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ABSTRACT 30 

 31 

Study question: 32 

Does the presence of SNPs in FSHR and/or FSHB influence ovarian response in predicted 33 

normal responders treated with rFSH? 34 

 35 

Summary answer: 36 

The presence of FSHR SNPs (rs6165, rs6166, rs1394205) has a statistically significant impact 37 

in ovarian response, although this effect is of minimal clinical relevance in predicted normal 38 

responders treated with a fixed dose of 150IU rFSH. 39 

 40 

What is known already: 41 

Ovarian reserve markers have been a breakthrough in response prediction following ovarian 42 

stimulation. However, a significant percentage of patients show a disproportionate lower 43 

ovarian response, as compared with their actual ovarian reserve. Studies on pharmacogenetics 44 

have demonstrated a relationship between FSHR or FSHB genotyping and drug response, 45 

suggesting a potential effect of individual genetic variability on ovarian stimulation. However, 46 

evidence from these studies is inconsistent, due to the inclusion of patients with variable ovarian 47 

reserve, use of different starting gonadotropin doses and allowance for dose adjustments during 48 

treatment. This highlights the necessity of a well-controlled prospective study, in a homogenous 49 

population treated with the same fixed protocol. 50 

 51 

Study design, size, duration: 52 

We conducted a multicenter multinational prospective study, including 368 patients from 53 

Vietnam, Belgium and Spain (168 from Europe and 200 from Asia), from November 2016 until 54 

June 2019. All patients underwent ovarian stimulation followed by oocyte retrieval in an 55 

antagonist protocol with fixed daily dose of 150IU rFSH until triggering. Blood sampling and 56 



 

DNA extraction was performed prior to oocyte retrieval, followed by genotyping of 4 SNPs 57 

from FSHR (rs6165, rs6166, rs1394205) and FSHB (rs10835638). 58 

 59 

Participants/materials, setting, methods: 60 

Eligible were predicted normal responder women <38 years old undergoing their first or 61 

second ovarian stimulation cycle. Laboratory staff and clinicians were blinded to the clinical 62 

results and genotyping respectively. The prevalence of hypo-responders, the number of oocytes 63 

retrieved, the follicular output rate (FORT) and the follicle to oocyte index (FOI) were 64 

compared between different FSHR and FSHB SNPs genotypes.  65 

 66 

Main results and the role of chance: 67 

The prevalence of derived allele homozygous SNPs in the FSHR was: rs6166 (genotype G/G) 68 

15.8%, rs6165 (genotype G/G) 34.8% and rs1394205 (genotype A/A) 14.1%, with significant 69 

differences between Caucasian and Asian women (p<0.001). FSHB variant rs10835638 (c.-211 70 

G>T) was very rare (0.5%). 71 

Genetic model analysis revealed that the presence of the G allele in FSHR variant rs6166 72 

resulted in less oocytes retrieved when compared to the AA genotype (13.54 ± 0.46 vs. 14.81 73 

± 0.61, EMD -1.47 (95%CI -2.82 - -0.11)). In FSHR variant rs1394205, a significantly lower 74 

number of oocytes was retrieved in patients with an A allele when compared to G/G (13.33 ± 75 

0.41 vs. 15.06 ± 0.68, EMD -1.69 (95%CI -3.06 - -0.31)). A significantly higher prevalence of 76 

hypo-responders was found in patients with the genotype A/G for FSHR variant rs6166 (55.9%, 77 

n=57) when compared to A/A (28.4%, n=29), ORadj 1.87 (95%CI 1.08-3.24). No significant 78 

differences were found regarding the FORT across the genotypes for FSHR variants rs6166, 79 

rs6165 or rs1394205. Regarding the FOI, the presence of the G allele for FSHR variant rs6166 80 

resulted in a lower FOI when compared to the A/A genotype, EMD -13.47 (95%CI -22.69 - -81 

4.24). Regarding FSHR variant rs6165, a lower FOI was reported for genotype A/G (79.75 ± 82 

3.35) when compared to genotype A/A (92.08 ± 6.23), EMD -13.81 (95%CI -25.41 - -2.21). 83 

 84 



 

