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Abstract 

 
Neuromedin U (NMU) is a highly conserved neuropeptide that has been implicated in the stress 

response. To better understand how it influences various aspects of the stress response, we studied the 

effects of intracerebroventricular NMU-8 administration on stress-related behavior and activity of the 

hypothalamus-pituitary-adrenal (HPA) axis in male C57BL/6J mice. We investigated these NMU-8 

effects when mice remained in their home cage and when they were challenged by exposure to forced 

swim stress. NMU-8 administration resulted in increased grooming behavior in mice that remained in 

their home cage and in a significant increase in c-Fos immunoreactivity in the paraventricular 

hypothalamus (PVH) and arcuate nucleus (ARC). Surprisingly, NMU-8 administration significantly 

decreased plasma corticosterone concentrations. Furthermore, NMU-8 administration increased 

immobility in the forced swim test in both naïve mice and mice that were previously exposed to swim 

stress. The effect of NMU-8 on c-Fos immunoreactivity in the PVH was dependent on previous exposure 

to swim stress given that we observed no significant changes in mice exposed for the first time to swim 

stress. In contrast, in the ARC we observed a significant increase in c-Fos immunoreactivity regardless 

of previous stress exposure. Interestingly, NMU-8 administration also significantly decreased plasma 

corticosterone concentrations in mice that were exposed to single forced swim stress, while this effect 

was no longer observed when mice were exposed to forced swim stress for a second time. Taken 

together, our data indicate that NMU-8 regulates stress responsiveness and suggests that its effects 

depend on previous stress exposure. 
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Abbreviations 

ACTH, adrenocorticotropic hormone; ARC, arcuate nucleus; CRH, corticotrophin-releasing hormone; 

HPA, hypothalamic-pituitary-adrenal; i.c.v., intracerebroventricular; i.p., intraperitoneal; NMU, 

neuromedin U; NMUR, neuromedin U receptor; POMC, pro-opiomelanocortin; PVH, paraventricular 

nucleus of the hypothalamus; TBS, tris-buffered saline. 



at the base of the median eminence, and the blood-brain barrier is more permissive in the ventromedial 

part of the ARC. As a result, the ARC has been proposed as a key region for direct input from both 

systemic and pituitary blood. Moreover, the ARC projects to the PVH and has been suggested to thus 

contribute to HPA axis activity (Leon-Mercado et al., 2017; Palkovits, 2008). 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

95 

96 

97 

98 

Previous studies have shown that exogenous NMU administration elevates stress biomarkers and 

induces stress-related behavior in rodents. A single intracerebroventricular (i.c.v.) administration of 

NMU-23 to rats was reported to induce stress-related behavior such as face washing and grooming 
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1. Introduction 

 
Neuromedin U (NMU) is a member of the neuromedin family that was originally isolated from porcine 

spinal cord (Minamino et al., 1985). NMU is coded by the Nmu gene and shows a remarkable amino 

acid sequence homology across animals, suggesting a strong evolutionary pressure to maintain its 

structure and function (Brighton et al., 2004). In mammals, NMU was found to occur in two major 

molecular forms: an extended 25 (NMU-25) or 23 (NMU-23) amino acid peptide and a truncated version 

of 9 (NMU-9) or 8 (NMU-8) amino acid C-terminal fragment (Brighton et al., 2004; Mitchell et al., 

2009). The C-terminal amidated heptapeptide is entirely conserved in mammals and the C-terminal 

amidated octapeptide NMU-8 is the shorted peptide fragment that exerts the same biological effects as 

its longer endogenous isoforms, NMU-25 in humans or NMU-23 in rodents (Brighton et al., 2004). 

NMU-like immunoreactivity has been detected in neurons of the brain, spinal cord and mesenteric 

plexus (Brighton et al., 2004). NMU isoforms activate two G protein-coupled receptors known as 

NMUR1 receptors, which are mainly expressed in the periphery, and NMUR2 receptors, which are 

predominantly expressed in spinal cord and brain (Gartlon et al., 2004; Howard et al., 2000). 

