, deep-burial diagenesis or hydrothermal fluid circulation of deep brines would shift the $^{87}\text{Sr}/^{86}\text{Sr}$ towards higher values, as deep brines usually acquire an excess of ^{87}Sr from interactions with clays or other silicate minerals, imparting this signature into late cements (Veizer, 1989). However, deep burial diagenesis would significantly shift the δ^{18}O value to more negative values, which is not consistent with our observations.

A second possible source of ^{87}Sr that could have offset the $^{87}\text{Sr}/^{86}\text{Sr}$ by +0.0001 is the presence of abundant, parallel calcite veins, which yield $^{87}\text{Sr}/^{86}\text{Sr}$ +0.0001-0.0002 higher compared the host Maiolica carbonate. However, the calcite-cemented veins yield positive δ^{18}O values. If sub-mm calcite cemented veins had been accidentally sampled during micro-drilling and
contaminated the carbonate powders, this would cause a measurable shift towards higher (more positive) $\delta^{18}O$ ratios of the bulk as well. This is not consistent with our data, which indicate that oxygen isotope ratios, if altered by diagenetic processes, would have shifted to slightly more positive values. Also, although one calcite vein contains an elevated Sr content compared to the host rock (Table 1; PRE-3C), in other samples (FRO485C, FRO562.5C, MMA11.1, Table 1) concentrations are not much higher than the bulk rock from which the veins were sampled. In significantly higher concentration of Sr is required to affect the 87Sr/86Sr values of the bulk.

In addition, the 87Sr/86Sr signature in other samples with coexisting analyzed veins (set for sample FROM485, FRO562.5, PRE-3) do not show spikes in the reconstructed 87Sr/86Sr record for the Maiolica., contamination from calcite veins requires this secondary calcite to represent a volumetrically significant component, which is not consistent with our observations.

A third possible candidate source for the observed increase in radiogenic Sr in the set of samples investigated may arise during the sample preparation and digestion procedure. Whole-rock carbonates may contain a negligible to large non-carbonate fraction, consisting of clay and/or organic matter. Given the fact that Sr$^{2+}$ is relatively strongly adsorbed to phyllosilicates and organic matter, the presence of small amounts of non-carbonate fraction in a sample can increase the apparent 87Sr/86Sr values of carbonates (Burke et al., 1982), as clay minerals are enriched in radiogenic Sr. During sample dissolution dilute (1 M) hydrochloric acid was used to minimize the effect from any remaining clay/organic matter. Also, experiments with sample treatment procedures involving strong acid attack (see METHODS section) were evaluated by dissolving some of the samples with 7 M HNO$_3$ instead of dilute HCl. These samples yield 87Sr/86Sr ratios that are nearly-identical to those for samples leached with dilute HCl. Lastly, in all of the limestone samples analysed, very little or no clay or organic residue was observed, rendering Sr contamination from non-carbonate sources rather unlikely.
Renz and Habicht (1985) stated that the soft, unconsolidated pelagic sediments of the Blake–Bahama Formation, cored at DSDP Site 534A in the western central Atlantic, form an equivalent to the carbonate Maiolica facies in the Tethys (Bernoulli 1972, 2004). Similar to the Blake Bahama Fm, the Maiolica limestones must have originated from soft, coccolith ooze. At the sea floor, newly deposited calcareous ooze such as the Maiolica pelagic coccolith deposits has an estimated porosity around 70% (Matter et al., 1975), with interstitial pore water representing the chief component. In the Maiolica, the initially very high porosity was reduced to zero during burial, either by (1) mechanical compaction and/or by (2) pore filling cementation via pressure solution. Both are linked to the presence/absence of diagenetic fluid pathways, and the stress caused by the load of the overburden during progressive burial. During constant burial, porosity declines as a consequence of the load of the increasing overburden. Furthermore, during pressure solution and subsequent pore-filling cementation, interstitial pore waters will chemically reequilibrate with the surrounding carbonaceous ooze.

According to DePaolo and Finger (1991), recrystallization of soft, pelagic oozes should not substantially modify the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of the sediment. This presumption arises from the fact that during burial and lithification of calcareous ooze, diagenetic calcite is considered to be obtained from local (pressure) dissolution-recrystallization (Jenkyns et al., 1995). As a result, dissolution will deliver Sr to the pore fluids with an isotopic composition reflecting that of the dissolving carbonate. Subsequent reprecipitation will then precipitate calcite that has the same Sr isotope ratio as the pore fluid dissolved Sr. If dissolution-precipitation were the only diagenetic process involved, the pore fluids and the carbonate would yield the same isotope ratio at all depths, because the solid contains about 20 times more Sr than the pore fluid, buffering the isotopic ratio of the seawater it was deposited from (Fantle and DePaolo, 2006).
However, an important matter to take into account is that high-porosity sediments such as calcareous pelagic oozes are still in open, diffusive communication with the overlying seawater (and porous sediment). Diffusional migration in pore waters is caused by differences in concentration that develop between both sides of the sediment-water column interface (Lerman, 1978). Consequently, diffusion of aqueous Sr in the pore fluid will compete with the dissolution-precipitation process, homogenizing pore fluid concentrations and isotope ratios throughout the sediment column (Fanta and DePaolo, 2006).

Because the partition coefficient $D_{\text{calcite}}^{\text{Sr}} < 1$, the dissolution-reprecipitation of carbonates will result in a net increase in Sr concentration in the pore waters (Baker et al., 1982). During progressive burial and lithification, the Sr concentration in the pore waters will thus increase with depth. Gieskes et al. (1986) emphasized that the peak in Sr concentrations is associated with carbonate recrystallization reactions in the vicinity of the ooze-chalk transition, which represents a diagenetic front in the sediment column. So, because the secular trend in Sr isotope ratios throughout the Maiolica timeframe is one of constant increase (McArthur et al., 2001), and because the down-gradient rate of Sr diffusion exceeds the rate of in situ recrystallization, the water above the Sr concentration maximum is depleted, and that below enriched, in 87Sr. The in situ diagenetically precipitated carbonates then inherit this pore water Sr and shift the bulk-rock isotopic composition toward that of the ambient pore waters.

Because the secular trend in Sr isotope ratios throughout the Maiolica timeframe is one of constant increase, before declining in the Mid-Barremian, the 87Sr/86Sr ratios of the Maiolica carbonates may have systematically displaced from that of the seawater in which it was deposited towards more radiogenic values. This is in accordance with modelling studies from
Richter and De Paolo (1987), who developed a numerical model for the diagenetic exchange of Sr between chalks and their pore fluids during sedimentation and compaction in order to assess the accuracy with which the Sr isotope record in the carbonate sediment reflects that of seawater. Based on modelling studies, the authors postulate that for sediments older than 5 Ma the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of the carbonate is systematically displaced from that of the seawater in which it was deposited, with a maximum difference of $+0.00005$.

Considering this as an explanation for elevated $^{87}\text{Sr}/^{86}\text{Sr}$ compared to the global marine reference curve, diffusional migration and pore water exchange should also have affected the Sr isotopic signature in the upper part of the Maiolica succession, at least plateauing or ideally decreasing the $^{87}\text{Sr}/^{86}\text{Sr}$ at the respective stratigraphic interval. Our data show that the offset towards higher $^{87}\text{Sr}/^{86}\text{Sr}$ indeed seems to reach a plateau in the upper part of the section, although a decrease is not observed. Therefore it seems unlikely that diffusional migration was the only process affecting the $^{87}\text{Sr}/^{86}\text{Sr}$ of the Maiolica. During compaction, release of interlayer water from clays (in the small silicate fraction)-carrying a radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ signature, into to the pore water may have slightly offset the Sr isotopic composition if the pore water.

Both C and O isotopic data are in agreement with the hypothesis of diffusional migration and pore water exchange. Carbon isotope ratios remain unchanged as they are buffered by the bicarbonate dissolved from the carbonate host. Contrary, although relative variations in the oxygen isotopic record have remained unchanged, all values seem offset by approximately -1%. Considering the geothermal gradient and the strong temperature-dependent fractionation of the oxygen isotopic system, this -1% shift to a more negative $\delta^{18}\text{O}$ value is a result of the roughly 5°C warmer temperatures at a burial depth of 50-250m, the depth at which gravitational compaction and dissolution-precipitation will dominate the lithification process of calcareous
oozes (Larsen and Chilingar, 1983). Consequently, our Sr, O and C isotopic data support the hypothesis that the offset in \(^{87}\text{Sr}/^{86}\text{Sr}\) results from incorporation of excess \(^{87}\text{Sr}\) through isotopic reequilibration of carbonate with interstitial pore waters during progressive lithification of the calcareous ooze during diagenesis at slightly elevated temperatures.

4.2 The Weissert Event: constraints from Sr, O and C isotopic data

The Weissert Event has been recognized in Valanginian pelagic sediments of all the major oceans, including the Pacific (Weissert and Erba, 2004; Bartolini, 2003) and in shallow-water carbonate successions of the northern Tethys (Föllmi et al. 1994) and in fossil wood records (Gröcke et al. 2003). The Valanginian positive carbon isotope excursion thus seems to be of global extent and may serve as a useful stratigraphic marker (Weissert et al., 2008).

The Weissert Event is the first of a series of Cretaceous excursions in the global \(^{\delta^{13}}\text{C}\) isotopic record.

The onset of the excursion in the Mid-Valanginian coincides with the onset of increased volcanic activity. This volcanism was essentially subaerial and localized in the Paranà–Etendeka province. Weissert and Erba (2004) suggested that the increase in atmospheric \(\text{CO}_2\) resulting from increased subaerial volcanism may have caused accelerated weathering and hydrological cycling and thus indirect increased fertilization in coastal environments. Subsequent increased bioproductivity caused a drawdown of \(^{12}\text{C}\) from the DIC reservoir in the oceans, increasing the \(^{\delta^{13}}\text{C}\) of the seawater, as recorded in authigenic marine carbonates.

Interestingly, there is isotopic and biotic evidence for a Valanginian cooling event coinciding with the time of the positive carbon isotopic excursion, based on (1) increased \(^{\delta^{18}}\text{O}\) values in
marine carbonates, (2) the increase of boreal nanofossils in Romania (Melinte and Mutterlose, 2001) and (3) the occurrence of the nanofossil *Kokia borealis* in the equatorial Pacific (Weissert and Erba, 2004). Our data also show a peak in positive δ^{18}O values in the Maiolica at the base of the Valanginian carbon excursion (Fig. 4). This peak coincides with a shift in the Sr seawater curve to higher 87Sr/86Sr. Interestingly, the 87Sr/86Sr peak we observe at the Weissert Event is not resolved by the Global Sr marine reference curve. However, the Sr marine reference curve assumes a global nature of the Sr-isotope signal. This assumption is true for modern major ocean basins that are well-connected with each other, yielding a relatively fast mixing time of 1500 years. However, it may not be an entirely valid assumption for past time-periods. Basins (such as the Umbria-Marche basin during the Early Cretaceous) might be relatively constricted, and if the size of the fluxes becomes much larger (with respect to the reservoir), the residence time of Sr may become shorter. This may play a role in the Sr excursions during extreme climate events, such as the Weissert Event.

