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Abstract  

Cannabis is the most frequently used illicit drug in Belgium, where it is mainly cultivated 

indoor. To improve the fight against this drug, cannabis-profiling methods are required. 

Cannabis is a natural product and its chemical composition depends on many factors, which 

cause a high heterogeneity and variability in the secondary metabolites, and make this study 

challenging. The aim of this study is to combine cannabis profiling with statistical methodology 

to evaluate the intra (within)- and inter (between)–plantation variabilities with the goal to define 

a suitable approach linking seized marijuana to given plantations. The data set used contains 46 

samples from 9 locations. The chemical profiles, consisting of data from eight cannabinoids, 

are obtained by gas chromatography - mass spectrometry. The raw data (peak areas) is 

pretreated with different preprocessing methods. The Pearson correlation coefficients between 

intra-location profiles were calculated after each pre-treatment, and the 95 and 99% confidence 

limits determined. All preprocessed data were then compared with the internal standard 

normalization reference method with the aim to minimize the overlap between intra- and inter-

location results, i.e. to reduce the number of false positives, and to obtain the best 

discrimination. Furthermore, cross-validation was used to evaluate the model originating from 

the most efficient data pre-treatment technique. The best results were obtained, when the peak 

areas were normalized to the internal standard with subsequent calculation of the fourth root. It 

results in a reduction of false positives for both confidence limits to 11% and 14% compared to 

21% and 27% for the reference method. Cross-validation reveals similar false positive results 

as for the calibration set. In conclusion, when preprocessing the data, an improved model is 

obtained resulting in a significant decrease in the number of false positives. After studying the 

predictive performance of the model, it appears to be representative for the entire plantation 

information. 
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1. Introduction  

Cannabis sativa L. belongs to the Cannabaceae family and is well known for its illegal abuse 

(1–4). This psychoactive plant remains nowadays worldwide the most commonly used illicit 

drug. The 2018 World Drug Report revealed that 4.7 tons of herbal cannabis, i.e. marijuana, 

had been seized worldwide and 192.2 million persons used it (5, 6).  

Cannabis misuse has also been observed in Belgium, where 26.587 seizures occurred in 2016 

(7). In this country, cannabis is mainly cultivated indoors because of its cold climate. Doing so, 

cultivators also have the advantage to remain hidden for law enforcement (8–11). Most 

important, conditions, such as temperature, humidity, light and nutrient supply, can be 

optimized to obtain maximal yield of the cannabis crops with multiple growths annually (4, 12–

15). Mainly female flowering tops are used for consumption because of their highest 

concentration in Δ9-tetrahydrocannabinol (Δ9-THC), the main component causing the mind-

altering effects of the drug (16, 17).   

Unpublished data from the Belgian federal police show a large increase in the number of 

confiscated cultivation sites in recent years (Fig. 1). In 2007, 398 cannabis plantations were 

discovered ranging from a micro level, containing 2 to 5 plants, up to an industrial level, 

containing more than 1000. By 2017, the number of seizures had tripled for almost all plantation 

sizes.  
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Fig. 1. Number of seized cannabis plantations in Belgium, distinguishing 6 different plantation sizes, 

over a ten year time period (2007-2017) (Unpublished Belgian federal police data). 

 

In view of prosecution, magistrates often raise questions with respect to cannabis-related 

crimes. For instance, when marijuana has been seized from two dealers and/or consumers and 

law enforcement has already collected different pieces of information between both seizures 

such as telephone data, that could lead to a possible connection, would it be possible that a 

forensic expert is able to determine a common source or history between the two persons and 

confirm whether there is a link between the seizures by analyzing both cannabis seizures? To 

answer this question, cannabis profiling can be a very useful tool and provide complementary 

information to that already gained by police investigations (18, 19). 

In general, drug profiling can be described as the expression of physical and/or chemical 

characteristics of a drug, which are chosen in relation to the specific purposes of the analytical 

analysis. Consequently, these profiles are used for different policies such as law enforcement, 

legislation and public health (20, 21). For illicit drugs, profiling concerns the application of 

methods to determine chemical substances and their quantities and/or physical features with 

respect to drug seizures. The profiles specifically are used to compare seizures for 
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statistical/tactical intelligence- or evidence-based objectives (20, 22, 23). Illicit-drug profiling 

aims to gather information from drug samples to find a link between drug seizures and 

cultivations (common origin), manufacturing processes (synthetic production), precursors, drug 

trends trades and distribution (dealer-user networks), or supply sources. The intention herewith 

is to support drug enforcement agencies in their battle against organized drug crime, mainly in 

view of the identification of drug trafficking organizations and the subsequent disruption- and 

abolition of their criminal activities (18, 23, 24).  