Interestingly, different distribution patterns of NMUR2 mRNA have been observed in different species. 

Indeed, whereas NMUR2 mRNA was mainly detected in the paraventricular nucleus of the 

hypothalamus (PVH) in the rat brain (Graham et al., 2003; Howard et al., 2000), it was found to be 

abundantly expressed in the arcuate nucleus (ARC) and around the ventromedial hypothalamus in the 

mouse brain (Graham et al., 2003). 

Current literature indicates a role for NMU in the control of smooth muscle contraction, blood pressure, 

nociception, inflammation, food intake and regulation of the hypothalamic-pituitary-adrenal (HPA) axis 

(Brighton et al., 2004; Mitchell et al., 2009). The HPA axis is a major neuroendocrine system that 

regulates the stress response (Levy and Tasker, 2012). Activation of the HPA axis leads to the release 

of corticotropin releasing hormone (CRH) by the PVH, adrenocorticotropic hormone (ACTH) by the 

pituitary and corticosterone (cortisol in humans) by the adrenal cortex. Corticosterone further mediates 

the stress response by initiating metabolic and behavioral coping mechanisms and by exerting negative 

feedback on the HPA axis (Holsboer and Ising, 2010). The ARC was recently shown to also play a role 

in the negative feedback for corticosterone secretion (Leon-Mercado et al., 2017). The ARC is located 
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In the present study, we aimed to further investigate these described discrepancies in the effects of 

central administration of NMU and performed a systematic set of experiments on the role of NMU-8 in 

stress coping at the behavioral, cellular and endocrinal level in the commonly used C57BL/6J mouse 

strain. We studied the effects of i.c.v. administration of NMU-8, the smallest active NMU fragment 

acting as a high-affinity agonist on NMUR1 and NMUR2, on stress-related behavior and activity in the 

home cage and when mice were challenged by exposure to forced swim stress. In all conditions, 

immunoreactivity of c-Fos, a marker of neuronal activation, was assessed in the PVH and ARC. Finally, 
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(Gartlon et al., 2004; Hanada et al., 2001; Wren et al., 2002). These effects were at least partially 

mediated by CRH (Hanada et al., 2001; Wren et al., 2002). It was further demonstrated that i.c.v. 

administration of NMU-23 increased plasma levels of several endocrine hormones including arginine 

vasopressin, oxytocin, ACTH and corticosterone in rats (Ozaki et al., 2002; Wren et al., 2002). c-Fos 

gene expression levels in, amongst other brain regions, the PVH and ARC, were observed in rats 

following i.c.v. administration of NMU-23 (Niimi et al., 2001; Ozaki et al., 2002; Yokota et al., 2004). 

Direct administration of NMU-23 into the PVH or ARC gave similar results, namely a remarkable 

grooming behavior in rats, together with increased locomotor activity and reduced feeding episodes 

(Novak et al., 2006; Wren et al., 2002). Additionally, activation of the HPA axis was reported after 

microinjection of NMU-23 in the PVH with increased plasma concentrations of ACTH and 

corticosterone in rats (Wren et al., 2002). Repeated NMU-23 administration (twice per day for 7 days) 

resulted in elevated concentrations of plasma corticosterone, but not ACTH, and increased grooming 

behavior in rats (Thompson et al., 2004). Interestingly, NMU knockout mice exhibit a diminished 

behavioral response to stressful situations, such as substantial room temperature increases or 

immobilization stress (Nakahara et al., 2004). These stressors also result in a significant increase in 

plasma corticosterone levels in wildtype but not in NMU knockout mice, suggesting that NMU may be 

a key stress hormone (Nakahara et al., 2004). These effects of central administration of NMU-23 were 

attributed to activation of hypothalamic NMUR2 receptors (Graham et al., 2003; Hanada et al., 2001; 

Howard et al., 2000; Peier et al., 2009; Zeng et al., 2006). However, while the aforementioned studies 

consistently found that central administration of NMU peptides results in elevated c-Fos expression in 

the PVH and ARC, several studies were unable to confirm the effects on circulating corticosterone. 

