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1. Introduction 

The measurement of skin permeability of chemicals, i.e. determining the rate at which a compound will 

penetrate the skin, is of great importance in areas such as drug development and safety assessment, 

because it indicates whether the compound has the potency to be efficacious or harmful, respectively. 

Skin permeability can be measured in vivo and in vitro. However, the introduction of the European ban 

on animal testing for cosmetics, in accordance with the European Cosmetic Regulation [1], has further 

increased the necessity for alternative methods. The use of computational models, the so-called 

Quantitative Structure-Activity Relationship (QSAR) or more specifically Quantitative Structure-

Permeability Relationship (QSPR) models [2] may offer a solution. They link the skin permeability to 

certain structural properties of molecules, so-called molecular descriptors. These models provide an 

economic alternative with less ethical issues and often provide insight in the mechanisms that permit 

skin permeation [2,3]. In these models, the skin permeability coefficient Kp (expressed in cm/h), 

representing the linear velocity of a compound across the skin, is modelled. Kp can also be regarded as 

the flux at steady-state (Jss) divided by the applied concentration Cv [4]: 

𝐾𝑝 =  𝐽𝑠𝑠/𝐶𝑣      (Eq. 1) 

 Flynn [5] was the first to provide a database of log Kp values, measured in vitro through human 

skin and coming from aqueous vehicles, by combining the data from different sources. Potts and Guy 

[6] were one of the first to model the skin permeability data from this database as a function of the 

molecular weight (MW) and the octanol/water partition coefficient (log P):  

log 𝐾𝑝 = b0 +  b1 𝑀𝑊 + b2 log 𝑃   (Eq. 2) 

The selected descriptors may thus be related to permeation, since small molecules (low molecular 

weight) with a more lipophilic character (higher log P value) can pass easier through the skin. Since 

then, many QSPR models have been published, in which other descriptors, such as number of hydrogen 

bond donors/acceptors, melting points and molecular volumes, were included [7–9]. Several modelling 

techniques were also applied: linear regression techniques, e.g. multiple linear regression (MLR), and 

partial least squares (PLS) regression, as well as non-linear regression techniques, such as artificial 

neural networks (ANN), and classification and regression trees (CART) [10]. In linear free-energy 
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relationship (LFER) models, a property is modelled by MLR as a function of some specific descriptors 

[11].  

Besides theoretical molecular descriptors, chromatographic retention parameters, which are 

experimental descriptors, can also be used to model the skin permeability. They result into Quantitative 

Retention-Activity Relationship (QRAR) models. The retention in different liquid chromatographic 

methods has already been used to model the skin permeability. Besides regular reversed-phase 

conditions on C18 columns, more biomimicking conditions have been applied to achieve a better 

correspondence with the mechanisms of skin permeation. One example is micellar liquid 

chromatography (MLC), in which a surfactant (e.g. sodium dodecyl sulphate (SDS) or polyoxyethylene-

23-lauryl ether (Brij-35)) is added to the mobile phase in a concentration exceeding the critical micellar 

concentration. Micelles, which resemble the cellular lipid matrix, are then formed in the mobile phase 

[12–14]. Furthermore, the retention on columns containing certain compounds of the skin, such as 

keratin [15], collagen [16], cholesterol [17] and phospholipid analogues (immobilized artificial 

membrane (IAM) columns) [18,19], was previously also applied to model skin permeability. Lázaro et 

al. [20], for instance, showed a higher correlation of retention on C18 columns compared to IAM 

columns for modelling skin permeability. These methods were later compared to two micellar 

electrokinetic chromatographic (MEKC) methods by Hidalgo-Rodríguez et al. [21], and the retention 

on the C18 columns (with addition of McGowan’s volume as descriptor in the model) again provided 

the best correlation with skin permeability.   

The goal of this paper is to explore the added value of an experimental descriptor (log k) in QSPR 

models. Therefore, the retention of a diverse test set of 58 compounds was measured on a C18 column 

at two pH levels: pH 7, as in the methods described in the literature [20,21], and additionally at pH 5.5, 

the pH of the skin. Different fractions of organic modifier were applied to measure retention. They allow 

the estimation of an extrapolated log kw value, representing the retention in a purely aqueous mobile 

phase (without modifier). Consequently, log kw provides for a given chromatographic system directly 

comparable values for a diverse set of compounds with an extended range of log P values. Further, two 

sets of theoretical molecular descriptors were calculated, i.e. with Vega ZZ and E-Dragon software 

programs, which were also used to model the skin permeability. These theoretical descriptors contain 
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information on a large series of physicochemical, topological and geometrical properties. Their 

calculation does not require synthesis of the analytes nor any experimental work. QSPR models were 

built with and without log k, using MLR and PLS as modelling techniques, and their performances were 

compared to evaluate the potentially added value of the chromatographic descriptor. The use of a 

chromatographic descriptor could be combined with an in-silico approach to model the skin 

permeability, extending the models containing only the results from a chromatographic approach. In this 

way, it was also explored whether the contribution of the chromatographic descriptor to the models 

containing solely theoretical descriptors justifies the experimental work of determining the descriptor. 

The approach studied will also form a reference to evaluate the added value of other 

chromatographically determined descriptors, i.e. with other techniques (e.g. SFC) or on other stationary 

phases.    

 

2. Materials and methods 

2.1. Chemicals 

Acetonitrile (ACN) and methanol, both HPLC grade, were purchased from VWR Chemicals (Fontenay-

sous-Bois, France). Sodium dihydrogenphosphate monohydrate and sodium acetate (both from Sigma 

Aldrich, Steinheim, Germany) were used for the preparation of the buffers, of which the pH was adjusted 

with 1 M hydrochloric acid or 1 M sodium hydroxide (both from Fisher Scientific, Loughborough, UK). 

Ultrapure water was obtained from an Arium Pro UV system (Sartorius Stedim Biotech, Göttingen, 

Germany).  

2.2. Chromatographic conditions 

The chromatographic experiments were performed on a Merck-Hitachi HPLC system (Tokyo, Japan) 

with a quaternary L-7100 pump, an L-7200 autosampler with a 100 μL loop, an L-7400 UV detector 

and a D-7000 interface. An XTerra RP18 column (150 mm x 4.6 mm i.d., 5 µm) from Waters (Milford, 

MA, USA) was used as stationary phase. A flow of 1 mL min-1 was applied and 10 µL of each sample 

solution was injected. All compounds were detected at a wavelength of 220 nm at ambient temperature. 
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The chromatographic results were processed with the D-7000 HPLC System Manager software (Merck-

Hitachi, 1994–2001, version 4.1). 

The mobile phase consisted of buffer-acetonitrile, at different pH levels. At pH 7, a 10 mM 

phosphate buffer was used, combined with an acetonitrile fraction, ranging from 25% to 40 % v/v (in 

steps of 5% v/v). At pH 5.5, mimicking the pH of the skin, a 10 mM acetate buffer was applied, also 

mixed with fractions of 25% to 45% v/v acetonitrile (in steps of 5% v/v). Buffers were vacuum-filtered 

through 0.20 µm membranes (Sartorius Stedim Biotech) and before use, all mobile phases were 

degassed in an ultrasonic bath.  

Retention factors k were calculated as k = (tr – t0)/t0, with tr the retention time of the corresponding 

compound and t0 the dead time, determined with a 0.1 mg mL-1 uracil standard (Fluka, Neu-Ulm, 

Switzerland) in water.  

2.3. Test set 

The test set used in this study consisted of 58 compounds, covering a relevant log P range from -1.13 to 

4.45 and a log Kp range from -5.52 to -0.24. It contains components from different pharmacological 

classes, such as corticosteroids, anti-inflammatory drugs and hormones; but also preservatives, hair dye 

agents and antiseptics. An overview of the individual log Kp, log P, molecular weight (MW) and 

manufacturer can be found in Table 1. The compounds were obtained from Sigma-Aldrich (Steinheim, 

Germany), Merck (Darmstadt, Germany), Bios Coutelier (Brussels, Belgium), Certa (Braine-l’Alleud, 

Belgium), Diosynth (Oss, The Nederlands) and Fluka (Neu-Ulm, Switzerland), and have a minimal 

purity of 95%. The corresponding log Kp versus log P values are plotted in Fig. S1 in the Supplementary 

material. Solutions with a concentration of 0.1 mg ml-1 were prepared in methanol.  

2.4. Data sources, software and data processing 

Most skin permeability data were obtained from a validated database [22] and originate from in-vitro 

tests. Four compounds from other sources were added [23–26]. Vega ZZ version 3.1.2.29 [27] was used 

to calculate 21 physicochemical, geometrical and topological descriptors (e.g. number of atoms, 
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molecular weight, gyration radius, virtual log P, surface area and volume). The melting point was taken 

from PubChem [28]. E-Dragon software was used to calculate 1666 additional molecular descriptors 

[29], of which the (nearly) constant ones were removed. When descriptor pairs showed a correlation 

coefficient above 0.95, only the one with the highest correlation to the skin permeability was kept. This 

reduced the number of applied descriptors to 408. For modelling (in Matlab) with the Vega ZZ 

descriptors, the number was reduced to 12 after deleting highly correlated descriptors. Autoscaling was 

also assessed as pre-treatment for the descriptors. In autoscaling, each column of the matrix was 

centered, after which it was divided by the column standard deviation.  