Limitations, reasons for caution: 85 

The study was performed in relatively young women with normal ovarian reserve to eliminate 86 

biases related to age-related fertility decline; thus, caution is needed when extrapolating results 87 

to older populations. In addition, no analysis was performed for FSHB variant rs10835638 due 88 

to the very low prevalence of the genotype T/T (n=2). 89 

 90 

Wider implications of the findings: 91 

Based on our results, genotyping FSHR SNPs rs6165, rs6166, rs1394205 and FSHB SNP 92 

rs10835638 prior to initiating an ovarian stimulation with rFSH in predicted normal responders 93 

should not be recommended taking into account the minimal clinical impact of such 94 

information in this population. Future research may focus on other populations and other genes 95 

related to folliculogenesis or steroidogenesis. 96 

 97 
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INTRODUCTION 105 

Introduction of ovarian reserve markers in everyday clinical practice has been a breakthrough 106 

in modern assisted reproduction techniques (ART), not only because they allowed a proper 107 

prediction of response following ovarian stimulation (Polyzos et al., 2012, 2013b, 2013a; Broer 108 

et al., 2013, 2014) but also because they have been the first step towards a patient-tailored 109 

individualized ovarian stimulation (La Marca and Sunkara, 2014). This personalized approach 110 

appears to be more relevant than ever today, considering that the number of oocytes retrieved 111 

following stimulation for IVF/ICSI is strongly associated with patients’ safety, namely ovarian 112 

hyperstimulation syndrome (OHSS) incidence (Schirmer et al., 2020), and reproductive 113 

outcomes such as live birth (Sunkara et al., 2011) and cumulative live birth rates (Drakopoulos 114 

et al., 2016; Polyzos et al., 2018).   115 

Nevertheless, despite the excellent ability of ovarian reserve markers to predict both low 116 

(Nelson, 2013) and high (Broer et al., 2011) responses to stimulation, their prognostic 117 

performance, in several cases, is far from perfect. Despite the pharmacological advances in 118 

ART (Racca et al., 2020), a significant percentage of patients demonstrates a disproportionate 119 

lower ovarian response to stimulation, as compared with their actual ovarian reserve (Polyzos 120 

and Sunkara, 2015; Esteves et al., 2018). This highlights that ovarian reserve markers only 121 

reflect the number of antral and pre-antral follicles in the ovary and not their sensitivity to 122 

ovarian stimulation.    123 

Over the years, significant research has been conducted in an attempt to identify other 124 

biomarkers that could be associated with ovarian sensitivity to gonadotropins. The vast bulk of 125 

evidence focused on the identification of biomarkers associated with the Follicle Stimulating 126 

Hormone (FSH) and its receptor (FSHR) which are two essential molecules for ovarian 127 

stimulation and function. Early reports have shown that common single nucleotide 128 

polymorphisms (SNPs) in the FSHR gene have been associated with FSH consumption (Perez 129 

Mayorga et al., 2000) whereas others have shown that variants in the FSHR gene may also  130 

influence the response to ovarian stimulation in terms of duration of stimulation and number of 131 

MII oocytes retrieved after IVF treatment (Alviggi et al., 2018b). 132 



 

The FSHβ-subunit confers hormone-specific biological properties and is encoded by the FSHB 133 

gene. The effect of the SNP within the FSHB promoter region c.-211G>T (rs10835638) has 134 

also been studied in ART patients, with higher FSH levels in the follicular phase and decreased 135 

progesterone production in the luteal phase being reported in c.- 211G>T female carriers 136 

(Schuring et al., 2013), as well as a lower response to ovarian stimulation in patients carrying 137 

the GT genotype when compared to the GG (Trevisan et al., 2019). 138 

Despite the fact that these studies demonstrated a relationship between FSHR or FSHB 139 

genotypes and ovarian response, suggesting a potential effect of individual genetic variability, 140 

evidence is inconsistent. This is mainly due to the heterogeneity of the inclusion criteria across 141 

the studies, involving women with variable ovarian reserve, use of different gonadotropin doses 142 

and allowance for dose adjustments during treatment. Furthermore, the effect size of this 143 

genetic variability appears to be rather small, given that the different variants in the 144 

