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Abstract 40 

Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) has been applied in a clinical 41 

context as diagnostic tool for breath samples using target biomarkers. Exhaled breath 42 

sampling is non-invasive and therefore much more patient friendly compared to 43 

bronchoscopy, which is the golden standard for evaluating airway inflammation. In the 44 

actual pilot study, 55 exhaled breath samples of children with asthma, cystic-fibrosis and 45 

healthy individuals were included. Rather than focusing on the analysis of target 46 

biomarkers or on the identification of biomarkers, different data analysis strategies, 47 

including a variety of pretreatment, classification and discrimination techniques, are 48 

evaluated regarding their capacity to distinguish the three classes based on subtle 49 

differences in their full scan SIFT-MS spectra. Proper data-analysis strategies are required 50 

because these full scan spectra contain much external, i.e. unwanted, variation. Each SIFT-51 

MS analysis generates three spectra resulting from ion-molecule reactions of analyte 52 

molecules with H3O+, NO+ and O2
+. Models were built with Linear Discriminant Analysis, 53 

Quadratic Discriminant Analysis, Soft Independent Modelling of Class Analogy, Partial Least 54 

Squares - Discriminant Analysis, K-nearest Neighbours, and Classification and Regression 55 

Trees. Perfect models, concerning overall sensitivity and specificity (100% for both) were 56 

found using Direct Orthogonal Signal Correction (DOSC) pretreatment. Given the 57 

uncertainty related to the classification models associated with DOSC pretreatments (i.e. 58 

good classification found also for random classes), other models are built applying other 59 

preprocessing approaches. A Partial Least Squares - Discriminant Analysis model with a 60 

combined pre-processing method considering single value imputation results in 100% 61 

sensitivity and specificity for calibration, but was less good predictive. Pareto scaling prior 62 

to Quadratic Discriminant Analysis resulted in 41/55 correctly classified samples for 63 

calibration and 34/55 for cross-validation. In future, the uncertainty with DOSC and the 64 

applicability of the promising preprocessing methods and models must be further studied 65 

applying a larger representative data set with a more extensive number of samples for 66 

each class. Nevertheless, this pilot study showed already some potential for the untargeted 67 

SIFT-MS application as a rapid pattern-recognition technique, useful in the diagnosis of 68 

clinical breath samples. 69 

 70 

 71 

Keywords: Exhaled breath analysis, Selected-Ion Flow-Tube Mass Spectrometry, Principal 72 

component analysis, Classification and discrimination, Data Preprocessing techniques  73 
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Abbreviations  74 

ACT  Asthma control test 75 

CART  Classification and regression trees 76 

dc  Dissimilarities 77 

DFs  Discriminant functions 78 

DOSC  Direct orthogonal signal correction 79 

FeNO  Exhaled nitric oxide 80 

FEV1  Forced expiratory volume in 1 second 81 

FN  False negatives 82 

FP  False positives 83 

ICS  Inhaled corticosteroids 84 

KNN  K-nearest neighbours 85 

LABA  Long-acting β2-agonists 86 

m/z  mass-to-charge ratio 87 

PC  Principal component 88 

PCA  Principal component analysis 89 

PCA-LDA Principal component analysis - linear discriminant analysis 90 

PCA-QDA Principal component analysis - quadratic discriminant analysis 91 

PLS-DA Partial least squares - discriminant analysis 92 

PQN  Probabilistic quotient normalisation 93 

r  Pearson correlation coefficient 94 

SD  Standard deviation 95 

SIFT-MS Selected-Ion Flow-Tube Mass Spectrometry 96 

SIM  Selected ion monitoring 97 

SIMCA  Soft independent modelling by class analogy 98 

SNV  Standard normal variate 99 

TN  True negatives 100 
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TP  True positives 101 

VIP  Variable Importance in Projection 102 

VC  Volatile compound 103 

VOC  Volatile organic compound 104 

  105 
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1. Introduction 106 

The evaluation of airway inflammation in lung diseases is typically carried out by means of 107 

bronchoscopy [1, 2]. Since it is an invasive technique, alternative analysis techniques have 108 

been proposed as presented in the review article by Bannier et al. [2]. In that paper, the 109 

analysis of exhaled breath volatiles for evaluating lung diseases is discussed as well. 110 

Besides lung diseases, exhaled breath analysis has also been proposed to monitor other 111 

diseases, such as various cancers, metabolic disorders, hepatitis and gastroenteric 112 

diseases [1, 3-7]. In all cases, diagnosis is based on the presence of specific volatile 113 

biomarkers in the exhaled breath [1, 3, 6, 8].  114 

Several instrumental techniques have been proposed to analyse volatiles in exhaled breath. 115 

Most acknowledged approaches focus on the analysis of volatile organic components 116 

(VOCs) and use thermal desorption analysis in combination with high resolution 117 

techniques, such as GC-MS [7, 9]. Generally, samples are collected by means of direct 118 

exhalation into a suitable polymeric sampling bag. Polymeric bags are relatively cheap and 119 

very convenient but susceptible to diffusion of permanent gases through the wall and/or 120 

elevated blank levels. More information about bag materials for breath samples can be 121 

found in [10].  Very soon after sampling, the exhaled breath is transferred to a thermal 122 

desorption tube that is packed with an appropriate adsorbent (or combination of 123 

adsorbents). Thermal desorption tubes are very easy to handle and permit sample storage 124 

over prolonged periods of time, making it more in line with typical GC-MS turnaround 125 

delays [9].  126 

GC-MS in full scan mode is particularly well-suited for biomarker discovery because of its 127 

capacity to deconvolute and identify individual chromatographic peaks based on their (high 128 

resolution) mass spectra [11, 12]. Nonetheless, GC-MS is far too complicated to be 129 

employed as a dedicated point-of-care device by non-specialists in a clinical context, such 130 

as for direct exhaled breath analysis. This opportunity gap is elegantly bridged by chemical 131 

sensor arrays that hold the promise of fast, sensitive and selective detection of the 132 

biomarkers, earlier identified by means of GC-MS. Although these arrays show promising 133 

results, the applied methodology suffers from some severe shortcomings [6]. Most 134 

importantly, it does not account for analytical bias towards small polar analytes, reactive 135 

components and inorganic volatiles that result from the use of thermal desorption GC-MS 136 

or that might be present in the humid exhaled breath [9].  137 

In that respect Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) is better, giving rise 138 

to a more comprehensive analysis of exhaled breath. SIFT-MS is a type of direct mass 139 

spectrometry that allows sensitive and selective detection of volatile organic and inorganic 140 

compounds in gaseous samples, without the need for complicated sample preparation 141 

procedures that might affect compound recovery [4, 5, 13]. The basic operational 142 
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principles of the technique are presented in Figure 1. Briefly, it uses soft chemical reactions 143 

that occur between multiple precursor ions (H3O+, NO+ and O2
+) that are generated in situ 144 

in the ionization region of the instrument and are introduced one-by-one into the reaction 145 

chamber or flow tube using a short upstream quadrupole. As they enter the flow tube, 146 

precursor ions are thermalized by means of a high flow of helium carrier gas. Afterwards, 147 

they react rapidly with the sample molecules which are introduced in the flow tube. Since 148 

each precursor ion is able to react differently with isobaric components, a degree of 149 

selectivity is obtained that outperforms sensor arrays, particularly when complex samples, 150 

such as exhaled breath, are involved [4, 13].  151 

In general, SIFT-MS is used in targeted or selected ion monitoring (SIM) mode, which 152 

means that the components of interest are known beforehand. For instance, for the fast 153 

quantification of components that were earlier identified from, for example, GC-MS [14, 154 