The MLR models were built with the ‘automatic linear regression’ module of Vega ZZ, varying the 

number of included descriptors between one and seven. Descriptors with an r² below 0.10 with log Kp 

were omitted for modelling. Furthermore, collinear descriptors, for which the Variance Inflation Factor 

(VIF = 1/(1-r²)) value was above 5.0, were never selected together in a model. In the ‘linear regression’ 

module, the descriptors to be included in the model, were selected manually when the chromatographic 

descriptor showed a low correlation with the skin permeability (r² < 0.10).  

Stepwise MLR and PLS models were obtained by applying m-files written in MATLAB® 2014a 

(The Mathworks, Natick, MA, USA). The stepwise MLR procedure alternates a forward selection and 

backward elimination to select the best descriptors for the model. In a first step, the descriptor with the 

highest correlation to the skin permeability coefficient is selected (evaluating its significance to the 

model with an overall F-test). Afterwards, descriptors are added (and possibly removed), determining 

their contribution to the model with a partial F-test. This process is ended when the model can no longer 

be improved with the addition or removal of descriptors (based on a partial F-test). In the PLS approach, 

the number of latent variables for the best model is selected based on the lowest root mean squared error 

of cross-validation (RMSECV) value. The RMSECV from a leave-on-out cross-validation and the root 

mean squared error of calibration (RMSEC) for all models were also determined with MATLAB. They 

assess the predictive capabilities and fit of the model, respectively. Low values of these parameters 

indicate a good model. Relative percentages of the RMSEC and RMSECV were calculated on the 

average log Kp value. 
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Microsoft Excel (Microsoft Office Professional Plus 2016, Redmond, WA, USA) was used to 

calculate the determination coefficient r² of each model (between log Kp(experimental) and 

log Kp(predicted)). The latter was used as another way to look at the predictive capacities of the models. 

GraphPad Prism (GraphPad Software, San Diego, CA, USA, Version 8.4.3) was used to create the plots.  

 

3. Results and discussion 

3.1. Chromatographic measurements 

With a test set containing compounds covering a broad range of lipophilic properties, it is usually 

impossible to find one isocratic mobile phase capable of measuring all compounds. Therefore, log kw, 

indicating the retention factor at a pure aqueous mobile phase, is estimated. This value is determined by 

extrapolating the retention factors at different mobile phases using the following equation [30]: 

log 𝑘 = log 𝑘𝑤 − 𝑠 𝜑    (Eq. 3) 

in which k and kw are the retention factors with mixed mobile phases (containing organic modifier) and 

pure aqueous mobile phase, respectively, while φ represents the fraction organic modifier in the mobile 

phase. The slope s depends on the compound and the applied chromatographic system.  

The measured log k values and extrapolated log kw values at pH 5.5 and pH 7 can be found in Tables 

S1-S2 and Tables S3-S4 (in the Supplementary material), respectively. All compounds eluted from the 

column with every tested ACN fraction. At pH 5.5, an additional mobile phase with 45% v/v ACN was 

tested to obtain retention factors below 10. The last eluting compound at both pH levels was 

progesterone, with retention times of 148 min at pH 5.5 and 107 min at pH 7, for the lowest fraction of 

organic modifier (25% v/v ACN). For some components (e.g. thiourea) it was not possible to calculate 

a log k value, due to no retention (k = 0). Therefore, it was also impossible to calculate a log kw value 

for thiourea at pH 5.5 and benzoic acid at pH 7. For most compounds, the determination coefficient (r²) 

of Eq. 3 was above 0.90. Nevertheless, compounds with short retention times (and therefore low affinity 

for the column) seemed more difficult to extrapolate to log kw, leading to lower r²-values. This 

observation is more pronounced at pH 7 than at pH 5.5. In the end, 56 log k values were determined for 
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the different mobile-phase compositions at pH 5.5 (without thiourea and p-phenylenediamine) and pH 7 

(without benzoic acid and p-phenylenediamine), except for 25% and 30% v/v ACN at pH 7, for which 

only 55 compounds were considered (additionally without thiourea).   

Although the difference between the two pH levels was not that pronounced, an effect can be noticed 

on the retention of certain compounds. A first prominent group of compounds, showing a shift in 

retention as a result of the pH change, are the nonsteroidal anti-inflammatory drugs (NSAIDs). Several 

compounds from this group, e.g. diclofenac, flurbiprofen, ibuprofen and indomethacin, contain a 

carboxylic acid group with a pKa value between 4 and 5. This means that at pH 5.5 these compounds 

will be partially ionized, while at pH 7, the molecule will be almost fully charged. Consequently, shorter 

retention times were noticed at pH 7. However, for ketoprofen and naproxen, which contain also a 

carboxylic acid, and for piroxicam this effect on the retention is less pronounced. 2,4,6-trichlorophenol, 

containing a phenolic group, showed a similar retention at both pH levels. For lidocaine, a compound 

with basic properties, an opposite shift can be noticed: at pH 7 the amine group is partially ionized, 

while at pH 5.5 complete ionization is reached. This leads to a shorter retention of the compound at the 

lowest pH level. For other compounds, such as chloroxylenol and the steroid hormones (17α-

hydroxyprogesterone, estriol, estrone, progesterone, testosterone and β-estradiol) longer retention is 

noticed at pH 5.5, which can be assigned less to the ionization of the compounds.  

3.2. Correlation between log k and the skin permeability 

The skin permeability coefficients, log Kp, were obtained from in-vitro measurements. However, it 

should be noted that these data are taken from different sources. This is not ideal because of possible 

interlaboratory differences (preferably the measurements should be performed under a standardized 

procedure in one laboratory). However, since it is challenging to find large sets of skin permeability 

data, data from different sources are often combined. To assess the obtained chromatographic data, the 

correlation between the retention factors, log k, and the skin permeability coefficients, log Kp, was 

checked for each mobile-phase composition and for the extrapolated aqueous mobile phase. Rather poor 

correlations were noticed, displaying a maximal value (r = 0.317) with 45% v/v ACN at pH 5.5. The 

correlation between log Kp and the chromatographic data at pH 5.5 was overall slightly better than at 
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pH 7. This seems logical because 5.5 is the pH of the skin and thus reflects the real skin conditions 

better. The retention factors from the mobile-phase compositions were mutually highly correlated (r = 

0.828 to 0.997 at pH 5.5, and r = 0.716 to 0.989 at pH 7). This means that all retention factor sets contain 

roughly the same information. However, log k values from the mobile phases with a higher percentage 

of ACN are better correlated with the skin permeability. On the contrary, the extrapolated log kw at pH 

5.5 showed the lowest correlation with the skin permeability at this pH level, while at pH 7 the 

correlation with log kw was one of the highest.  

In conclusion, the retention factors demonstrated a low correlation with the log Kp values, rendering 

them individually inadequate to predict the skin permeability of compounds. Because the skin 

permeability process is influenced by a combination of different characteristics, this points out that the 

retention on the C18 column only comprehends part of this process. Thus, the addition of other 

molecular descriptors may improve the modelling of the skin permeability. 

3.3. Modelling skin permeability using only theoretical descriptors 

Two sets of molecular descriptors were calculated with Vega ZZ and E-Dragon software programs. The 

first led to a smaller set of descriptors representing physicochemical, geometrical and topological 

properties, which may be easier to link to certain skin permeability processes. The set of E-Dragon 

descriptors was far more extensive, containing also rather abstract theoretical descriptors. Two linear 

regression techniques were applied to model the skin permeability, log Kp, as a function of the molecular 

descriptors: MLR and PLS (both on raw and pre-processed descriptors).  

The stepwise MLR alternates a forward selection with a backwards deletion of descriptors, 

resulting in one model based on the fit of the model. The descriptor classes and the selected E-Dragon 

descriptors in the MLR models can be found in Table 2, while Table 3 shows the best stepwise MLR 

models with the E-Dragon descriptors. The r² value of the stepwise MLR model on the raw data is high, 

indicating a good fit of the model (see Fig. 1A). When autoscaling the data, the same 10 E-Dragon 

descriptors were selected for the model but here the contribution of every descriptor to the model can 

directly be assessed comparing their respective coefficients. The first four descriptors showed the largest 
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influence, with RDF020e and SRW09 having an inversely proportional influence and C-025 and 

RDF055p a proportional one on log Kp (Eq. 5 Table 3). The low RMSEC and RMSECV values confirm 

the suitability of the stepwise MLR models, showing their good fit and predicative abilities. 