FSHR/FSHB genes have demonstrated only a moderate reduction in ovarian response to 145 

stimulation (Casarini and Simoni, 2014; Tang et al., 2015).  146 

Taking all the above into consideration we set out to perform a controlled multicenter 147 

multinational prospective study on FSHR or FSHB variants with adequate sample size and a 148 

fixed gonadotropin dose during the whole stimulation phase in order to evaluate the actual 149 

impact of the presence of FSHR or FSHB SNPs on ovarian response. 150 

 151 

 152 

MATERIALS AND METHODS 153 

 154 

Study design & setting 155 

This is a prospective non-interventional study including patients of Caucasian and Asian ethnic 156 

origin undergoing ovarian stimulation for in vitro fertilization (IVF)/ intracytoplasmic sperm 157 

injection (ICSI) between November 2016 and June 2019. Patients were recruited in 4 158 

University affiliated tertiary IVF units in Spain, Belgium and Vietnam (Dexeus University 159 

Hospital Barcelona, SPAIN; Centre for Reproductive Medicine, UZ Brussel, BELGIUM; 160 



 

Department of Obstetrics and Gynecology, University of Medicine and Pharmacy at HCMC, 161 

Ho Chi Minh City, VIETNAM; IVFMD, My Duc Hospital,  Ho Chi Minh City, VIETNAM).  162 

The Ethics Committee of the hospitals involved approved the study and all participants gave 163 

their written informed consent for blood sampling and genetic investigations for this specific 164 

target. 165 

 166 

Patient selection criteria 167 

The study included patients <38 years old undergoing their 1st/2nd ovarian stimulation cycle 168 

with a predicted normal response, as defined by normal ovarian reserve markers (antimullerian 169 

hormone (AMH) or antral follicle count (AFC)). Patients were considered ineligible if they had 170 

an AFC <9, AMH < 1.1 ng/ml or polycystic ovarian syndrome (PCOS) according to the 171 

Rotterdam criteria (Teede et al., 2018). Furthermore, patients with untreated endocrine 172 

abnormalities or undergoing in-vitro maturation were also excluded. 173 

 174 

Stimulation protocol 175 

All patients underwent ovarian stimulation followed by oocyte retrieval in a Gonadotrophin-176 

releasing hormone (GnRH) antagonist protocol. All women were treated with a fixed daily 177 

subcutaneous (SC) dose of 150IU rFSH initiated either on cycle day 2 or 3, or 5 days following 178 

discontinuation of an oral contraceptive pill (Montoya-Botero et al., 2020), followed by a daily 179 

dose of 0.25 mg of GnRH antagonist in a fixed protocol starting 6 days later. No dose 180 

adjustments were allowed until final oocyte maturation. As soon as 3 follicles ≥ 17-18 mm 181 

diameter were observed by ultrasound, human chorionic gonadotropin (hCG 5000/10000 IU or 182 

rhCG 250mg) was administered the same day or the day thereafter to induce final oocyte 183 

maturation. In case of excessive ovarian response (≥17 follicles >11mm on the day of final 184 

oocyte maturation), triggering with a GnRH agonist (triptorelin 0.2mg) was used for safety 185 

reasons. Oocyte retrieval was performed 34-36h thereafter. 186 

 187 



 

Blood sampling and DNA sequencing 188 

Blood sampling and DNA extraction was performed for all patients prior to oocyte retrieval 189 

and laboratory staff and clinicians were blinded to the clinical results and genotyping. Blood 190 

sampling was performed in accordance with the treatment protocol and no extra venepunctures 191 

were performed beyond the standard treatment.  192 

All blood samples were collected and stored at −80°C until the time of genotyping. Genomic 193 

DNA was extracted from peripheral leucocytes using the DNeasy blood and tissue extraction 194 

kit of Qiagen. Alternatively, conventional phenol/chloroform extraction, followed by ethanol 195 

precipitation was used.  196 

The genotyping of the SNPs was carried out using the predesigned TaqMan SNP assays of Life 197 

Technologies for three SNPs from FSHR (c.919A>G (rs6165, in the National Center for 198 

Biotechnology Information (NCBI) SNPs database); c.2039A>G (rs6166); c.-29G>A 199 

(rs1394205)) and one SNP from  FSHB (c.-211G>T (rs10835638)). 200 

 201 

Outcome measures 202 

The primary outcome measure of the current study was to determine the differences in ovarian 203 

response to stimulation according to different genotypes in FSHR and FSHB genes. Therefore, 204 

we compared, for each polymorphism, the patients’ genotypes according to the following 205 

outcomes: 206 

• Percentage of patients categorized as hypo-responders, defined as a total number of 207 

oocytes retrieved < 10 (Polyzos and Sunkara, 2015) 208 

• Total number of oocytes retrieved 209 

• Follicular output rate (FORT), defined as the ratio between ratio between the number 210 

of follicles that reached pre-ovulatory maturation in response to COS (16-22 mm) and 211 

the number of antral follicles available at the start of stimulation (Genro et al., 2011) 212 