Since elevated 87Sr/86Sr ratios in past oceanic seawater are a proxy for increased continental runoff, it can be regarded as a tool for tracing the causal connection between cycles of weathering and climatic perturbation, and the palaeobiotic response to these environmental changes. Although it must be emphasized that the climate-driven approach to global weathering (Ruddiman et al., 1997) is controversial and beyond the scope of this paper, some interesting interpretations can be offered. The source of the weathering/climate connection is the atmospheric CO$_2$. It is thought that high CO$_2$ conditions in the atmosphere induce greater rainfall and temperatures, increasing the rate of continental chemical weathering, enhancing the flux of continental-derived (radiogenic) Sr to the oceans and increasing their 87Sr/86Sr (Ruddiman et al., 1997). In its turn, the process of weathering consumes the atmospheric CO$_2$, exerting a negative feedback mechanism which triggers global cooling. In addition, increased
continental runoff induces indirect fertilisation of the oceans, stimulating bioproductivity. This
results in a drawdown of light ^{12}C from the oceans, and causes a positive shift in the $\delta^{13}\text{C}$ record.
Elevated CO$_2$ levels may be explained by increased volcanic activity in the Paranà-Etendeka
province during the Valanginian Weissert Event (Weissert and Erba, 2004). This hypothesis
fits with elevated $^{87}\text{Sr}/^{86}\text{Sr}$, $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ values throughout the Valanginian.

An interesting observation is that the peak in the positive $\delta^{13}\text{C}$ excursion in the Valanginian
post-dates both the strontium and oxygen isotopic shifts (Fig. 2) This contrasts with the
observations of Weissert and Erba (2004), who state that the Valanginian cooling episode
occurs within the *verrucosum* ammonite zone and should coincide with the heaviest $\delta^{13}\text{C}$
values. Considering our good biostratigraphic and magnetostratigraphic age control, the
‘delayed’ response of the carbon isotopic signal is likely a diagenetic artefact inherent to the Sr
and O isotopic signals rather than a primary feature. In fact, it would seem that it is not the
carbon signal that is delayed, but the Sr and O signatures that are shifted due to the diffusive
communication of Sr from the pore waters in the overlying sediments and the seawater column
into pore water during recrystallization-precipitation of the calcareous ooze. This process will
only affect the $\delta^{18}\text{O}$ and $^{87}\text{Sr}/^{86}\text{Sr}$ values, biasing their true stratigraphic, depositional age
towards older ages, while the $\delta^{13}\text{C}$ system remains largely unaffected by this process.

Alternatively the positive spike in $\delta^{18}\text{O}$ and $^{87}\text{Sr}/^{86}\text{Sr}$ at the onset of the Weissert event can be
explained by sample MMA11.2 being compromised by the vein calcite at the same stratigraphic
level which is enriched in ^{18}O and ^{87}Sr. If one assumes the original geochemical data for
MMA11.2 to be the average of MMA12 and MMA10, a 60:40 mix of bulk rock and vein calcite
will generate the observed $\delta^{18}\text{O}$ and $^{87}\text{Sr}/^{86}\text{Sr}$ spikes. This admixture may not be in the form of
sparry calcite but may just be diffuse microcrystalline calcite formed within the rock matrix at
the same time as the vein. However, we have sampled veins from other bulk rock samples (e.g. FRO 485.C, FRO 562.5C, PRE-3.C, Table 1). If we compare with the values for the host rock, the $^{87}\text{Sr}/^{86}\text{Sr}$ signature of the bulk is not biased towards more positive $\delta^{18}\text{O}$ and higher $^{87}\text{Sr}/^{86}\text{Sr}$, as is the case for sample MMA11. Therefore we believe this positive excursion in our $^{87}\text{Sr}/^{86}\text{Sr}$ record is a primary feature.

5. CONCLUSION

This study provides a composite record of $^{87}\text{Sr}/^{86}\text{Sr}$, $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ for three sections in the Tethyan Early Cretaceous Maiolica sequence, carefully tied to a magnetostratigraphically and biostratigraphically calibrated timescale. The Sr isotope ratio record follows the general trend of the Global Strontium isotope ratio seawater reference curve, though individual $^{87}\text{Sr}/^{86}\text{Sr}$ ratios are systematically offset by +0.00007. We conclude that this offset results from incorporation of excess ^{87}Sr through isotopic re-equilibration with interstitial pore waters during progressive compaction and lithification of the principal calcareous ooze, with a small contribution from calcite micro-veins.

Furthermore, the (pristine) carbon isotope seawater record allows identification of the Mid-Valanginian Weissert event, characterized by a positive excursion in the $\delta^{13}\text{C}$ and the $\delta^{18}\text{O}$ record. In our record, the Weissert event correlates with a positive peak (+0.0001) in $^{87}\text{Sr}/^{86}\text{Sr}$. Both the Sr and O isotopic peaks pre-date the maximum peak in the $\delta^{13}\text{C}$ excursion. If we assume the excursion in the $\delta^{18}\text{O}$ and $^{87}\text{Sr}/^{86}\text{Sr}$ to reflect the oceanic conditions, this delay is likely a diagenetic artefact and further strengthens the hypothesis of diffusive communication of Sr with overlying water column during lithification of the calcareous ooze.
The theory of diffusive communication versus dissolution-reprecipitation elegantly explains our systematic offset in Sr isotopic data from the seawater reference curve and the shift in the peak values of Sr and O isotopic excursions with respect to the δ¹³C record in the Mid-Valanginian Weissert Event. In addition, this study highlights the importance of assessing the degree of diagenetic alteration using chemostratigraphic tools. In this context, it must be noted that the marine Sr reference curve (McArthur et al., 2001) is constructed based on measurement of (unaltered) low-Mg calcite shells instead of bulk carbonate rock. The reliability of the records therefore depends on how well unaltered forams/bivalves can be identified and separated. Richter and DePaolo (1987) stated that separates consisting of varying proportions of altered and unaltered forams may bias the data set, generating a source of noise that may hide the subtler aspects of ⁸⁷Sr/⁸⁶Sr variation with time in the ocean. On the other hand, it is expected that measuring the ⁸⁷Sr/⁸⁶Sr of bulk carbonate data may lead to Sr isotopic signatures slightly deviating from the reference curve. However, contrary to the use of calcite shells, bulk carbonate data may generate less noisy data because of more consistent sampling. In summary, applying chemostratigraphy as a correlation tool must always be assessed in the light of the diagenetic processes involved, as the Sr isotopic curve of palaeoceans cannot be constrained better than that dictated by diagenetic considerations (Veizer, 1989).
6. ACKNOWLEDGEMENTS

Joke Belza acknowledges the Research Foundation Flanders (FWO) for its support in funding a PhD Fellowship. Alessandro Montanari and the Geological Observatory of Coldigioco provided logistical support during fieldwork. We thank John McArthur for sharing his $^{87}\text{Sr}/^{86}\text{Sr}$ data in the early phases of this study. We thank Jim Channell for orientation data on his drill holes in the MMA section, and Bill Lowrie for orientation data on drill holes at FRO.
7. REFERENCES

Fante, M. S., and DePaolo, D. J., 2006, Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years: Geochimica et Cosmochimica Acta, v. 70, no. 15, p. 3883-3904.

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S.,
Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H., 1999, $^{87}\text{Sr}/^{86}\text{Sr}$,
$\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ evolution of Phanerozoic seawater: Chemical Geology, v. 161, no. 1-3, p. 59-88.
Veizer, J., Fritz, P., and Jones, B., 1986, Oxygen and carbon isotopic records of Paleozoic oceans:
Weissert, H., Joachimsky, M., and Sarnthein, M., 2008, Chemoostratigraphy: Newsletters on
the Early Cretaceous, in Sundquist, E. T., and Broeker, W. S., eds., The Carbon Cycle and
Atmospheric CO$_2$: Natural Variations Archean to Present Volume 32, American Geophysical
Union, p. 531-545.
Weissert, H. C., J.E.T., 1989, Tethyan carbonate carbon isotope stratigraphy across the Jurassic-
483-494.
Zeebe, R. E., and Wolf-Gladrow, D., 2001, CO$_2$ in seawater: Equilibrium, kinetics, isotopes, Amsterdam,
Elsevier, Elsevier Oceanography Series.

FIGURE CAPTIONS

Figure 1. Locality map for the sections sampled in this study: Frontale (FRO) Presale (PRE)
and Monte Acuto (MMA)

Figure 2. The upper Valanginian portion of the Maiolica exposed at the MMA section. The
section in this view extends about 40 m along the road, and the beds dip southwest, on the
southwest flank of the Monte Acuto-Monte Catria anticline; the center of the photo is at 43°
27.828'N, 12° 40.380'E.

