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ABSTRACT 20 

Cryopreservation of immature testicular tissue is an experimental strategy for the preservation 21 

of fertility in prepubertal boys that will be subjected to a gonadotoxic onset, as is the case of 22 

oncologic patients. Therefore, the objective of this study was to assess the impact of 23 

chemotherapeutic treatments on the testicular histologic phenotype in prepubertal patients. A 24 

total of 56 testicular tissue samples from pediatric patients between 0 and 16 years old (28 25 

with at least one previous chemotherapeutic onset and 28 untreated controls) were 26 

histologically analyzed and age-matched compared. At least two 5µm sections from testis per 27 

patient separated by a distance of 100 µm were immunostained for the germ cell marker 28 

VASA, the spermatogonial markers UTF1, PLZF, UCHL1 and SALL4, the marker for proliferative 29 

cells KI67, and the Sertoli cell marker SOX9. The percentage of tubule cross-sections positive 30 

for each marker and the number of positive cells per tubule cross-section were determined 31 

and association with the cumulative dose received of each chemotherapeutic drug was 32 

statistically assessed. Results indicated that alkylating agents cyclophosphamide and 33 

ifosfamide, but also the antimetabolite cytarabine and asparaginase were associated with a 34 

decreased percentage of positive tubules and a lower number of positive cells per tubule for 35 

the analyzed markers. Our results provide new evidences of the potential of chemotherapeutic 36 

agents previously considered to have low gonadotoxic effects such as cytarabine and 37 

asparaginase to trigger a severe testicular phenotype, hampering the potential success of 38 

future fertility restoration in experimental programs of fertility preservation in prepubertal 39 

boys.   40 

 41 

Key words: Prepubertal patients; Fertility preservation; Testicular tissue; Chemotherapy; 42 

Gonadotoxicity. 43 
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 69 

INTRODUCTION 70 

Their high mitotic rate makes male germ cells particularly susceptible to injury by cytotoxic 71 

drugs commonly employed to treat cancer patients [1, 2]. As a consequence, recent reports 72 

indicate that approximately 30% of patients exposed to chemotherapy may be in risk of 73 

suffering permanent infertility [3]. Therefore, fertility preservation is indicated for patients 74 

that will be subjected to potentially gonadotoxic treatments such as radiotherapy or 75 

chemotherapy. However, although sperm banking is the gold standard to preserve fertility in 76 

adult men [4], prepubertal boys unable to produce sperm for freezing before starting a 77 

gonadotoxic treatment cannot benefit. Nonetheless, numerous studies in animal models 78 

indicate that spermatogonial stem cells that reside within the prepubertal testes are able to 79 

restore spermatogenesis upon their transplantation back into the testes once the gonadotoxic 80 

treatment is finished [5-12]. Based on this, experimental clinical protocols to preserve the 81 

fertility of prepubertal boys are focused on the extraction and cryopreservation of a testicular 82 

biopsy before their exposure to a potentially gonadotoxic onset [13-22], with the aim of using 83 

this tissue to restore the fertility of patients in the future.  84 

Since cryopreservation of testicular tissue is an experimental procedure, strict selection criteria 85 

of patients is mainly based on their survival prognosis and the estimated gonadotoxic damage 86 

of the chemotherapeutic drugs that will receive [16, 23, 24]. In this regard, it is known that 87 

especially alkylating drugs such as busulfan and cyclophosphamide, have a severe impact on 88 

sperm counts [25]. In a systematic literature review, the International Late Effects of Childhood 89 

Cancer Guideline Harmonization Group found evidence for adverse effects of 90 

cyclophosphamide, mechlorethamine and procarbazine on spermatogenesis [26]. Although 91 

there exist evidences that cyclophosphamide equivalent doses over 4000 mg/m2 are linked 92 

with azoospermia and oligozoospermia [27], a predictive threshold dose for impaired 93 
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spermatogenesis has resulted difficult to depict mainly due to the fact that alkylating agents 94 

are commonly used in combination with other agents in different chemotherapeutic protocols, 95 

which may have an additive adverse effect on spermatogenesis [26]. Moreover, the 96 

gonadotoxic effects of many chemotherapeutic drugs are not completely understood and, 97 

importantly, their impact in prepubertal patients comes from indirect data extrapolated from 98 

studies performed on adult men [16, 25]. In this regard, although recent reports have 99 

described how the administration of alkylating drugs can decrease the number of 100 

spermatogonia per tubule in prepubertal testicular biopsies as it does with sperm counts in 101 

adult men [28, 29], data regarding how other drugs commonly included in chemotherapeutic 102 

protocols affect the prepubertal testicular histology is extremely scarce. 103 

Therefore, considering that in many cases patients fulfill selection criteria to be offered 104 

testicular biopsy for cryopreservation after they have already started chemotherapeutic 105 

treatments [30], a better knowledge of the gonadotoxic effects of these drugs in the 106 

prepubertal testis is mandatory in order to establish clear criteria and timing to offer them this 107 

technique.  108 

Based on this background, in this study we aimed to assess the association between the 109 

histological phenotype of prepubertal testes from boys selected for fertility preservation and 110 

the cumulative dose for each individual chemotherapeutic drug that they have already 111 

received before testicular biopsy. For this, we analyzed the expresion profile of the germ cell 112 

marker VASA [31], the spermatogonial markers UTF1, UCHL1, SALL4 [32] and PLZF [33], the 113 

marker for proliferative cells KI67 [34], and the Sertoli cell marker SOX9 [32] in testicular 114 

biopsies from patients exposed to chemotherapy, and compared them to the expression of 115 

age-matched control biopsies without previous exposure to any gonadotoxic insult. This 116 

analysis led us to find that not only alkylating drugs but also previously considered low-117 

gonadotoxic drugs such as the antimetabolite cytarabine and asparaginase, can be associated 118 

with a decrease in the number of testicular germ cells.  119 
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 120 