Cocaine, amphetamine and heroin profiling has already been demonstrated of utmost 

importance in forensic science to establish links between seizures and/or samples (25–27). 

Andersson et al. (27) and Lociciro et al. (26) successfully demonstrated the use of correlation 

and distance parameters in combination with several data pretreatments on the raw data profiles 

to differentiate between linked and non-linked amphetamine and cocaine samples (26, 27). The 

latter group also applied statistical confidence intervals to estimate the discriminating power of 

the used method (26).  

Earlier work on cannabis extracts has already been done for other forensic applications, and gas 

chromatography was the most frequently used separation technique (17, 28–30). Classification 

of seized cannabis into fiber- or drug-phenotypes was performed for juridical purposes (31, 32). 

The estimation of the age of seized cannabis samples was studied using two cannabinoids, i.e. 

Δ9-THC and its degradation product cannabinol (CBN) (16, 33). The determination of the yield 

of marijuana from indoor cultivation, taking several growth parameters into account, was 

carried out to penalize the perpetrator by estimating the gained profits of the cannabis crops 

(14, 34). Stefanidou et al. (35) attempted to use the three main components, i.e. Δ9-THC, CBN 

and cannabidiol (CBD), to distinguish samples originating from outdoor cultivation in different 

geographical regions, but no satisfactory method for adequate distinction was found. 

Afterwards, multivariate data analysis and chemometric techniques, such as principal 
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component analysis, hierarchical cluster analysis and classification methods, were introduced 

as new approaches but mainly focused on the classification of herbal cannabis (36).  

Only very few publications are available with regard to the actual direct comparison of seized 

cannabis samples. This controversial plant is a natural product and its chemical composition, 

as in other herbal material, depends on many factors, e.g. light, temperature, fertilization, and 

storage, which cause a heterogeneity in the secondary metabolites (37, 38). Finding a suitable 

method to compare different seizures is therefore challenging. In this study, the authors 

knowledge on cannabis profiling for forensic objectives, where there is a need for comparison 

of different samples, is based on very limited published data.  

The aim of this study is to combine cannabis profiling with multivariate data analysis and 

statistical methodology, focusing on the cannabinoid contents obtained with GC-MS, to 

evaluate the intra (within)- and inter (between)–seized plantation variabilities. Different data 

pre-processing methods will be compared on their capability to resolve between samples from 

the same or different cultivation sites, with as goal to properly define an acceptable threshold 

value to link seized marijuana samples. 

2. Experimental 

2.1. Seized cannabis samples  

Forty-seven marijuana samples were collected from indoor cultivation rooms in 9 regions of 

Belgium and analyzed using GC-MS. Each sample includes the mature flowering tops 

originating from one single plant. A comprehensive overview of the data set and the different 

seizures can be found in table 1.  
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Table 1. Number of cannabis plants per confiscated plantation (location). 

Location Number of samples (plants) 

1 5 

2 5 

3 10 

4 2 

5 2 

6 10 

7 5 

8 2 

9 6 

TOTAL 47 

 

2.2. Standards and chemicals 

Tribenzylamine (TBA) purchased from Alfa Aesar® (Karlsrühe, Germany) is used as internal 

standard. Denaturated ethanol (99% v/v), for the extraction of the herbal material, is obtained 

from VWR BDH Prolabo Chemicals® (Leuven, Belgium). 