 

• Follicle to Oocyte Index (FOI), defined as the ratio between the number of oocytes 213 

recovered in the end of COS and the number of antral follicles available at the start of 214 

stimulation (Alviggi et al., 2018a) 215 

 216 

Sample size calculation 217 

The sample size was calculated in order to estimate the common odds ratio (based on 218 

the Cochran-Mantel-Haenszel test (CMH)) for a hypo-response (<10 oocytes) associated with 219 

the presence of the FSHR SNP in position rs6166 c.2039A > G (rs6166), controlling by the 220 

origin of the patient. The study hypothesis was that the presence of c.2039A > G (rs6166) in 221 

homozygous state (GG) is associated with significantly higher incidence of hypo-response (<10 222 

oocytes) in women with predicted normal ovarian response.  223 

In this context, we calculated by using a two-sided test with a significance level set to 0.05 and 224 

power set to 0.8, that at least 365 patients would be required, 167 from Europe and 198 from 225 

Asia. The estimated proportions of hypo-response to detect were 55% in the 2039A > G 226 

(rs6166) in homozygous state (GG) and 35% in the AA genotype, respectively, and was 227 

calculated taking into account the different prevalence of rs6166 SNP among Asian (13.3%) 228 

and Caucasian (European) populations (22.7%). 229 

 230 

Statistical methods for analysis  231 

Continuous variables were described as means and standard deviations (SD), meanwhile 232 

categorical or nominal variables were described by percentages and frequencies. 233 

The Hardy-Weinberg (H-W) Equilibrium for each polymorphism was tested using the Chi-234 

Square test. 235 

The analysis of the association between the different polymorphisms inheritance models and 236 

outcomes was evaluated using multivariable models. When the outcome was categorical a 237 

logistic model was used, and when the outcomes were continuous a linear model was used. In 238 

both cases, each model was adjusted by patient age, AMH levels, days of stimulation, and 239 

continent (Asia vs. Europe). 240 



 

The polymorphisms inheritance genetic models used were: co-dominant (AA vs. aa and AA vs. 241 

Aa), dominant (AA vs. Aa+aa), recessive (aa vs. Aa+AA) and additive (each copy of a modifies 242 

the risk in an additive form 2aa+Aa vs. AA), with A being the ancestral allele and a the derived 243 

allele (Attia et al., 2003; Thakkinstian et al., 2005). 244 

All analyses were performed using R software (R Core Team, 2019). 245 

 246 

RESULTS 247 

 248 

Patients´ baseline characteristics 249 

Overall, 368 patients (168 Caucasian from Europe and 200 Asian from Vietnam) were included 250 

in the study and genotyped for the 3 variants in the FSHR gene (rs6165, rs6166 and rs1394205) 251 

and one variant in the FSHB gene (rs10835638). 252 

Included patients had a mean age of 30.49±3.64 years, a body mass index (BMI) of 21.26± 2.23 253 

Kg/m2, a basal AMH of 3.8±1.84 ng/ml and an AFC of 17.16±5.31. Most of the patients were 254 

nulliparous (90,2%). The causes of infertility are displayed in Table I. 255 

 256 

Genotyping and Polymorphisms analysis 257 

The distribution of the studied SNPs across the different populations is described in Figure 1. 258 

Comparison between Caucasian and Asian women has demonstrated significant differences, 259 

with FSHR rs6166 G/G being more frequent in Caucasian than in Asian women (23.2% vs 260 

9.5%, p<0.001), and FSHR rs6165 G/G and FSHR rs1394205 A/A being more frequent in 261 

Asian than in Caucasian women (44.5% vs 23.2% ,p<0.001, and 19.5% vs 7.7%, p<0.001, 262 

respectively).  263 

Regarding the variant FSHB rs10835638 (c.-211 G>T) the presence of homozygous T/T was 264 

very rare, with a prevalence of 0.5% among the study population, whereas none of the Asian 265 

patients presented this genotype. Based on the scarcity of homozygous T/T or heterozygous 266 

patients for this variant, it has not been included in any of the analysis for the reported outcome 267 

measures.  268 



 