MATERIALS AND METHODS 121 

Sample source: Samples used in this study were recruited at Hospital La Fe in Valencia (Spain) 122 

(32 samples), and UZ Brussel in Brussels (Belgium) (36 samples) after the approval by the 123 

respective Institutional Review Boards of Hospital La Fe (ref: 2013/0457) and UZ Brussel (ref: 124 

2000/149D and 2017/061) and the consentment of legal guardians of all patients recruited for 125 

fertility preservation to the use of samples employed for pathologyc diagnostic for research 126 

applications. Assessment of the pubertal stage of patients by Tanner stage evaluation was 127 

performed in all patients over 10 years old. Despite that in some cases of patients over 14 128 

Tanner stage indicated an advanced pubertal maturation, biopsy was performed due to several 129 

clinical reasons such as diagnostic purposes (different from this study), severe 130 

oligo/azoospermia, and psychologic or ethical impediments to obtain a sperm sample by 131 

masturbation or vibrostimulation. Therefore, testicular tissue samples from 68 pediatric 132 

patients between 0 and 16 years old that were subjected to a testicular biopsy for diagnostic 133 

or fertility preservation purposes were embedded in paraffin. Among recruited samples, 12 134 

were discarded due to either leukemic testicular infiltration or bad preservation of tissue 135 

histology, resulting in the analysis of a total of 56 samples for this study (Supplemental Table I). 136 

Histological evaluation: Tissue was fixed in 10% formaldehyde o/n at 4ºC, dehydrated, 137 

embedded in paraffin and sliced in 5µm sections. Subsequently, deparaffinized slides were 138 

subjected to hematoxylin-eosin staining and analyzed by pathologists to determine the overall 139 

status of the testicular histology of each patient.  140 

Immunostaining: Deparaffinized slides were subjected to antigen retrieval by treating them 141 

with 10mM citrate buffer pH6 for 20’ at 97ºC before a blocking step with phosphate buffered 142 

saline + 10% normal donkey serum + 1% bovine serum albumin + 0.1% Triton X-100 (all from 143 

Sigma-Aldrich) for one hour at room temperature. Incubation of primary antibodies was 144 
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carried out overnight at 4ºC (Supplemental Table II). Secondary Alexa fluor antibodies were 145 

incubated for one hour in darkness at room temperature prior to mount the slides with 146 

ProLong Gold antifade reagent with DAPI (Life Technologies). Negative controls were 147 

performed with unspecific IgGs (data not shown). Slides were visualized using a fluorescence 148 

microscope DM2500 (Leica).  149 

Quantitative analysis of testicular histology: All samples were triple stained with three 150 

combinations of markers (UTF1/Ki67/VASA, UCHL1/SALL4/VASA and VIM/SOX9/PLZF). Two 151 

triple stained sets of consecutive 5µm serial sections with a depth distance of 100µm in-152 

between were assesed for cell counts. The percentage of tubule cross-sections with at least 153 

one positive cell and the number of positive cells per tubule cross-section was assessed for 154 

each marker (detailed in Table I and Supplementel Table IV). Incomplete tubule cross-sections 155 

were discarded from counts to avoid bias. In order to avoid subjectivity, cell counts were blind 156 

and performed by two researchers independently. Therefore, all counts were compared and 157 

repeated when discrepancy between researchers was higher than 25%. Finally, the mean of 158 

the cell counts for each marker and sample was added to the data matrix for subsequent 159 

statistical analysis. Although there exist several morphometric approaches and mathematical 160 

corrections that partially solve the issue that cell counts on histologic sections may generate a 161 

bias in the estimation of the absolute number of cells within testis, they were not applied to 162 

this study since its goal was not to estimate the absolute number of cells but just analyze a 163 

representative sample of testicular biopsies. 164 

Statistical analysis: Data resulting from histological counts were summarized using mean 165 