2.3. Sample preparation 

The flowering buds were dried in an oven at 40°C for at least 12 hours. The herbal material was 

grinded using an IKA® Tube Mill Control (IKA, Staufer, Germany) and afterwards 

homogenized and accurately weighed (100 ± 10 mg) into 12-ml glass test tubes. The weighed 

samples were subjected to the extraction step, applying the Tecan Freedom Evo 150 liquid 

handling platform (Tecan Trading AG, Männedorf, Switzerland). This instrument adds 10.0 ml 

ethanol 99%, containing 0.01 mg/ml TBA to each test tube. Then, all samples were transferred 

into an ultrasonic bath for 15 min and horizontally shaken for 5 min (100 turns). Subsequently, 

1.0 ml of the obtained solution was transferred into glass vials, sealed and subjected to 

chromatographic analysis.  
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2.4. GC-MS settings 

The experiments were performed on an Agilent® 6890N gas chromatographic system (Agilent 

Technologies, Santa Clara, CA, USA) coupled to an Agilent® 5973N mass selective detector. 

Separation was achieved on a DB-5ms (5% diphenyl, 95% dimethyl silica) capillary column 

(15 m x 0.25 mm i.d., 0.25 µm film thickness, J&W Scientific, Folsom, CA, USA) with helium 

as carrier gas at a constant flow rate of 1.3 mL/min. The injections were carried out using an 

Agilent 7683 Series injector. The injector temperature was 230°C. The injection volume was 

2.0 µl and the split flow was set at 10:1. The oven temperature started at 60°C, increased at 

8.5°C/min to 240°C and was held for 2 min. The total run time was 23 min. The MS analyses 

were performed in full-scan mode with masses in the 50-500 Da range. The temperature of the 

ion source and the single quadrupole analyzer were 300°C and 150°C, respectively. 

2.5. Cannabinoids  

As in Andersson et al. (27), the target cannabinoids were chosen when they could be easily 

identified, when repeatable peaks were found and when they were stable over time. In this 

study, a reference chromatogram, originating from freshly seized marijuana, was used to 

determine the compounds of interest. Nine cannabinoids were visible and selected as variables 

for the chemical profile, i.e. cannabidivarin (CBDV), Δ9-tetrahydrocannabivarin (THCV), 

cannabichromene (CBC), cannabidiol (CBD), CBN, cannabigerol (CBG), Δ9-THC, and 

unknown compounds CB1 & CB2. CB1 was chosen based on the paper by Fischedick et al. 

(39). CB2 was another unknown cannabinoid that was selected with its characteristic mass ions. 

To characterize the peaks in the chromatogram, target and qualifier ions were obtained from 

reference standards, published articles and commercial databases. Subsequently, injection and 

extraction replicates were used to evaluate the analytical method performance and the 

variability within a plant. Intra- and inter-plantation variabilities were also investigated for the 

selected cannabinoids (unpublished results). A summary of the compounds can be found in 
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table 2. The databases used are the National Institute of Standards and Technology standard 

reference database (United States Department of Commerce, version 2.0d, 2005, Gaithersburg, 

Maryland, USA), mass spectral library of drugs, poisons, pesticides, pollutants and their 

metabolites database (Wiley-VCH, 1st edition, 2011, Weinheim, Germany) and mass spectra of 

designer drugs database (Wiley-VCH, 2014, Weinheim, Germany). The target compounds were 

further studied with respect to their availability in other samples. 

Table 2. Retention times (tR), cannabinoid structures (when compound is known), target ion m/z and 

qualifier ions m/z of all compounds of interest in the extract.

 

tR (min) 

Structure compound 

Target ion 

(m/z) 

Qualifier 

ions (m/z) 

18.01 

Cannabidivarin (CBDV) 203 174 

121 

286 

 

19.00 

Δ9-Tetrahydrocannabivarin (THCV) 

 

203 243 

271 

286 

20.03 

Cannabidiol (CBD) 246 314 

271 

299 
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20.20 

Cannabichromene (CBC) 

 

231 174 

299 

314 

20.50 

CB1 

Unknown  

297 313 

356 

243 

20.63 

CB2 

Unknown  

231 299 

314 

21.10 

Δ9-Tetrahydrocannabinol (Δ9-THC) 

 

 

 

 

243 299 

231 

314 

21.54 

Cannabinol (CBN) 

 

295 296 

238 

310 

21.57 Cannabigerol (CBG) 193 231 
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316 

123 

 

2.6. Data analysis 

MSD Enhanced Chemstation F.01.03.2357 (Agilent Technologies, Santa Clara, CA, USA) was 

used as software to process all chemical profiles and to integrate each target peak in the 

extracted ion chromatogram. The area under curve (AUC), as chromatographic response, is 

recorded for all selected peaks. Calculations were carried out by means of Microsoft® Excel 