 For the PLS regression with the E-Dragon descriptors, the best model was selected as that with 

a number of PLS factors that showed the lowest RMSECV value. Without data pre-treatment, the best 

model contained 6 PLS factors, having an RMSEC value of 0.674 (or 25.1%, calculated on the average 

log Kp value), an RMSECV of 0.860 (or 32.0%) and an r² of 0.72.  When autoscaling the descriptors, 7 

PLS factors were selected, leading to an overall improvement of the model: an RMSEC value of 0.292 

(or 10.9%), RMSECV of 0.740 (or 27.5%) and r² of 0.95. Compared to the stepwise MLR models, the 

PLS model without data pre-treatment showed a less good fit. Considering the much higher RMSEC 

and RMSECV values, this model was thus less good. Though the PLS model built with the autoscaled 

descriptors showed an improvement in RMSEC and r² values (see also Fig. 1B), the RMSECV value 

was still fairly high. The latter is visualized in Fig. 2, showing the leave-one-out cross-validated log Kp 

values, as a function of the experimental. The model tends also to overestimate the permeability of 

compounds with low experimental log Kp values. In conclusion, stepwise MLR resulted in the preferred 

regression model for the E-Dragon descriptor set.  

The stepwise MLR models with the Vega ZZ descriptors can be consulted in Table 4. The 

influence of the descriptors was assessed from their coefficients in the model with the autoscaled data 

(Eq. 7). Both descriptors showed a somewhat similar influence on the skin permeability, though their 

effect was opposite. The RMSEC and RMSECV were, however, quite substantial, thus worse than from 

the stepwise MLR model with the E-Dragon descriptors.   

 Secondly, using the automatic linear regression modelling in Vega ZZ, models were built with 

a pre-selected number of descriptors (ranging from one to seven). This allowed selecting manually the 

overall best model (making a compromise between its fit and predictive abilities). An overview of these 

models can be found in Table 5. When increasing the number of descriptors, an improvement of the 

RMSEC and initially of the RMSECV values was noticed. However, at a certain complexity, the models 

became susceptible to overfitting, indicated by the increase of RMSECV. Therefore, a compromise must 
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be made between the fit of the model (RMSEC) and its predictive properties (RMSECV), keeping the 

model as simple as possible. With these conditions in mind, the model with four descriptors (Eq. 11) 

was selected as the optimal. It had an RMSEC value of 25.7% and an RMSECV of 28.0%, calculated 

on the average log Kp. It thus corresponded with the results from the other modelling approaches on the 

Vega ZZ descriptors. The influence of the descriptors was evaluated from the model with the four Vega 

ZZ descriptors of Eq. 11 but now autoscaled (and having the same statistical parameters): 

log Kp =  -2.69 + 0.52 Virtual log P + 0.21 Lipole (Broto) – 0.26 HbDon – 0.61 Atoms  (Eq. 15) 

The virtual log P and number of atoms had the largest influence on the skin permeability, while the 

coefficients of Broto’s lipole (calculated according to [31]) and the number of hydrogen bond donors 

were slightly smaller. It was noticed from Table 5, that the RMSEC value of the models with three or 

more descriptors further improved compared to the model with two descriptors (Eq. 9, equal to the 

model selected with the stepwise MLR approach, Eq. 6). It can therefore be questioned if the stopping 

criterion of the stepwise MLR approach is perhaps too strict, seeing that the RMSECV value also 

improved when expending the model with two additional descriptors. 

Additionally, PLS regression was applied on the raw Vega ZZ data, obtaining RMSEC values of 

0.757 (or 28.2%) and RMSECV of 0.807 (or 30.0%). Five PLS factors provided the best model with the 

lowest RMSECV and an r² of 0.63. Autoscaling the descriptors, gave rise to a PLS model (3 PLS factors) 

with slightly better parameters: r² = 0.70, RMSEC = 0.682 (or 25.4%), and RMSECV = 0.790 (or 

29.4%). These parameters were quite similar to those of the previously obtained models using the same 

descriptors. Both for calibration and cross-validation the error was quite high. The E-Dragon-based PLS 

models again seemed superior to those derived from the Vega ZZ descriptors. 

3.4. Modelling skin permeability with both theoretical and chromatographic descriptors 

To optimize the models which include the chromatographic descriptors, theoretical molecular 

descriptors were added to the skin permeability models. Models were built for all mobile-phase 

compositions combining the measured log k values with the theoretical descriptors from Vega ZZ, on 

the one hand, and the E-Dragon descriptors, on the other. The extrapolated log kw values were also 
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considered theoretical descriptors for modelling. An overview of the models (Tables S5 – S18) was 

included in the Supplementary material, while the best models were discussed below.    

Regular stepwise MLR modelling was not successful, since the retention factors were never added 

to the model (the same models as before were obtained). Thus, the retention factors did not contribute 

significantly to these MLR models. However, when excluding the virtual log P from the data set with 

the Vega ZZ descriptors, stepwise MLR models with the log k values were obtained for some mobile-

phase compositions, of which the extrapolated log kw at pH 5.5 provided the best model (Table S5). 

Substitution of log P by chromatographic retention was done because the latter can be used to estimate 

log P [32]. 

log Kp = -1.61 + 0.42 log kw. pH 5.5 - 0.053 Atoms - 0.39 HbDon + 0.25 Lipole (Broto)  (Eq. 16) 

RMSEC = 0.722, RMSECV = 0.792, r² = 0.67, n = 56 

Compared to the model containing four theoretical Vega ZZ descriptors (Eq. 11), the virtual log P was 

substituted by the retention factor. The obtained model (Eq. 16) showed slightly less favourable 

statistical parameters (RMSEC of 27.3% and RMSECV of 29.9%, calculated on the average log Kp) 

than the model with only theoretical descriptors. The virtual log P is therefore the preferred variable 

instead of the chromatographic descriptor. 

 As a second approach, the automatic linear regression models were built using the Vega ZZ 

software, combining the retention factors and Vega ZZ descriptors. However, for this procedure, a 

variable needs to have an r² value above 0.10 with the log Kp to be considered in the construction of the 

skin permeability models. This was only the case for the retention factors obtained with 45% v/v ACN 

at pH 5.5 (see Table S6 in the Supplementary material). For the other mobile-phase compositions, MLR 

models were built, manually selecting the same descriptors as with the log k0.45, pH 5.5 models (Table S6) 

or adding the log k to the best obtained model with only theoretical Vega ZZ descriptors (Table 5). With 

the latter models, the aim was to verify whether the addition of the retention factor could improve the 

models that contained only theoretical descriptors. The best model was always selected based on a 

compromise between the fit of the model (RMSEC) and its predictive capacities (RMSECV). When 
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comparing the skin permeability models obtained at the different mobile phases at pH 5.5 (see Tables 

S6 – S11), the following model, containing the extrapolated log kw, resulted in the best statistical values 

(see Fig. 1C and Eq. 17): 

log Kp = -1.86 + 0.26 log kw pH 5.5 - 0.051 Atoms + 0.37 Virtual log P - 0.22 HbDon       (Eq. 17) 

RMSEC = 0.699 (or 26.4%), RMSECV = 0.774 (or 29.3%), r² = 0.69, n = 56 

The model seems also to overestimate the permeability of compounds with low log Kp values. It should 

be noticed that the difference between the models with the different fractions of ACN was very small, 

especially with the model containing the log k0.35, pH 5.5 (same selected descriptors with RMSEC = 0.704 

or 26.6%, RMSECV = 0.771 or 29.1% and r² = 0.68, see Table S8).  

At pH 7 (Tables S12 - S16), the best models were obtained with the retention factors from 

35% v/v ACN, log k0.35, pH 7, (Table S13) and the extrapolated retention factor, log kw, pH 7, (Table S16) 

combined with three Vega ZZ descriptors (Eqs. 18 and 19):  

log Kp = -1.71 - 0.11 log k0.35, pH 7 + 0.65 Virtual log P - 0.58 Gyration radius -  0.0038 Melting 

point                  (Eq. 18) 

RMSEC = 0.701 (or 26.1%), RMSECV = 0.777 (or 28.9%), r² = 0.69, n = 56 

log Kp = -2.06 + 0.17 log kw, pH 7 - 0.046 Atoms + 0.45 Virtual log P - 0.20 HbDon (Eq. 19) 

RMSEC = 0.703 (or 26.1%), RMSECV = 0.770 (or 28.6%), r² = 0.68, n = 56 

For both pH levels, the best MLR models were thus obtained combining the log k values with three 

descriptors. At pH 5.5 (Eq. 17) and for the log kw at pH 7 (Eq. 19), the number of atoms (Atoms), virtual 

log P and number of hydrogen bond donors (HbDon) provided the best models. For the other mobile-

phase compositions at pH 7 (see Tables S12 – S15), the best MLR model included the virtual log P, 

gyration radius and melting point (as selected with the theoretical MLR model in Eq. 10). Similar 

statistical parameters are noticed between these models at both pH levels. 

 When comparing these MLR models (Eqs. 17 – 19) to the models containing only theoretical 

Vega ZZ descriptors (Table 5), little improvement is seen relative to the RMSEC of the model 
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containing three descriptors (Eq. 10). Moreover, the RMSECV is less good for the models including 

log k, making these predictions less reliable. The model with four theoretical Vega ZZ descriptors 

(Eq. 11, containing Broto’s lipole instead of log k in Eqs. 17 and 19) was superior to these models both 

in terms of RMSEC and RMSECV. It can thus be concluded that the chromatographic descriptors 

provided little contribution to the MLR models with theoretical descriptors.   