Figure 3. Isotopic data and age calibration for the Maiolica of the Monte Acuto, Frontale and
Presale stratigraphic sections. GTS 2012 = Geologic Time Scale 2012 (Gradstein et al., 2012).
For details of the polarity zonation, see Ogg, 2012, GTS 2012, Table 5.2. For the Tethyan
ammonite zonation, see Ogg and Hinov, 2012, GTS 2012, p. 813
Figure 4. Composite curve $^{87}\text{Sr}/^{86}\text{Sr}$, $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ for the Monte Acuto stratigraphic section. Samples are plotted with equal spacing.
<table>
<thead>
<tr>
<th>lithology</th>
<th>SECTION</th>
<th>Sample ID</th>
<th>$^{87}\text{Sr}/^{86}\text{Sr}$</th>
<th>sd*</th>
<th>SE$^+$</th>
<th>RSD$^\text{b}$</th>
<th>Sr (µg/g)</th>
<th>$\delta^{13}\text{C}$ (‰)$^\text{f}$</th>
<th>$\delta^{18}\text{O}$ (‰)$^\text{f}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>bulk CaCO$_3$</td>
<td>Presale</td>
<td>PRE-1</td>
<td>0.70746</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.011</td>
<td>235</td>
<td>2.06</td>
<td>-1.85</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Presale</td>
<td>PRE-2</td>
<td>0.70748</td>
<td>0.00005</td>
<td>0.00001</td>
<td>0.014</td>
<td>202</td>
<td>2.23</td>
<td>-1.99</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Presale</td>
<td>PRE-3</td>
<td>0.70751</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>190</td>
<td>1.99</td>
<td>-1.86</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Presale</td>
<td>PRE-4</td>
<td>0.70755</td>
<td>0.00003</td>
<td>0.00001</td>
<td>0.007</td>
<td>197</td>
<td>1.86</td>
<td>-2.25</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Presale</td>
<td>PRE-5</td>
<td>0.70751</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.013</td>
<td>199</td>
<td>2.03</td>
<td>-2.12</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Presale</td>
<td>PRE-6</td>
<td>0.70754</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.011</td>
<td>205</td>
<td>1.74</td>
<td>-2.25</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Presale</td>
<td>PRE-7</td>
<td>0.70756</td>
<td>0.00003</td>
<td>0.00001</td>
<td>0.009</td>
<td>222</td>
<td>1.87</td>
<td>-2.01</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Presale</td>
<td>PRE-8</td>
<td>0.70752</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>356</td>
<td>2.21</td>
<td>-1.91</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Presale</td>
<td>PRE-9</td>
<td>0.70753</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>231</td>
<td>2.60</td>
<td>-1.88</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Presale</td>
<td>PRE-10</td>
<td>0.70752</td>
<td>0.00005</td>
<td>0.00001</td>
<td>0.014</td>
<td>281</td>
<td>2.21</td>
<td>-1.93</td>
</tr>
<tr>
<td>calcite vein</td>
<td>Presale</td>
<td>PRE-3.C</td>
<td>0.70761</td>
<td>0.00003</td>
<td>0.00001</td>
<td>0.010</td>
<td>197</td>
<td>2.19</td>
<td>0.34</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-470</td>
<td>0.70743</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.011</td>
<td>181</td>
<td>3.10</td>
<td>-1.74</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-485</td>
<td>0.70746</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>378</td>
<td>2.65</td>
<td>-1.43</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-502</td>
<td>0.70748</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>200</td>
<td>2.37</td>
<td>-1.55</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-510</td>
<td>0.70748</td>
<td>0.00005</td>
<td>0.00001</td>
<td>0.014</td>
<td>206</td>
<td>2.22</td>
<td>-1.52</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-521</td>
<td>0.70752</td>
<td>0.00003</td>
<td>0.00001</td>
<td>0.009</td>
<td>170</td>
<td>2.11</td>
<td>-1.63</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-530</td>
<td>0.70753</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.011</td>
<td>162</td>
<td>1.94</td>
<td>-1.81</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-540</td>
<td>0.70752</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.011</td>
<td>148</td>
<td>1.83</td>
<td>-1.87</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-567</td>
<td>0.70753</td>
<td>0.00005</td>
<td>0.00001</td>
<td>0.013</td>
<td>174</td>
<td>2.14</td>
<td>-1.41</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-550</td>
<td>0.70752</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>169</td>
<td>1.62</td>
<td>-1.86</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-560</td>
<td>0.70754</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.011</td>
<td>165</td>
<td>1.83</td>
<td>-1.47</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-561</td>
<td>0.70753</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>168</td>
<td>1.84</td>
<td>-1.39</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-562.5</td>
<td>0.70754</td>
<td>0.00005</td>
<td>0.00001</td>
<td>0.013</td>
<td>163</td>
<td>1.78</td>
<td>-1.49</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-563</td>
<td>0.70752</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.011</td>
<td>161</td>
<td>1.72</td>
<td>-1.56</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-565</td>
<td>0.70752</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>193</td>
<td>2.02</td>
<td>-2.17</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-566</td>
<td>0.70751</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.010</td>
<td>181</td>
<td>2.19</td>
<td>-1.25</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-568</td>
<td>0.70756</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>182</td>
<td>2.19</td>
<td>-1.37</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-569.5/2</td>
<td>0.70753</td>
<td>0.00005</td>
<td>0.00001</td>
<td>0.013</td>
<td>168</td>
<td>2.12</td>
<td>-1.68</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-570</td>
<td>0.70749</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.011</td>
<td>166</td>
<td>2.01</td>
<td>-1.41</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Frontale</td>
<td>FRO-571.6</td>
<td>0.70758</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>164</td>
<td>1.78</td>
<td>-1.29</td>
</tr>
<tr>
<td>lithology</td>
<td>sample type</td>
<td>Sample ID</td>
<td>87Sr/86Sr</td>
<td>sd</td>
<td>SE$^+$</td>
<td>RSD$^%$</td>
<td>Sr (µg/g)</td>
<td>Reference value (GEOREM) 87Sr/86Sr</td>
<td>Reference value (GEOREM) Sr (µg/g)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>micro-gabbro</td>
<td>Geostandard ""</td>
<td>PM-S</td>
<td>0.70461</td>
<td>0.00003</td>
<td>0.00001</td>
<td>0.009</td>
<td>241</td>
<td>0.704596</td>
<td>270 - 296 µg/g (compiled: 275 - 280 µg/g , 2 values)</td>
</tr>
<tr>
<td>basalt</td>
<td>Geostandard ""</td>
<td>BEN</td>
<td>0.70385</td>
<td>0.00004</td>
<td>0.00001</td>
<td>0.012</td>
<td>1274</td>
<td>0.703791 - 0.70403</td>
<td>1276 - 1547 µg/g 26 values (compiled: 1370 µg/g)</td>
</tr>
<tr>
<td>basalt</td>
<td>Geostandard ""</td>
<td>BEN bis</td>
<td>0.70380</td>
<td>0.00003</td>
<td>0.00001</td>
<td>0.010</td>
<td>1274</td>
<td>0.703791 - 0.70403</td>
<td>1276 - 1547 µg/g 26 values (compiled: 1370 µg/g)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lithology</th>
<th>SECTION</th>
<th>Sample ID</th>
<th>87Sr/86Sr</th>
<th>sd</th>
<th>SE$^+$</th>
<th>RSD$^%$</th>
<th>Sr (µg/g)</th>
<th>$^{\delta^{13}C}$ ($^\text{‰}$)*</th>
<th>$^{\delta^{18}O}$ ($^\text{‰}$)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-1</td>
<td>0.70754</td>
<td>0.00002</td>
<td>0.00001</td>
<td>0.005</td>
<td>212</td>
<td>1.87</td>
<td>-1.99</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-2</td>
<td>0.70758</td>
<td>0.00003</td>
<td>0.00002</td>
<td>0.008</td>
<td>214</td>
<td>1.73</td>
<td>-1.76</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-3</td>
<td>0.70755</td>
<td>0.00002</td>
<td>0.00001</td>
<td>0.006</td>
<td>202</td>
<td>1.81</td>
<td>-2.14</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-4</td>
<td>0.70750</td>
<td>0.00002</td>
<td>0.00002</td>
<td>0.006</td>
<td>213</td>
<td>2.01</td>
<td>-1.87</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-5</td>
<td>0.70753</td>
<td>0.00003</td>
<td>0.00002</td>
<td>0.008</td>
<td>213</td>
<td>2.02</td>
<td>-1.70</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-6</td>
<td>0.70748</td>
<td>0.00002</td>
<td>0.00002</td>
<td>0.007</td>
<td>224</td>
<td>2.05</td>
<td>-2.21</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-7</td>
<td>0.70751</td>
<td>0.00003</td>
<td>0.00002</td>
<td>0.008</td>
<td>251</td>
<td>2.36</td>
<td>-2.05</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-8</td>
<td>0.70749</td>
<td>0.00002</td>
<td>0.00002</td>
<td>0.006</td>
<td>208</td>
<td>2.65</td>
<td>-2.12</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-9</td>
<td>0.70746</td>
<td>0.00002</td>
<td>0.00001</td>
<td>0.006</td>
<td>233</td>
<td>3.15</td>
<td>-2.05</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-10</td>
<td>0.70748</td>
<td>0.00002</td>
<td>0.00002</td>
<td>0.006</td>
<td>260</td>
<td>2.92</td>
<td>-2.02</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-11.2</td>
<td>0.70751</td>
<td>0.00002</td>
<td>0.00001</td>
<td>0.005</td>
<td>252</td>
<td>2.88</td>
<td>-1.28</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-12</td>
<td>0.70741</td>
<td>0.00003</td>
<td>0.00002</td>
<td>0.009</td>
<td>257</td>
<td>2.39</td>
<td>-1.67</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-13</td>
<td>0.70741</td>
<td>0.00003</td>
<td>0.00003</td>
<td>0.010</td>
<td>264</td>
<td>1.56</td>
<td>-1.80</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-14</td>
<td>0.70742</td>
<td>0.00003</td>
<td>0.00002</td>
<td>0.009</td>
<td>255</td>
<td>1.38</td>
<td>-1.85</td>
</tr>
<tr>
<td>bulk CaCO$_3$</td>
<td>Monte Acuto</td>
<td>MMA-15</td>
<td>0.70739</td>
<td>0.00003</td>
<td>0.00002</td>
<td>0.007</td>
<td>228</td>
<td>1.32</td>
<td>-2.01</td>
</tr>
<tr>
<td>lithology</td>
<td>Sample type</td>
<td>Sample ID</td>
<td>⁸⁷Sr/⁸⁶Sr</td>
<td>SE</td>
<td>RSD</td>
<td>Sr (µg/g)</td>
<td>Reference value (GEOREM) ⁸⁷Sr/⁸⁶Sr</td>
<td>Reference value (GEOREM) Sr (µg/g)</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>-----</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>bulk CaCO₃</td>
<td>Monte Acuto MMA-16</td>
<td>0.70738</td>
<td>0.00003</td>
<td>0.0002</td>
<td>0.008</td>
<td>208</td>
<td>1.42</td>
<td>-1.99</td>
<td></td>
</tr>
<tr>
<td>bulk CaCO₃</td>
<td>Monte Acuto MMA-17</td>
<td>0.70737</td>
<td>0.00002</td>
<td>0.0002</td>
<td>0.007</td>
<td>240</td>
<td>1.34</td>
<td>-2.03</td>
<td></td>
</tr>
<tr>
<td>bulk CaCO₃</td>
<td>Monte Acuto MMA-18</td>
<td>0.70734</td>
<td>0.00003</td>
<td>0.0002</td>
<td>0.008</td>
<td>280</td>
<td>1.58</td>
<td>-1.69</td>
<td></td>
</tr>
<tr>
<td>bulk CaCO₃</td>
<td>Monte Acuto MMA-19</td>
<td>0.70738</td>
<td>0.00003</td>
<td>0.0002</td>
<td>0.009</td>
<td>232</td>
<td>1.37</td>
<td>-1.75</td>
<td></td>
</tr>
<tr>
<td>bulk CaCO₃</td>
<td>Monte Acuto MMA-20</td>
<td>0.70733</td>
<td>0.00003</td>
<td>0.0002</td>
<td>0.009</td>
<td>228</td>
<td>1.56</td>
<td>-1.60</td>
<td></td>
</tr>
<tr>
<td>bulk CaCO₃</td>
<td>Monte Acuto MMA-21</td>
<td>0.70737</td>
<td>0.00003</td>
<td>0.0002</td>
<td>0.007</td>
<td>217</td>
<td>1.52</td>
<td>-1.50</td>
<td></td>
</tr>
<tr>
<td>bulk CaCO₃</td>
<td>Monte Acuto MMA-22</td>
<td>0.70737</td>
<td>0.00002</td>
<td>0.0002</td>
<td>0.006</td>
<td>208</td>
<td>1.56</td>
<td>-1.58</td>
<td></td>
</tr>
<tr>
<td>bulk CaCO₃</td>
<td>Monte Acuto MMA-23</td>
<td>0.70733</td>
<td>0.00002</td>
<td>0.0002</td>
<td>0.006</td>
<td>228</td>
<td>1.42</td>
<td>-1.54</td>
<td></td>
</tr>
<tr>
<td>bulk CaCO₃</td>
<td>Monte Acuto MMA-24</td>
<td>0.70736</td>
<td>0.00002</td>
<td>0.0002</td>
<td>0.007</td>
<td>197</td>
<td>1.45</td>
<td>-1.53</td>
<td></td>
</tr>
<tr>
<td>calcite vein</td>
<td>Monte Acuto MMA-11</td>
<td>0.70762</td>
<td>0.00003</td>
<td>0.0003</td>
<td>0.010</td>
<td>448</td>
<td>2.10</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>replicate</td>
<td>Monte Acuto MMA-1bis</td>
<td>0.70753</td>
<td>0.00003</td>
<td>0.0002</td>
<td>0.008</td>
<td>209</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>replicate</td>
<td>Monte Acuto MMA-16bis</td>
<td>0.70741</td>
<td>0.00003</td>
<td>0.0002</td>
<td>0.008</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>replicate</td>
<td>Monte Acuto MMA-20bis</td>
<td>0.70733</td>
<td>0.00002</td>
<td>0.0002</td>
<td>0.007</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>replicate</td>
<td>Monte Acuto MMA-1tris</td>
<td>0.70754</td>
<td>0.00004</td>
<td>0.0003</td>
<td>0.011</td>
<td>210</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>replicate</td>
<td>Monte Acuto MMA-20tris</td>
<td>0.70735</td>
<td>0.00004</td>
<td>0.0003</td>
<td>0.010</td>
<td>231</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lithology</th>
<th>Sample type</th>
<th>Sample ID</th>
<th>⁸⁷Sr/⁸⁶Sr</th>
<th>SE</th>
<th>RSD</th>
<th>Sr (µg/g)</th>
<th>Reference value (GEOREM) ⁸⁷Sr/⁸⁶Sr</th>
<th>Reference value (GEOREM) Sr (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>basalt</td>
<td>Geostandard '' BE-N</td>
<td>0.70379</td>
<td>0.00005</td>
<td>0.0002</td>
<td>0.007</td>
<td>1407</td>
<td>0.703791 - 0.70403</td>
<td>1276 - 1547 µg/g 26 values (compiled: 1370 µg/g)</td>
</tr>
<tr>
<td>micro-gabbro</td>
<td>Geostandard '' PM-S</td>
<td>0.70467</td>
<td>0.00005</td>
<td>0.0002</td>
<td>0.007</td>
<td>265</td>
<td>0.704596</td>
<td>270 - 296 µg/g (compiled: 275 - 280 µg/g , 2 values)</td>
</tr>
</tbody>
</table>