 269 

Association between the different genotypes and ovarian response  270 

Ovarian response category 271 

Ovarian response was categorized in hypo-response (< 10 oocytes retrieved) and optimal (≥ 10 272 

oocytes retrieved). Among the patients included, 102 (27.7%) were hypo-responders, while 266 273 

(72.3%) presented an optimal response. Univariate analysis revealed no significant differences 274 

regarding the prevalence of hypo-response according to the different genotypes of FSHR 275 

rs6166, rs6165 and rs1394205 (p=0.096, p=0.145 and p=0.830, respectively). Also, the 276 

prevalence of hypo-responders was not significantly different between the 3 variants when data 277 

were analysed individually per continent (Figure 2). 278 

Genetic model analysis is displayed in Table II. Analysis of the co-dominant model for FSHR 279 

variant rs6166 revealed a significantly higher prevalence of hypo-response in patients with the 280 

genotype A/G (55.9%, n=57) when compared to A/A (28.4%, n=29), ORadj 1.87 (95%CI 1.08-281 

3.24). No significant differences were observed in ovarian response categories according to 282 

FSHR rs6165 nor rs1394205 genotypes. 283 

 284 

Number of oocytes retrieved  285 

Univariate analysis of the number of oocytes retrieved according to the genotypes of FSHR 286 

rs6166, rs6165 and rs1394205 is presented in Figure 3a. 287 

Genetic model analysis revealed a statistically significant difference in both the co-dominant 288 

and dominant models for variants FSHR rs6166 and rs1394205 (Table III). Regarding the 289 

FSHR variant rs6166, the co-dominant model revealed a lower number of oocytes retrieved for 290 

the genotype A/G (13.49 ± 0.55) when compared to A/A (14.81 ± 0.61), estimated mean 291 

difference (EMD) -1.59 (95%CI -3.01 - -0.16). This was confirmed in the dominant model, in 292 

which the presence of the G allele in G/G and A/G genotypes resulted in less oocytes retrieved 293 

when compared to the AA genotype (13.54 ± 0.46 vs. 14.81 ± 0.61, EMD -1.47 (95%CI -2.82 294 

- -0.11)). Analysis of the FSHR variant rs1394205 has also revealed a significantly lower 295 

number of oocytes retrieved for the genotype G/A (13.24 ± 0.45) when compared to G/G (15.06 296 



 

± 0.68) in the co-dominant model, EMD -1.62 (95%CI -3.06 - -0.17).  The dominant model 297 

confirmed a significantly lower number of oocytes retrieved in genotypes G/A and A/A when 298 

compared to G/G (13.33 ± 0.41 vs. 15.06 ± 0.68, EMD -1.69 (95%CI -3.06 - -0.31)). 299 

No significant difference was found in the number of oocytes retrieved according to variant 300 

FSHR rs6165 genotype. Also, a similar oocyte yield was found when the 3 variants were 301 

compared individually per continent (Suppl. Figure 1a). 302 

 303 

FORT and FOI  304 

Univariate analysis of the FORT and FOI according to the genotypes of FSHR variants rs6166, 305 

rs6165 and rs1394205 is displayed in Figures 3b and 3c, respectively. 306 

Genetic models’ analysis revealed no significant differences regarding the FORT across the 307 

genotypes for FSHR variants rs6166, rs6165 or rs1394205 (Table IV). 308 

Regarding the FOI, analysis of the co-dominant model for FSHR variant rs6166 revealed a 309 

significantly lower FOI for genotype A/G (79.48 ± 3.11) than for genotype A/A (92.79 ± 4.33), 310 

EMD -14.48 (95%CI -24.17 - -4.79) (Table V). In the dominant model, the presence of the G 311 

allele resulted in a combined lower FOI for the A/G and G/G genotypes (80.53 ± 2.65) when 312 

compared to the A/A genotype, EMD -13.47 (95%CI -22.69 - -4.24). Also, the additive model 313 

confirmed that each copy of the G allele reduced the FOI with an EMD -7.36 (95%CI -14.03 - 314 

-0.69). 315 

Regarding FSHR variant rs6165, the co-dominant model revealed a lower FOI for genotype 316 