The log k values were thereafter also used to acquire PLS models (Tables S17 – S18). The 

chromatographic descriptor was combined with the E-Dragon descriptors (Table S17). The best PLS 

model for each pH level was obtained with the log kw (6 PLS factors based on the lowest RMSECV 

value). For pH 5.5, this provided a model with an RMSEC of 0.670 (25.3%), RMSECV of 0.887 (33.5%) 

and r² of 0.72, while for pH 7 the RMSEC was 0.672 (25.0%), RMSECV 0.870 (32.3%) and r² 0.72. 

These values resemble closely the statistical parameters of the PLS model with only E-Dragon 

descriptors, demonstrating that the retention factors have little to no influence on this PLS model. When 

using the Vega ZZ descriptors, the best compromises between the fit and predictive capacities of the 

PLS models were observed using also the log k0.40, pH 5.5 (see Table S18 and Fig. 1D) or the log kw, pH 7, 

both selecting 6 PLS factors. Somewhat similar statistical parameters were obtained for pH 5.5 (RMSEC 

= 0.699 or 26.4%, RMSECV = 0.811 or 30.7%, and r² = 0.69) and for pH 7 (RMSEC = 0.701 or 26.0%, 

RMSECV = 0.818 or 30.4%, and r² = 0.69). In this case, an improvement of the PLS model was noticed 

in regards to the PLS model containing only Vega ZZ descriptors (selecting 5 PLS factors). The model 

in Fig. 1D still overestimated the permeability of compounds with a low log Kp. 

In conclusion, the best MLR and PLS models combining the theoretical descriptors with the log k 

values obtained at pH 5.5 showed large resemblances to those combined with the chromatographic 

descriptors from pH 7. The addition of the extrapolated log kw values was useful since this variable was 

often included in (one of) the best models. However, often the models including the log k obtained with 

an experimentally tested mobile phase gave similar results, while for the extrapolation much more 

experimental work needs to be performed (at least three mobile-phase compositions were tested). 

Furthermore, the use of the log k values in general can be questioned, since the addition of the 

chromatographic descriptor rarely led to an improvement to the models with solely theoretical 
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descriptors. Therefore, there is no justification for the extensive experimental work, when the same 

quality of models can be obtained by simply using theoretical descriptors. Only when the retention 

factors were combined with the Vega ZZ descriptors in PLS models, a positive effect on the statistical 

parameters of the models was noticed. However, this achieved improvement was rather small and 

therefore perhaps insufficient to justify the experimental work. Furthermore, the MLR model containing 

four Vega ZZ descriptors (Eq. 11) showed similar statistical parameters to this PLS model.  

 

4. Conclusions 

In this paper, the application of theoretical descriptors for the estimation of skin permeability was 

examined. In this regard, two sets of molecular descriptors (obtained with E-Dragon and Vega ZZ 

software) were applied to build MLR and PLS models. The interpretation of the E-Dragon descriptors 

in relation to physicochemical properties of the molecule was not always straightforward, as can be 

expected for many theoretical descriptors. In contrast, the physicochemical descriptors from Vega ZZ 

were often easier to link to properties influencing the skin permeability of compounds and in this way, 

could perhaps give better insights in processes involved in the permeation of the skin. It was therefore 

no surprise that properties, such as log P, number of hydrogen bond donors and number of atoms, which 

are known to influence the skin permeability, were selected in the MLR models. The overall best model 

in this study was the stepwise MLR model including ten E-Dragon descriptors. However, for predictive 

purposes the model should be further validated with the use of an external test set, though this is quite 

challenging since there is not a lot of skin permeability data available. Overall, the other MLR and PLS 

models were of a similar quality relative to each other, showing less good fit and predictions. Since the 

error on the in-vitro measurements of skin permeability can be quite substantial (e.g. 0.43 logarithmic 

units [24]), the RMSEC and RMSECV of these models seem acceptable for most applications.  

The relevance of a chromatographic descriptor to predict skin permeability was evaluated using the 

retention factors obtained with different fractions of organic modifier at pH 5.5 and pH 7 on a C18 

column. The skin permeability was better correlated with the results from pH 5.5. This seems reasonable, 

considering that 5.5 is the pH of the skin. However, the log k values alone were insufficient to predict 
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the skin permeation, requiring the addition of other descriptors to further improve the model. Often the 

extrapolated log kw is included in such models, combining the chromatographic descriptor with other 

descriptors. However, this approach is far more elaborate (demanding more measuring points) than 

using the retention factors from one single mobile-phase composition (when possible to measure all 

compounds, which often is not the case). Furthermore, the retention at different fractions frequently 

resulted in similar models. Even the distinction between the models at the two pH levels was not very 

pronounced. However, only for the PLS models using the Vega ZZ descriptors an improvement was 

seen when the chromatographic descriptor was added to the data set.  

In conclusion, the chromatographic descriptors obtained on the C18 column do not show important 

improvements to most models. In the majority of the approaches, similar or even slightly better models 

were obtained using only theoretical descriptors. The interactions that affect the retention on the C18 

column, do not seem to correspond extensively with the mechanisms involved in skin permeation. The 

small improvement seen in some PLS models does not justify the extent of the experimental work, when 

in-silico modelling can provide equally or more useful models.  
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Tables 

Table 1. The 58 compounds in the test set with their skin permeability coefficient (log Kp), molecular 

weight (MW), octanol-water partition coefficient (log P) and manufacturer. 

Compound Log Kp 
a MW b Log P c Manufacturer 

17α-hydroxyprogesterone -3.22 330.46 1.84 Sigma-Aldrich 

2,4,6-Trichlorophenol -1.23 197.45 3.94 Sigma-Aldrich 

2,4-Dichlorophenol -1.22 163.00 3.18 Sigma-Aldrich 

2-Amino-4-nitrophenol -3.18 154.12 1.39 Sigma-Aldrich 

2-Nitro-p-phenylenediamine -3.30 153.14 0.78 Sigma-Aldrich 

4-Amino-2-nitrophenol -2.55 154.12 1.22 Sigma-Aldrich 

Acetylsalicylic acid -2.14 [24] 180.16 1.10 Fluka 

Aminopyrine -2.99 231.29 1.57 Sigma-Aldrich 

Amylobarbital -2.64 226.27 1.97 Bios 

Antipyrine -4.18 188.23 1.26 Unknown origin 

Atropine -5.07 289.37 2.14 Sigma-Aldrich 

Barbital -3.96 184.19 0.95 Bios Coutelier 

Benzoic acid -1.52 122.12 1.24 Merck 

Benzyl alcohol -2.22 108.14 1.34 Sigma-Aldrich 

Caffeine -2.80 194.19 -0.25 Fluka 

Chloroxylenol -1.23 156.61 3.06 Sigma-Aldrich 

Chlorpheniramine (maleate) -2.66 274.79 3.86 Sigma-Aldrich 

Cortexolone -4.12 346.46 0.97 Sigma-Aldrich 

Cortexone -3.35 330.46 1.92 Sigma-Aldrich 

Corticosterone -3.19 346.46 0.82 Sigma-Aldrich 

Cortisone -5.00 360.44 -0.12 Sigma-Aldrich 

Diclofenac -1.74 296.15 4.45 Sigma-Aldrich 

Ephedrine.HCl -2.22 165.23 1.73 Sigma-Aldrich 

Estriol -4.40 288.38 2.30 Unknown origin 

Estrone -2.44 270.37 3.18 Diosynth 

Ethyl nicotinate -2.20 151.16 1.35 Sigma-Aldrich 

Flurbiprofen -0.34 244.26 3.88 Sigma-Aldrich 

Haloperidol -4.04 [25] 375.86 3.75 Unknown origin 

Hydrocortisone  -5.52 362.46 0.01 Certa 

Ibuprofen -0.24 206.28 3.20 Sigma-Aldrich 

Indomethacin -1.30 357.79 4.04 Sigma-Aldrich 

Ketoprofen -1.23 254.28 2.23 Sigma-Aldrich 

Lidocaine -1.70 [26] 234.34 3.01 Sigma-Aldrich 

m-Cresol -1.82 108.14 2.09 Sigma-Aldrich 

Methyl nicotinate -2.49 137.14 0.93 Sigma-Aldrich 

Methyl-4-hydroxybenzoate -2.04 152.15 1.36 Fluka 

m-Nitrophenol -2.25 139.11 2.21 Sigma-Aldrich 

Naproxen -1.42 230.26 3.23 Sigma-Aldrich 

o-Chlorophenol -1.48 128.56 2.40 Sigma-Aldrich 

o-Cresol -1.80 108.14 2.07 Sigma-Aldrich 

Paracetamol -3.35 151.16 1.07 Sigma-Aldrich 

p-Cresol -0.92 108.14 2.16 Sigma-Aldrich 

Phenobarbitone -3.35 232.24 1.49 Unknown origin 

Phenol -1.71 94.11 1.59 Merck 

Piroxicam -2.47 331.35 1.59 Sigma-Aldrich 

p-Nitrophenol -2.25 139.11 2.17 Sigma-Aldrich 

p-Phenylenediamine -3.62 108.14 0.23 Sigma-Aldrich 

Prednisolone -4.35 360.44 -0.45 Sigma-Aldrich 
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Progesterone -2.82 314.46 2.85 Sigma-Aldrich 