2013 (Microsoft Corporation, Redmond, WA) software and MatlabTM 9.4 (The Mathworks, 

Natick, MA). Data pre-processing methods were also executed using both above-mentioned 

programs. The percentages false negatives (FN) and false positives (FP) were calculated in 

Excel. For the Pearson correlation coefficient computations and the determination of the 

threshold values at the 95% and 99% confidence levels, m-files were used, written in Matlab 

version 9.4. IBM SPSS Statistics version 26 (IBM, Armonk, NY, USA) was used to draw the 

ROC curves.  

2.6.1 Data pretreatment on the chemical profiles 

To increase and optimize the discriminating power between the cannabis samples from different 

cultivation sites, a number of pretreatment methods are tested on the AUCs of the chemical 

profiles. Preprocessing is often done before multivariate data analysis to create a better 

distinction (40). It is needed to reduce instrumental influence, redundant variation and to 

decrease the large concentration differences between the cannabinoids. Consequently, a better 

comparison can be obtained with less influence of the amount of main common components 

(41–43). Several transformation techniques were presented on the raw data, including the 

internal standard normalization, where each value is divided by the area of the internal standard 
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(44), row scaling to constant total (each value in the profile is divided by the total sum of all 

peak areas per chromatogram) (44, 45), normalization using logarithm or square/fourth root 

(27, 46), standardization (each column value divided by its respective variable standard 

deviation) (27), auto-scaling (use of mean centering and variance scaling) (47), minimum-

maximum normalization (linear transformation to values between 0 and 1) (48), and some 

combinations of the above-mentioned methods. 

2.6.2 Similarity analysis – Pearson correlation coefficient 

Pearson correlation is a numerical method that compares continuous pairs of 

variables/samples/profiles (27). In fact, it assesses the possible strength and direction of any 

linear relationship between these variable pairs. The Pearson correlation coefficient (PCC), 

denoted as ‘r’, belongs to the most used statistical metrics within, among other, data analysis, 

decision making, forensic and biological research (49–53). The PCC (𝑟(𝑥𝑖,𝑦𝑖)) of the variables 

xi and yi is calculated as (Equation 1):  

𝑟(𝑥𝑖,𝑦𝑖) =  
∑ (𝑥𝑖−𝑥).(𝑦𝑖

𝑛
𝑖=1 −𝑦)

√∑ (𝑥𝑖−𝑥)𝑛
𝑖=1

2
.√∑ (𝑦𝑖−𝑦)𝑛

𝑖=1
2
          (1) 

Where �̅� =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
, �̅� =  

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
, n the number of variables per profile and 𝑥𝑖 and 𝑦𝑖 the 

equivalent values in two profiles. 

PCC has already been efficiently used in cocaine and amphetamine analysis, with regard to 

optimal distinction of linked and non-linked samples of seized drugs (26, 27, 54). It is the 

intention to use also the correlation measurement in this cannabis research to pairwise compare 

the chemical profiles, within and between the seized cannabis samples, obtained from the 9 

plantations.   
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2.7. False negative and false positive errors 

When comparing samples, different outcomes can be seen depending on the used pretreatment 

method. Fig. 2A shows the perfect separation between the intra-location and inter-location 

samples. Here, all linked samples are determined as 100% true positive (TP) and non-linked 

samples 100% true negative (TN), for which a link can be confirmed with the highest certainty. 

However, in drug profiling, the occurrence of an overlap between the distributions is often 

observed (Fig. 2B). These FNs and FPs are used for evaluating the discriminating power of the 

preprocessing method. To answer the question of the magistrate, whether two confiscations are 

linked, there is a tendency to minimize the FPs to be sure that the different marijuana samples 

are related or not. However, this is accompanied by a risk to increase the rate of FNs, resulting 

in a certain number of linked samples that are seen as unlinked. Therefore, a proper balance 

between both parameters is of interest (52, 55, 56). 

In forensic science, statistical methodology to analyze and interpret the data is often applied. In 

combination with correlation calculations, a threshold value can be defined. This value is very 

important for forensic analysts because it acts as a decision-maker whether two samples are 

linked or not. In order to define the threshold, confidence limits of the preprocessed data are 

determined in an attempt to find an acceptable FP rate (46, 57).  