15]. Alternatively, SIFT-MS in full scan mode is a more delicate approach since the entire 155 

chemical identity of a particular sample is recorded in a minute span of time. It is applied 156 

less frequently, because of the presence of not-disease-related (“irrelevant”) variation in 157 

the breath-sample composition, making the interpretation of the results more complicated. 158 

The variation is related to exogenous exposures, such as food intake or medication. Those 159 

exposures may interact with the volatile compound (VC) composition [16, 17]. The goal of 160 

this feasibility study is interpreting the abstract nature of the full scan data, which requires 161 

specific data analysis and visualization procedures that are able to extract the relevant 162 

information contained within the full scan spectra. Those data analysis strategies follow 163 

often a trial-and-error principle, resulting in an enormous potential workload for the 164 

scientist. Therefore, this pilot study aims demonstrating which data-analysis strategies are 165 

valuable for further consideration in untargeted SIFT-MS profiling of breath samples for 166 

rapid pattern-based screening. Certain data-analysis approaches applied on the SIFT-MS 167 

data have already shown their usefulness for various applications, such as classifying olive 168 

and Argan oils by means of headspace aroma analysis [18], and in a clinical context [4].  169 

In the present feasibility study, the full scan SIFT-MS spectra of exhaled breath samples 170 

from 55 children, i.e. 20 healthy, 22 asthmatic and 13 with cystic fibrosis, were analysed. 171 

The goal of our study was not to identify target biomarkers, but to investigate which data 172 

analysis strategy allows a maximal distinction between the groups of children. Additionally, 173 

principal masses were associated with biomarkers previously reported in the literature.  174 

Unsupervised data analysis was performed using Principal Component Analysis (PCA) with 175 

visual evaluation of score and loading plots. Supervised analysis consist of K-nearest 176 

Neighbours (KNN), Classification and Regression Trees (CART), PCA - Linear Discriminant 177 

Analysis (PCA-LDA), PCA - Quadratic Discriminant Analysis (PCA-QDA), Soft Independent 178 

Modelling by Class Analogy (SIMCA) and Partial Least Squares - Discriminant Analysis 179 
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(PLS-DA). The quality of the models was evaluated by the calibration and cross-validation 180 

errors, the % overall sensitivity, % overall specificity and % model efficiency [19, 20].  181 

2. Theory 182 

2.1. Data preprocessing 183 

Spectra often contain noise or variables that are irrelevant for the studied classification 184 

problem. To reduce the undesired data variation, preprocessing techniques are applied. 185 

They remove for instance noise. More specific, treatments such as variable reduction or 186 

elimination remove irrelevant variables, while relevant information (for classification) will 187 

be maintained [20-22]. Variable selection methods, on the other hand, selects the relevant 188 

variables. Additionally, it may be important for all variables to be comparable in magnitude 189 

and to have similar ranges [23].  190 

The data matrix X is an n x p matrix, with n the number of samples and p the number of 191 

variables. These variables are in this case study the m/z ratios of the formed product ions, 192 

resulting from the reaction between a precursor ion (H3O+, NO+ and O2
+) and compounds 193 

occurring in exhaled breath. The measured response for each variable is the signal 194 

intensity.  195 

Nineteen preprocessing approaches were performed on X; 1) column centering, 2) Pareto 196 

scaling, 3) Dong’s Algorithm to remove non-significant variables, 4) Centering after Dong’s 197 

Algorithm, 5) Autoscaling after Dong’s Algorithm, 6) Pareto scaling after Dong’s Algorithm, 198 

7) Normalisation by the norm and column centering after Dong’s Algorithm, 8) Probabilistic 199 

quotient normalisation (PQN) after Dong’s Algorithm, 9) Standard Normal Variate (SNV) 200 

and centering after Dong’s Algorithm,10) Direct Orthogonal Signal Correction (DOSC) after 201 

Dong’s Algorithm, 11) DOSC on the raw data, 12) Single value imputation to replace the 202 

zero values by the mean followed by normalisation by the norm, 13)  Single value 203 

imputation to replace the zero values by the mean followed by PQN normalisation, 14) 204 

Single value imputation to replace the zero values by the median followed by normalisation 205 

by the norm, 15) Single value imputation to replace the zero values by the median followed 206 

by PQN normalisation. The preprocessing results from 12) to 15) were log transformed and 207 

autoscaled. These last data preprocessing approaches (12-15) were also applied in 208 

combination with Dong’s Algorithm (16-19). Approaches 12-15 were found to be suitable 209 

in untargeted full-scan SIFT-MS analyses, as a diagnostic tool, for asthma phenotyping 210 

[24].  211 

Column centering subtracts from each column element the respective column average [25, 212 

26]. Autoscaling, also called column standardization, is column centering followed by 213 

division by the column standard deviation [27]. This normalisation gives each variable an 214 

equal weight (same average, same standard deviation) [25, 26]. Another often applied 215 
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scaling method is Pareto scaling, which is similar to autoscaling but instead of the standard 216 

deviation its square root is used [28]. Normalisation by dividing each row element by its 217 

norm (i.e. the square root of the sum of all squared elements in that row) [23] was also 218 

performed as well as PQN, where each variable is  normalized by the median quotient. SNV 219 

is a normalisation with row centering and row scaling [22, 26].  220 

DOSC removes the information that is not orthogonal to the class information [29]. The X 221 

matrix is corrected for variations that are not orthogonal with y (classes of the samples).  222 

To remove the non-significant (noise) variables, Dong’s algorithm was applied as a variable 223 

reduction technique [30, 31].  224 

Classification and discrimination techniques were performed on the 19 preprocessed X 225 

matrices and on the raw data matrix. First, unsupervised classification was visually 226 

evaluated on PCA score plots.  227 

2.2. Unsupervised exploratory analysis 228 

PCA reduces the number of original variables by creating new (latent) variables, principal 229 

components (PCs), which are linear combinations of the original variables. PCA allows 230 

visualizing the information and variation included in X. The variation is presented in the 231 