Resorcinol -3.62 110.11 1.18 Merck 

Salicylic acid -2.20 138.12 0.96 Sigma-Aldrich 

Testosterone -3.40 288.42 2.48 Sigma-Aldrich 

Thiourea -4.02 [23] 76.12 -0.65 Merck 

Thymol -1.28 150.22 3.23 Sigma-Aldrich 

Triamcinolone -5.40 394.43 -1.13 Sigma-Aldrich 

Triamcinolone acetonide -4.69 434.50 1.40 Sigma-Aldrich 

β-estradiol -2.37 272.38 3.37 Unknown origin 

β-naphthol -1.55 144.17 2.61 Merck 
a Logarithm of the skin permeability coefficient (log Kp

 in cm h-1), taken from [22], unless indicated 

differently,  

b MW (g mol-1), and c  virtual log P, calculated with Vega ZZ, version 3.1.1.42 software [27]. 
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Table 2. The selected E-Dragon descriptors in the stepwise MLR models. 

Descriptor  Descriptor class Descriptor name [33,34] 

BEHm1 Burden eigenvalues Largest eigenvalue n. 1 of Burden matrix weighted by mass 

C-025 Atom-centred fragments R-CR-R 

D/Dr06 Ring descriptors Distance/detour ring index of order 6 

G1u WHIM descriptors 1st component symmetry directional WHIM index / unweighted 

JGI4 2D autocorrelations Mean topological charge index of order 4 

Mor26u 3D-MoRSE descriptors Signal 26 / unweighted 

Mor32e 3D-MoRSE descriptors Signal 32 / weighted by Sanderson electronegativity 

RDF020e RDF descriptors Radial Distribution Function - 020 / weighted by Sanderson electronegativity 

RDF055p RDF descriptors Radial Distribution Function - 055 / weighted by polarizability 

SRW09 Walk and path counts Self-returning walk count of order 9 

 

Table 3. The stepwise MLR models built with the E-Dragon descriptors, together with their statistical parameters: root mean squared error of calibration, 

RMSEC, and of cross-validation, RMSECV, (along with their relative value, calculated on the average log Kp value) and determination coefficient r². The 

descriptors are defined in Table 2. 

Pre-treatment RMSEC RMSECV r² Equation 

No pre-treatment 0.378 

(14.1%) 

0.452 

(16.8%) 

0.91 log Kp = -7.64 - 0.34 RDF020e + 0.77 C-025 + 0.26 RDF055p - 0.0012 SRW09 - 1.20 G1u - 0.0086 

D/Dr06 + 5.95 JGI4 + 0.73 Mor26u + 1.63 BEHm1 + 0.72 Mor32e                                         (Eq. 4) 

Autoscaling 0.378 

(14.1%) 

0.452 

(16.8%) 

0.91 log Kp = -2.67 - 0.98 RDF020e + 0.73 C-025 + 1.05 RDF055p - 0.85 SRW09 - 0.25 G1u - 0.47 

D/Dr06 + 0.16 JGI4 + 0.19 Mor26u + 0.21 BEHm1 + 0.16 Mor32e                                         (Eq. 5) 
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Table 4. The stepwise MLR models using the Vega ZZ descriptors, together with their statistical parameters root mean squared error of calibration, RMSEC, 

and of cross-validation, RMSECV, (along with their relative value, calculated on the average log Kp value) and determination coefficient r².  

Pre-treatment RMSEC RMSECV r² Equation 

No pre-treatment 0.731 (27.7%) 0.768 (28.6%) 0.66 log Kp = -1.66 + 0.73 Virtual log P - 0.82 Gyration radius        (Eq. 6) 

Autoscaling 0.731 (27.7%) 0.768 (28.6%) 0.66 log Kp = -2.69 + 0.92 Virtual log P - 0.67 Gyration radius        (Eq. 7) 

 

Table 5. The performance parameters of the automatic regression MLR models with the Vega ZZ descriptors, and with increasing complexity. 

Nr RMSEC RMSECV r² Equation 

1 0.971 1.000 0.39 log Kp = -1.26 - 0.011 Melting point                                                                                                          (Eq. 8) 

2 0.731 0.768 0.66 log Kp = -1.66 + 0.73 Virtual log P - 0.82 Gyration radius                                                                       (Eq. 9) 

3 0.706 0.758 0.68 log Kp = -1.61 + 0.64 Virtual log P - 0.61 Gyration radius - 0.0036 Melting point                                  (Eq. 10) 

4 0.690 0.752 0.69 log Kp = -2.26 + 0.42 Virtual log P + 0.19 Lipole (Broto) - 0.25 HbDon - 0.040 Atoms                          (Eq. 11) 

5 0.677 0.752 0.70 log Kp = -2.51 + 0.50 Virtual log P + 0.24 Lipole (Broto) - 0.40 HbDon + 0.012 PSA - 0.0080 Volume (Eq. 12) 

6 0.657 0.754 0.72 log Kp = -2.59 + 0.48 Virtual log P + 0.26 Lipole (Broto) - 0.38 HbDon + 0.017 PSA - 0.0065 Volume - 0.0038 

Melting point                                                                                                                                              (Eq. 13) 

7 0.656 0.770 0.72 log Kp = -2.63 + 0.47 Virtual log P + 0.28 Lipole (Broto) - 0.45 HbDon + 0.022 PSA - 0.0059 Volume - 0.0041 

Melting point - 0.088 HbAcc                                                                                                                      (Eq. 14) 

HbDon = number of hydrogen bond donors, PSA = polar surface area, HbAcc = number of hydrogen bond acceptors
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Figures 

 

Fig. 1. The predicted log Kp as a function of the experimental, together with the regression line (solid 

line) and the bisector (dashed line, y = x) for A. the stepwise MLR model containing only E-Dragon 

descriptors without pre-treatment (Eq. 4); B. the PLS model containing the autoscaled E-Dragon 

descriptors; C. the MLR model containing the log kw, pH 5.5 and three Vega ZZ descriptors (Eq. 17); and 

D. the PLS model containing the log k0.40, pH 5.5 and the Vega ZZ descriptors. 
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Fig. 2. The log Kp values predicted from leave-one-out cross-validation versus the experimental values 

using the PLS model with the autoscaled E-Dragon descriptors. The bisector is also drawn.  
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Fig. S1. log Kp versus log P values of the test set compounds. 
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Table S1. The experimental log k at the indicated ACN fraction, at pH 5.5. The value in bold was 

regarded as an outlier for the estimation of log kw, the dashes indicate that no log k value was obtained. 