Confidence limits for the correlation coefficient calculations were estimated at the traditional 

95% and 99% levels for normally distributed data (43, 58, 59). Similar approaches were already 

applied earlier in illicit drug profiling, for instance, on heroin (46) or cocaine (60) results. 
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Fig. 2. (A). Perfect situation showing linked and non-linked samples without overlap in r and (B) 

Overlap of the r-values resulting in FN and FP errors. FN = percentage linked r-values considered as 

unlinked. FP = percentage unlinked r-values seen as connected. 

 

2.7.1 Roc curves 

Receiver operating characteristics (ROC) analysis is a tool to study the accuracy of the 

pretreatment to discriminate the intra- and inter-location samples (26). Drawing the ROC curve 

consists of plotting the sensitivity (the TP rate) as a function of the 1-specificity (the FP rate) 

for various thresholds. The area under the ROC curve (AUC) is a measure for the distinguishing 
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performance of the pretreatment method. This area can vary from 0.5, i.e. total overlap of the 

intra- and inter-location samples, to 1 which represents a perfect discrimination of the samples. 

Consequently, the faster the increase in the ROC space, the more accurate the distinction is 

between linked and non-linked samples (61, 62). 

3. Results and discussion 

3.1. Cannabinoid profile 

After sample preparation and GC-MS analysis, the cannabinoids are identified as already 

presented in table 2. The typical chromatogram of a sample is shown in Fig. 3. As can be 

observed in Fig. 3, all samples are strongly dominated by Δ9-THC. The other components occur 

in small amounts compared to the main peak.  

 

Figure 3. Part of the GC-MS chromatogram of a marijuana sample seized from location two. Nine peaks 

are initially used, corresponding to nine cannabinoids. Peak labels as in table 2. 
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Quantification of Δ9-THC, CBN and CBD was carried out, with the validated routine analysis 

NICC method (GC-FID technique) to determine the potency of indoor cultivated cannabis. 

According to the Belgian legislation, herbal cannabis with a concentration higher than 0.2 % of 

Δ9-THC and tetrahydrocannabinolic acid, is classified as drug-type cannabis. The Δ9-THC 

content ranged from 13 % to 20 % for all locations, while CBD and CBN were below 1 % 

(Table 3). The low percentage of CBN confirms that fresh herbal material is being studied 

because this component is the oxidation product of Δ9-THC and indicates the age of marijuana. 

Table 3. Average content in concentration m/m% of the three main components in herbal cannabis. 

Number of samples per location: see Table 1.

 

In the total ion chromatogram (Fig. 3), all peaks are baseline separated except for CBG and 

CBN. When analyzing complex samples with GC-MS, it is common knowledge that co-elution 

may occur (63). Both peak areas could still be determined by focusing on the different m/z-

values of each component, allowing the two signals to be separately detected in the overlapping 

peak. As presented in figure 4, from the mass spectrum of a sample, both components can be 

found and quantified. The reference spectrum of CBN shows that the target ion 295.0 is absent 

in the CBG mass spectrum, while that of CBG (m/z-value 193.0) is not present in the mass 

spectrum of CBN as well. In other words, the two compounds have an exclusive ion, resulting 

in two mutually unbiased areas. The chosen m/z-ratios can be found in table 2.  

Location 1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 Cannabinoids 

Δ9-THC 14.2 19.4 19.4 13.4 15.2 17.1 20.2 16.0 15.3 

CBD 0.22 0.55 0.39 0.31 0.43 0.73 0.66 0.37 0.41 

CBN 0.11 0.08 0.09 0.07 0.18 0.05 0.07 0.19 0.07 
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Fig. 4.(A) TIC signal (insert) and the corresponding mass spectrum, showing the co-elution of CBN 

and CBG. (B and C) Mass spectra of CBN and CBG, respectively, with their unique m/z-value as 

target ion, indicated by the green and red colored circles (Inserts: extracted target ion chromatographic 

signal of both cannabinoids). 