Indeed, acute i.c.v. administration of NMU-23 was also shown to have no significant effect in plasma 

corticosterone concentrations in rats (Gartlon et al., 2004) and in mice (Vallof et al., 2017). Moreover, 

another study found no effect on plasma corticosterone following i.c.v. delivery of NMU-23 for 14 days 

in mice (Peier et al., 2011). Similarly, there have been contrasting findings regarding the effect of central 

administration of NMU on stress-related behaviors. A recent study found that NMU-23 may improve 

stress-coping in mice subjected to the forced swim test (Tanaka and Telegdy, 2014). This suggests that 

the effect of administration of NMU isoforms may depend on previous exposure to stress and the activity 
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plasma corticosterone concentrations were measured to assess the putative downstream effects of NMU- 

8 on HPA axis activity. 



Merial, France) was administered subcutaneously to prevent post-operative pain and inflammation. 

Artificial tears (Tears Naturale, Alcon, United Kingdom) were applied to the eyes to prevent 

dehydration. A 3 mm guide cannula (26 GA, Plastics One, Roanoke, USA) was implanted 

stereotactically in the left ventricle of the mice using the following coordinates relative to bregma; +1.00 

mm medial-lateral, -0.34 mm anterior-posterior and -2.20 mm ventral-dorsal. At the end of the surgical 

procedure, mice received 1 mL saline (0.9 % NaCl, Baxter, Belgium) intraperitoneally (i.p.) and were 

placed on a heating pad until awake. After surgery, mice were single-housed to prevent damage to the 

cannula and could recover for at least one week. During the recovery period, mice were habituated to 

the experimental procedures. A dummy (Plastics One, Roanoke, USA) was placed in the cannula to 
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2. Material and methods 

2.1 Peptides 

NMU-8 (H-Tyr-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2) was manually synthesized by conventional 9- 

fluorenylmethyloxycarbonyl (Fmoc)-based solid phase peptide synthesis on Rink Amide AM resin (0.45 

– 0.60 mmol g−1, ChemImpex, USA) as described by De Prins et al. (De Prins et al., 2018a). The 

structure of the pure peptide was confirmed by high-resolution mass spectrometry on a Waters 

Micromass Q-Tof micro spectrometer with electrospray ionization. The purity of NMU-8 was more than 

95 % according to high-performance liquid chromatography analysis. Mouse NMU-23 (H-Phe-Lys-Ala- 

Glu-Tyr-Gln-Ser-Pro-Ser-Val-Gly-Gln-Ser-Lys-Gly-Tyr-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2) was 

purchased from Phoenix Pharmaceuticals (USA), with a purity ≥95 % guaranteed by the manufacturer. 

2.2 Animals 

 
Adult (7 weeks) male C57Bl/6J mice were obtained from Janvier (France) and habituated to the animal 

facility for one week minimum prior to experiments. Mice were housed in groups of 4-6 (1290 

eurostandard type III cages, Tecniplast, Italy) upon arrival and single-housed (1264C eurostandard type 

II cages, Tecniplast, Italy) at the start of the experiments in a temperature (18-24°C) and humidity (30- 

70%) controlled environment with a 12/12 h light/dark cycle. Mice had free access to food pellets (A03, 

SAFE, France) and water. Cages were minimally enriched with wooden gnawing blocks and nesting 

material. Mice did not receive a shelter following surgery to prevent damage to the implanted cannula. 

All procedures were approved by the Ethical Committee for Animal Experiments of the Faculty of 

Medicine and Pharmacy of the Vrije Universiteit Brussel and were carried out in accordance with the 

European Community Council Directives (2010/63/EU). 