Compound log k0.25 log k0.30 log k0.35 log k0.40 log k0.45 

17α-Hydroxyprogesterone 1.696 1.359 0.987 0.725 0.589 

2,4,6-Trichlorophenol 1.636 1.402 1.091 0.850 0.729 

2,4-Dichlorophenol 1.449 1.236 0.957 0.728 0.639 

2-Amino-4-nitrophenol 0.501 0.364 0.174 0.062 -0.032 

2-Nitro-p-phenylenediamine 0.110 0.006 -0.129 -0.181 -0.257 

4-Amino-2-nitrophenol 0.402 0.301 0.145 0.054 -0.025 

Acetylsalicylic acid -0.503 -0.517 -0.535 -0.667 -0.618 

Aminopyrine 0.204 0.023 -0.163 -0.255 -0.304 

Amylobarbital 0.915 0.692 0.461 0.271 0.163 

Antipyrine -0.081 -0.246 -0.434 -0.468 -0.486 

Atropine -0.216 -0.422 -0.515 -0.556 -0.605 

Barbital 0.006 -0.129 -0.283 -0.339 -0.433 

Benzoic acid -0.503 -0.508 -0.546 -0.590 -0.644 

Benzyl alcohol 0.225 0.108 -0.035 -0.113 -0.171 

Caffeine -0.421 -0.508 -0.515 -0.579 -0.581 

Chloroxylenol 1.596 1.344 1.042 0.815 0.686 

Chlorpheniramine (maleate) 0.585 0.292 -0.018 -0.214 -0.336 

Cortexolone 1.148 0.851 0.518 0.278 0.177 

Cortexone 1.533 1.203 0.827 0.559 0.433 

Corticosterone 1.057 0.713 0.409 0.184 0.089 

Cortisone 0.760 0.444 0.104 -0.041 -0.149 

Diclofenac 1.278 0.862 0.427 0.123 0.006 

Ephedrine(.HCl) -0.503 -0.517 -0.535 -0.579 -0.605 

Estriol 0.803 0.503 0.176 -0.041 -0.141 

Estrone 1.674 1.451 1.107 0.853 0.701 

Ethyl nicotinate 0.410 0.253 0.075 -0.018 -0.074 

Flurbiprofen 1.083 0.728 0.334 0.085 -0.045 

Haloperidol 1.218 0.878 0.502 0.260 0.127 

Hydrocortisone 0.711 0.407 0.070 -0.072 -0.181 

Ibuprofen 1.293 0.952 0.632 0.349 0.247 

Indomethacin 1.368 0.931 0.490 0.160 0.041 

Ketoprofen 0.566 0.288 -0.012 -0.266 -0.357 

Lidocaine 0.243 0.184 0.077 0.029 0.044 

m-Cresol 0.753 0.618 0.432 0.289 0.205 

Methyl-4-hydroxybenzoate 0.654 0.495 0.300 0.149 0.060 

Methyl nicotinate 0.075 -0.043 -0.172 -0.234 -0.298 

m-Nitrophenol 0.849 0.701 0.501 0.341 0.243 

Naproxen 0.717 0.401 0.116 -0.101 -0.205 

o-Chlorophenol 0.900 0.745 0.554 0.392 0.303 

o-Cresol 0.806 0.677 0.491 0.355 0.261 

Paracetamol -0.340 -0.498 -0.496 -0.567 -0.516 

p-Cresol 0.764 0.614 0.429 0.286 0.207 
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Phenobarbitone 0.560 0.364 0.136 0.003 -0.089 

Phenol 0.484 0.366 0.205 0.111 0.033 

Piroxicam 0.449 -0.040 -0.086 -0.339 -0.450 

p-Nitrophenol 0.796 0.638 0.411 0.283 0.187 

p-Phenylenediamine - - - - - 

Prednisolone 0.688 0.380 0.032 -0.109 -0.220 

Progesterone 1.981 1.637 1.296 1.130 0.896 

Resorcinol -0.045 -0.153 -0.283 -0.339 -0.417 

Salicylic acid -0.513 -0.508 -0.515 -0.614 -0.631 

Testosterone 1.483 1.145 0.778 0.543 0.448 

Thiourea - - - - - 

Thymol 1.758 1.387 1.198 0.972 0.827 

Triamcinolone 0.400 0.085 -0.185 -0.373 -0.468 

Triamcinolone acetonide 1.158 0.817 0.496 0.257 0.130 

β-estradiol 1.729 1.388 1.007 0.740 0.615 

β-Naphthol 1.280 1.053 0.801 0.587 0.473 

 

Table S2. The extrapolated log k at a pure aqueous mobile phase, log kw, the slope s and determination 

coefficient r², at pH 5.5, for eq. 3. The dash indicates that no log k value could be calculated.  

Compound log kw,pH5.5 s r² 

17α-Hydroxyprogesterone 3.064 0.057 0.974 

z2,4,6-Trichlorophenol 2.797 0.047 0.982 

2,4-Dichlorophenol 2.492 0.043 0.977 

2-Amino-4-nitrophenol 1.171 0.027 0.985 

2-Nitro-p-phenylenediamine 0.554 0.018 0.976 

4-Amino-2-nitrophenol 0.946 0.022 0.986 

Acetylsalicylic acid -0.347 0.006 0.941 

Aminopyrine 0.808 0.026 0.945 

Amylobarbital 1.849 0.039 0.984 

Antipyrine 0.380 0.021 0.871 

Atropine 0.176 0.018 0.883 

Barbital 0.526 0.022 0.973 

Benzoic acid -0.303 0.007 0.938 

Benzyl alcohol 0.713 0.020 0.973 

Caffeine -0.247 0.008 0.893 

Chloroxylenol 2.741 0.047 0.983 

Chlorpheniramine (maleate) 1.706 0.047 0.972 

Cortexolone 2.355 0.050 0.969 

Cortexone 2.901 0.057 0.973 

Corticosterone 2.216 0.049 0.961 

Cortisone 1.835 0.046 0.948 

Diclofenac 2.836 0.066 0.962 

Ephedrine(.HCl) -0.362 0.005 0.960 

Estriol 1.962 0.049 0.966 
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Estrone 2.938 0.051 0.986 

Ethyl nicotinate 0.996 0.025 0.959 

Flurbiprofen 2.467 0.058 0.967 

Haloperidol 2.557 0.056 0.970 

Hydrocortisone  1.771 0.045 0.949 

Ibuprofen 2.582 0.054 0.971 

Indomethacin 2.995 0.068 0.963 

Ketoprofen 1.723 0.048 0.973 

Lidocaine 0.503 0.011 0.874 

m-Cresol 1.457 0.029 0.986 

Methyl-4-hydroxybenzoate 1.405 0.031 0.985 

Methyl nicotinate 0.522 0.019 0.972 

m-Nitrophenol 1.626 0.031 0.989 

Naproxen 1.828 0.047 0.968 

o-Chlorophenol 1.662 0.031 0.988 

o-Cresol 1.506 0.028 0.989 

Paracetamol -0.188 0.008 0.610 

p-cresol 1.469 0.029 0.984 

Phenobarbitone 1.356 0.033 0.973 

Phenol 1.050 0.023 0.984 

Piroxicam 1.375 0.042 0.908 

p-Nitrophenol 1.564 0.031 0.979 

p-phenylenediamine - - - 

Prednisolone 1.768 0.046 0.948 

Progesterone 3.262 0.054 0.981 

Resorcinol 0.403 0.019 0.979 

Salicylic acid -0.316 0.007 0.789 

Testosterone 2.748 0.053 0.959 

Thiourea - - - 

Thymol 2.823 0.046 0.972 

Triamcinolone 1.427 0.044 0.961 

Triamcinolone acetonide 2.403 0.052 0.972 

β-estradiol 3.109 0.058 0.971 

β-Naphthol 2.294 0.042 0.985 
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Table S3. The experimental log k at the indicated ACN fraction, at pH 7. The values in bold were 

considered outliers for the determination of log kw. The dash indicates that no log k value could be 

calculated.  

Compound log k0.25 log k0.30 log k0.35 log k0.40 

17α-Hydroxyprogesterone 1.720 1.109 0.822 0.652 

2,4,6-Trichlorophenol 0.553 0.388 0.201 0.000 

2,4-Dichlorophenol 1.484 0.906 0.809 0.609 

2-Amino-4-nitrophenol -0.110 -0.098 -0.167 -0.332 

2-Nitro-p-phenylenediamine 0.003 -0.073 -0.100 -0.209 

4-Amino-2-nitrophenol 0.198 0.187 0.096 0.021 

Acetylsalicylic acid -0.501 -0.520 -0.526 -0.556 

Aminopyrine 0.046 -0.056 -0.154 -0.250 

Amylobarbital 0.573 0.425 0.326 0.129 

Antipyrine -0.252 -0.360 -0.378 -0.525 

Atropine -0.397 -0.510 -0.459 -0.515 

Barbital -0.209 -0.259 -0.292 -0.515 

Benzoic acid - - - - 

Benzyl alcohol 0.178 0.072 -0.003 -0.129 

Caffeine -0.626 -0.530 -0.477 -0.505 

Chloroxylenol 1.321 1.133 0.901 0.671 

Chlorpheniramine (maleate) 0.468 0.237 0.076 -0.079 

Cortexolone 1.131 0.505 0.394 0.224 

Cortexone 1.507 0.792 0.680 0.515 

Corticosterone 0.615 0.505 0.287 0.120 

Cortisone 0.389 0.288 0.068 -0.101 

Diclofenac 0.434 0.161 -0.081 -0.214 

Ephedrine(.HCl) -0.474 -0.510 -0.468 -0.525 

Estriol 0.401 0.175 0.071 -0.129 

Estrone 1.840 1.245 0.958 0.704 

Ethyl nicotinate 0.256 0.179 0.076 -0.044 

Flurbiprofen 0.200 -0.069 -0.286 -0.515 

Haloperidol 1.164 0.923 0.700 0.460 

Hydrocortisone  0.333 0.225 0.027 -0.172 

Ibuprofen 0.231 -0.009 -0.235 -0.505 

Indomethacin 0.497 0.214 -0.100 -0.556 

Ketoprofen 0.373 -0.571 -0.425 -0.515 

Lidocaine 0.942 0.772 0.681 0.555 

m-Cresol 0.548 0.476 0.385 0.236 

Methyl-4-hydroxybenzoate 0.396 0.313 0.231 0.070 

Methyl Nicotinate -0.052 -0.098 -0.141 -0.295 

m-Nitrophenol 0.626 0.505 0.421 0.298 

Naproxen -0.232 -0.402 -0.425 -0.525 

o-Chlorophenol 0.669 0.542 0.481 0.314 

o-Cresol 0.607 0.539 0.437 0.246 

Paracetamol -0.492 -0.520 -0.477 -0.515 
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p-cresol 0.549 0.481 0.377 0.203 

Phenobarbitone 0.168 0.128 0.003 -0.133 

Phenol 0.331 0.298 0.199 0.120 

Piroxicam 0.333 -0.367 -0.401 -0.525 

p-Nitrophenol 0.186 0.157 0.060 -0.113 

p-phenylenediamine - - - - 

Prednisolone 0.298 0.196 -0.006 -0.129 

Progesterone 1.838 1.524 1.291 0.872 

Resorcinol -0.161 -0.200 -0.246 -0.505 

Salicylic acid -0.580 -0.530 -0.496 -0.515 

Testosterone 1.132 0.895 0.651 0.483 

Thiourea - - -1.450 -1.681 

Thymol 1.708 1.419 1.198 0.940 

Triamcinolone 0.085 -0.066 -0.230 -0.410 

Triamcinolone acetonide 1.160 0.496 0.363 0.151 

β-estradiol 1.339 1.066 0.827 0.560 

β-Naphthol 1.306 0.781 0.696 0.584 

 

Table S4. The extrapolated log k at a pure aqueous mobile phase, log kw, the slope s and determination 

coefficient r² at pH 7, for eq. 3. The dash indicates that no values could be calculated. 