One substance, i.e. CBDV, was removed from the profile because this component was most 

difficult to identify and quantify. Very small peak areas were detected in comparison with the 

other cannabinoids and often no peak could be integrated (Fig. 5). Zero values (for instance, 

used when compound is not detected) have an influence on the Pearson correlation coefficient 

between variables and affect the multivariate data analysis (64). Thus, CBDV may cause 

erroneous data variability between plants from the same cultivation site and was consequently 

removed. 
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Fig. 5. TIC and extracted ion chromatogram (insert) for CBDV. Black, red, green and blue lines in the 

insert figure represent the unfound target or qualifier ion. 

3.2. Data preprocessing  

Because of the dominance of Δ9-THC in the chemical profile, several preprocessing techniques 

were applied on the data set in order to reduce its influence and to increase the relative impact 

of lower concentrated compounds in order to obtain a better distinction between the samples.  

The following pre-treatments and their combinations were studied: 

Normalization by IS peak (N), N followed by square root, N followed by fourth root, N followed 

by a logarithm transformation, N followed by row scaling to a constant total, N followed by 

standardization (S), N followed by S and square root calculation, N followed by S and fourth 

root calculation, N followed by autoscaling, N followed by the minimum-maximum linear 

transformation. 
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IS-normalization was considered as the reference approach since this preprocessing technique 

is routinely applied in the drug lab at the NICC to reduce instrumental variations, i.e. injection-

volume variability and mass-spectrum variability. The other approaches were then compared to 

the reference with the aim to find the preprocessing technique that improves best the 

discriminating ability between linked and unlinked samples. The first eight numerical methods 

were based on published drug profiling techniques (26, 61). Autoscaling was used because this 

method creates equal importance for all variables. Linear transformation  transforms the data 

with the aim to decrease the ratio of weight of very large peaks compared to small peaks. To 

evaluate the impact on distinction of the different numerical approaches, Pearson correlation 

coefficients were calculated, 95% and 99% confidence limits were determined on the 

preprocessed data set and the FN-FP rate was established. Cross-validation was carried out in 

two ways, i.e. leave-n-out cross-validation (LNO-CV) and leave-one-plantation-out cross-

validation (LOPO-CV), to evaluate the predictive performance of the pretreatment resulting in 

the most improved discriminating method.   

To evaluate the Pearson correlation coefficients, a “linked correlation” was defined as a 

correlation obtained from pairwise comparing chemical profiles originating from the same 

plantation, i.e. intra-location samples in the data set. “Unlinked correlations” were seen as 

computed correlation coefficients, between chemical profiles coming from different indoor 

cultivations, i.e. inter-location samples. Each intra-location correlation coefficient was 

determined, evaluated for possible outliers, and visualized in a colour map, representing the 

correlation coefficients matrices. For the third location, one sample could be distinguished (Fig. 

6A), with lower r–values (blue colour) than the other samples which show high similarity (red-

brown colour). Therefore, it was preferred to reject this outlying sample and to use only 9 

samples to evaluate the variability within this plantation. However, it should be emphasized 

that a few intra-locations already show higher variability (Fig. 6B). Even though several 
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cannabis crops are cultivated under the same conditions, a higher variability among plants from 

one cultivation room is possible (65). Consequently, this naturally occurring variation also 

needs to be taken into account. The data set was thus reduced to 46 samples, resulting in a total 

of 1035 correlations, with 129 intra correlation coefficients and 906 inter correlation 

coefficients.   

 

 

Fig 6. Correlation coefficients color map of (A) the third location showing an outlier (sample 10), and 

of (B) the second location showing heterogeneity between samples.   
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3.2.1 Discriminating ability evaluation   

A critical value is derived from the intra-location samples using confidence interval lower limits 

(CIs). Two samples are considered linked when their correlation coefficient is above the lower 

limit. For a Gaussian distribution, 95% of the intra-location correlation coefficients is situated 

above the limit �̅� - 1.96 sr, where �̅� is the average of the r-values of the linked samples and sr the 

standard deviation of these linked correlation coefficients. 99% of the r-values is located above 

the limit �̅� - 2.576 sr. The use of these limits theoretically results in constant FN percentages of 

5% and 1%, respectively, as is shown in Fig. 7.  

 

Fig 7. Theoretic inter-location and intra-location distributions of r, with indicated threshold values at the 

lower limits of the 95% and 99% confidence intervals of the intra-location distribution.  