2.3 Stereotactic surgery 

 
Mice were anesthetized with 4 % isoflurane (1000 mg/g, Iso-Vet®, Dechra Veterinary Products, The 

Netherlands) in an induction chamber. Anesthesia was maintained during the entire duration of the 

surgery with 2-3 % isoflurane delivered via a facemask. Ketoprofen (5 mg/kg, Ketofen®, 10 mg/mL, 



swimming and climbing behavior were assessed during the experiment. Immobility was defined as the 

absence of movement in at least three paws. When mice used one paw occasionally to keep their head 

above the water surface, this was still considered as immobility. Climbing was defined as the use of two 

paws or more with vertical movement along the wall of the water tank. Swimming was defined as the 

use of two paws or more with horizontal movement in the tank. The predominant behavior present in ≥ 

3 sec in each 5 sec epoch was scored offline by an observer blinded to treatment for the complete 

duration of the trial, resulting in 60 counts per mouse. 
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prevent clogging. The position of the implanted guide was verified post mortem and compared to the 

anatomical Mouse Brain Atlas (Paxinos and Franklin, 2004). Correct implantation of the cannula was 

verified before unblinding. We observed off-target cannulation in 12 out of 146 mice. These mice were 

excluded from our analysis. 

2.4 Behavioral assessment 

 
All mice were acclimatized to the testing room and handled for 5 minutes per day starting three days 

prior to the behavioral assessments. Experiments were performed in the light phase of the light/dark 

cycle between 9:00 AM and 2:00 PM. The experimenters were blinded to treatment for the whole 

duration of the study. I.c.v. injections of vehicle (0.9% sterile saline), NMU-8 (0.5 nmol or 5 nmol 

dissolved in sterile saline) or NMU-23 (5 nmol dissolved in sterile saline) were carried out via the 

implanted guide cannula using a 33 GA injection needle (extending 1 mm beyond the tip of the guide 

cannula, Plastics One, Roanoke, USA), connected to a micro-injection pump (CMA 400 Syringe Pump, 

CMA/Microdialysis, Sweden) at a flow rate of 0.5 µL/min during 2 min. Following i.c.v. administration, 

the injection needle was left in place for 1 min to avoid reflux of the injected liquid. 

2.4.1 Home cage behavior 

 
Mice were randomly divided into three different groups and received an i.c.v. administration of saline 

or NMU-8 (0.5 or 5 nmol). Immediately after drug administration, mice were returned to their home 

cage and video monitored for 20 min. Behavioral analysis was performed with EthoVision xT11.5 

software (Noldus, The Netherlands) and animals were scored for the following behaviors: grooming 

(body and face), digging and explorative behavior (distance moved). 

2.4.2 Forced swim test 

 
Passive stress-coping behavior was assessed by subjecting a separate cohort of mice to a single forced 

swim test, 15 min after i.c.v. administration of saline or NMU-8 (5 nmol). Mice were placed in a glass 

tank cylinder (30 cm diameter) filled with 30 cm of water at 25 ± 1 °C and video monitored during 5 

min. The experiment was performed at a light intensity of 400 lux (Bentea et al., 2015). Immobility, 
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incubated with secondary antibodies for 45 min at room temperature and protected from light. Secondary 

antibodies used were CyTM2-labeled donkey anti-guinea pig (1:200; #706-225-148, Jackson 

ImmunoResearch Laboratories, USA), CyTM3-labeled goat anti-rabbit (1:500; #111-165-003, Jackson 

ImmunoResearch Laboratories, USA), CyTM3-labeled donkey anti-goat (1:400; #705-165-147, Jackson 

ImmunoResearch Laboratories, USA) and CyTM5-labeled donkey anti-rabbit (1:400; #711-175-152, 

Jackson ImmunoResearch Laboratories, USA). Immunoreactivity to c-Fos was visualized with a 

confocal laser scan microscope (Zeiss, Axio Observer with LSM 710-6NLO configuration, Zeiss 

International, Germany) and c-Fos positive cells were manually quantified using the digital imaging 

system ImageJ (National Institutes of Health, USA). Essentially, for a given experiment the image with 
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2.4.3 Modified forced swim test 

 
To assess NMU-8 effects on stress responsiveness in a condition where stress was already present, 

another separate cohort of mice was subjected to a modified version of the mouse forced swim test. The 

modified version corresponds to the original forced swim test for rats, described by Porsolt et al. (Porsolt 

et al., 1977). Briefly, mice were exposed to a 15-min forced swim session on day one, 24 hours prior to 

subjection to a 5-min forced swim test. On the second day, NMU-8 (5 nmol) or saline was administered 

i.c.v. fifteen min before the 5-min forced swim test. All experimental and scoring conditions were 

identical to those described in 2.4.2. 