*sd: standard deviation
†SE: standard error
§RSD: relative standard deviation
*all delta values are reported against V-PDB standard
**n.a. not analysed
***geostandards obtained from Le Centre de Recherches Pétrographiques et Géochimiques (CRPG)
measured values for geo-analytical standards are in excellent agreement with reported values
J. BELZA FIGURE 1
J. BELZA FIGURE 2
Figure 3

McArthur's curve from GTS 2012, Fig. 7.2, p. 129, shifted by +0.00007

Weissert event, ca. 137-135 Ma
(GTS 2012, p. 821)

Ingram et al., 1994, Sr data on the Selli level, which they date as 122.86-121.30 Ma, are plotted at 124.5 Ma, the midpoint of the Selli level in GTS 2012 (p. 821, col. 2, pgr. 1), where it is given with an estimated age of 125-124 Ma, and duration of 1.11 My (p. 819).

Maiolecta

Marne a Fucoidi (Fucoid Marls)

Tithonian

Berriasian

Valanginian

Hauterivian

Barremian

Aptian
J. BELZA FIGURE 4
87Sr/86Sr RECORD FROM THE LOWER CRETACEOUS PELAGIC

MAIOLICA LIMESTONE (CENTRAL APENNINES, ITALY) AND ITS OFFSET
FROM THE GLOBAL SEAWATER REFERENCE CURVE:

INTERPRETATION CONstrained BY WHOLE ROCK CARBONATE DATA

J. Belza¹*, W. Alvarez², F. Vanhaecke¹, P. Claeyss³

¹Department of Chemistry, Atomic and Mass Spectrometry (A&MS) research unit, Ghent University, Campus Sterre, Krijgslaan 281 – S12, 9000 Ghent, Belgium,
²Dept. Earth and Planetary Science, University of California Berkeley, CA 94720-4767 USA, and Geological Observatory of Coldigioco, Contrada Coldigioco, 62020 Frontale di Apiro, Italy,
³Dept. Analytical Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2 1050 Brussel, Belgium.

*Corresponding author: jbelza@vub.ac.be

ABSTRACT

This study provides a composite record of 87Sr/86Sr, δ18O and δ13C for three sections in the Tethyan Lower Cretaceous Maiolica formation, a pelagic limestone from the Umbria-Marche Apennines of Italy, carefully tied to a magnetostratigraphically and biostratigraphically calibrated timescale. Although the 87Sr/86Sr record accurately follows the trend of the global marine 87Sr/86Sr reference curve, individual Sr isotope
ratio values are relatively high for their inferred stratigraphic position, with all $^{87}\text{Sr}/^{86}\text{Sr}$ isotope ratios yielding a fairly uniform +0.00007 to +0.0001 discrepancy. This offset likely results from incorporation of excess ^{87}Sr through isotopic re-equilibration with interstitial pore waters during progressive lithification of the calcareous ooze. Although the process occurs principally through dissolution-reprecipitation, buffering the contemporaneous seawater Sr isotopic signature, diffusive communication with the overlying water column and porous sediments will compete with the dissolution-precipitation process, homogenizing pore fluid concentrations and isotope ratios throughout the sediment column. Because the secular trend in $^{87}\text{Sr}/^{86}\text{Sr}$ throughout the Maiolica timeframe is one of constant increase before rebounding to lower $^{87}\text{Sr}/^{86}\text{Sr}$ ratios in the Barremian, the ratios of the Maiolica carbonates are systematically displaced from that of the seawater in which it was deposited towards more radiogenic (higher $^{87}\text{Sr}/^{86}\text{Sr}$) values. In addition, the carbon and oxygen isotope ratio seawater record of the Maiolica allows identification of the Mid-Valanginian Weissert event, characterized by a positive excursion in the $\delta^{13}\text{C}$ and the $\delta^{18}\text{O}$ record. Furthermore, the Weissert event correlates with a positive spike (+0.0001) in $^{87}\text{Sr}/^{86}\text{Sr}$. Both the Sr and O isotopic peak signal pre-date the maximum peak in the $\delta^{13}\text{C}$ excursion. This is likely a diagenetic artefact and further strengthens may support the hypothesis of diffusive communication during lithification of the calcareous ooze. Nonetheless, our O, C and Sr isotope ratio data support earlier hypotheses on the origin of the Weissert event, characterized by the increase in atmospheric CO$_2$, resulting from the eruption of the Paraná-Etendeka traps, triggering accelerated weathering and providing an indirect nutrient flux to and fertilization of the oceans.
1. INTRODUCTION

1.1 The Umbria-Marche sequence

The stratigraphic sequence of the Umbria-Marche Apennines in central Italy offers a world-class archive of information about Earth history from the Pliensbachian, in the early Jurassic, to the Miocene in the Neogene (Cresta et al., 1989; Montanari and Koeberl, 2000; Alvarez, this volume). This is due to the pelagic character of these limestones, marls, and cherts, which were deposited on the thinned, subsided Italian continental crust at moderate oceanic depth, just above or just below the calcite compensation depth.

Because of these conditions, the Umbria-Marche sequence lacks terrigenous inputs until the Oligocene, is free of wave erosion, and was rarely affected by current scour. Equivalent pelagic oozes have been cored by scientific drilling ships at many sites throughout the world ocean, where they have the advantage of not having been compacted, uplifted, or placed in contact with non-marine pore waters. In compensation, the Umbria-Marche carbonate rocks are extensively exposed across whole mountain sides in a region of broad anticlinal folds covering about 5,000 km², so that lateral relationships can be studied and two-dimensional sampling can be carried out, neither of which is possible with deep-sea cores. Because pelagic carbonate rocks have usually either stayed at depth below the sea or been strongly deformed during tectonism and uplift, the Umbria-Marche Apennines are unique ideal for the study of pelagic carbonates in outcrop; no other large, well-preserved area of this kind of rocks is known.

The great majority of stratigraphic research in the Umbria-Marche Apennines has focused on the ca. 600 m thick Scaglia formations — the Scaglia bianca, rossa, variegata, and cinerea —
beginning with white pelagic limestone in the Cenomanian, then pink pelagic limestone from the Turonian to the Eocene, and transitioning to a grey pelagic marl in the Oligocene. The Scaglia has been of great stratigraphic use because of the abundance of recognizable lithologic contacts and marker beds and of planktic foraminifera, and has led to advances in magnetic polarity stratigraphy, radioisotopic dating of intercalated volcanic ash beds, isotopic stratigraphy, event stratigraphy, including recognition of the Cretaceous-Paleogene boundary impact event, and cyclostratigraphy (Coccioni and Montanari, this volume).

Turning to the Lower Cretaceous, less attention has been paid to the Aptian-Albian Fucoid marls (Grippo et al., 2004). The Tithonian-Albian Maiolica limestone (Sprovieri et al., 2006) has been particularly intractable, because of the 1,400 m thickness of uniform lithology of white limestone with beds and nodules of black chert, 2) because of the presence of only a single recognizable marker bed, and because of 3) the absence of the not-yet-evolved planktic foraminifera, which had not yet evolved. Although the Maiolica gives yields good paleomagnetic directions, magnetic-polarity stratigraphy has been difficult to apply to the Maiolica because the M-sequence reversals, covering almost all of the Maiolica, contain many short polarity zones with no distinctive long zones, making it hard to correlate a particular set of polarity zones in the Maiolica to the M-sequence reversals (Lowrie et al., 1980).

The overall architecture of the Maiolica shows a division into basinal sequences, typically ~400 m thick, and thinner sequences, ~100 m thick, on the tops and margins of fault-block seamounts (Alvarez, 1989). The seamount sequences are incomplete because of stratigraphic hiatuses, and in compensation, the basinal sequences commonly contain frequent levels of slumps. In the present paper we report on the study of one seamount and two basinal sequences.
The present study began with an attempt to use $^{87}\text{Sr}/^{86}\text{Sr}$ ratios as a correlation tool for the Maiolica. Specifically it aimed at providing a detailed stratigraphic framework to investigate near-vertical walls of shattered breccia in the Maiolica formation, for which a hydraulic fracturing mechanism seems likely. In two companion papers (Alvarez et al., this volume; Belza et al., this volume), we detail the structural observations and geochemistry of these breccia walls, which are exposed along the anticlines of the Umbria-Marche Apennines thrust-and-fold belt. The breccias are mostly confined to the Maiolica formation, and are characterized by bodies of shattered pelagic limestone. Our goal was to determine, using $^{87}\text{Sr}/^{86}\text{Sr}$ ratios, whether the Maiolica breccia fragments have moved up or down, and how far, relative to the stratigraphic level where they now reside. The standard global marine $^{87}\text{Sr}/^{86}\text{Sr}$ reference curve (McArthur et al., 2012, Fig. 7.2) shows a monotonic rise from ~0.70715 to ~0.70750 in the first 80% of the Maiolica, followed by a decrease to ~0.70740 at the top of the formation. The long monotonic increase gave reason for hope that the strontium isotope ratio values in breccia fragments could identify their original stratigraphic position.