Compound log kw,pH7 s r² 

17α-Hydroxyprogesterone 3.345 0.070 0.923 

2,4,6-Trichlorophenol 1.485 0.037 0.998 

2,4-Dichlorophenol 2.721 0.054 0.875 

2-Amino-4-nitrophenol 0.302 0.015 0.774 

2-Nitro-p-phenylenediamine 0.336 0.013 0.951 

4-Amino-2-nitrophenol 0.531 0.012 0.930 

Acetylsalicylic acid -0.553 0.003 0.937 

Aminopyrine 0.537 0.020 1.000 

Amylobarbital 1.291 0.029 0.983 

Antipyrine 0.164 0.017 0.927 

Atropine -0.202 0.008 0.975 

Barbital 0.299 0.019 0.825 

Benzoic acid - - - 

Benzyl alcohol 0.677 0.020 0.991 

Caffeine -0.472 -0.008 0.687 

Chloroxylenol 2.425 0.044 0.998 

Chlorpheniramine (maleate) 1.348 0.036 0.990 

Cortexolone -0.334 0.057 0.855 

Cortexone 2.882 0.062 0.831 

Corticosterone 1.489 0.034 0.986 

Cortisone 1.259 0.034 0.982 

Diclofenac 1.496 0.044 0.979 

Ephedrine(.HCl) -0.405 0.003 0.824 
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Estriol 1.231 0.034 0.983 

Estrone 3.589 0.074 0.954 

Ethyl nicotinate 0.769 0.020 0.991 

Flurbiprofen 1.368 0.047 0.998 

Haloperidol 2.330 0.047 1.000 

Hydrocortisone  1.215 0.034 0.984 

Ibuprofen 1.454 0.049 0.999 

Indomethacin 2.271 0.069 0.987 

Ketoprofen 1.883 0.062 0.943 

Lidocaine 1.550 0.025 0.986 

m-Cresol 1.079 0.021 0.972 

Methyl-4-hydroxybenzoate 0.941 0.021 0.968 

Methyl nicotinate 0.357 0.015 0.893 

m-Nitrophenol 1.156 0.021 0.995 

Naproxen 0.189 0.018 0.915 

o-Chlorophenol 1.234 0.023 0.971 

o-Cresol 1.226 0.024 0.947 

Paracetamol -0.469 0.001 0.404 

p-cresol 1.144 0.023 0.958 

Phenobarbitone 0.711 0.021 0.954 

Phenol 0.713 0.015 0.968 

Piroxicam 1.454 0.052 0.753 

p-Nitrophenol 0.718 0.020 0.903 

p-phenylenediamine - - - 

Prednisolone 1.054 0.030 0.985 

Progesterone 3.416 0.063 0.987 

Resorcinol 0.424 0.022 0.804 

Salicylic acid -0.679 -0.005 0.675 

Testosterone 2.214 0.044 0.994 

Thiourea  0.167 -0.046 1.000 

Thymol 2.957 0.050 0.998 

Triamcinolone 0.918 0.033 0.998 

Triamcinolone acetonide 2.597 0.063 0.877 

β-estradiol 2.622 0.052 0.999 

β-Naphthol 2.304 0.045 0.825 
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Table S5. The best stepwise MLR models including the retention factors log k and the Vega ZZ descriptors (when excluding the virtual log P). 1 

RMSEC RMSECV r² n Equation 

0.739 0.806 0.65 56 log Kp = -1.51 + 0.68 log k0.35. pH 5.5  - 0.044 Atoms - 0.39 HbDon + 0.30 Lipole (Broto)  

0.740 0.807 0.65 56 log Kp = -1.53 + 0.60 log k0.30. pH 5.5 - 0.046 Atoms - 0.39 HbDon + 0.29 Lipole (Broto) 

0.732 0.800 0.66 56 log Kp = -1.54 + 0.58 log k0.25. pH 5.5 - 0.049 Atoms - 0.39 HbDon + 0.28 Lipole (Broto) 

0.722 0.792 0.67 56 log Kp = -1.61 + 0.42 log kw. pH 5.5 - 0.053 Atoms - 0.39 HbDon + 0.25 Lipole (Broto) 

0.741 0.811 0.65 56 log Kp = -1.72 + 0.33 log kw. pH 7 - 0.39 Atoms - 0.047 HbDon + 0.33 Lipole (Broto) 

 2 

Table S6. The best automatic MLR models with the retention factors from 45% v/v ACN at pH 5.5 and the Vega ZZ descriptors (n = 56). 3 

Nr RMSEC RMSECV r² Equation 

1 1.183 1.223 0.10 log Kp = -2.65 + 0.96 log k0.45, pH 5.5 

2 0.884 0.920 0.50 log Kp = -1.02 + 1.16 log k0.45, pH 5.5 - 0.053 Atoms 

3 0.727 0.783 0.66 log Kp = -2.19 + 0.35 log k0.45, pH 5.5 - 0.046 Atoms + 0.51 Virtual log P  

4 0.710 0.778 0.68 log Kp = -1.88 + 0.35 log k0.45, pH 5.5 - 0.044 Atoms + 0.45 Virtual log P - 0.18 HbDon 

5 0.693 0.779 0.69 log Kp = -2.08 + 0.30 log k0.45, pH 5.5 - 0.041 Atoms + 0.37 Virtual log P  - 0.24 HbDon + 0.17 Lipole (Broto)  

 4 

Table S7. The best MLR models with the retention factors from 40% v/v ACN at pH 5.5 and the Vega ZZ descriptors (n = 56). 5 

Nr RMSEC RMSECV r² Equation 

1 1.192 1.231 0.09 log Kp = -2.72 + 0.83 log k0.40, pH 5.5 

2 0.884 0.920 0.50 log Kp = -1.08 + 1.08 log k0.40, pH 5.5 - 0.054 Atoms 

3 0.728 0.784 0.66 log Kp = -2.21 + 0.31 log k0.40, pH 5.5 - 0.046 Atoms + 0.51 Virtual log P 

4 0.711 0.778 0.68 log Kp = -1.90 + 0.31 log k0.40, pH 5.5 - 0.044 Atoms + 0.45 Virtual log P - 0.19 HbDon 

5 0.694 0.779 0.69 log Kp = -2.10 + 0.27 log k0.40, pH 5.5 - 0.042 Atoms + 0.36 Virtual log P - 0.24 HbDon + 0.18 Lipole (Broto)  

  6 
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Table S8. The best MLR models with the retention factors from 35% v/v ACN at pH 5.5 and the Vega ZZ descriptors (n = 56). 7 

Nr RMSEC RMSECV r² Equation 

1 1.190 1.229 0.09 log Kp = -2.84 + 0.76 log k0.35, pH 5.5 

2 0.853 0.889 0.53 log Kp = -1.18 + 1.08 log k0.35, pH 5.5 - 0.056 Atoms 

3 0.722 0.779 0.67 log Kp = -2.18 + 0.38 log k0.35, pH 5.5 - 0.048 Atoms + 0.48 Virtual log P 

4 0.704 0.771 0.68 log Kp = -1.85 + 0.39 log k0.35, pH 5.5 - 0.046 Atoms + 0.41 Virtual log P - 0.19 HbDon 

5 0.688 0.773 0.70 log Kp = -2.05 + 0.35 log k0.35, pH 5.5 - 0.043 Atoms + 0.34 Virtual log P - 0.24 HbDon + 0.17 Lipole (Broto)  

 8 

Table S9. The best MLR models with the retention factors from 30% v/v ACN at pH 5.5 and the Vega ZZ descriptors (n = 56). 9 

Nr RMSEC RMSECV r² Equation 

1 1.210 1.249 0.06 log Kp = -2.90 + 0.52 log k0.30, pH 5.5 

2 0.850 0.888 0.54 log Kp = -1.26 + 0.95 log k0.30, pH 5.5 - 0.060 Atoms 

3 0.724 0.783 0.66 log Kp = -2.21 + 0.31 log k0.30, pH 5.5 - 0.049 Atoms + 0.48 Virtual log P 