PCs, with the first PC (PC1) representing the largest variation. The second PC (PC2) is 232 

orthogonal to PC1, describes most of the remaining variation (less than PC 1) and is defined 233 

in the direction of the largest remaining variance not explained by PC1. The coordinates of 234 

the projection of the samples on the new variables (PCs) are called scores, which can be 235 

represented in a score plot. The scores are weighted linear combinations of the original 236 

variables. A score plot may be a one-, two- or three-dimensional plot representing the 237 

score(s) of the samples on one, two or three PCs. It reflects information about similarities 238 

and differences between the samples. The weights of the original variables in the scores 239 

are called loadings. A loading plot shows information about the original variables, for 240 

instance, their correlation [22, 26, 32]. 241 

2.3. Supervised classification and discrimination analysis 242 

In supervised classification and discrimination techniques, the information present in 243 

matrix X is, most often, related to an n x 1 response vector y, representing the classes of 244 

the samples [33]. In this study, different techniques, such as KNN, CART, PCA-LDA, PCA-245 

QDA, SIMCA, and PLS-DA, are used to model y as a function of X. 246 

Classification techniques describe one class at the time. These techniques model an 247 

enclosed class space. The shape of this space is characteristic for the classification 248 

technique applied. If two or more classes are modelled, the obtained spaces may overlap, 249 

resulting in the possibility that a sample is compatible with more than one class. 250 
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Additionally, a part of the global multidimensional domain will not be included in the class 251 

spaces. This may result in samples that do not belong to any of the modelled classes. 252 

Discriminant methods require at least two classes. A delimiter is described that divides the 253 

global domain in a number of regions, each assigned to one class. The type of delimiter is 254 

specific for a given discriminant method. In the latter methods, class areas will never 255 

overlap and there is no possibility of non-assignment of samples [20]. 256 

The predictive ability of the obtained model was evaluated by venetian blind cross-257 

validation or by using an independent test set [20]. In venetian blind cross-validation the 258 

samples in the cross-validation groups are selected regularly spread across the matrix 259 

[19]. A 5-groups venetian blinds cross-validation is applied ensuring that all classes are 260 

present in each test set. This approach of validation results in a lower risk of overestimating 261 

the predictive power of a given model, which is more often the case with leave-one-out 262 

cross-validation. 263 

The quality evaluation of the models was based on their overall specificity, sensitivity, 264 

model efficiency and number of not-assigned samples. First, each class i was individually 265 

considered and the samples were predicted as true positives (TP), true negatives (TN), 266 

false negatives (FN) or false positives (FP) as shown in Table 1. TP are the class members 267 

assigned to the considered class, while TN are the non-class members not assigned to that 268 

class. Furthermore, FN are the considered class members that were not assigned to that 269 

class and FP are the non-class members assigned to the considered class. An illustration 270 

in perspective of class A is given in Table 1. Samples belonging to class A and predicted as 271 

class A are TP. Samples belonging to class A and predicted as a class B/C member are FN. 272 

Furthermore, samples belonging to class B/C and predicted as class B/C are TN, while FP 273 

are the samples belonging to class B/C and predicted as class A members. The specificity, 274 

sensitivity, model efficiency, precision and number of not-assigned samples were first 275 

calculated for each class i (i=3) for each model, according to Eqs. (3) - (6). 276 

% specificityi= 
TNi

( TNi+ FPi)
 . 100  (3) 277 

% sensitivityi= 
TPi

( TPi+ FNi)
 . 100  (4) 278 

% model efficiency = √% sensitivityi . % specificityi  (5) 279 

% precisioni= 
TNi

( TPi+ FPi)
 . 100  (6) 280 

Sensitivity reflects the ability of the model to correctly recognize samples belonging to a 281 

class, where specificity is the ability of the model to reject samples that are not belonging 282 

to that class.   283 
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The model efficiency is expected to be high, i.e. none or few samples are incorrectly 284 

classified. To get an idea about the total correct classification ability of the model, the 285 

precision is evaluated. If the precision is 100 %, it means that all samples are correctly 286 

assigned to their class.  287 

Subsequently, to evaluate the models globally, the overall specificity, sensitivity, model 288 

efficiency and number of not-assigned samples were determined, based on the individual 289 

class parameters, according to Eqs. (7) - (9).  290 

% overall specificity= 
∑ % specificityi  .ni

3
i=1

∑ ni
3
i=1

       (7) 291 

% model efficiency = 
∑ % model efficiencyi

3
i=1

3
       (8) 292 

% overall sensitivity= 
∑  𝑇𝑃𝑖  3

i=1

∑ (𝑇𝑃𝑖 +𝐹𝑁𝑖) 3
i=1

. 100       (9)  293 

where ni is the number of samples in class i and number 3 stands for the number of classes. 294 

The % overall sensitivity refers to the ability of the model to predict the correct class.  295 

2.3.1. K- nearest Neighbours (KNN) 296 

KNN is a non-linear supervised technique for classification and regression [20]. It is based 297 

on the distance or proximity between samples [3, 34]. The input value for a new sample 298 

in a KNN approach is its distance to a measured calibration sample neighbour or the 299 

average distance when classification is based on more than one neighbour [35]. When low 300 

correlation between the X variables occurs, the Euclidean distance is frequently used as 301 

measure [34].  302 

Another parameter often applied to express the similarity between neighbours is the 303 

Pearson correlation coefficient (r). Dissimilarities (dc) are defined as dC= 1-lrl and are 304 

similar to the Euclidean distance, i.e. they are low for similar samples [35].  305 

In KNN, first, the best number of neighbours has to be defined, for instance, based on the 306 

error of cross validation. The most simple method is when only one neighbour is considered 307 

for classification, which is often used when the number of training samples is large and in 308 

the absence of outliers. In the presence of outliers some nearest neighbours have to be 309 

taken into account. The appropriate number of neighbours K is usually less than 10 [36]. 310 

The number of neighbours included will influence the method performance [37, 38].  311 

After determining the proper number of neighbours, new samples can be classified. 312 

Prediction of a new sample is based on the category membership of most of its K nearest 313 

neighbours [3, 39].    314 
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2.3.2. Classification and Regression Trees (CART) 315 

CART is a nonparametric technique, applied for exploratory analysis, regression and 316 

classification. This regression/classification technique can be used with both categorical 317 

and continuous responses [40].  318 

The building of a tree is based on a binary recursive partitioning of the data. The term 319 

‘‘binary’’ implies that each group of samples, represented by a ’’node’’ in a decision tree, 320 

is split into two groups [41]. The separation into child nodes is based on splitting criteria 321 

[42]. 322 

The classification tree is built by sub-dividing the root or parent node, containing all 323 

samples, in two child nodes based on a split value for one of the variables present in the 324 

X matrix. Each parent node results in two child nodes and each child node may split further 325 

in sub-nodes. Nodes that are not split anymore are called terminal nodes [22, 27, 42].  326 