2.5 Immunohistochemistry 

 
To evaluate c-Fos immunoreactivity mice were intracardially perfused 90 min after drug treatment in all 

experimental conditions. Briefly, mice were deeply anesthetized with sodium pentobarbital i.p. 

(Doléthal®, 200 mg/mL, Vétoquinol, France) and perfused with phosphate buffered saline (PBS, Sigma- 

Aldrich, Germany) followed by 4 % paraformaldehyde (Sigma-Aldrich, Germany) for 5 min at a rate of 

10 mL/min. After perfusion, brains were dissected and postfixed overnight in 4 % paraformaldehyde in 

PBS. 40-µm coronal sections were cut using a vibratome (Leica VT1000S, Leica Biosystems, Germany) 

and stored at -20 °C in a Tris-buffered saline (TBS) solution (50 mM Tris, pH 7.6, Sigma-Aldrich, 

Germany) containing 30 % glycerol (Millipore, Merck, Germany) and 30 % ethylene glycol (VWR 

International, USA). 

Free-floating sections were rinsed three times for 10 min with Tris-buffered saline (TBS) and TBS 

containing 3% bovine serum albumin (Sigma-Aldrich, Germany) and 0.3% Triton-X (Sigma-Aldrich, 

Germany) for 1 h at room temperature under gentle agitation. Next, sections were incubated overnight 

in primary rabbit or goat anti-c-Fos antibody in blocking buffer (1:500; #2250, Cell Signaling, USA or 

sc-52, Santa Cruz Biotechnology, USA) at 4 °C. Co-labeling with guinea pig anti-CRH antibody 

(1:5000; T-5007, Peninsula Laboratories International, Inc., USA) or rabbit anti-proopiomelanocortin 

(POMC, 1:400; H-029-30, Phoenix Europe GmbH, Germany) was used to delineate PVH or ARC, 

respectively. The next day, sections were rinsed three times with TBS containing 0.1% Triton-X and 
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the highest signal for c-Fos was used to define a fixed threshold to improve the signal-to-noise for 

quantification of the number of c-Fos positive profiles in all the obtained images. Next, the PVH or ARC 

(median eminence not included) was contoured and the area was measured on all images based on the 

labelling for CRH or POMC. Only images where the PVH and ARC were clearly visible and on which 

the profile corresponded to the representative images were used for further analysis. Finally, circular c- 

Fos positive profiles were analyzed blinded to treatment and expressed as number of c-Fos cells per 

square micrometer (µm²). 

2.6 Plasma corticosterone measurements 

 
Plasma corticosterone concentrations were measured 10 min following i.c.v. administration of saline, 

NMU-8 (5 nmol) or NMU-23 (5 nmol) when mice remained in the home cage. When mice were 

subjected to swim stress after administration of saline or NMU-8 (5 nmol), blood was collected 10 min 

following the 5-min forced swim test. Mice were anesthetized with sodium pentobarbital i.p. and blood 

was collected from the heart by cardiac puncture and stored in K3EDTA-coated tubes (Vacutest Kima 

S.R.L, Italy). To obtain plasma, blood samples were centrifuged for 15 min at 2500 g at 4 °C. The 

supernatant was collected and stored at -20 °C until analysis. Corticosterone plasma concentrations were 

measured using an enzyme-linked immunosorbent assay kit (ab108821, Abcam, UK) according to the 

manufacturer’s recommended protocol (sensitivity: 0.28 ng/mL, intra-assay coefficient of variance: 

5.3%, inter-assay coefficient of variance: 10.6% as indicated by the manufacturer). 