(standard deviation) and median (1st, 3rd quartile) in the case of continuous variables and by 166 

relative and absolute frequencies in the case of categorical variables (Tables I and II). Status of 167 

the samples from treated patients was summarized using a fuzzy clustering algorithm and 168 

assigning membership probabilities for two opposing groups (one with overall lower values for 169 

all analyzed markers that was identified as “severely affected group”, and another with overall 170 
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higher values for all analyzed markers identified as “weakly affected group”). The data set used 171 

for performing the fuzzy clustering on the % of VASA+ tubules status was created by estimating 172 

the z-score value for each studied marker on each treated patient based on a regression model 173 

fitted on the untreated control patients with the studied variable as response and a smooth 174 

function of age as predictor. Subsequent association of the classification of treated patients 175 

with the different cumulative doses of chemotherapy that they received was assessed using an 176 

elastic net penalized logistic regression model. Selection of the penalization parameter lambda 177 

was performed by performing 500 repetitions of cross-validation and selecting the optimum 178 

lambda value in each of them. Then, the median lambda value was estimated and used as the 179 

final penalization factor for the logistic regression model. Finally, a Bayesian logistic regression 180 

model was adjusted with the selected variables and 95% credibility intervals for the ORs of 181 

each variable were estimated. Additionally, the posterior probability of the effects of each 182 

drug being negative regarding the testicular histologic phenotype was also estimated. All 183 

statistical analyses were performed using R (version 3.5.3) and the R packages glmnet (version 184 

2.0-16), cluster (version 2.0.7-1) and brms (version 2.8.0). 185 

 186 

RESULTS 187 

A subgroup of samples from patients that received chemotherapy before the testicular 188 

biopsy showed a severely affected phenotype  189 

Preliminary histological evaluation of samples identified clear differences between controls 190 

without previous chemotherapeutic exposure and some samples from patients exposed to 191 

chemotherapy before the testicular biopsy showing a phenotype that may correlate with 192 

Sertoli cell only (SCO) syndrome (Figure 1A).  193 

Therefore, in order to quantify the histologic phenotype of testicular biopsies, samples were 194 

stained with the germ cell marker VASA, the spermatogonial markers UTF1, PLZF, UCHL1 and 195 
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SALL4, the marker for proliferative cells KI67, and the Sertoli cell marker SOX9 (Figure 1B). For 196 

each marker, data regarding the percentage of positive tubule cross-sections (considering a 197 

positive tubule when at least one cell within cross-section was positive for the analyzed 198 

marker), and the average number of positive cells within tubule cross-sections were collected. 199 

Overall, a total of 27678 tubule cross-sections, with an average of 494 tubules per patient, 200 

were counted and considered to create the data matrix for statistical analysis (Supplemental 201 

Table III).  202 

Subsequent fuzzy clustering analysis clearly differentiated between two groups within samples 203 

from patients previously exposed to chemotherapy, according to the z-score values of the 204 

different studied markers compared to the non-treated group values, showing  a sharp 205 

difference between a relatively small group of 9 treated patients with higher overall z-score 206 

values in all studied variables (weakly affected group) and a larger group of 19 patients with 207 

lower overall z-score values in all studied variables (severely affected group) (Figure 2). 208 

Remarkably, all variables behaved similarly, so the use of the cluster variable as a marker of 209 

the overall status of the treated patients was justified. 210 

According to this classification, the graphic representation of an age-matched regression 211 

model showing the percentage of positive tubules and the number of positive cells per tubule 212 

for the analyzed markers clearly showed how the non treated controls and the weakly affected 213 

group behaved similarly, showing higher values for all markers except for the percentage of 214 

SOX9 positive tubules, compared to the group of severely affected samples (Figure 3). 215 

Therefore, next step was to study if there exists an association between this severe phenotype 216 

and the cumulative dose of chemotherapeutic drugs received in order to identify which drugs 217 

are associated with gonadotoxicity. 218 

 219 
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Regression model indicates that alkylating drugs and cytarabine exposure are associated 220 

with a severe testicular histology 221 

A summary of cumulative doses of each chemotherapeutic agent is showed in Table II and 222 

Supplemental Table IV. Results of the elastic net logistic regression model identified seven 223 

drugs associated with the altered histologic phenotype of testicular biopsies.  In agreement 224 

with previous studies reporting a decrease in sperm counts  from adult survivors of childhood 225 

cancer [27], both alkylating agents cyclophosphamide and ifosfamide showed a correlation 226 

with a severe phenotype in the histology of prepubertal patients. However, regression analysis 227 

led us to identify that the cumulative dose of the antimetabolite cytarabine as well as 228 

asparaginase are also associated with a worse histologic phenotype, whereas the 229 

topoisomerase inhibitors daunorubicin and idarubicin, and the antimetabolite 6-230 

mercaptopurine seemed to be associated with a better patient status. Coefficients and OR for 231 

the adjusted model are provided in Table III.  232 

Moreover, in order to understand better the influence of each drug identified by the elastic 233 

net model, results from a Bayesian logistic regression model adjusted with the selected 234 

variables allowed us to estimate the posterior probability of the effects of each drug being 235 

negative regarding the testicular histologic phenotype (Table IV). These results are graphically 236 

shown in a heatmap depicting the concentration values of each selected drug on each patient, 237 

showing how severely affected samples received higher doses of alkylating agents, cytarabine 238 

and asparaginase (Figure 4).  239 

Overall, data indicated that cumulative doses of cyclophosphamide of 4036.42 +/- 3004.25 240 

mg/m2, 1415.78 +/- 2093.97 mg/m2 of ifosfamide, 6503.26+/-7310.19 mg/m2 of cytarabine and 241 