It is important to determine the FP rate, so a distinction between different plantations can be 

made. The goal of the chemical profiling data pretreatment is to minimize the overlap. 

Consequently, each pre-treatment applied will be evaluated by calculating the total % FNs and 

FPs. In table 4, the results are summarized for all transformations of the raw data with their 

respective total FN and FP rates. Initially, after IS normalisation, a threshold was determined 

of 0.986 for the 95% CI, showing 5% FNs and 21% FPs. Looking at the 99% CI, 3% FNs and 

27% FPs were computed and a 0.983 threshold value was obtained. The aim is to find a method 
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with a FP rate below 10%. Thus the results that were found using the reference approach need 

to be further decreased. The majority of the preprocessed data sets demonstrated a decrease in 

% FPs compared to the reference pretreatment. However, the results show that the “N + row 

scaling to a constant total” pretreatment does not affect the separation between intra-location 

and inter-location distributions. N + log transformation generates an increase on the 95% level 

of FNs, comparing to the other preprocessing methods, with a threshold value of 0.993. This 

causes a higher intra-location dissimilarity. After applying N + fourth root normalisation, the 

FP rate was reduced to 11% and 14 % FPs, and to 3 % and 2 % FNs for both CIs. The computed 

thresholds are 0.994 and 0.992. This pre-treatment provides a better balance in the contribution 

of small and large peaks to the data analysis. The data were visualized with histograms showing 

the frequency of the Pearson correlation coefficients between intra- and inter-location samples 

for both the reference method and after N + fourth root normalization (Fig. 8). An overlap 

between the inter-location and intra-location distributions is seen and represents the capability 

of distinction between linked and unlinked samples. Comparison of Fig. 8a and 8b shows that 

the correlation-coefficient distributions are affected by the pretreatments and a noteworthy 

decrease in the overlapping region is observed in Fig. 8b. 
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Table 4. Total % FN-FP results, obtained at the two confidence levels, for the different data pretreatment 

methods applied. 

Pre-treatment method 

95% CL 99% CL 

FN (%) FP (%) FN (%) FP (%) 

IS-normalization (N) 5 21 3 27 

N + square root 4 14 3 18 

N + fourth root 3 11 2 14 

N + Log transformation 8 15 3 17 

N + row scaling constant total 5 21 3 27 

N + standardisation (S) 3 18 2 23 

N + S + square root 2 15 2 19 

N + S + fourth root 4 14 2 19 

N + auto-scaling 5 13 3 16 

N + min-max transformation 5 16 4 20 
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Fig 8. Histograms of the correlation coefficients after (a) IS-normalization and (b) N + fourth root 

normalization. The yellow bar chart corresponds to the coefficients of the inter-location samples, while 

the blue bar chart is derived from the intra-location correlation coefficients. Vertical lines: 95% CI 

(green) and 99% CI (red) limits. 
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An improved discrimination between the samples after data preprocessing can also be verified 

using ROC curves. The AUC of the N + fourth root normalization, i.e. 0.967, is higher than the 

AUC found with the reference method, i.e. 0.942 (Table 5). The respective ROC curves are 

shown in figure 9, where each point on the curve is a sensitivity- specificity combination that 

corresponds to a certain threshold. Here, the ROC curve representing the N + fourth root 

normalization increases closer towards the upper left corner, implying that the discriminating 

ability between intra- and inter-location samples is improved. Obtaining a better differentiation, 

when applying N + fourth root normalization is in agreement with what was reported earlier by 

Andersson et al. (27) and Morelato et al. (42). 

 

Fig 9. ROC curves demonstrating the discriminating ability of the two studied preprocessing methods, 

with the orange/red curve corresponding to the N + fourth root normalization and the blue the IS-

normalization. The black line illustrates the reference line (AUC = 0.5).  
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Table 5. The respective AUCs for the reference method (IS-normalization) and after N + fourth root 

normalization.  

 

 

 

3.3. Cross-validation 

After evaluating all pre-treatments and concluding that “N + fourth root normalization” 

provides the most satisfying results, the predictive performance of the new approach will be 

evaluated and validated. Ideally, a calibration set is used to define the limits while an external 

test set provides a validation. Since the available data set consists of a low number of samples, 

cross-validation was applied instead to ensure that the defined limits are robust and accurate.  