2.7 Data analysis and statistical evaluation 

 
Graphical representations and statistical analyses were performed using GraphPad Prism 6.01 software 

(GraphPad Software, Inc., USA). Data are expressed as dot blots with designation of median values. For 

comparison of two groups, Mann-Whitney U test was performed. For comparison of multiple groups, 

Kruskal-Wallis test followed by Dunn’s post hoc test was employed. When more than one variable was 

evaluated, two-way ANOVA followed by Dunnett’s post hoc test was used. The α value was set at 0.05 

for each statistical test. Effect size estimates were determined using Cohen’s d for Mann-Whitney U 

tests and eta-squared (η2) for all ANOVA statistics reported within the text. 
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3.2 Effects of NMU-8 on c-Fos immunoreactivity 295 

The PVH was delineated using an antibody against CRH (Figure 2A). We found that i.c.v. 

administration of NMU-8 (5 nmol) significantly increased c-Fos immunoreactivity in mice that 

remained in the home cage (c-Fos: p=0.017, U=2, Cohen’s d=0.51, Figure 2B; PVH area: p>0.05, U=12, 

Cohen’s d=0.42). However, NMU-8 (5 nmol) did not significantly increase c-Fos expression in the PVH 

when mice were subjected to a single 5-min forced swim test (c-Fos: p>0.05, U=10, Cohen’s d=0.27, 

Figure 2C; PVH area: p>0.05, U=3, Cohen’s d=1.51). Here, it can be noted that following a single 5- 

min forced swim test, baseline c-Fos immunoreactivity in the PVH was high compared to the mice that 
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3. Results 

 
3.1 Behavioral effects of central administration of NMU-8 

 
Home cage behavior was assessed over a 20-min interval after i.c.v. administration of saline or NMU-8 

(0.5 and 5 nmol). We found a significant increase in grooming behavior following i.c.v. administration 

of 5 nmol NMU-8 (p=0.012, U=44, Cohen’s d=1.06; Figure 1A), while no significant effects were 

observed on total digging activity (p>0.05, U=84.5, Cohen’s d=0.24; Figure 1B) and overall locomotor 

activity as measured by total distance moved (p>0.05, U=73, Cohen’s d=0.45; Figure 1C). Further 

analysis of grooming behavior over 5-min time bins showed both a time [2-way ANOVA, time factor: 

F(3,102) = 3.56, p=0.017, η2=0.12] and treatment effect [2-way ANOVA, treatment factor: F(2,34) = 

5.55, p=0.0082, η2=0.18]. Dunnett’s multiple comparisons test revealed no significant effects on all 

measures for the lowest dose of NMU-8 (Dunnett’s post hoc test, p>0.05, Figure S1) but a significant 

increase of grooming behavior after injection of 5 nmol NMU-8 at 5-10 min (saline vs 5 nmol NMU-8, 

Dunnett’s post hoc test, p= 0.033), 10-15 min (saline vs 5 nmol NMU-8, Dunnett’s post hoc test, p= 

0.012) and 15-20 min (saline vs 5 nmol NMU-8, Dunnett’s post hoc test, p= 0.0011) (Figure S1). 

To assess whether NMU-8 increased stress vulnerability in the forced swim test, mice received an i.c.v. 

administration of saline or NMU-8 (5 nmol) followed 15 min later by a single 5-min forced swim test. 