A/G 79.75 ± 3.35) than for genotype A/A (92.08 ± 6.23), EMD -13.81 (95%CI -25.41 - -2.21). 317 

No statistically significant difference was observed for FOI according to FSHR variant 318 

rs1394205 genotypes. 319 

When the 3 variants were compared either in Asian or European patients, no significant 320 

difference was found concerning FORT nor FOI (Suppl. Figures 1b and 1c, respectively). 321 

 322 

DISCUSSION 323 



 

According to our results, FSHR SNPs are associated with a statistically significant reduction in 324 

ovarian response to COS. However, this effect is of minor clinical relevance, since it resulted 325 

in only 1-2 less oocytes retrieved in a population of predicted normal responders. To our 326 

knowledge, this is the first prospective study on FSHR SNPs in which a fixed dose of 150 UI 327 

rFSH was administered to all patients throughout ovarian stimulation, with no dose-adjustments 328 

allowed, in order to provide an unbiased interpretation of the actual effect of the presence of 329 

these SNPs on ovarian response to stimulation. Furthermore, this is the first study to include a 330 

homogeneous cohort of good prognosis patients with normal ovarian reserve, involving 2 331 

different ethnic populations in three different countries (Spain, Belgium and Vietnam).  332 

The current study confirms previous reports demonstrating that the prevalence of SNPs in the 333 

FSHR is different between different ethnic groups and shows that the prevalence of the 334 

genotype T/T of the variant rs10835638 in the FSHβ gene is extremely low in both Caucasian 335 

and Asian populations, as previously reported (Simoni and Casarini, 2014). 336 

With regards to the ovarian response, we found a statistically significant lower number of 337 

oocytes retrieved in heterozygous patients for the FSHR variants rs6166 and rs1394205, a 338 

significantly higher rate of hypo-response in heterozygous patients for the FSHR variant rs6166 339 

and a significantly lower FOI in heterozygous patients for the FSHR variants rs6166 and 340 

rs6165. Although homozygous patients for the minor allele of each variant also demonstrated 341 

a higher rate of hypo-response and a lower number of oocytes retrieved as compared to the 342 

major allele, results did not reach statistical significance. However, this does not mean the lack 343 

of effect of the presence of the allele, but it is probably associated with the low number of 344 

patients with these genotypes. 345 

Several studies have been published up to date regarding the effect of FSHR polymorphisms 346 

on ovarian response yielding conflicting results. Perez Mayorga et al. first reported a 347 

significantly higher basal FSH and increased FSH requirement in patients with the genotype 348 

G/G for the variant rs6166 (Perez Mayorga et al., 2000). Since then, multiple original studies 349 

and meta-analysis have reported a higher consumption of FSH and reduced ovarian response 350 

during COS in patients with FSHR rs6166 and rs6165 G/G genotypes and rs1394205 A/A 351 



 

genotype (Achrekar et al., 2009; La Marca et al., 2013; Trevisan et al., 2014; Alviggi et al., 352 

2018b; König et al., 2019; Song et al., 2019). However, most of those studies included a small 353 

number of patients and heterogeneous treatment protocols, with different gonadotropin doses 354 

or with dose adjustments during treatment. Although this definitely reflects clinical practice, it 355 

doesn’t allow a proper estimation of the true effect of SNPs on ovarian response.  356 

The clinical relevance of our study relies on the fact that we were able to demonstrate a 357 

statistically significant impact of FSHR polymorphisms in an ethnically diverse population of 358 

predicted normal responders treated with a fixed dose of 150IU rFSH. However, this difference 359 

is of minimal clinical relevance, since it resulted in a variation of 1-2 oocytes in a population 360 

of normal responders. This finding is in line with two recent meta-analysis that reported a 361 

similar mean difference in the number of oocytes retrieved (Tang et al., 2015; Alviggi et al., 362 

2018b).  363 

The clinical implication of our findings is that FSHR polymorphisms should not be routinely 364 

analyzed in predicted normal responders, given that such a small difference in number of 365 

oocytes, albeit statistically significant, has minimal clinical relevance in a population of young 366 

normal responders with a mean number of approximately 14 oocytes retrieved. Our findings 367 

and conclusions do not mean that FSHR SNPs do not have a role in the future of 368 

pharmacogenetics in ART; on the contrary, they may guide research towards different 369 

directions in an attempt to find clinically meaningful differences.  In this context, future 370 

research is needed and should focus on other study populations such as hypo-responders, in 371 

which an increase of 1 or 2 oocytes recovered does have a clinically significant  impact on ART 372 

outcomes (Polyzos and Popovic-Todorovic, 2020). Moreover, different SNPs or combined 373 