Two cross-validation approaches were performed: 

(1) LNO-CV: the data set consists of 1035 correlation coefficients. A training set and a test 

set are generated as disjoint subsets of the data set. First, the r-values were sorted in 

ascending order. The test set is obtained by leaving out 5% of the data in such way that 

each of the 20 test sets covers the entire r-range. This implies that each test group may 

contain intra- and inter-correlations for prediction and thus evaluation of both FNs and 

FPs can be done. The remaining r-values of the linked samples in the data set are used 

to define new CI limits. This procedure is repeated 20 times so that all coefficients are 

tested once and 20 limits were calculated.  

(2)  LOPO-CV: With this approach, the data set is also subdivided in a set to define the 

limits and a validation set. The difference with the former cross-validation is that now 

the test set consists of one plantation. This was done to gain knowledge about  particular 

cultivation sites. The remaining intra-plantation information of the 8 locations was used 

to define the 95% and 99% limits. This process is repeated 9 times, in order to eliminate  

Preprocessing AUC 95 % confidence interval 

   Lower limit Upper limit 

IS-normalization 0,942 0,926 0,958 

N + fourth root 0,967 0,957 0,977 
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(3) all plantations once from the data set. 

To test the accuracy in both approaches, results were validated by making predictions of the 

test set. The total % FN and FP error rates were derived from all test sets in each cross- 

validation approach, i.e. 20 for the first and 9 from the second. Table 6 gives an overview of 

the results from both setups. In both approaches, the total FP error rate was identical with 11% 

misclassified correlation coefficients, for the 95 % CI limit. For the 99% limit, both cross-

validations showed approximately 14% FP. Concerning the % FN, a 6% error rate for the 95% 

threshold was obtained with LOPO-CV. This is twice as high as the value with LNO-CV but is 

still an acceptable value. An explanation for this observation is the higher variability occurring 

in certain plantations. In other words, limits were calculated without intra-values of a given 

plantation. It was already mentioned that samples within a few locations were more dissimilar 

compared to other intra-location samples causing lower intra-correlation coefficients. When 

determining both confidence interval limits, using these cultivation sites, lower limits were 

found. However, when these specific locations were used as test set, higher limits were achieved 

with the remaining training set, causing a higher % of false negatives for the test set. 

Interestingly, when comparing the predictive ability of the cross-validation approaches with the 

results obtained in section 3.3.1, where the total calibration data set was used to determine FNs 

and FPs, similar values were found. This indicated the representativeness of the defined limits.  

Table 6. Total percentage false negatives/false positives (% misclassified correlation coefficients) of the 

two cross-validation approaches and the total calibration data set. Entire data set: 129 intra-r-values and 

906 inter-r-values. 

 % r-values misclassified 

Cross-validation 95 % CI limit 99 % CI limit 

 FN FP FN FP 

Leave-n-out 3 11 3 14 

Leave-one plantation-out 6 11 4 13 

Entire calibration data set 3 11 2 14 



29 

  

3.4. Conclusion 

This paper focused on the effect of data pre-treatment methods and their ability to improve 

discrimination between linked and unlinked samples. Pearson correlation coefficients were 

used as pairwise similarity parameters for the chemical profiles. 95 % and 99% confidence 

limits were acquired based on intra-plantation information and used as threshold values. The 

internal standard normalization followed by fourth root transformation as preprocessing method 

was found to be most efficient to discriminate between different locations. The % FP was 

significantly lower (21 vs 11% for 95% CL) compared to the results obtained with the reference 

method (IS-normalization). Consequently, an improved approach with a reduced FN-FP 

overlap was generated. Cross-validation using 2 different methods, i.e. LNO-CV and LOPO-

CV, showed similar FP results. compared to the calibration data set. The used data set was 

found representative to estimate the overall within-plantation variation. 

Future work will involve the use of a larger data set containing more intra-location samples to 

further investigate the intra-variability. Other approaches may also be studied with the goal to 

further decrease the % FP. The fingerprint profile as such, which represent all compounds in 

the cannabis matrix, could for instance, also be analyzed chemometrically. This entire-profile 

approach may then be compared to the above-applied peak-table method. 
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