8735.78 +/- 2546.91 UI/m2 of asparaginase correlate with a severe testicular histologic 242 

phenotype. A summary of the data regarding the percentage of positive tubules and the 243 

number of positive cells per tubule for each marker, together with the cumulated dose of 244 
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chemotherapeutic drugs for non-treated controls and the two subgroups of treated samples 245 

can be seen in Tables I and II, and in Supplemental Tables III and IV. 246 

 247 

DISCUSSION 248 

Fertility preservation in prepubertal patients is based on the existence of spermatogonial stem 249 

cells within the testes with the ability to restore the fertility of patients subjected to 250 

gonadotoxic treatments such as chemotherapy [5-12]. Therefore, it is desirable that 251 

cryopreserved testicular tissue remains unexposed to any kind of chemotherapy in order to 252 

prevent deleterious effects in the spermatogonial population and maximize the chances to 253 

restore the fertility of patients upon transplantation back to their testes. However, in the real 254 

clinical routine, many often patients proposed for fertility preservation have already been 255 

exposed to chemotherapy [30]. This situation is common in many patients diagnosed with 256 

acute lymphoblastic leukemia (ALL), which are usually offered fertility preservation after a 257 

relapse of the pathology (Supplemental Table I). In these cases, patients are offered testicular 258 

biopsy when their cumulative doses of chemotherapy before the biopsy are considered to 259 

have low gonadotoxic effect, according to previous studies in adults that correlate the 260 

cumulative dose of alkylating drugs received by patients in terms of Cyclophosphamide 261 

Equivalent Dose (CED) with sperm counts [16, 25, 27]. Because of this, the observation of 262 

prepubertal testicular biopsies from boys subjected to fertility preservation showing a severe 263 

germ cell loss (Figure 1A) was a surprising result. 264 

Due to its experimental clinical consideration and strict criteria to be eligible, the proportion of 265 

prepubertal patients proposed for fertility preservation is very low. Therefore, although there 266 

are some important studies regarding the gonadotoxic effects of chemotherapeutic drugs in 267 

this population [27, 35-39], most of them focus in the long term effect of chemotherapy 268 
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exposure, especially alkylant drugs, on sperm counts once patients reach adulthood instead of 269 

the effects in the prepubertal testicular histology.  270 

Although there exist in the literature some recent pioneer reports that highlight the dramatic 271 

effect of alkylating drugs on the number of germ cells within seminiferous tubules [28, 29], to 272 

our knowledge, this is the first report that aims to correlate cumulative doses of different 273 

chemotherapeutic drugs with the prepubertal testicular histology. For that, the germ cell 274 

marker VASA was chosen as the main indicator of the total number of germ cells within the 275 

tissue [29], and employed the percentage of positive tubule cross-sections in control samples 276 

without previous exposure to chemotherapy as a template to compare samples with previous 277 

chemotherapeutic exposure. As a result, fuzzy clustering analysis revealed a subgroup of 19 278 

out of 28 samples from patients previously exposed to chemotherapy that showed a 279 

significantly decreased percentage of VASA+ tubules when compared with age-matched 280 

controls. When we applied the same analysis for the data regarding the specific 281 

spermatogonial markers UTF1, UCHL1, PLZF and SALL4, and the cell proliferation marker KI67, 282 

we observed a similar clustering behaviour (Figure 2), indicating that severely affected samples 283 

had a lower percentage of tubule cross-sections with proliferating spermatogonia compared 284 

with age-matched non-treated controls. Moreover, a similar behaviour was observed 285 

regarding the number of positive cells per tubule cross-section for the same markers (Figure 286 

2), suggesting that not only a reduction in the percentage of positive tubules was evident in 287 

the severely affected group, but also that positive tubules showed an altered histology 288 

characterized by a loss of spermatogonia. Importantly, the number of VASA+ cells per tubule 289 

cross-section shown by the controls of this study was comparable to the results from a recent 290 

meta-analysis where reference values for age-related number of spermatogonia within 291 

prepubertal testes was described [40]. This highlights a relatively constant ratio of 292 

spermatogonia per tubule until the initiation of puberty, which is accompanied by an increase 293 

of this ratio in controls and weakly affected samples, but not in severely affected samples that 294 
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show lower numbers independently of the age of patients (Figure 3). Interestingly, acute 295 

lymphoblastic leukemia (ALL) was the most prevalent diagnosis among treated patients, 296 

representing around 50% of cases in both weakly and severely affected groups of patients 297 

(Supplemental Table I). However, due to the different moment of recruiting patients for 298 

fertility preservation, sometimes after a relapse of the disease, the resulting high variability in 299 

the cumulative dose of the different drugs received by patients even when they share a similar 300 

diagnostic (Supplemental Tables III and IV) impeded us to associate the testicular phenotype to 301 

the pathology.  302 

Interestingly, although both untreated controls and weakly affected patients behave similarly 303 

according to the fuzzy clustering analysis that discriminated weakly and severely affected 304 

patients according to the z-score values of the different studied markers compared to the non-305 

treated group values, we found a slighltly higher number of germ cells within tubules in the 306 

weakly affected group (Figure 3). Despite the considerable number of patients included in this 307 

study (28 untreated controls and 28 treated patients), it is possible that this behaviour can be 308 

explained by the sample size bias resulting from the reduced number of weakly affected 309 

patients (9 out of 28 treated patients) after the fuzzy clustering analysis. Also, the slightly 310 

different age range of the weakly affected group of patients (range from 3 to 15 years), 311 