First, however, it would be necessary to test whether the Maiolica accurately records the global strontium-isotope reference curve for the Lower Cretaceous. The present study was undertaken to do this testing, and it unexpectedly showed that the $^{87}\text{Sr}/^{86}\text{Sr}$ values in the Maiolica, although they show the same pattern of a long rise followed by a shorter fall, are systematically offset by about +0.0001 relative to the global curve. Thus, our attempt to study the origin of the Maiolica breccias has been diverted into an attempt to understand the offset in the Maiolica strontium isotope ratio curve.

Our attempt to tie the $^{87}\text{Sr}/^{86}\text{Sr}$ record to the global Sr seawater reference curve was only possible because of the unique stratigraphic control of the sections studied: the pelagic
limestones in the Umbria-Marche Apennines have been extremely well dated because of 1) the presence of microfossils and nanofossils 2) magnetic minerals recording the geomagnetic polarity 3) and the presence of levels of distal volcanic ejecta that can be dated radiometrically, which made it possible to tie all three major geological dating methods in one sedimentary succession (Alvarez, 2009). As such the stratigraphic positions of our samples were accurately determined by tying them to the magnetic polarity stratigraphy (Channel et al., 1995; Lowrie and Alvarez, 1984) and biostratigraphy (Cecca et al., 1994, Fig. 2, column 22; Faraoni et al., 1997 Coccioni et al., 1998). This was accomplished by identifying the old paleomagnetic drill holes in the succession and using the core orientations provided James E. Channel (personal communication).

1.2 Chemostratigraphy

Changes in ocean chemistry are controlled by fluctuating global weathering rates, by changes in volcanic and hydrothermal activity and by sedimentological and tectonic processes (Weissert et al., 2008). The variation in the past isotopic composition of seawater over geological time is recorded in the δ^{13}C, δ^{18}O, ^{87}Sr/^{86}Sr ratios of marine carbonates, and serves as a reliable stratigraphic tool for global correlation. In addition, the Sr, O and C isotopic signatures are useful in constraining post-depositional diagenetic events, an important factor that may obscure the targeted stratigraphic resolution. This is especially relevant for the oxygen isotopic system, as the δ^{18}O of the carbonate depositing from the fluid is temperature-dependant.

1.2.1 Carbon Isotope Ratio Stratigraphy
Because precipitation of carbonates occurs without significant carbon isotope fractionation relative to dissolved inorganic carbon (DIC), and the δ\(^{13}\)C of carbonate is relatively insensitive to changes in temperature, the δ\(^{13}\)C isotopic signature of inorganically and biologically precipitated carbonate will reflect the (fractionated) δ\(^{13}\)C of dissolved inorganic carbon (DIC) of seawater at the point of calcification and can be used to trace changes in ocean circulation and paleopalaeoproduction (Zeebe and Wolf-Gladrow, 2001; Edgar et al., 2013). The δ\(^{13}\)C value of whole-ocean DIC has not been constant over geologic time. Variations in δ\(^{13}\)C in the DIC in the oceans over time reflect redistribution of carbon among the Earth’s surface carbon reservoirs such as the atmosphere, oceans, biosphere and lithosphere (Sundquist and Visser, 2003). This includes factors driven by changes in atmospheric CO\(_2\) or DIC levels in the ocean, such as changes in bioproductivity and organic carbon burial, all factors driven by changes in atmospheric CO\(_2\) or DIC levels in the ocean.

1.2.2 Oxygen Isotope Ratio Stratigraphy

Oxygen isotope ratios in marine carbonate vary as a function of both the temperature and the δ\(^{18}\)O composition of the parent seawater (Shackleton, 1967). The strongly temperature-dependent calcite-water oxygen isotope fractionation has been well-established by numerous empirical, experimental and theoretical studies. Increasing temperatures shift δ\(^{18}\)O values in marine calcite to more negative values. Combined with paleopalaeontological information, δ\(^{18}\)O values serve as a reliable proxy for changes in paleopalaeo-ocean temperatures, salinity, and global ice volumes (Shackleton, 1967; Veizer et al., 1986; Rohling and Bigg, 1998; Veizer et al., 1999; Edgar et al., 2013). As ocean temperatures vary with depth and latitude, oxygen isotope records will depend on paleopalaeogeography and depth habitat of the calcifying microorganisms (Grossman, 2012).
Because the oxygen and carbon isotope signals in this study were measured on bulk carbonates, they might be sensitive to changes in the community of carbonate producers and diagenesis. This will be highlighted in the Discussion section.

1.2.3 Strontium Isotope Ratio Stratigraphy

The $^{87}\text{Sr}/^{86}\text{Sr}$ value-isotope ratio of seawater has been recognized to be a diagnostic tool for stratigraphic correlations, reconstruction of global tectonics, paleo-climatic perturbations, and understanding of diagenetic processes (Burke et al., 1982; Veizer, 1989; McArthur et al., 2001; McArthur et al., 2012). The principle of strontium isotope ratio stratigraphy relies on the fact that the Sr isotopic composition of the oceans has varied throughout geological time, due to variation of two main sources contributing Sr to the oceans: (1) hydrothermal exchange of seawater with volcanic rocks on the ocean floor (Frijia and Parente, 2008), and (2) diagenesis and continental weathering of old marine limestones and weathering of old granitic rocks delivering strontium to the oceans by river influx (Faure and Powell, 1972).

Because the residence time of Sr in the oceans (10^6 years) is much longer than the time it takes currents to mix the oceans (10^3 years), oceans are thoroughly mixed on time scales that are short relative to the rates of gain and loss of strontium. As a result, the isotopic composition of strontium is considered to be constant throughout the global ocean at any one time (Veizer 1989; Palmer and Edmond, 1989). Because Sr$^{2+}$ substitutes for Ca$^{2+}$ during precipitation of marine carbonates and sulphates with minor isotope fractionation, the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of marine carbonates will reflect the isotopic ratio of the contemporary seawater during precipitation (Faure and Powell, 1972). Based on this assumption, Howarth and McArthur (1997) and McArthur et al. (2001) have compiled $^{87}\text{Sr}/^{86}\text{Sr}$ data and fitted to them a
nonparametric LOWESS statistical regression function (Locally, Weighted Scatterplot Smoother), resulting in a global strontium seawater reference curve (McArthur et al., 2012).

With carbon isotope ratio data providing information on the evolution and perturbation of the global carbon cycle, and δ¹⁸O isotope data, combined with palaeontological information, potentially serving as a palaeotemperature proxy (Weissert and Erba, 2004), the combination with strontium isotopic data provides a powerful chemostratigraphic tool to constrain the link between (continental) weathering, volcanism, tectonics and palaeoclimatic perturbations, and document the temporal response of different isotopic systems on the Tethys carbonate sedimentation to the environmental perturbations.

1.3 Sections sampled

Most of the detailed sampling of Umbria-Marche pelagic limestone formations over the years has been done along roads because of the long, continuous sections, the fresh outcrops, and the exposure of easily erodible marl and shale layers (Lowrie et al., 1980; Alvarez et al.; 1977a, 1977b; Cecca, 1994; Cecca, 1995; Alvarez, 2009; Coccioni and Montanari, 2018). There are many such road-cut sections of the Scaglia, notably the Bottaccione and Contessa sections at Gubbio (several papers in this volume). The Maiolica offers fewer such usable sections; we have studied three of those available. The Monte Acuto (MMA) and Frontale (FRO) sections expose parts of the thick, basinal facies Maiolica, while the Presale (PRE) section exposes the thin, seamount facies. Sample localities are depicted in Fig. 1.

1.3.1 Monte Acuto section (MMA)
The Monte Acuto section (MMA in this paper), located along the road from Chiaserna up to the pass between Monte Acuto and Monte Catria, exposes the lower 240 m of the Maiolica, with the upper part covered (Fig. 2). The complete stratigraphic record of the section extends from the middle Berriasian to the upper Hauterivian. Three thin black shale layers occur interbedded within the limestone beds (Sprovieri et al., 2006). The Maiolica sequence at the Monte Acuto section is cut by calcite-filled veins.

This excellent section represents the thick, basinal Maiolica, and it has been important for previous stratigraphic research on the Maiolica. The magnetic polarity stratigraphy together with ammonite and nannofossil biostratigraphy were studied by Channell et al. (1995), the rare ammonites by Cecca (1995) and Faraoni et al. (1997), and the cyclostratigraphy by Sprovieri et al. (2006).

In October 2012, we collected 24 samples, from MMA-1 (at the lowest road elevation, but highest in the stratigraphy, at 43°27′49.80″N, 12°40′16.17″E), to MMA-24 (at the highest road elevation, but lowest in the stratigraphy, at 43°27′50.52″N, 12°40′44.70″E; coordinates from Google Earth, not from GPS). Our sample sites are marked with small numbers in green paint. The positions of our samples MMA-1 to MMA-10 have been tied to the magnetic polarity stratigraphy of Channell et al. (1995) and thus dated, based on identifying the magnetic drill holes, using the core orientations supplied by James E. Channell (personal communication, 2013). Stratigraphically, below MMA-10 there is a 20-30-m-wide covered interval which marks the bottom of the magnetic section of Channell et al. (1995).
In subsequent work by Faraoni et al. (1997) and Sprovieri et al. (2006), a prominent chert marker bed was recognized on both sides of the covered interval and painted blue, making it possible to continue the section downward below the base of the paleomagnetic section, and this lower part of the section was tied to the global biostratigraphy using very rare ammonites Faraoni et al. (1997). Our samples MMA-11 to MMA-24 were taken in this lower part of the section, and were dated using the biostratigraphy of Faraoni et al. (1997).

1.3.2 Frontale section

A second section was sampled on the road from Frontale to Pian dell’Elmo. This basinal Maiolica was well exposed when the road cuts were fresh and was used for a paleomagnetic stratigraphy study by Lowrie and Alvarez (1984). Sometime in the 30 years since that study, the road cuts were covered by heavy screening. During the screening work, many core holes were cut away, and subsequently many others were covered by debris trapped behind the screen. However, we were able to identify enough of the remaining cores holes by their orientations (data from William Lowrie, personal communication, 2013) to re-measure the original section, confirming the location of two faults noted by Lowrie and Alvarez (1984). The meter levels of the recovered section have now been marked with green paint on the outcrop behind the screen, and on the metal guard-rail on the opposite side of the road.

We took 23 samples for isotopic analysis, numbered with their meter levels, from FRO-470 (at the highest road elevation, but lowest in the stratigraphy, at 43° 20.949’N, 13° 5.055’E), to FRO-597 (at the lowest road elevation, but highest in the stratigraphy, at 43° 20.885’N, 13° 5.348’E; coordinates from Google Earth, not from GPS). Because of the presence of two prominent faults in the section (Lowrie, 1984 — the “Big Fault” and the “Culvert Fault,” the latter with its lowest exposure at a road culvert — not all of the samples were useful for the present
stratigraphic study. The useful samples are FRO-470 through FRO-561, located in the long, unfauluted lower part of the section, which is dated by the magnetic polarity zones of Lowrie and Alvarez (1984), and FRO-565, 566, and 568, located in the block between the two faults, datable because it contains the upper Hauterivian Faraoni level (Cecca et al., 1994, Fig. 2, column 22; Coccioni et al., 1998).