SNPs in other genes involved in folliculogenesis, steroidogenesis and ovarian response should 374 

be analyzed.  375 

The major strengths of the current study reside in three main factors: a. the use of only one type 376 

of gonadotropin (rFSH) and the maintenance of the same fixed dose of 150IU throughout the 377 

whole stimulation phase; b. the strict inclusion criteria involving a good prognosis 378 



 

homogeneous population selected based on ovarian reserve tests; c. the wide cover in the 379 

genetic sample, as it included Asian and Caucasian patients. 380 

Nonetheless, despite its strengths, our prospective study has several limitations. First of all, we 381 

included only young good prognosis patients with normal ovarian reserve in order to eliminate 382 

biases related to age-related fertility decline.  Although this was done because our aim was to 383 

identify a screening genetic biomarker that could be applied to all good prognosis patients in 384 

order to identify those needing a higher starting dose to avoid a hypo-response, caution is 385 

needed when extrapolating results to other populations, especially in women with worse 386 

prognosis. In addition, no analysis was performed for the variant in FSHB rs10835638 due the 387 

very low prevalence of homozygotes (n=2). Therefore, we cannot conclude about the effect of 388 

this variant on ovarian response. Still, its clinical significance appears to be minimal due to the 389 

low prevalence of the homozygous genotype.  390 

In conclusion, genotyping of FSHR SNPs rs6165, rs6166, rs1394205 or FSHB SNP rs10835638 391 

prior to initiating ovarian stimulation in predicted normal responders should not be routinely 392 

recommended taking into account the minimal clinical impact of such information in this 393 

population.  394 
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 626 

Table I. Causes of infertility  627 
 628 

 Male factor Idiopathic Tubal Others 

Europe 66 
(39.3%) 

64 
(38.1%) 

8 
(4.8%) 

30 
(17.9%) 

Asia 106 
(53%) 

35 
(17.5%) 

44 
(22%) 

15 
(7.5%) 

Total 172 
(46.7%) 

99 
(26.9%) 

52 
(14.1%) 

45 
(12.2%) 
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Table II. Association between FSHR polymorphisms and progesterone category.  637 

     

rs6166  

Model Genotype 
Normal  

(≤1.50 ng/ml) 
High  

(>1.50 ng/ml) OR (95% CI) 

Co-dominant 
A/A   1.00 
A/G   1.02 (0.54-1.91) 
G/G   0.71 (0.27-1.83) 

Dominant A/A   1.00 
A/G-G/G   0.95 (0.52-1.73) 

Recessive A/A-A/G   1.00 
G/G   0.70 (0.29-1.67) 

rs6165 

Model Genotype Normal  
(≤1.50 ng/ml) 

High  
(>1.50 ng/ml) 

OR (95% CI) 

Co-dominant 
A/A   1.00 
A/G   1.18 (0.56-2.46) 
G/G   00.9 (0.41-2.00) 

Dominant A/A   1.00 
A/G-G/G   1.05 (0.53-2.09) 

Recessive A/A-A/G   1.00 
G/G   0.81 (0.43-1.52) 

rs1394205  

Model Genotype Normal  
(≤1.50 ng/ml) 

High  
(>1.50 ng/ml) 

OR (95% CI) 

Co-dominant 
G/G   1.00 
A/G   1.13 (0.59-2.16) 
A/A   1.25 (0.51-3.06) 

Dominant G/G   1.00 
A/G-A/A   1.15 (0.63-2.14) 

Recessive G/G-A/G   1.00 
A/A   1.16 (0.52-2.61) 

 638 
 639 

 640 

 641 

 642 

 643 

 644 



 

Table IV. Association between FSHR polymorphisms and FORT. CI, confidence interval; 645 

EMD, estimated mean difference, SD, standard deviation.  646 

     
rs6166  

Model Genotype n Mean (SD) EMD (95% CI) 

Co-dominant 
A/A 128 70.6 (4.3) 0.00 
A/G 155 66.59 (2.48) -4.62 (-13.36 - 4.12) 
G/G 46 59.98 (2.82) -10.28 (-23.05 - 2.49) 