4 0.705 0.774 0.68 log Kp = -1.87 + 0.34 log k0.30, pH 5.5 - 0.047 Atoms + 0.41 Virtual log P - 0.20 HbDon 

5 0.690 0.777 0.69 log Kp = -2.06 + 0.29 log k0.30, pH 5.5 - 0.044 Atoms + 0.34 Virtual log P - 0.25 HbDon + 0.17 Lipole (Broto)  

 10 

Table S10. The best MLR models with the retention factors from 25% v/v ACN at pH 5.5 and the Vega ZZ descriptors (n = 56). 11 

Nr RMSEC RMSECV r² Equation 

1 1.224 1.263 0.04 log Kp = -2.90 + 0.37 log k0.25, pH 5.5 

2 0.840 0.880 0.55 log Kp = -1.30 + 0.89 log k0.25, pH 5.5 - 0.064 Atoms 

3 0.723 0.783 0.66 log Kp = -2.21 + 0.30 log k0.25, pH 5.5 - 0.050 Atoms + 0.47 Virtual log P 

4 0.703 0.773 0.68 log Kp = -1.85 + 0.33 log k0.25, pH 5.5 - 0.049 Atoms + 0.40 Virtual log P - 0.20 HbDon 

5 0.688 0.776 0.70 log Kp = -2.05 + 0.29 log k0.25, pH 5.5 - 0.045 Atoms + 0.32 Virtual log P - 0.25 HbDon + 0.17 Lipole (Broto)  

 12 

  13 
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Table S11. The best MLR models with the extrapolated retention factors (log kw) at pH 5.5 and the Vega ZZ descriptors (n = 56). 14 

Nr RMSEC RMSECV r² Equation 

1 1.236 1.276 0.02 log Kp = -2.90 + 0.16 log kw, pH 5.5 

2 0.826 0.871 0.56 log Kp = -1.49 + 0.62 log kw, pH 5.5 - 0.069 Atoms 

3 0.722 0.787 0.66 log Kp = -2.25 + 0.22 log kw, pH 5.5 - 0.052 Atoms + 0.46 Virtual log P 

4 0.699 0.774 0.69 log Kp = -1.86 + 0.26 log kw, pH 5.5 - 0.051 Atoms + 0.37 Virtual log P - 0.22 HbDon 

5 0.685 0.777 0.70 log Kp = -2.05 + 0.23 log kw, pH 5.5 - 0.048 Atoms + 0.30 Virtual log P - 0.26 HbDon + 0.16 Lipole (Broto)  

 15 

Table S12. The best MLR models with the retention factors from 40% v/v ACN at pH 7 and the Vega ZZ descriptors (n = 56). 16 

Nr RMSEC RMSECV r² Equation 

1 1.229 1.269 0.04 log Kp = -2.67 + 0.49 log k0.40, pH 7 

2 0.962 1.011 0.41 log Kp = -1.29 + 0.30 log k0.40, pH 7 - 0.010 Melting point 

3 0.729 0.788 0.66 log Kp = -1.72 - 0.055 log k0.40, pH 7  - 0.81 Gyration radius + 0.74 Virtual log P 

4 0.702 0.777 0.69 log Kp = -1.71 - 0.097 log k0.40, pH 7  - 0.58 Gyration radius + 0.65 Virtual log P - 0.0038 Melting point 

5 0.697 0.786 0.69 log Kp = -2.28 + 0.048 log k0.40, pH 7 - 0.039 Atoms + 0.43 Virtual log P - 0.24 HbDon + 0.18 Lipole (Broto)  

 17 

Table S13. The best MLR models with the retention factors from 35% v/v ACN at pH 7 and the Vega ZZ descriptors (n = 56). 18 

Nr RMSEC RMSECV r² Equation 

1 1.229 1.267 0.04 log Kp = -2.75 + 0.46 log k0.35, pH 7 

2 0.959 1.007 0.41 log Kp = -1.34 + 0.31 log k0.35, pH 7 - 0.010 Melting point 

3 0.729 0.787 0.66 log Kp = -1.73 - 0.082 log k0.35, pH 7 - 0.80 Gyration radius +  0.74 Virtual log P 

4 0.701 0.777 0.69 log Kp = -1.71 - 0.11 log k0.35, pH 7 - 0.58 Gyration radius + 0.65 Virtual log P -  0.0038 Melting point 

5 0.697 0.786 0.69 log Kp = -2.29 + 0.048 log k0.35, pH 7 - 0.039 Atoms + 0.42 Virtual log P - 0.24 HbDon + 0.18 Lipole (Broto)  

  19 
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Table S14. The best MLR models with the retention factors from 30% v/v ACN at pH 7 and the Vega ZZ descriptors (n = 55). 20 

Nr RMSEC RMSECV r² Equation 

1 1.239 1.280 0.02 log Kp = -2.75 + 0.30 log k0.30, pH 7 

2 0.945 0.988 0.43 log Kp = -1.12 + 0.71 log k0.30, pH 7 - 0.055 Atoms 

3 0.726 0.784 0.66 log Kp = -1.60 - 0.14 log k0.30, pH 7 - 0.83 Gyration radius + 0.73 Virtual log P 

4 0.703 0.783 0.68 log Kp = -1.61 - 0.13 log k0.30, pH 7 - 0.62 Gyration radius + 0.65 Virtual log P - 0.0034 Melting point 

5 0.703 0.798 0.68 log Kp = -2.27 + 0.049 log k0.30, pH 7 - 0.040 Atoms + 0.42 Virtual log P - 0.23 HbDon + 0.17 Lipole (Broto)  

 21 

Table S15. The best MLR models with the retention factors from 25% v/v ACN at pH 7 and the Vega ZZ descriptors (n = 55). 22 

Nr RMSEC RMSECV r² Equation 

1 1.239 1.278 0.02 log Kp = -2.79 + 0.25 log k0.25, pH 7 

2 0.901 0.938 0.48 log Kp = -1.12 + 0.77 log k0.25, pH 7 - 0.061 Atoms 

3 0.729 0.784 0.66 log Kp = -1.56 - 0.014 log k0.25, pH 7 - 0.84 Gyration radius + 0.71 Virtual log P 

4 0.706 0.783 0.68 log Kp = -1.56 + 0.0057 log k0.25, pH 7 - 0.63 Gyration radius + 0.63 Virtual log P -  0.0035 Melting point 

5 0.697 0.788 0.69 log Kp = -2.19 + 0.17 log k0.25, pH 7 - 0.043 Atoms + 0.39 Virtual log P - 0.22 HbDon + 0.16 Lipole (Broto)  

 23 

Table S16. The best MLR models with the extrapolated retention factors (log kw) at pH 7 and the Vega ZZ descriptors (n = 56). 24 

Nr RMSEC RMSECV r² Equation 

1 1.229 1.268 0.04 log Kp = -2.95 + 0.22 log kw, pH 7 

2 0.897 0.940 0.49 log Kp = -1.50 + 0.57 log kw, pH 7 - 0.060 Atoms 

3 0.724 0.782 0.67 log Kp = -2.44 + 0.17 log kw, pH 7 - 0.047 Atoms + 0.53 Virtual log P 

4 0.703 0.770 0.68 log Kp = -2.06 + 0.17 log kw, pH 7 - 0.046 Atoms + 0.45 Virtual log P - 0.20 HbDon 

5 0.685 0.769 0.70 log Kp = -2.21 + 0.17 log kw, pH 7 - 0.044 Atoms + 0.35 Virtual log P - 0.24 HbDon + 0.18 Lipole (Broto) 
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Table S17. The best PLS models combining retention factors with the E-Dragon descriptors. 26 

 % ACN PLS factors RMSEC RMSECV r² n 

pH 5.5 

45 6 0.670 0.888 0.72 56 

40 6 0.670 0.888 0.72 56 

35 6 0.670 0.888 0.72 56 

30 6 0.670 0.888 0.72 56 

25 6 0.670 0.888 0.72 56 

0 6 0.670 0.887 0.72 56 

pH 7 

40 6 0.672 0.871 0.72 56 

35 6 0.672 0.871 0.72 56 

30 6 0.675 0.888 0.72 55 

25 6 0.675 0.888 0.72 55 

0 6 0.672 0.870 0.72 56 
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Table S18. The best PLS models combining retention factors with the Vega ZZ descriptors. 28 

 % ACN PLS factors RMSEC RMSECV r² n 

pH 5.5 

45 5 0.736 0.832 0.65 56 

40 6 0.699 0.811 0.69 56 

35 5 0.732 0.862 0.66 56 

30 5 0.732 0.832 0.66 56 

25 6 0.695 0.825 0.69 56 

0 5 0.725 0.803 0.66 56 

pH 7 

40 5 0.760 0.825 0.63 56 

35 5 0.760 0.809 0.63 56 

30 5 0.740 0.861 0.65 55 

25 6 0.698 0.834 0.69 55 

0 6 0.701 0.818 0.69 56 
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