1.3.3 Presale section

Since neither the Monte Acuto nor the Frontale section extends to the top of the Maiolica, we also sampled the Presale section, which seems to have been studied previously only by Lowrie and Alvarez (1984). This section is exposed along a trail 3.15 km southeast of the bridge at the main road junction in Piobbico. We were able to relocate several of the original painted numbers corresponding to every 5 m in the 1984 magnetic stratigraphy section, although these green numbers are very faded and hard to see. Also recognizable are some of the supplementary green-painted meter marks (a line and 1, 2, 3, or 4 dots, corresponding to that many meters above a painted number).

We collected 10 samples, from the stratigraphically lowest, PRE-1 (43° 34.159’N, 12° 32.295’E, 170 m in the 1984 section), to PRE-10 (43° 34.195’N, 12° 32.346’E, 260 m in the 1984 section; coordinates from Google Earth, not from GPS). These samples are well dated because they are tied to the polarity stratigraphy of Lowrie and Alvarez (1984). It should be noted that the Presale Maiolica section is only about 100 m thick, which is typical of the thin Maiolica on the Jurassic fault-block seamounts, rather than the ~450 m found in basinal sections like Monte Acuto and Frontale (Alvarez, 1989; Cresta, 1989, p. 23-25).
2. METHODS

Bulk carbonate sample powders were extracted using a dental drill with a tungsten-carbide drill bit. In between drilling of different samples, the drill and drill bit were carefully cleaned with pressured air, ethanol and ultrapure 18.2 MΩ.cm water to avoid cross-contamination. Drilling was carried out using a drill bit of 0.5 mm in order to prevent sparry calcite cement and from visible calcite veins yielding a different isotopic signature, to mix with the limestone powders. Furthermore, sparry, calcite-cemented veins were separately sampled as well.

2.1 Strontium isotope ratio $^{87}\text{Sr}/^{86}\text{Sr}$

For Sr isotopic analysis of the carbonates, 100 mg of sample powder was accurately weighed in pre-cleaned Teflon® beakers. Next, 5 mL of 1M HCl was added to dissolve the samples. Along with the samples, one NIST SRM 987 SrCO$_3$ standard (National Institute for Standards and Technology, USA), several procedure blanks and sample duplicates were dissolved as well. Sample solutions appeared clear after dissolution with almost no visible residue. However, to fully eliminate any possible contribution from radiogenic ^{87}Sr leached from clay fractions in following steps involving concentrated strong acid attack, the solutions were centrifuged. After centrifugation, clear supernatant solutions were pipetted off and transferred to clean Teflon® vials. Next, the solutions were evaporated to near-dryness on a hotplate at 70°C and redissolved in 2mL of 7 M HNO$_3$. In addition, two samples (MMA-1tris and MMA-20tris) were subjected
to a different dissolution procedure by adding 2 mL of 7 M HNO₃ instead of 5 mL of 1 M HCl.

This was done in order to evaluate the influence of the use of highly concentrated acids (such as concentrated nitric acid) throughout the extraction procedure on the possible leaching of radiogenic Sr from the remaining clay fraction in the carbonate powders. Also, two international (silicate) rock reference standards (the basalt BE-N and micro gabbro PM-S obtained from the Centre de Recherches Petrographiques et Géochimiques) were prepared following a different digestion protocol: 100 mg of sample powder was accurately weighed in clean Teflon® beakers and digested by addition and subsequent evaporation of 1) HF:HNO₃ (in a ratio of 2:4, 14 M HNO₃ and 28M HF), (2) Aqua regia, (3) 14 M HNO₃ (4) 14 M HNO₃. Finally, the sample was redissolved in 7 M HNO₃.

The Sr was extracted using pre-packed BioRad columns, filled with 400 µL of the commercially available strontium-specific extraction chromatographic resin Sr spec™, and following an optimized procedure of De Muynck et al. (2009). ⁸⁷Sr/⁸⁶Sr ratios were subsequently measured using a Neptune multi-collector ICP-mass spectrometry (MC-ICP-MS) instrument at the Department of Chemistry at Ghent University. All samples were run in a sample-standard bracketing sequence with a 100 µg/L Sr isotopic standard solution of NIST SRM 987 SrCO₃. The Sr content in the samples and the standard was matched within ±10% to avoid any effect from the analyte content on the extent of instrumental mass discrimination. After every run, the sample introduction system was rinsed thoroughly with 2% HNO₃ to minimize memory effects. The results were mathematically corrected for mass bias using internal normalization to ⁸⁶Sr/⁸⁸Sr=0.1194 by the exponential fractionation law. The intensities obtained for ⁸²Kr⁺, ⁸³Kr⁺, and ⁸⁵Rb⁺ were used to correct for the Kr interferences on the m/z ratios of 84 and 86, and for the Rb interference on the m/z ratio of 87. The mean, long-term ⁸⁷Sr/⁸⁶Sr ratio obtained for NIST SRM 987 SrCO₃ was 0.710287 ± 0.000024 (2s.e., with N = 44). This is in full agreement
with the accepted $^{87}\text{Sr} / ^{86}\text{Sr}$ ratio of 0.710248 ±0.000011 (2s.d.) for this reference material (Thirlwall, 1991).

2.2 Carbon and oxygen isotope ratios

Carbon and oxygen isotope ratios were measured both with a Kiel-III-device coupled to a Thermo Delta plus XL isotope ratio mass spectrometer, and a NuCarb automated carbonate preparation device coupled to a Nu Perspective Isotope Ratio Mass Spectrometer. Small quantities of carbonate powder were reacted with orthophosphoric acid H_3PO_4 at a temperature of 75°C and the CO$_2$ generated was cryotrapped. Every set of six samples was bracketed by an international calcite standard (NBS-19 with $\delta^{18}\text{O} = -2.20 \pm 0.01$, $\delta^{13}\text{C} = +1.95 \pm 0.02$, or the NCM with $\delta^{18}\text{O} = -1.9$ and $\delta^{13}\text{C} = +2.09$). Moreover, every sample was analysed three or four times on different measurement days. Carbon and oxygen isotopic results are reported on a per mil (‰) basis relative to the Vienna Pee Dee Belemnite (VPDB) standard. External analytical precision yielded values better than ±0.015 ‰ for $\delta^{13}\text{C}$ and ±0.033‰ for $\delta^{18}\text{O}$ based on replicate analysis of the international calcite standards NBS-19 (US Geological Survey-USGS) and the in-house NCM (Cararra Marble, Nu instruments). Precision is reported as 1-sigma standard deviation.
3. **RESULTS**

3.1 **Strontium, oxygen and carbon isotopic results**

3.3.1 $^{87}\text{Sr}/^{86}\text{Sr}$

$^{87}\text{Sr}/^{86}\text{Sr}$ isotope ratios vary between 0.70733 and 0.70758 (Tables 1, 2). The Sr isotopic trend accurately follows the McArthur seawater reference curve for the inferred stratigraphic interval (Late Berriasian ~141 Ma to Late Barremian ~127 Ma), but individual Sr isotope ratios are offset by +0.00007 to +0.0001 (Fig. 3). The $^{87}\text{Sr}/^{86}\text{Sr}$ of the calcite veins is much higher than the values of their host rock, yielding values between 0.70762-0.70777.

3.3.2 $\delta^{13}\text{C}$

Carbon isotope ratios cluster around plateau values of ~1.5‰ in the Berriasian to Early Valangian (Table 1, Fig.4). In The Mid-Valangian, $\delta^{13}\text{C}$ values rise rapidly to ~3‰. This positive C-isotopic excursion starts in the Valanginian *campylotoxus* ammonite zone, reaches peak values in the *verrucosum* zone and ends in the Hauterivian *radiatus* zone, corresponding to polarity chron CM12–CM9 (Channell et al. 1993; Hennig et al. 1999; Weissert and Erba, 2004). Furthermore, this carbon isotopic excursion correlates with the well-defined Weissert Event, which is characterized by a positive $\delta^{13}\text{C}$ excursion of about 1 to 2‰ in marine carbonates. (Weissert and Erba, 2004), the first of four positive excursions recorded in the Cretaceous carbon isotopic record. In the Hauterivian, the $\delta^{13}\text{C}$ isotopic signature falls back to a background value of approximately ~2‰. Furthermore, carbon isotopic values in calcite veins reflect values of their host rock, and have remained unchanged, suggesting they were buffered by the host rock during deposition of secondary calcite.

3.3.3 $\delta^{18}\text{O}$
Oxygen isotope ratio values range between -2.25‰ and -1.5‰ (Table 1). Compared to paleogeographically comparable, selected sections from the Southern Alps (Weissert et al., 1985; Weissert and Channell, 1989), the oxygen values are depleted by approximately -1‰.

On the other hand, oxygen isotope ratio values of the calcite veins document significant enrichment in the heavy 18O and mostly yield positive δ^{18}O values, ranging between -0.65 to 2.44 ‰.

3.3.4 87Sr/86Sr, δ^{18}O, δ^{13}C composite record

A composite strontium, carbon and oxygen isotope ratio record from Middle Berriasian to Late Barremian is presented in Fig. 4. Although broad and not very sharply bounded in our section, we can pinpoint the Mid-Valanginian positive excursion in the carbon isotopic record, identified as the Weissert Event, which correlates with a small (+0.0001), but resolvable positive spike in the 87Sr/86Sr curve. This excursion is very brief (~1 Ma). In addition, the oxygen isotopic data yield a positive excursion with peak values corresponding exactly with the Sr spike. In the composite diagram, it can be seen that peak value of the carbon excursion, which covers approximately 5 Ma, is delayed with respect to the oxygen and Sr isotopic signal, which, in addition, cover a much smaller interval of time.
4. DISCUSSION

4.1 Reliability of the 87Sr/86Sr, δ^{13}C and δ^{18}O values

Before interpreting the isotopic records, it is important to assess whether the primary seawater isotopic values have been altered during post-depositional diagenetic processes and/or sample pre-treatment.

4.1.1 Oxygen isotope ratios

The process of recrystallization-dissolution will cause the δ^{18}O and the δ^{13}C of the carbonate to reequilibrate with the dissolved bicarbonate and the oxygen of the pore water. The Oxygen isotope ratios are most easily affected by diagenetic alteration. This is not solely because of a strong temperature-dependent fractionation, driving the δ^{18}O toward lower values as $in situ$ temperature increases with sample depth in the sediment column (Matter et al., 1975; Schrag et al., 1995; Edgar et al., 2013). In addition, in highly porous sediments, the pore water contains much more oxygen than the carbonate host and will largely influence the δ^{18}O ratio of the recrystallized calcite. The lack of a “buffering” potential for oxygen during fluid-rock interaction is also due to huge amount of oxygen in water compared to the amount of dissolved carbonate in solution, and the relatively fast isotopic re-equilibration of oxygen in bicarbonate with oxygen in water.