Dominant 
A/A 128 70.6 (4.3) 0.00 

A/G-G/G 201 65.08 (2.03) -5.84 (-14.16 - 2.49) 

Recessive 
A/A-A/G 283 68.4 (2.37) 0.00 

G/G 46 59.98 (2.82) -7.64 (-19.39 - 4.11) 
Log-additive --- --- --- -5.01 (-10.99 - 0.98) 

rs6165 

Model Genotype n Mean (SD) EMD (95% CI) 

Co-dominant 
A/A 78 72.43 (6.73) 0.00 
A/G 134 66.35 (2.62) -6.52 (-16.97 - 3.93) 
G/G 117 64.76 (2.29) -6.02 (-17.00 - 4.97) 

Dominant A/A 78 72.43 (6.73) 0.00 
A/G-G/G 251 65.61 (1.76) -6.30 (-15.87 - 3.27) 

Recessive 
A/A-A/G 212 68.59 (2.98) 0.00 

G/G 117 64.76 (2.29) -1.85 (-10.59 - 6.88) 
Log-additive --- --- --- -2.77 (-8.22 - 2.67) 

rs1394205  

Model Genotype n Mean (SD) EMD (95% CI) 

Co-dominant 
G/G 124 65.75 (3.31) 0.00 
A/G 157 70.63 (3.29) 6.81 (-2.27 - 15.89) 
A/A 48 59.91 (3.72) -4.44 (-17.32 - 8.45) 

Dominant G/G 124 65.75 (3.31) 0.00 
A/G-A/A 205 68.12 (2.68) 4.39 (-4.34 - 13.12) 

Recessive G/G-A/G 281 68.47 (2.35) 0.00 
A/A 48 59.91 (3.72) -8.64 (-20.26 - 2.99) 

Log-additive --- --- --- -0.23 (-6.43 - 5.96) 
 647 
 648 

 649 

 650 

 651 

 652 



 

Table V. Association between FSHR polymorphisms and FOI. CI, confidence interval; EMD, 653 

estimated mean difference, SD, standard deviation. 654 

     

rs6166  

Model Genotype n Mean (SD) EMD (95% CI) 

Co-dominant 
A/A 128 92.79 (4.33) 0.00 
A/G 155 79.48 (3.11) -14.48 (-24.17 - -4.79) 
G/G 46 84.08 (4.89) -9.78 (-23.94 - 4.37) 

Dominant 
A/A 128 92.79 (4.33) 0.00 

A/G-G/G 201 80.53 (2.65) -13.47 (-22.69 - -4.24) 

Recessive 
A/A-A/G 283 85.5 (2.62) 0.00 

G/G 46 85.5 (2.62) -1.51 (-14.69 - 11.67) 
Log-additive --- --- --- -7.36 (-14.03 - -0.69) 

rs6165 

Model Genotype n Mean (SD) EMD (95% CI) 

Co-dominant 
A/A 78 92.08 (6.23) 0.00 
A/G 134 79.75 (3.35) -13.81 (-25.41 - -2.21) 
G/G 117 87.14 (3.4) -3.60 (-15.80 - 8.60) 

Dominant 
A/A 78 92.08 (6.23) 0.00 

A/G-G/G 251 83.2 (2.4) -9.37 (-20.05 - 1.32) 

Recessive 
A/G-A/A 212 84.29 (3.14) 0.00 

G/G 117 87.14 (3.4) 5.23 (-4.54 - 14.99) 
Log-additive --- --- --- -0.99 (-7.09 - 5.10) 

rs1394205  

Model Genotype n Mean (SD) EMD (95% CI) 

Co-dominant 
G/G 124 88.72 (4.03) 0.00 
A/G 157 85.3 (3.44) -1.35 (-11.52 - 8.83) 
A/A 48 76.48 (5.02) -12.33 (-26.77 - 2.11) 

Dominant 
G/G 124 88.72 (4.03) 0.00 

A/G-A/A 205 83.24 (2.89) -3.71 (-13.48 - 6.06) 

Recessive 
G/G-A/G 281 86.81 (2.61) 0.00 

A/A 48 76.48 (5.02) -11.50 (-24.49 - 1.49) 
Log-additive --- --- --- -5.11 (-12.01 - 1.80) 

 655 
 656 