compared with untreated controls (range from 0 to 14 years), explains that this group of 312 

patients show a higher number of germ cells since its number trends to increase with age. It is, 313 

however, temptative to hypothesize that the slight increase in the number of germ cells in 314 

weakly affected patients may be due to a niche homeostasis response to chemotherapy, in the 315 

way that the stress induced by the treatment itself may trigger a rapid cell division of surviving 316 

cells to replenish the ones that die, as can be suggested by the higher number of Ki67 positive 317 

cells found in weakly affected patients (Figure 3). Nevertheless, data resulting from this study 318 

is not enough to explain these differences and future studies may be focused in this interesting 319 

observation. 320 
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Once statistics clearly defined a subgroup of severely affected samples, next step was to find 321 

the candidate drugs to explain this altered histology. In agreement with previous reports, we 322 

found that both alkylating drugs, cyclophosphamide and ifosfamide, were associated with a 323 

severe phenotype [27]. However, statistic analysis also identified that cumulative dose of the 324 

antimetabolite cytarabine and asparaginase are also associated with this phenotype (Tables III 325 

and IV, and Figure 4). The gonadotoxicity of cytarabine has been already reported in animal 326 

studies [41]. However, this is the first report on human samples that suggests its cumulative 327 

dose as a possible major gonadotoxic drug. On the other hand, there are no previous reports 328 

on the gonadotoxicity that cumulative doses of asparaginase can trigger. Nevertheless, since 329 

the administration of both cytarabine and asparraginase usually is accompanied by alkylant 330 

drugs (Supplemental Table V) in chemotherapeutic protocols for ALL and some types of 331 

lymphoma, future studies focused in the possible gonadotoxic effects of cytarabine and 332 

asparaginase by themselves should clarify the infertility risk associated with their 333 

administration in prepubertal boys.  334 

The finding of such associations between cumulative doses of alkytaling agents, cytarabine and 335 

asparaginase with a severely affected testicular phenotype needed the application of complex 336 

Bayesian regression models due to the limited number of patients and the great variability 337 

regarding the different chemotherapeutic protocols applied even to patients sharing a similar 338 

pathology. As a result, the wide range of cumulative doses of drugs that correlate with a 339 

severe phenotype (Table II) makes difficult to determine narrow ranges of dose thresholds of 340 

risk. Moreover, due to the same limitations commented above, correlations between 341 

phenotype and cumulative drug doses did not include combined effects of the drugs included 342 

in the chemotherapeutic protocol received by each patient. Finally, our study focused in the 343 

combined effect of cumulative doses of chemotherapeutic agents on the testicular phenotype, 344 

but did not considered the time of exposure. Therefore, our results should be considered a 345 
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pilot study that must be confirmed by further prospective studies with a bigger sample size 346 

and homogenization of treatments. 347 

 348 

CONCLUSIONS 349 

This report manifests our scarce knowledge regarding the gonadotoxic effect of most of 350 

chemotherapeutic drugs on the prepubertal testis, highlighting the need of more studies 351 

specifically focused on the prepubertal population. Since the preservation of healthy 352 

spermatogonial stem cells is mandatory for the success of fertility restoration, a better 353 

knowledge of the gonadotoxic effects of chemotherapeutic drugs is necessary to prevent the 354 

severe histologic alteration found in many samples that may compromise the future success of 355 

fertility restoration. Therefore, the association of the cumulative dose of alkylating agents, 356 

cytarabine and asparaginase, and their synergistic effects as well with a severe testicular 357 

phenotype should be considered at the moment of selecting patients for fertility preservation 358 

in order to prevent the massive germ cell death associated with their administration in the 359 

testicular biopsy that they will cryopreserve. 360 

 361 
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FIGURES AND TABLES 510 

Figure 1. Representative pictures of the testicular histology. (A) Representative pictures of 511 

the testicular histology of an untreated patient with chronic granulomatose disease without 512 

any previous chemotherapy and two patients recruited for fertility preservation after a relapse 513 

of their respective diseases (ALL and Burkitt lymphoma, respectively). The ALL patient (middle 514 

picture) belongs to the weakly affected group of patients, showing a normal testicular 515 

histology with seminiferous cross-section filled with both Sertoli cells and spermatogonia, 516 

whereas the one with Burkitt lymphoma (third picture) is from the severely affected group, 517 

showing a histologic phenotype with a marked germ cell loss compatible with SCO. (B) 518 

Representative pictures of the co-localization of the selected markers for this study: 519 

UTF1/KI67/VASA, UCHL1/SALL4/VASA and VIMENTIN/SOX9/PLZF. With the exception of 520 