4.1.2 Carbon isotope ratios

Compared to δ^{18}O, the carbon isotope ratio values in carbonate rocks are less affected by diagenetic alteration. There is no (significant) temperature-dependent fractionation, and the δ^{13}C value is only measurably affected when recrystallization and cementation occur in the presence of pore water bicarbonate in which the δ^{13}C has been altered due to the addition of 13C-enriched CO$_2$ derived from the oxidation of organic matter and microbial activity.
(Marshall, 1992; Maliva et al., 1995; Maliva and Dickson, 1997; Madhavaraju et al., 2013).

Also, because the carbonate contains considerably more carbon than the pore waters, the $\delta^{13}C$ value of the recrystallized carbonates will be buffered by the host limestone and remain relatively unaltered. Indeed, excellent agreement between our data and the established $\delta^{13}C$ reference curves (Fig. 4; Weissett and Erba, 2004; Sprovieri et al., 2006) from the PaleoPalaeo-

Tethys indicates that the $\delta^{13}C$ value of the carbonate is pristine and was not altered by the contribution of carbon from a secondary source. In addition, cross plots (Fig. 5) of bulk carbon and oxygen isotopic values indicate a low covariance between $\delta^{13}C$ and $\delta^{18}O$ ($R^2 = 0.0256$), hinting at minimal diagenetic modification.

4.1.3 Strontium Isotope ratios

Several processes may account for the elevated $^{87}\text{Sr}^{86}\text{Sr}$ with respect to the seawater reference curve. In the following paragraph, these processes are discussed in light of diagenetic modifications, analytical bias and sample contamination.

As a first possible explanation, if the modified $^{87}\text{Sr}^{86}\text{Sr}$ ratios were derived from pressure solution deeper in the stratigraphic column or expulsion of fluids derived from structurally lower formations, we would expect a shift to more negative $^{87}\text{Sr}^{86}\text{Sr}$ ratios, based on the Sr seawater reference curve (McArthur et al., 2001). (Fig. 1). On the other hand, deep-burial diagenesis or hydrothermal fluid circulation of deep brines would shift the $^{87}\text{Sr}^{86}\text{Sr}$ towards higher values, as deep brines usually acquire an excess of ^{87}Sr from interactions with clays or other silicate minerals, imparting this signature into late cements (Veizer, 1989). However, deep burial diagenesis would significantly shift the $\delta^{18}O$ value to more negative values, which is not consistent with our observations.
A second possible source of ^{87}Sr that could have offset the $^{87}\text{Sr}/^{86}\text{Sr}$ by +0.0001 is the presence of abundant, parallel calcite veins, which yield $^{87}\text{Sr}/^{86}\text{Sr} +0.0001-0.0002$ higher compared the host Maiolica carbonate. However, the calcite-cemented veins yield positive $\delta^{18}\text{O}$ values. If sub-mm calcite cemented veins had been accidentally sampled during micro-drilling and contaminated the carbonate powders, this would cause a measurable shift towards higher (more positive) $\delta^{18}\text{O}$ ratios of the bulk as well. This is not consistent with our data, which indicate that oxygen isotope ratios, if altered by diagenetic processes, would have shifted to slightly more positive values. Also, although one calcite veins contains an elevated Sr content compared to the host rock (Table 1: PRE-3C), concentrations are only 1.5-2-fold higher than those in other samples (FRO485C, FRO562.5C, MMA11.1, Table 1) concentrations are not much higher than the in the bulk rock from which the veins were sampled. In significantly higher concentration of Sr is required to affect the $^{87}\text{Sr}/^{86}\text{Sr}$ values of the bulk. In addition, the $^{87}\text{Sr}/^{86}\text{Sr}$ signature in other samples whit co-existing analysed veins (set for sample FROM485, FRO562.5, PRE-3) do not show spikes in the reconstructed $^{87}\text{Sr}/^{86}\text{Sr}$ record for the Maiolica. Contamination from calcite veins requires this secondary calcite to represent a volumetrically significant component, which is not consistent with our observations.

A third possible candidate source for the observed increase in radiogenic Sr in the set of samples investigated may arise during the sample preparation and digestion procedure. Whole-rock carbonates may contain a negligible to large non-carbonate fraction, consisting of clay and/or organic matter. Given the fact that Sr^{2+} is relatively strongly adsorbed to phyllosilicates and organic matter, the presence of small amounts of non-carbonate fraction in a sample can increase the apparent $^{87}\text{Sr}/^{86}\text{Sr}$ values of carbonates (Burke et al., 1982), as clay minerals are enriched in radiogenic Sr. During sample dissolution dilute (1 M) hydrochloric acid was used to minimize the effect from any remaining clay/organic matter. Also, experiments with sample
treatment procedures involving strong acid attack (see METHODS section) were evaluated by
dissolving some of the samples with 7 M HNO$_3$ instead of dilute HCl. These samples yield
$\text{Sr}^{87}/\text{Sr}^{86}$ ratios that are nearly-identical to those for samples leached with dilute HCl. Lastly, in
all of the limestone samples analysed, very little or no clay or organic residue was observed,
rendering Sr contamination from non-carbonate sources rather unlikely.

Renz and Habicht (1985) stated that the soft, unconsolidated pelagic sediments of the Blake–
Bahama Formation, cored at DSDP Site 534A in the western central Atlantic, form an
equivalent to the carbonate Maiolica facies in the Tethys (Bernoulli 1972, 2004). Similar to the
Blake Bahama Fm, the Maiolica limestones must have originated from soft, coccolith ooze. At
the sea floor, newly deposited calcareous ooze such as the Maiolica pelagic coccolith deposits
has an estimated porosity around 70% (Matter et al., 1975), with interstitial pore water
representing the chief component. In the Maiolica, the initially very high porosity was reduced
to zero during burial, either by (1) mechanical compaction and/or by (2) pore filling
cementation via pressure solution. Both are linked to the presence/absence of diagenetic fluid
pathways, and the stress caused by the load of the overburden during progressive burial. During
constant burial, porosity declines as a consequence of the load of the increasing overburden.
Furthermore, during pressure solution and subsequent pore-filling cementation, interstitial pore
waters will chemically reequilibrate with the surrounding carbonaceous ooze.

According to DePaolo and Finger (1991), recrystallization of soft, pelagic oozes should not
substantially modify the $\text{Sr}^{87}/\text{Sr}^{86}$ ratio of the sediment. This presumption arises from the fact
that during burial and lithification of calcareous ooze, diagenetic calcite is considered to be
obtained from local (pressure) dissolution-recrystallization (Jenkyns et al., 1995). As a result,
dissolution will deliver Sr to the pore fluids with an isotopic composition reflecting that of the
dissolving carbonate. Subsequent reprecipitation will then precipitate calcite that has the same Sr isotope ratio as the pore fluid dissolved Sr. If dissolution-precipitation were the only diagenetic process involved, the pore fluids and the carbonate would yield the same isotope ratio at all depths, because the solid contains about 20 times more Sr than the pore fluid, buffering the isotopic ratio of the seawater it was deposited from (Fantle and DePaolo, 2006).

However, an important matter to take into account is that high-porosity sediments such as calcareous pelagic oozes are still in open, diffusive communication with the overlying seawater (and porous sediment). Diffusional migration in pore waters is caused by differences in concentration that develop between both sides of the sediment-water column interface (Lerman, 1978). Consequently, diffusion of aqueous Sr in the pore fluid will compete with the dissolution-precipitation process, homogenizing pore fluid concentrations and isotope ratios throughout the sediment column (Fantle and DePaolo, 2006).

Because the partition coefficient $D_{\text{Sr,calcite}} < 1$, the dissolution-reprecipitation of carbonates will result in a net increase in Sr concentration in the pore waters (Baker et al, 1982). During progressive burial and lithification, the Sr concentration in the pore waters will thus increase with depth. Gieskes et al. (1986) emphasized that the peak in Sr concentrations is associated with carbonate recrystallization reactions in the vicinity of the ooze-chalk transition, which represents a diagenetic front in the sediment column. So, because the secular trend in Sr isotope ratios throughout the Maiolica timeframe is one of constant increase (McArthur et al., 2001), and because the down-gradient rate of Sr diffusion exceeds the rate of in situ recrystallization, the water above the Sr concentration maximum is depleted, and that below enriched, in 87Sr. The in situ diagenetically precipitated carbonates then inherit this pore water Sr and shift the bulk-rock isotopic composition toward that of the ambient pore waters.
Because the secular trend in Sr isotope ratios throughout the Maiolica timeframe is one of constant increase, before declining in the Mid-Barremian, the $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of the Maiolica carbonates may have systematically displaced from that of the seawater in which it was deposited towards more radiogenic values. This is in accordance with modelling studies from Richter and De Paolo (1987), who developed a numerical model for the diagenetic exchange of Sr between chalks and their pore fluids during sedimentation and compaction in order to assess the accuracy with which the Sr isotope record in the carbonate sediment reflects that of seawater. Based on modelling studies, the authors postulate that for sediments older than 5 Ma the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of the carbonate is systematically displaced from that of the seawater in which it was deposited, with a maximum difference of +0.00005.

Considering this as an explanation for elevated $^{87}\text{Sr}/^{86}\text{Sr}$ compared to the global marine reference curve, diffusional migration and pore water exchange should also have affected the Sr isotopic signature in the upper part of the Maiolica succession, at least plateauing or ideally decreasing the $^{87}\text{Sr}/^{86}\text{Sr}$ at the respective stratigraphic interval. Our data show that the offset towards higher $^{87}\text{Sr}/^{86}\text{Sr}$ indeed seems to reach a plateau in the upper part of the section, although a decrease is not observed. Therefore it seems unlikely that diffusional migration was the only process affecting the $^{87}\text{Sr}/^{86}\text{Sr}$ of the Maiolica. During compaction, release of interlayer water from clays (in the small silicate fraction)-carrying a radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ signature, into the pore water may have slightly offset the Sr isotopic composition if the pore water.

Both C and O isotopic data are in agreement with the hypothesis of diffusional migration and pore water exchange. Carbon isotope ratios remain unchanged as they are buffered by the bicarbonate dissolved from the carbonate host. Contrary, although relative variations in the
15 July 2018

... oxygen isotopic record have remained unchanged, all values seem offset by approximately -1‰. Considering the geothermal gradient and the strong temperature-dependent fractionation of the oxygen isotopic system, this -1‰ shift to a more negative \(\delta^{18}O \) value is a result of the roughly 5°C warmer temperatures at a burial depth of 50-250m, the depth at which gravitational compaction and dissolution-precipitation will dominate the lithification process of calcareous oozes (Larsen and Chilingar, 1983). Consequently, our Sr, O and C isotopic data support the hypothesis that the offset in \(^{87}\)Sr/\(^{86}\)Sr results from incorporation of excess \(^{87}\)Sr through isotopic reequilibration of carbonate with interstitial pore waters during progressive lithification of the calcareous ooze during diagenesis at slightly elevated temperatures.

4.2 The Weissert Event: constraints from Sr, O and C isotopic data

The Weissert Event has been recognized in Valanginian pelagic sediments of all the major oceans, including the Pacific (Weissert and Erba, 2004; Bartolini, 2003) and in shallow-water carbonate successions of the northern Tethys (Föllmi et al. 1994) and in fossil wood records (Gröcke et al. 2003). The Valanginian positive carbon isotope excursion thus seems to be of global extent and may serve as a useful stratigraphic marker (Weissert et al., 2008).