The building of a CART-model consists of three steps. First, an over-large tree is built using 327 

recursive partitioning. In this first tree only pure or homogeneous terminal nodes are 328 

present. In the second step, branches of the over-large tree are cut to obtain smaller trees, 329 

improving the predictive ability without losing accuracy. This second step is called pruning. 330 

The last step is to select the optimal tree based on its predictive ability [41, 42].  331 

2.3.3. Linear and quadratic discriminant analysis 332 

PCA-LDA and PCA-QDA are both parametric methods, which assume a Gaussian 333 

distribution of the data in the classes [39, 41]. The methods work properly when all classes 334 

are strictly homogeneous [22]. 335 

The technique reduces the number of variables by constructing latent variables from the 336 

numerous original ones, and searches for a maximal discrimination between the classes. 337 

This is done by making a linear combination of the original variables that maximizes the 338 

between-class variance relative to the within-class variances [3, 22, 43]. The linear 339 

combinations are called discriminant functions (DFs). In PCA-QDA the DFs are quadratic 340 

[22, 27]. The maximal number of DFs is equal to the number of classes minus 1 [22]. 341 

Here, for a 3-class discrimination, maximally 2 DFs are defined.  342 

The limitation of LDA is that the number of variables has to be lower than the number of 343 

samples. QDA requires that the number of variables is lower than the number of objects 344 

in the smallest class. For the SIFT-MS spectra these requirements are not fulfilled because 345 

of the relatively high number of variables registered. These dimensionality problems can 346 

be solved by reducing the number of variables with, for instance, PCA prior to LDA and 347 

QDA, or with stepwise regression [3, 21, 22, 27, 33, 41]. In this study, PCA is used. 348 
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The optimal model complexity for PCA-QDA is often determined by cross-validation. The 349 

% correct classification rate was calculated for models with different complexities. The 350 

complexity is optimal when the model results in the highest correct classification rate for 351 

predicted samples [41]. For PCA-LDA and PCA-QDA, the model complexity was optimised 352 

by venetian blinds cross-validation with 5 groups. 353 

2.3.4. Soft independent modelling by class analogy (SIMCA) 354 

SIMCA is a distance-based technique, as KNN [20]. First, PCA models are created for each 355 

class individually. The optimal number of PCs is determined independently for each class 356 

based on % model efficiency, sensitivity and specificity, in order to have a predefined 357 

percentage of explained cumulative variance per class [3, 22].  358 

Consequently, for each class, a model is built in a hyperspace with a number of dimensions 359 

equal to the selected number of PCs [3]. For each class, a closed space is constructed at a 360 

given level of significance. Since the PCs are orthogonal the space will have the shape of 361 

a segment (one PC applied), a rectangle (two PCs) or parallelepiped or hyper-parallelepiped 362 

(three or more PCs) form [20]. Samples may be assigned to a specific class based on their 363 

shortest distance to that class. This approach results in samples that are assigned to only 364 

one class [20, 22].  365 

Samples may also be assigned to a given class based on their global distance to the centre 366 

of the respective class. When the global distance does not exceed a given threshold, the 367 

global SIMCA distance, the sample is considered to belong to this class. The global 368 

threshold is found by increasing the threshold for each class maximizing sensitivity and 369 

specificity. This approach is used in our study. Samples were not assigned to a class when 370 

the distances exceeded the threshold. Samples may be assigned to more than one class, 371 

when the sample distance is below the thresholds of different classes [22]. This often 372 

occurs when class spaces have some overlap. 373 

Besides defining boundaries for each class, SIMCA may also be used as an alternative 374 

discriminant technique. Then, a delimiter is calculated corresponding to the locus of points 375 

with the same distance from the models of at least two classes.  376 

2.3.5. Partial-least-squares discriminant analysis (PLS-DA) 377 

PLS-DA is a linear and parametric classification method. The linear model uses latent 378 

variables [25], which describe a maximal covariance between the (spectral) variables and 379 

the response [19, 41]. The selection of the best number of latent variables is based on 380 

cross-validation results.  381 

The responses in PLS-DA are qualitative, discrete and coded in a vector with numbers 0 382 

and 1, where 1 refers to belonging to a class and 0 not. When three classes are present, 383 
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each class is modelled once relative to the rest, applying three vectors with labels (1,0,0), 384 

(0,1,0) and (0,0,1), respectively [41]. PLS-DA can be used in different approaches. In a 385 

first, samples are classified in one of the three classes based on probability. The predicted 386 

value is around 0 or 1. When the value is closer to 0, the sample does not belong to the 387 

considered class. Samples are always classified to a class [19]. 388 

The second approach, which is applied in this study, uses a threshold for each class. 389 

Consequently, a given sample, with a value above the threshold, is considered to belong 390 

to the specific class [19, 41]. When the value is lower, the sample is not assigned to that 391 

class. The procedure is repeated for every model. Samples not assigned to any class or 392 

indicated to several classes are defined as ‘not classified’. This may occasionally result in 393 

a classification with a high number of not-assigned samples [19]. 394 

3. Experimental  395 

3.1. Sample collection 396 

In total, for this pilot study, 55 samples were collected from children at the Maastricht 397 

University Medical Centre+ (MUMC+) hospital (Maastricht, The Netherlands) over a period 398 

of 6 months. These included 20 children with asthma (average age ± SD: 12.7 ± 3.1 399 

years), 13 children with cystic fibrosis (14.4 ± 4.2), and 22 healthy controls (9.7 ± 2.0). 400 

More subject characteristics are shown in Table 2. Written informed consent was obtained 401 

from all subjects. The study was approved by the Medical Ethical Committee of the 402 

Maastricht University Medical Centre+. All samples were collected in 1 L Tedlar bags with 403 

polypropylene valve and septum fitting (Interscience, Breda, The Netherlands). All children 404 

were instructed to refrain from: 1) eating and drinking at least 2 hours before testing, with 405 

the exception of water, 2) chewing gum or brushing teeth at least 2 hours before testing, 406 

3) exercise at least 1 hour before testing, 4) use of inhalation medication at least 3 hours 407 

before testing. Exclusion criteria for this pilot study were a recent course of prednisone or 408 

antibiotics within one month before testing (maintenance antibiotics for CF excepted), 409 

(second-hand) smoking, and an extra-pulmonary chronic inflammatory disease (e.g. 410 

inflammatory bowel disease, rheumatic disease). Finally, all measurements were executed 411 

in one room and at the same environmental conditions, e.g. changes in room temperature 412 

and humidity were kept to a minimum. 413 

The filled Tedlar bags were transported to Interscience (Breda, The Netherlands) where 414 

the breath samples were immediately analysed by SIFT-MS upon arrival. 415 

3.2. SIFT-MS 416 

The Tedlar bag contents were introduced into a Voice200® ultra SIFT-MS instrument (Syft 417 