VIMENTIN that was only employed to facilitate visualization of the histology, the percentage of 521 

positive tubules for each marker and the number of positive cells per tubule were quantified 522 

for subsequent statistical analysis. Scale bars correspond to 250μm. White arrowheads 523 

indicate triple positive cells.  524 
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Figure 2. Fuzzy clustering of the z-score values of the different studied variables compared to 525 

the non-treated group values for each variable. The heatmap shows a sharp difference 526 

between a relatively small group of 9 weakly affected samples with higher overall z-score 527 

values in all studied variables, and a larger group of 19 severely affected samples with lower 528 

overall z-score values in all studied variables.   529 
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Figure 3. Graphic representation of regression models showing the percentage of positive 530 

tubules and the number of positive cells per tubule for the analyzed markers along the age 531 

of patients.  Each dot corresponds to one single patient. Data is accompanied by the credibility 532 

interval (grey areas) of each regression model for each group of patients.    533 
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Figure 4. Heatmap of the concentration values on each patient for the treatments selected 534 

by the elastic net analysis. Values have been normalized to z-scores to make variables on 535 

different scales comparable. Order of rows has been determined by hierarchical clustering and 536 

patients have been ordered by their condition (weakly vs. severely affected).  537 
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Table I. Descriptive statistics of the testicular histology for non-treated control patients, 538 

weakly affected patients and severely affected patients.  539 

 Non-treated controls (n=28) Weakly affected (n=9) Severely affected (n=19) 

 Mean (SD) 
Median 

(1stQ, 3rd Q) 
Mean (SD) 

Median 

(1stQ, 3rd Q) 
Mean (SD) 

Median 

(1stQ, 3rd Q) 

Age (years) 6.89 (4.54) 
8.00 (2.75, 

10.25) 
7.11 (4.16) 

5.00 (5.00, 

8.00) 
6.94 (4.30) 

5.00 (4.00, 

10.00) 

% of tubules 
VASA+ 

60.79 (33.07) 
73.95 (35.55, 

86.23) 
77.90 (30.19) 

90.20 (75.21, 

92.60) 
30.54 (21.54) 

33.56 (12.18, 

43.45) 

No. of VASA+ 
cells/Tubule 

4.85 (3.781) 
3.51 (2.56, 

6.51) 
9.57 (10.42) 

5.92 (4.61, 

6.82) 
2.85 (1.91) 

2.23 (1.95, 

3.93) 

% of tubules 
UCHL1+ 

15.11 (19.62) 
4.59 (0.72, 

28.5) 
20.83 (19.17) 

14.07 (3.04, 

38.46) 
3.50 (4.85) 

1.39 (0.00, 

4.73) 

No. UCHL1+ 
cells/Tubule 

1.23 (0.92) 
1.23 (0.5, 

1.91) 
1.71 (0.85) 

1.80 (1.25, 

2.23) 
0.73 (0.76) 

0.66, (0.00, 

1.24) 

% of tubules 
SALL4+ 

15.19 (22.32) 
5.80 (1.27, 

15.2) 
19.20 (20.34) 

10.86, (5.03, 

30.00) 
2.36 (3.58) 

0.64 (0.00, 

2.77) 

No. SALL4+ 
cells/Tubule 

1.25 (0.97) 
1.30 (0.5, 

1.64) 
1.51 (0.68) 

1.38, (1.11, 

1.98) 
0.61 (0.69) 

0.50 (0.00, 

0.95) 

% of tubules 
UTF1+ 

14.12 (21.65) 
6.49, (1.04, 

15.15) 
30.66 (24.94) 

34.28 (1.29, 

1.82) 
1.32 (1.95) 

0.25 (0.00, 

2.39) 

No. UTF1+ 
cells/Tubule 

1.15 (0.98) 
1.03 (0.5, 

1.43) 
1.69 (0.63) 

1.46, (1.29, 

1.89) 
0.52 (0.57) 

0.50 (0.00, 

1.00) 

% of tubules KI67+ 10.84 (15.46) 
4.81 (1.67, 

12.17) 
29.44 (21.23) 

19.84 (14.77, 

40.16) 
4.20 (8.01) 

0.25 (0.00, 

2.78) 

No. KI67+ 
cells/Tubule 

1.06 (0.73) 
1.04 (0.53, 

1.42) 
1.95 (1.08) 

1.37 (0.53, 

2.08) 
0.59 (0.65) 

0.50 (0.00, 

1.10) 

% of tubules PLZF+ 39.52 (33.55) 
28.18 (9.47, 

68.85) 
55.62 (36.42) 

67.74 (36.09, 

82.85) 
14.34 (18.72) 

10.60 (0.00, 

19.83) 

No. of PLZF+ 
cells/Tubule 

2.10 (1.74) 
1.66 (1.08, 

2.48) 
2.35 (1.56) 

1.64 (1.39, 

3.69) 
1.07 (1.03) 

1.30 (0.00, 

1.60) 

% of tubules 
SOX9+ 

88.96 (17.76) 
97.71 (83.03, 

100.00) 
87.63 (33.07) 

100.00 

(100.00, 

100.00) 

95.29 (6.99) 

100.00 

(89.91, 

100.00) 

No. of SOX9+ 
cells/Tubule 

17.88 (11.43) 
16.20 (8.14, 

23.43) 
20.90 (15.01) 

20.61 (8.95, 

31.56) 
10.52 (8.35) 

7.74 (4.48, 

14.44) 

  540 
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Table II. Descriptive statistics of the cumulative gonadotoxic dose exposures for non-treated 541 

control patients, weakly affected patients and severely affected patients. Data regarding 542 

non-treated control patients (n=28) is not shown since this group of patients were not exposed 543 

to any chemotherapeutic drug prior to the testicular biopsy and therefore their values are 544 