The Weissert Event is the first of a series of Cretaceous excursions in the global \(\delta^{13}C \) isotopic record.

The onset of the excursion in the Mid-Valanginian coincides with the onset of increased volcanic activity. This volcanism was essentially subaerial and localized in the Paraná–Etendeka province. Weissert and Erba (2004) suggested that the increase in atmospheric CO2 resulting from increased subaerial volcanism may have caused accelerated weathering and
hydrological cycling and thus indirect increased fertilization in coastal environments. Subsequent increased bioproductivity caused a drawdown of ^{12}C from the DIC reservoir in the oceans, increasing the $^{\delta^{13}}\text{C}$ of the seawater, as recorded in authigenic marine carbonates. Interestingly, there is isotopic and biotic evidence for a Valanginian cooling event coinciding with the time of the positive carbon isotopic excursion, based on (1) increased $^{\delta^{18}}\text{O}$ values in marine carbonates, (2) the increase of boreal nanofossils in Romania (Melinte and Mutterlose, 2001) and (3) the occurrence of the nanofossil *Kokia borealis* in the equatorial Pacific (Weissert and Erba, 2004). Our data also show a peak in positive $^{\delta^{18}}\text{O}$ values in the Maiolica at the base of the Valanginian carbon excursion (Fig. 4). This peak coincides with a shift in the Sr seawater curve to higher $^{87}\text{Sr}/^{86}\text{Sr}$. Interestingly, the $^{87}\text{Sr}/^{86}\text{Sr}$ peak we observe at the Weissert Event is not resolved by the Global Sr marine reference curve. However, the Sr marine reference curve assumes a global nature of the Sr-isotope signal. This assumption is true for modern major ocean basins that are well-connected with each other, yielding a relatively fast mixing time of 1500 years. However, it may not be an entirely valid assumption for past time-periods. Basins (such as the Umbria-Marche basin during the Early Cretaceous) might be relatively constricted, and if the size of the fluxes becomes much larger (with respect to the reservoir), the residence time of Sr may become shorter. This may play a role in the Sr excursions during extreme climate events, such as the Weissert Event. Since elevated $^{87}\text{Sr}/^{86}\text{Sr}$ ratios in past oceanic seawater are a proxy for increased continental runoff, it can be regarded as a tool for tracing the causal connection between cycles of weathering and climatic perturbation, and the *palaeo*biotic response to these environmental changes. Although it must be emphasized that the climate-driven approach to global weathering (Ruddiman et al., 1997) is controversial and beyond the scope of this paper,
some interesting interpretations can be offered. The source of the weathering/climate connection is the atmospheric CO$_2$. It is thought that high CO$_2$ conditions in the atmosphere induce greater rainfall and temperatures, increasing the rate of continental chemical weathering, enhancing the flux of continental-derived (radiogenic) Sr to the oceans and increasing their 87Sr/86Sr (Ruddiman et al., 1997). In its turn, the process of weathering consumes the atmospheric CO$_2$, exerting a negative feedback which triggers global cooling. In addition, increased continental runoff induces indirect fertilisation of the oceans, stimulating bioproductivity. This results in a drawdown of light 12C from the oceans, and causes a positive shift in the δ^{13}C record. Elevated CO$_2$ levels may be explained by increased volcanic activity in the Paraná-Etendeka province during the Valanginian Weissert Event (Weissert and Erba, 2004). This hypothesis fits with elevated 87Sr/86Sr, δ^{18}O and δ^{13}C values throughout the Valanginian.

An interesting observation is that the peak in the positive δ^{13}C excursion in the Valanginian post-dates both the strontium and oxygen isotopic shifts (Fig. 2) This contrasts with the observations of Weissert and Erba (2004), who state that the Valanginian cooling episode occurs within the verrucosum ammonite zone and should coincide with the heaviest δ^{13}C values. Considering our good biostratigraphic and magnetostratigraphic age control, the ‘delayed’ response of the carbon isotopic signal is likely a diagenetic artefact inherent to the Sr and O isotopic signals rather than a primary feature. In fact, it would seem that it is not the carbon signal that is delayed, but the Sr and O signatures that are shifted due to the diffusive communication of Sr from the pore waters in the overlying sediments and the seawater column into pore water during recrystallization-precipitation of the calcareous ooze. This process will
only affect the δ^{18}O and 87Sr/86Sr values, biasing their true stratigraphic, depositional age towards older ages, while the δ^{13}C system remains largely unaffected by this process.

Alternatively the positive spike in δ^{18}O and 87Sr/86Sr at the onset of the Weissert event can be explained by sample MMA11.2 being compromised by the vein calcite at the same stratigraphic level which is enriched in 18O and 87Sr. If one assumes the original geochemical data for MMA11.2 to be the average of MMA12 and MMA10, a 60:40 mix of bulk rock and vein calcite will generate the observed δ^{18}O and 87Sr/86Sr spikes. This admixture may not be in the form of sparitic/sparry calcite but may just be diffuse microcrystalline calcite formed within the rock matrix at the same time as the vein. However, we have sampled veins from other bulk rock samples (e.g. FRO 485.C, FRO 562.5C, PRE-3.C, Table 1). If we compare with the values for the host rock, the 87Sr/86Sr signature of the bulk is not biased towards more positive δ^{18}O and higher 87Sr/86Sr, as is the case for sample MMA11. Therefore we believe this positive excursion in our 87Sr/86Sr record is a primary feature.

The theory of diffusive communication versus dissolution-reprecipitation elegantly explains our systematic offset in Sr isotopic data from the seawater reference curve and the shift in the peak values of Sr and O isotopic excursions with respect to the δ^{13}C record throughout the Middle Valanginian Weissert Event.

5. CONCLUSION

This study provides a composite record of 87Sr/86Sr, δ^{18}O and δ^{13}C for three sections in the Tethyan Early-Cretaceous Maiolica sequence, carefully tied to a magnetostratigraphically and biostratigraphically calibrated timescale. The Sr isotope ratio record accurately follows the general trend of the McArthur Global Strontium isotope ratio seawater reference curve, though individual 87Sr/86Sr isotope ratios are systematically offset by +0.00007. We conclude that this
offset results from incorporation of excess 87Sr through isotopic re-equilibration with interstitial pore waters during progressive compaction and lithification of the principal calcareous ooze, with a small contribution from calcite micro-veins. Although the process occurs principally through dissolution reprecipitation, buffering the contemporaneous seawater Sr isotopic signature, diffusional migration of Sr in pore waters is caused by differences in concentration that develop between the two sides of the sediment-water column interface (Lerman, 1978). Diffusive communication with the overlying water column and porous sediments will compete with the dissolution-precipitation process, homogenizing pore fluid concentrations and isotope ratios throughout the sediment column (Fantle and DePaolo, 2006). Because the secular trend in Sr isotope ratios throughout the Maiolica timeframe is one of constant increase, the 87Sr/86Sr ratios of the Maiolica carbonates are systematically displaced from that of the seawater in which it was deposited towards more radiogenic (higher 87Sr/86Sr) values.

Furthermore, the (pristine) carbon isotope seawater record allows identification of the Mid-Valanginian Weissert event, characterized by a positive excursion in the δ^{13}C and the δ^{18}O record. In our record, the Weissert event correlates with a positive peak (+0.0001) in 87Sr/86Sr. Both the Sr and O isotopic peaks pre-date the maximum peak in the δ^{13}C excursion. If we assume the excursion in the δ^{18}O and 87Sr/86Sr to reflect the oceanic conditions, this delay is likely a diageneric artefact and further strengthens the hypothesis of diffusive communication of Sr with overlying water column during lithification of the calcareous ooze. In addition, the Sr, O and C isotopic data seem to have recorded the apparent link between elevated (CO$_2$-driven) temperatures, increased chemical weathering, biotic response and negative feedback reactions.
The theory of diffusive communication versus dissolution-reprecipitation elegantly explains our systematic offset in Sr isotopic data from the seawater reference curve and the shift in the peak values of Sr and O isotopic excursions with respect to the δ¹³C record in the Mid-Valanginian Weissert Event. In addition, this study highlights the importance of assessing the degree of diagenetic alteration using chemostratigraphic tools. In this context, it must be noted that the marine Sr reference curve (McArthur et al., 2001) is constructed based on measurement of (unaltered) low-Mg calcite shells instead of bulk carbonate rock. The reliability of the records therefore depends on how well unaltered forams/bivalves can be identified and separated. Richter and DePaolo (1987) stated that separates consisting of varying proportions of altered and unaltered forams may bias the data set, generating a source of noise that may hide the subtler aspects of ⁸⁷Sr/⁸⁶Sr variation with time in the ocean. On the other hand, it is expected that measuring the ⁸⁷Sr/⁸⁶Sr of bulk carbonate data may lead to Sr isotopic signatures slightly deviating from the reference curve. However, contrary to the use of calcite shells, bulk carbonate data may generate less noisy data because of more consistent sampling. In summary, applying chemostratigraphy as a correlation tool must always be assessed in the light of the diagenetic processes involved, as the Sr isotopic curve of paleoceans cannot be constrained better than that dictated by diagenetic considerations (Veizer, 1989).
6. ACKNOWLEDGEMENTS

Joke Belza acknowledges the Research Foundation Flanders (FWO) for its support in funding a PhD Fellowship. Alessandro Montanari and the Geological Observatory of Coldigioco provided logistical support during fieldwork. We thank John McArthur for sharing his Sr isotope ratio data in the early phases of this study. We thank Jim Channell for orientation data on his drill holes in the MMA section, and Bill Lowrie for orientation data on drill holes at FRO.
7. REFERENCES

FIGURE CAPTIONS

Figure 1. Locality map for the sections sampled in this study: Frontale (FRO) Presale (PRE) and Monte Acuto (MMA)

Figure 2. The upper Valanginian portion of the Maiolica exposed at the MMA section. The section in this view extends about 40 m along the road, and the beds dip southwest, on the southwest flank of the Monte Acuto-Monte Catria anticline; the center of the photo is at 43°27.828’N, 12°40.380’E.

Figure 3. Isotopic data and age calibration for the Maiolica of the Monte Acuto, Frontale and Presale stratigraphic sections. GTS 2012 = Geologic Time Scale 2012 (Gradstein et al., 2012). For details of the polarity zonation, see Ogg, 2012, GTS 2012, Table 5.2. For the Tethyan ammonite zonation, see Ogg and Hinov, 2012, GTS 2012, p. 813
Figure 4. Composite curve $^{87}\text{Sr}/^{86}\text{Sr}$, $\delta^{18}O$ and $\delta^{13}C$ for the Monte Acuto stratigraphic section. Samples are plotted with equal spacing. Samples are equally spaced; this not a linear age scale.

Figure 5. Cross-plot of $\delta^{13}C$ versus $\delta^{18}O$ of bulk carbon and oxygen isotopic values for MMA, FRO and PRE sections and linear regression fit (dashed lines). The low covariance between $\delta^{13}C$ and $\delta^{18}O$ ($R^2 = 0.0030-0.4$) hints towards minimal diagenetic modification.