Technologies, Christchurch, New Zealand) at a constant flow rate of 20 mL min-1 using the 418 

instrument’s high vacuum in combination with a fixed restriction installed at the instrument 419 
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inlet. Full scan MS spectra of H3O+, NO+ and O2
+ were recorded between 15 and 250 m/z 420 

at unit resolution for each precursor; the dwell time was 100 ms per mass at three data 421 

points. Instrument calibration was performed on a daily basis by measuring a certified gas 422 

cylinder containing the following compounds: benzene (C6H6
+ [O2

+], m/z = 78), ethylene 423 

(C2H4
+ [O2

+], m/z = 28), hexafluorobenzene (C6F6
+ [O2

+], m/z = 186), isobutene 424 

(C4H8
+ [NO+], m/z = 57), octofluorotoluene (C7F8

+ [O2
+], m/z = 236), tetrafluorobenzene 425 

(C6F4H2
+ [O2

+], m/z = 150) and toluene (C7H8.H+ [H3O+], m/z = 93; 426 

C7H8
+ [NO+], m/z = 92 and C7H8

+ [O2
+], m/z = 92). For each sample, relative humidity 427 

was estimated by summing the signals of H3O+ (19+), H3O+.H2O (37+), H3O+.(H2O)2 (55+) 428 

and H3O+.(H2O)3 (73+) and dividing the sum by H3O+.(H2O)2 (55+). 429 

3.3. Data sets 430 

The data matrix X for all variables, i.e. the combined spectra from 3 precursor ions, 431 

contains n= 55 samples (rows) and p= 701 variables (columns) after removing the 432 

hydrated reagent ions. These latter variables were for precursor ion H3O+ m/z 37 and 55; 433 

for O2
+ m/z 32, 37 and 55 and for NO+ m/z 30 and 48. Additionally, three other X matrices 434 

are created, each consisting of the spectra using one of the three precursors. This allows 435 

evaluating the use of individual precursors for their ability to provide spectra discriminating 436 

between the different classes. For the H3O+ and NO+ spectra, the X matrix contains n= 55 437 

samples and p= 234 variables. For the O2
+ spectra, X consist of n= 55 samples and p= 438 

233 variables. For classification, the y vector indicates the three classes, i.e. healthy, cystic 439 

fibrosis and asthmatic. Important to notice is that the “raw data” X matrix was already 440 

normalized by the Syft Technologies proprietary algorithm before other data pretreatment 441 

methods were applied. This normalisation includes for every individual ion channel a 442 

correction based on a linear quantitative signal, considering both reagent and product ion, 443 

as a function of lens voltage, temperature and molecular weight [24]. 444 

3.4. Data analysis 445 

Computations were performed with MatlabTM R2014a (The Mathworks, Natrick, MA). All 446 

data (pre)processing methods were performed making use of the ChemoAc toolbox 4.1. 447 

Modelling of PCA-LDA, PCA-QDA, KNN, CART, PLS-DA and SIMCA, were performed using 448 

the classification toolbox 4.2.  449 

4. Results and discussion 450 

Characteristics of the 55 subjects can be found in Table 2 and in Bannier et al. [44], where 451 

the same samples were studied by means of an electronic nose.  452 



16 

 

The combined full scan spectra (708 variables) for the 55 samples, belonging to the 3 453 

classes, are shown in Figure 2. The variable numbers 1-236 originate from using H3O+ as 454 

precursor ion, 237-472 from NO+, while 473-708 were from applying O2
+.  455 

Controlling the humidity is important because differences can lead to varying secondary 456 

product ions. Specific secondary product ions (water cluster) for a given VOC could be 457 

additionally useful to annotate a given compound. For instance, m/z 77 of NO+ is known 458 

as a major water cluster of propanol [45]. However, the ratio of signal levels between an 459 

adduct ion and a monohydrate ion depends on the water vapour concentration [46], 460 

demonstrating the importance of controlling sample humidity. The humidity could, for 461 

instance, be controlled by analysing the samples under two conditions, dry air and moist 462 

air (containing a certain percentage of water vapour) [45].  Here, the water concentrations 463 

in the samples were measured as an internal control of the analysis [10], occasionally 464 

showing any sample introduction issues. 465 

As mentioned in the introduction, the diversity between the subjects and their medical 466 

treatments with different medicines in combination with other external influences may 467 

challenge the classification. The goal of this study is to evaluate which preprocessing and 468 

classification techniques are suitable and seems promising to cope with the diversity in the 469 

data set and will result in a proper pattern-based classification, useful to implement full-470 

scan SIFT-MS analyses as a diagnostic tool. 471 

4.1. Unsupervised classification 472 

First, the raw data is visualized by PCA to evaluate whether the 3 groups can be 473 

distinguished. In Figure 3A, the first PC represents almost 90 % of the total variance. In 474 

the PC1-PC2 score plot, the three groups cannot be differentiated. Only two groups are 475 

observed along PC1, containing samples of all classes. Two samples, 3 and 8 (asthmatic 476 

patients), were separated along PC2 from the two main clusters. This is also seen when 477 

only the H3O+ spectrum is used. The two deviating samples were not observed in the plots 478 

based on the other precursors, while still two groups were present. An explanation for 479 

these samples, may be found with the variable 49 (Figure 3B). The precursor and m/z of 480 

all variables can be found in Supplementary material. Variable 49 has an m/z value 65, is 481 

formed during the reaction with H3O+, as a precursor ion, and does not occur in the other 482 

samples.  483 

Figure 3B shows the PC1-PC2 loading plot. Two variables were distinct from the rest. 484 

Variable 49 seems important for the 2 deviating samples. The identity of this m/z value 485 

might be related to methanol or ethanol. The second variable is 484, has m/z 30+ (in 486 

O2
+spectrum) which corresponds to a well-known marker for asthma (nitric oxide) [47, 487 

48]. The variable could be discriminant on PC1 for the two clusters observed. However, 488 
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unfortunately the observed groups are not related to the classes of interest and the variable 489 

is not discriminative for asthmatic patients here.  490 

Note also that SIFT-MS is not a preferred technique for biomarker identification because of 491 

the lack of additional annotation purposes, such as a retention time and/or specific mass 492 

spectral fragmentation patterns. This results in the possibility that one product ion may be 493 

linked to an exhaustive number of compounds. Interesting product ions occasionally may 494 

later be identified as potential markers with another technique, such as GC-MS [13]. 495 

Furthermore, it is important to understand the ion chemistry in SIFT-MS to know which 496 

product ions are related to certain metabolites, even to link to known biomarkers. These 497 

biomarkers are not often related to only one product ion in the SIFT-MS spectra [49]. As 498 

a result of this uncertainty, only breath metabolites confirmed in other studies are 499 

occasionally included as a reference in this pilot study.  500 

The different pretreatments were performed on the raw data with the goal to get an 501 

improved classification. After data transformation, the corresponding score plot was 502 

visually evaluated. Different methods, as specified higher, were applied. Most did not show 503 

the expected groups in the PC1-PC2 score plots. Results were similar as in Figure 3. Some 504 

pretreatments, e.g. normalisation, SNV and pretreatment approaches numbers 12-19 505 