Mean (SD): 0.00 (0.00); Median (1stQ, 3rd Q): 0.00 (0.00, 0.00). 545 

 Weakly affected (n=9) Severely affected (n=19) 

 Mean (SD) 
Median (1stQ, 

3rd Q) 
Mean (SD) 

Median (1stQ, 

3rd Q) 

Cyclophosphamide (mg/m2) 1933.33 (2188.6) 
1000.00 (0.00, 

3000.00) 
4036.42 

(3004.25) 

4000.00 

(2000.00, 

5400.00) 

Ifosfamide (mg/m2) 222.22 (666.66) 0.00 (0.00, 0.00) 
1415.78 

(2093.97) 

0.00 (0.00, 

2700.00) 

Cisplatin (mg/m2) 0.00 (0.00) 0.00 (0.00, 0.00) 42.42 (101.73) 0.00 (0.00, 0.00) 

Carboplatin (mg/m2) 311.11 (625.38) 0.00 (0.00, 0.00) 738.68 (2593.77) 0.00 (0.00, 0.00) 

Etoposide (mg/m2) 350.00 (500.00) 
0.00 (0.00, 

800.00) 
446.21 (735.72) 

0.00 (0.00, 

508.00) 

Doxorubicin (mg/m2) 26.66 (52.91) 0.00 (0.00, 0.00) 51.15 (100.45) 0.00 (0.00, 97.50) 

Daunorubicin (mg/m2) 61.66 (67.76) 
40.00 (0.00, 

120.00) 
42.89 (65.51) 

0.00 (0.00, 

120.00) 

Idarubicin (mg/m2) 5.33 (10.58) 0.00 (0.00, 0.00) 0.00 (0.00) 0.00 (0.00, 0.00) 

Mitoxantrone (mg/m2) 0.00 (0.00) 0.00 (0.00, 0.00) 844.21 (3670.14) 0.00 (0.00, 0.00) 

Epirubimycin (mg/m2) 0.00 (0.00) 0.00 (0.00, 0.00) 7.89 (18.73) 0.00 (0.00, 0.00) 

Actinomycin (mg/m2) 0.00 (0.00) 0.00 (0.00, 0.00) 0.11 (0.51) 0.00 (0.00, 0.00) 

Methotrexate (mg/m2) 836.44 (2346.67) 0.00 (0.00, 36.00) 
17846.73 

(22725.37) 

9000.00 (0.00, 

27900.00) 

Cytarabine (mg/m2) 
1702.22 

(2346.67) 

0.00 (0.00, 

3090.00) 
6503.26 

(7310.19) 

5000.00 (0.00, 

10825.00) 

6-Mercaptopurine (mg/m2) 
7724.44 

(16150.76) 
0.00 (0.00, 0.00) 

4051.05 
(9036.81) 

0.00 (0.00, 0.00) 

6-Thioguanine (mg/m2) 148.88 (446.66) 0.00 (0.00, 0.00) 158.94 (389.21) 0.00 (0.00, 0.00) 

Fludarabine (mg/m2) 16.66 (50.00) 0.00 (0.00, 0.00) 0.00 (0.00) 0.00 (0.00, 0.00) 

Vincristine (mg/m2) 5.83 (9.55) 0.00 (0.00, 9.00) 11.10 (12.41) 6.00 (0.00, 19.30) 

Vindesine (mg/m2) 0.33 (1.00) 0.00 (0.00, 0.00) 0.15 (0.68) 0.00 (0.00, 0.00) 

Asparaginase (UI/m2) 
2061.11 

(6164.60) 
0.00 (0.00, 0.00) 

8735.78 
(25469.91) 

0.00 (0.00, 

240.00) 

Bortezomib (mg/m2) 0.00 (0.00) 0.00 (0.00, 0.00) 0.70 (1.72) 0.00 (0.00, 0.00) 

Dexamethasone (mg/m2) 80.44 (241.33) 0.00 (0.00, 0.00) 178.15 (307.75) 
0.00 (0.00, 

183.00) 

Prednisolone (mg) 53.22 (145.61) 0.00 (0.00, 0.00) 100.78 (181.74) 0.00 (0.00, 75.00) 

Rituximab (mg) 0.00 (0.00) 0.00 (0.00, 0.00) 38.68 (168.62) 0.00 (0.00, 0.00) 

Tozilizumab (mg/m2) 0.00 (0.00) 0.00 (0.00, 0.00) 15.78 (68.82) 0.00 (0.00, 0.00) 

  546 
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Table III. Coefficients and OR of the elastic net logistic regression model.  Only the non-zero 547 

coefficients of the elastic net model statistically associated with the shown phenotype of 548 

testicular samples are presented in the table. 549 

 Estimate OR 

(Intercept) -0.594 0.551 

Alkylating agent cyclophosphamide (mg/m2) -5.9e-05 0.999 

Alkylating agent ifosfamide (mg/m2) -8e-06 0.999 

Topoisomerase inhibitor daunorubicin (mg/m2) 0.648 1.912 

Topoisomerase inhibitor idarubicin (mg/m2) 1.395 4.038 

Antimetabolite cytarabine (mg/m2) -2.8e-05 0.999 

Antimetabolite 6-mercaptopurine (mg/m2) 0.399 1.491 

Asparaginase (mg/m2) 0.383 1.467 

lambda 0.117  

  550 
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Table IV. Bayesian logistic regression model adjusted with the chemotherapeutic drugs 551 

selected by the elastic net model, 95% credibility intervals for the ORs of each variable and 552 

posterior probability of the effect selected drugs in the testicular histologic phenotype. The 553 

lower the OR, the higher the negative effect of the agent, whereas the higher the posterior 554 

probability, the more evidence that there is a negative association with the testicular 555 

phenotype. Text in bold highligts those drugs with a probability of negative effect greater than 556 