(Section 2.1) even resulted in only one observed group in the PC1-PC2 score plot.  506 

A clear distinction between the different classes was found with the DOSC approaches, and 507 

Dong’s Algorithm followed by DOSC. The O2
+-precursor-ion spectra (Figure 4) resulted in 508 

a score plot where PC1 explained more variation (94 %) than from the spectra based on 509 

H3O+(77 %), NO+(86 %) or the combined spectra (86 %). However, all score plots 510 

distinguished the three classes. In Figure 4, distinction between the classes is seen along 511 

PC1. Samples 3 and 8, which were outlying in the raw data plot (Figure 3) are not outlying 512 

anymore along PC1, which determines the class differences, but they increase the 513 

variability of the asthmatic group. When determining potential biomarkers, which is not 514 

the goal of this study, those responsible for the distinction along PC1, should be searched 515 

for, not those increasing the variability along PC2. Again, variable 484, which was discussed 516 

higher for the raw data (Figure 3) seems discriminative along PC1, which now distinguishes 517 

the three classes. The reason why it is discriminative here and not for the raw data is 518 

unclear to us.  519 

The score and loading plots using DOSC after Dong’s Algorithm as pretreatment are shown 520 

in Figure 5. This preprocessing allowed also visualizing three separated classes along PC1. 521 

Figure 5A shows again that samples 3 and 8 are enlarging the asthmatic cluster variability.  522 

The two best pretreatments found were DOSC with and without prior application of Dong’s 523 

Algorithm. A suitable unsupervised classification may improve the predictive ability of a 524 
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classification model, while simpler models can be built [50]. However, a known drawback 525 

of DOSC is overfitting [29, 51], which may lead to a perfect class grouping even for 526 

randomly assigned classes. We tested the latter for our data set and unfortunately DOSC 527 

has led also here to perfect class distinction for randomly assigned classes. This makes the 528 

application of DOSC suspicious and dangerous. An explanation for the observation may be 529 

that the algorithm searches for data correlated to the classes and that the approach is able 530 

to find random correlations which allow distinguishing the randomly assigned classes. For 531 

a more thorough evaluation, the supervised classification models, were also built for the 532 

randomly assigned classes when DOSC was applied as pretreatment. 533 

4.2. Supervised discrimination and classification techniques 534 

Different classification techniques were applied on the pretreated matrices. First, KNN was 535 

considered. Good results were obtained for the matrices pretreated with DOSC, with and 536 

without application of Dong’s Algorithm (see Table 3). The model based on the O2
+ spectra 537 

classifies all samples correctly both for calibration and cross-validation data. The three 538 

other models, certainly the one resulting from the combined spectra, also show good 539 

results. However, considering the problems observed with DOSC pretreatments in PCA, the 540 

results obtained are suspicious and need further examination (see further). 541 

Another classification technique evaluated is PCA-LDA. The results for DOSC after Dong’s 542 

Algorithm as pretreatment are also shown in Table 3. For all matrices, except for the NO+-543 

based, a perfect classification was established. All samples both from the classification set 544 

as in cross-validation were correctly classified. Only DOSC as pretreatment resulted in 545 

similar results (see in Table 3), The specificity, sensitivity and model efficiency values are 546 

100% for all models (also the NO+-based). Other preprocessing methods did not result in 547 

good PCA-LDA models.  548 

Consecutively, CART and PCA-QDA models were built. A similar output was seen for DOSC 549 

pretreatment, with and without application of Dong’s Algorithm. The CART models provided 550 

good results, with 100% model efficiency for calibration and cross-validation, for the 551 

combined and O2
+ spectra. The other preprocessing methods did not lead to comparable 552 

results. The model efficiencies for calibration where only below or around 50%.  553 

PCA-QDA results for the DOSC pretreatments again in perfect predictive classifications. 554 

Two other pretreatment methods, approaches 12 and 14, lead to PCA-QDA calibration 555 

model efficiencies of 89% for the H3O+ matrix. However, the cross-validation efficiencies 556 

where only 59%. The results are shown in Table 4 parts A and B. Somewhat better cross-557 

validation results were obtained for the H3O+ matrix with Pareto scaling as data 558 

pretreatment. Here, 70% model efficiency was obtained for prediction (34 of 55 samples 559 

correctly predicted) (Table 4 part C), while calibration showed 82% efficiency (41/55).  560 
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The SIMCA and PLS-DA models showed less good predictive abilities with the DOSC 561 

pretreatments. Many samples were not classified (more than 50%). These two 562 

classification techniques define a threshold for each class [19], as already mentioned in 563 

Sections 2.3.4 and 2.3.5. Therefore, samples might be assigned to either none, one or 564 

more classes. The first and last situation results in not-assigned samples.  565 

Better PLS-DA calibration results were obtained using other data pretreatments. Model 566 

efficiencies of 100% (calibration) were seen for the combined and the H3O+ spectra when 567 

pretreated with the pretreatment approaches number 14 and 15 as pretreatment. Here, 568 

only a limited number of samples is not assigned to a class (see Table 5). However, a 569 

concern for these models is the bad results for cross-validation. Similar observations were 570 

seen for the approaches number 12 and 13  (Table 6).  571 

Peak annotation based on Variable Importance in Projection (VIP)-scores for the PLS-DA 572 

results learned, as already stated, that SIFT-MS is not a suitable technique for biomarker 573 

discovery because of the lack of proper peak annotation information. Approximately 40% 574 

of the m/z values show a VIP score above 1 and would therefore be considered important 575 

to distinguish the classes of interest. Consequently SIFT-MS can be applied as phenotyping 576 

tool in untargeted full-scan mode or as targeted tool for known compound quantification, 577 

but not for biomarker identification.  578 

4.3. Discussion and further evaluation 579 

Because of the possible unreliable results after DOSC preprocessing, further investigation 580 

of the applicability of the resulting models as a diagnostic tool is necessary. Further 581 

evaluation of the PCA-QDA and PLS-DA models on the Pareto scaled and the combined 582 

pretreatments including single value imputation (approaches 12-15) is also needed.  583 

As the best models obtained after DOSC pretreatments are suspicious, they were further 584 

evaluated. This pretreatment is known to remove all unwanted variation that is not 585 

orthogonal to the class information. As already discussed in the unsupervised section also 586 

random classes were perfectly distinguished in the score plot. Additionally, the 587 

classification results (for both calibration and cross-validation) of these random classes 588 

were similar to those obtained for the real classes, which seemed too optimistic model 589 

efficiencies, also in comparison to other diagnostic tools in the literature. Investigation of 590 

correlation coefficients learned that the correlation between spectra within a class and 591 

between classes were already high. DOSC pretreatment did not lead to an increase of the 592 

correlation between samples belonging to the same class nor a decrease between classes, 593 

as was observed from color maps. The classes could not be distinguished in these plots 594 

while it was expected it would be possible. Dividing the already small data set in a 595 

calibration- (41 samples) and test set (14 samples) resulted in similar model performances 596 
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for the predictions of the real- and random class models. Here, we had hoped, even though 597 

chance correlation is found for the model building when using random classes, that 598 

prediction of external validation samples would be worse than for models based on the real 599 

classes. Unfortunately, this was not the case for our data. Therefore, the suitability of the 600 

DOSC preprocessing technique for the desired classification is not without severe doubt 601 

and seems unreliable at the moment. Further research related to the understanding, 602 

consideration and applicability of DOSC pretreatment, performed on  a large representative 603 

data set is thus required.  604 

Consequently, in future, the actual pilot study results should be further investigated 605 

applying an extensive data set with enough samples for each class (300 in total). This new 606 

data set will allow a proper splitting in representative calibration and test set. It may thus 607 

be suitable to further reveal the insights in DOSC pretreatment and allow confirming 608 

whether or not it can be used in the investigated classification. This study will also allow to 609 

further examine the other approaches, which led to good calibration results but worse 610 

predictive ones, on their suitability in this context. 611 

5. Conclusions and future perspectives 612 

SIFT-MS was already used by different research groups as a diagnostic tool for asthma and 613 

cystic fibrosis by monitoring specific target compounds. These known breath compounds 614 

are nitric oxide, acetic acid, ethanol, methanol, acetone, ammonia, dimethyl disulfide and 615 

propanol.  616 

The difference with these targeted studies is that in our actual study the usefulness of 617 

SIFT-MS full scan spectra is investigated to discriminate asthma and cystic fibrosis samples 618 

from healthy ones. Different data preprocessing techniques in combination with 619 

classification techniques are evaluated. The goal was to find a suitable preprocessing 620 

method and pattern-based classification model for exhaled-breath diagnosis by SIFT-MS. 621 

The knowledge gathered may be of interest to the wider scientific community because data 622 

pretreatment and finding good modelling techniques is a labor intensive work.  623 

A possibly interesting data analysis strategy includes building a model (by for instance 624 

KNN, CART, PCA-LDA and PCA-QDA) after DOSC pretreatment. Perfect predictive results 625 

were found for both calibration- and cross-validation samples. However, the DOSC 626 

pretreatment technique has some limitations and led to suspicious results since it allowed 627 

also a perfect discrimination of random classes, both in unsupervised analysis and 628 

classification modelling. Therefore, other preprocessing techniques were also considered, 629 

but they provided less good predictive models by cross-validation. This is for example, the 630 

case for PCA-QDA models after using Pareto scaling or the combined preprocessing 631 

methods obtaining single value imputation (pretreatment approaches 12 and 14).   632 
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Other potentially interesting models are based on PLS-DA after the combined 633 

preprocessing methods obtaining single value imputation (pretreatment approaches 12-634 

15).  The calibration results were similar to those observed after DOSC pretreatments 635 

(100% correct classification), but their cross-validation results were less good.  636 

A future requirement is the collection of an extended data set (about 300 samples), 637 

allowing a proper external validation, as well as a further investigation of the results found 638 

in the actual pilot study. This larger data set will also allow examining whether the DOSC 639 

pretreatment  is either perfect or useless as pretreatment for this kind of data. 640 

Nevertheless, this feasibility study showed some potential for the untargeted application 641 

of SIFT-MS spectra as rapid pattern-recognition tool, useful in the diagnosis of breath 642 

samples. 643 
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7. Figure captions 803 

Figure 1. Schematic illustration of the Selected-Ion Flow-Tube Mass Spectrometer (SIFT-804 

MS). 805 

Figure 2. Combined full scan SIFT-MS spectra of all measured product ions using the 806 

precursors H3O+, NO+ and O2
+, respectively. 807 

Figure 3. A) PC1-PC2 score plot for the entire raw data matrix. The squares are the 808 
cystic fibrosis samples, the dots the healthy samples and the stars the asthmatic 809 

patients. B) PC1-PC2 loading plot.  810 

Figure 4. A) PC1-PC2 score plot after Direct Orthogonal Signal Correction (DOSC). The 811 
plot is based on the spectra with O2

+ as precursor ion (233 variables). B) Corresponding 812 

loading plot. Symbols: see Figure 3. 813 

Figure 5. A) PC1-PC2 score plot for the matrix with combined spectra (157 variables) 814 
after Dong’s Algorithm preprocessing followed by Direct Orthogonal Signal Correction 815 
(DOSC). B) Corresponding loading plot. Symbols: see Figure 3. 816 

  817 



26 

 

8. Tables 818 

Table 1. Illustration of the meaning of true positives (TP), true negatives (TN), false 819 
positives (FP) and false negatives (FN) in perspective of class A. Their application in 820 
different parameters is specified in Section 2.3. 821 

 Real class 

Class A Class B/Class C 

Predicted class 

Class A TP FP 

Class B/ 

Class C 
FN TN 

 822 

  823 
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Table 2. Subject characteristics of the asthmatic and cystic fibrosis patients 824 

Subject characteristics Astma Cystic fibrosis 

Number (N) 20 13 

Age (mean ± SD) 12.7 ± 3.1 14.4 ± 4.2 

Sex: male/female (N) 9/11 11/2 

Maintenance therapy ICS alone (%) 100% 31% 

Maintenance therapy ICS + LABA (%) 80% 23% 

ACT score (mean ± SD) 22.6 ± 4.2 - 

ACT score < 20 (%) 20% - 

Pancreatic insufficiency (%)  100% 

Pseudomonas aeruginosa colonization (%)  38% 

Treatment with maintenance antibiotics (%)  54% 

FEV1 > 90% of predicted (%)  46% 

FEV1 < 70% of predicted (%)  23% 

ACT: asthma control test (range 5-25; uncontrolled asthma if score <20); ICS: inhaled 825 

corticosteroids; FEV1: forced expiratory volume in 1 second; LABA: long-acting β2-agonists826 
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 828 

Table 3. Classification parameters for K-nearest neighbours (KNN) and principal component analysis-linear discriminant analysis (PCA-829 
LDA).  Pretreatment; Direct Orthogonal Signal Correction (DOSC) with and without combination of Dong’s Algorithm.  Number of neighbours 830 
and of latent variables selected is based on cross validation.  831 

 

KNN (DOSC after Dong’s 

Algorithm) 

PCA-LDA (DOSC after Dong’s 

Algorithm) 
PCA-LDA (DOSC) 

Parameters 

 
 