85%. 557 

Variables Estimate Std.Error OR Lower.95% Upper.95% Post. Prob 

Intercept 0.167 0.813 1.181 0.239 5.735  

Cyclophosphamide -0.366 0.303 0.693 0.352 1.177 0.9 

Ifosfamide -1.551 1.273 0.212 0.01 1.387 0.92 

Daunorubicin -0.061 1.536 0.941 0.042 19.986 0.51 

Idarubicin 3.219 1.75 25.009 1.493 1361.689 0.01 

Cytarabine -2.701 2.215 0.067 0.001 3.459 0.89 

6-mercaptopurine 3.385 1.574 29.515 1.818 842.837 0.01 

Asparaginase -1.46 1.343 0.232 0.009 1.309 0.92 

       

  558 



31 
 

SUPPLEMENTAL FIGURES AND TABLES 559 

Supplemental Table I. Summary of the diagnostic of the 56 patients included in this study. 560 

Diagnostic 
Non-treated controls 

(n=28) 
Weakly affected 

(n=9) 
Severely affected 

(n=19) 

Acute lymphoblastic leukemia 0 5 10 

Acute myeloid leukemia 1 2 0 

Atypical teratoid rhabdoid tumor 1 0 0 

B-cell lymphoma 0 0 2 

Burkitt lymphoma 0 0 1 

Chronic granulomatose disease 2 0 1 

Drepanocytosis 7 0 0 

Ewing sarcoma 2 0 0 

Hodgkin lymphoma 1 0 0 

Idiopathic medullary aplasia 1 0 0 

Medulloblastoma 3 1 1 

Myelodysplastic syndrome 1 0 0 

Nasopharyngeal carcinoma 1 0 0 

Neuroblastoma 0 1 2 

Osteosarcoma 2 0 0 

Rhabdomiosarcoma 1 0 0 

Severe aplastic anemia 1 0 0 

T-cell lymphoma 0 0 1 

Thalasemia major 2 0 0 

Turner syndrome mosaicism (45,X/46,XY) 1 0 0 

Wilms tumor 0 0 1 

Wiscott-Aldrich syndrome 1 0 0 
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Supplemental Table II. List of primary antibodies employed in this study. 562 

Primary antibody Marker Reference Dilution 

Goat anti-VASA Germ cells R&D Systems, AF2030 1/200 

Goat anti-PLZF Undifferentiated spermatogonia R&D Systems, AF2944 1/100 

Mouse anti-UTF1 Undifferentiated spermatogonia Millipore, MAB4337 1/100 

Mouse anti-UCHL1 Undifferentiated spermatogonia Bio-Rad, 7863-1004 1/200 

Mouse anti-VIMENTIN Sertoli cells DAKO, M072529 1/100 

Rabbit anti-SALL4 Undifferentiated spermatogonia Abcam, ab29112 1/500 

Rabbit anti-Ki67 Proliferating cells Abcam, ab16667 1/200 

Rabbit anti SOX9 Sertoli cells Millipore, AB5535 1/500 
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Supplemental Table III. Original data matrix regarding the mean of cell counts performed by 565 

two researchers independently for each marker in testicular samples from untreated and 566 

treated patients employed for the fuzzy clustering analysis to identify differences between 567 

untreated and treated patients and group treated patients as . Classification of treated 568 

patients as weakly or severely affected resulting from fuzzy clustering analysis has been also 569 

included in order to facilitate the identification of patients of each group. 570 
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Supplemental Table IV. Original data matrix regarding the cumulative dose of each drug 572 

received by patients. Classification of treated patients as weakly or severely affected resulting 573 

from fuzzy clustering analysis has been also included in order to facilitate the identification of 574 

patients of each group. 575 
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Supplemental Table V. Association between the cumulative doses of Cytarabine and 577 

Asparraginase with cumulative doses of alkylant drugs in treated patients. 578 

 Mean (SD) Median (1stQ, 3rd Q) 

 Cyclophosphamide 
(mg/m2) 

Ifosfamide (mg/m2) 
Cyclophosphamide 

(mg/m2) 
Ifosfamide (mg/m2) 

Cytarabine 
(mg/m2) 

4688.67 (2689.09) 1726.67 (2192.35) 
5000.00 (2015.00, 

6500.00) 

0.00 (0.00, 

1200.00) 

Cytarabine + 
Asparaginase 

(UI/m2) 

4000.00 (1224.74) 2400.00 (1673.32) 
4000.00 (4000.00, 

5000.00) 

2000.00 (2000.00, 

4000.00) 

Without 
Cytarabine nor 
Aparraginase 

2160.18 (2483.15) 272.73 (904.53) 
2000.00 (0.00, 

1750.00) 
0.00 (0.00, 0.00) 
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