All 

spectra 

H3O+-

based 

spectra 

NO+-

based 

spectra 

O2
+-

based 

spectra 

All 
spectra 

H3O+-
based 

spectra 

NO+-
based 

spectra 

O2
+-

based 
spectra 

All 
spectra 

H3O+-
based 

spectra 

NO+-
based 

spectra 

O2
+-

based 
spectra 

Number of 

neighbours/latent 

variables 

3  2 5 1 1 4 3 1 1 4 3 1 

Parameters from calibration (%) 

Sensitivity  100  98.18 89.09 100  100 100 90.97 100 100 
 

100 100 100 

Specificity  100  98.96 95.02 100  100 100 94.94 100 100 
 

100 100 100 

Model efficiency  100  98.75 92.08 100  100 100 90.33 100 100 
 

100 100 100 

Number of correct 
classified samples 

55/55 54/55 49/55 55/55 55/55 55/55 50/55 55/55 55/55 55/55 55/55 55/55 

Parameters from cross validation (%) 

Sensitivity 98.18 96.36 87.27 100 100 100 90.91 100 100 
 

100 100 100 

Specificity  98.79 97.58 93.33 100 100 100 94.95 100 100 

 

100 100 100 

Model efficiency 98.33 97.26 90.72 100 100 100 90.33 100 100 
 

100 100 100 

Number of correct 
classified samples 

54/55 53/55 48/55 55/55 55/55 55/55 50/55 55/55 55/55 55/55 55/55 55/55 

 832 
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Table 4. Parameters for principal component analysis-quadratic discriminant analyses (PCA-QDA). Pretreatment: (A) single value 833 
imputation by median followed by normalisation by the norm, log transformation and autoscaling; (B) single value imputation by mean 834 
followed by normalisation by the norm, log transformation and autoscaling, and (C) pareto scaling. 835 

 PCA-QDA (A) PCA-QDA (B) PCA-QDA (C) 

Parameters 

 

All 

spectra 

H3O+-

based 

spectra 

NO+-

based 

spectra 

O2
+-

based 

spectra 

All 
spectra 

H3O+-
based 

spectra 

NO+-
based 

spectra 

O2
+-

based 
spectra 

All 
spectra 

H3O+-
based 

spectra 

NO+-
based 

spectra 

O2
+-

based 
spectra 

Number of 

neighbours/latent 

variables 

4 6 6 5 4 6 2 5 5 6 3 2 

Parameters from calibration (%) 

Sensitivity  54.54 85.45 69.09 63.64 57.73 85.45 54.54 63.64 61.82 74.54 49.09 45.45  

Specificity  78.18 91.12 82.34 78.87 77.14 91.12 81.26 78.73 84.98 90.69 78.27 77.47 

Model efficiency  65.12 88.84 74.93 70.62 63.55 88.84 65.01 69.60 71.75 81.86 59.38 55.89 

Number of correct 
classified samples 

30/55 47/55 38/55 35/55 29/55 47/55 30/55 35/55 34/55 41/55 27/55 25/55 

Parameters from cross validation (%) 

Sensitivity 38.18 50.91 45.45 50.91 40 50.91 34.54 49.09 47.27 61.82 43.64 41.82 

Specificity  68.96 71.43 67.96 71.30 69.52 71.43 67.84 71.17 72.77 80.30 72.90 75.32 

Model efficiency 51.73 58.72 52.08 55.22 53.05 58.72 48.50 55.16 59.86 70.41 56.13 53.84 

Number of correct 
classified samples 

21/55 28/55 25/55 28/55 22/55 28/55 19/55 27/55 26/55 34/55 24/55 23/55 

 836 

  837 
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Table 5. Parameters for partial least squares-discriminant analysis (PLS-DA). Pretreatment: (A) single value imputation by median followed 838 
by normalisation by the norm, log transformation and autoscaling; (B) single value imputation by median followed by probabilistic quotient 839 
normalisation, log transformation and autoscaling. 840 

 PLS-DA (A) PLS-DA (B) 

Parameters 

 

 

All spectra H3O+-

based 

spectra 

NO+-based 

spectra 

O2
+-based 

spectra 

All spectra H3O+-
based 

spectra 

NO+-based 
spectra 

O2
+-based 

spectra 

Number of latent 

variables 

5 5 5 3 4 5 4 3 

Parameters from calibration (%) 

Sensitivity  100 100 98.15 89.74 100 100 98 77.78 

Specificity  100 100 98.91 95.61 100 100 98.88 88.73 

Model efficiency  100 100 98.70 93.12 100 100 98.63 83.29 

Not assigned 
samples 

1.82 1.82 1.82 29.09 5.45 1.82 9.09 18.18 

Number of correct 
classified samples 

54/55 54/55 53/55 35/55 52/55 54/55 49/55 35/55 

Parameters from cross validation (%) 

Sensitivity 58.33 57.14 47.50 47.37 61.11 54.05 47.37 47.50 

Specificity  78.98 72.22 71.83 73.70 79.15 73.73 71.02 73.14 

Model efficiency 69.26 63.83 59.73 57.53 71.01 67.26 57.14 57.08 

Not assigned 

samples 

34.54 36.36 27.27 30.91 34.54 32.73 30.91 27.27 

Number of correct 
classified samples 

21/55 20/55 19/55 18/55 22/55 20/55 18/55 19/55 

 841 
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Table 6. Parameters for partial least squares-discriminant analysis (PLS-DA). Pretreatment: (A) single value imputation by mean followed 842 
by normalisation by the norm, log transformation and autoscaling; (B) single value imputation by mean followed by probabilistic quotient 843 
normalisation, log transformation and autoscaling. 844 

 PLS-DA (A) PLS-DA (B) 

Parameters 

 

All spectra H3O+-

based 

spectra 

NO+-based 

spectra 

O2
+-based 

spectra 

All spectra H3O+-
based 

spectra 

NO+-based 
spectra 

O2
+-based 

spectra 

Number of latent 

variables 

3 5 5 5 4 3 5 4 

Parameters from calibration (%) 

Sensitivity  95.92 100 98.15 98.18 100 91.11 98.04 93.88 

Specificity  98.68 100 98.91 99.44 100 94.81 98.93 96.33 

Model efficiency  97.06 100 98.70 98.76 100 93.55 98.69 94.25 

Not assigned 

samples 

10.91 0 1.8 0 5.45 18.18 7.27 10.91 

Number of correct 
classified samples 

47/55 55/55 53/55 54/55 52/55 41/55 50/55 46/55 

Parameters from cross validation (%) 

Sensitivity 40.54 60 48.72 48.57 58.33 46.15 58.97 45.94 

Specificity  69.46 73.36 72.54 79.66 77.67 71.06 77.86 75.15 

Model efficiency 51.37 66.73 60.15 59.22 68.99 58.71 64.48 58.68 

Not assigned 
samples 

32.73 36.36 29.09 36.36 34.54 29.09 29.09 32.73 

Number of correct 
classified samples 

15/55 21/55 19/55 17/55 21/55 18/55 23/55 17/55 

 845 