We found that NMU-8 significantly increased immobility in the forced swim test compared to controls 

(p=0.0065, U=16.5, Cohen’s d=1.56; Figure 1D), while swimming (p>0.05, U=56.5, Cohen’s d=0.11; 

Figure 1E) and climbing (p>0.05, U=36, Cohen’s d=0.73; Figure 1F) behavior was not significantly 

affected. We next evaluated whether NMU-8 would affect passive stress-coping behavior differently 

when mice were also previously exposed to swim stress. Here, mice were subjected to a 15-min forced 

swim session on the first day, and on the following day they received an i.c.v. administration of saline 

or NMU-8 (5 nmol) followed 15 min later by a 5-min forced swim test. Under these experimental 

conditions, NMU-8 also significantly increased immobility in the forced swim test compared to controls 

(p=0.034, U=19, Cohen’s d=1.12; Figure 1G) while swimming (p>0.05, U=36.5, Cohen’s d=0.32; 

Figure 1H) and climbing (p>0.05, U=21.5, Cohen’s d=0.98; Figure 1I) behavior were not significantly 

altered. 



mice that underwent a single forced swim test, the concentration of corticosterone in plasma was 

significantly higher compared to mice that remained in the home cage (Kruskal-Wallis; home cage 

versus single forced swim test: p<0.0001, home cage versus modified forced swim test: p>0.05, 

H=17.45, η2=0.86). 
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remained in the home cage (p=0.0043, U=0, Cohen’s d=2.93). When mice were pre-exposed to a 15- 

min forced swim stress session on the first day, NMU-8 (5 nmol) significantly increased c-Fos 

expression in the PVH (c-Fos: p=0.032, U=1, Cohen’s d=2.17, Figure 2D; PVH area: p>0.05, U=0.84, 

Cohen’s d= -0.14) when administered 15 min prior to a 5-min forced swim test on the second day. 

The ARC was delineated using an antibody against POMC (Figure 2E). We observed that i.c.v. 

administration of NMU-8 (5 nmol) significantly increased c-Fos immunoreactivity in mice that 

remained in the home cage (c-Fos: p= 0.0095, U=0, Cohen’s d=2.75, Figure 2F; ARC area: p>0.05, 

U=10, Cohen’s d= -0.09). Moreover, we found that NMU-8 significantly increased c-Fos expression in 

POMC cells (p=0.0095, U=0, Cohen’s d=2.75; Figure S2), but the total c-Fos expression in the ARC 

was not restricted to POMC cells. Following administration of NMU-8 (5 nmol) only 15.7±2.5% of c- 

Fos expressing cells also expressed POMC. When NMU-8 (5 nmol) was administered 15 min before a 

single 5-min forced swim test, we also observed a significant increase in c-Fos immunoreactive cells 

compared to control mice (c-Fos: p=0.019, U=1, Cohen’s d=2.21, Figure 2G; ARC area: p>0.05, U=5, 

Cohen’s d= 0.97). Furthermore, when mice were pre-exposed to a 15-min forced swim stress on the first 

day, NMU-8 (5 nmol) significantly increased c-Fos expression in the ARC when administered 15 min 

before the 5-min forced swim test on the second day of the experiment (c-Fos: p=0.016, U=0, Cohen’s 

d=2.83, Figure 2H; ARC area: p>0.05, U=4, Cohen’s d= -0.96). 

 

 

3.3 Effects of NMU-8 on the plasma corticosterone concentration 

 
NMU-8 (5 nmol) administration resulted in a significant decrease of the corticosterone concentration in 

plasma 10 min post-injection compared to controls (p=0.019, U=14, Cohen’s d=1.32; Figure 3A) in 

mice that remained in the home cage. When NMU-8 (5 nmol) was administered 15 min before a 5-min 

forced swim test, it resulted in significantly decreased plasma corticosterone concentrations 10 min after 

the test compared to saline controls (p=0.0082, U=4.5, Cohen’s d=1.87; Figure 3B). In mice that were 

subjected to a 15-min forced swim on the first day, administration of NMU-8 (5 nmol) 15 min before 

the 5-min forced swim test on the second day did not result in a significant decrease in the plasma 

corticosterone concentration compared to controls (p>0.05, U=12, Cohen’s d=0.066; Figure 3C). In 
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3.4 Effects of NMU-23 on the plasma corticosterone concentration 

 
To investigate whether the observed effects on plasma corticosterone were dependent on the NMU 

isoform we used in our experiments, we also investigated the effect of central administration of NMU- 

23. We observed that i.c.v. NMU-23 (5 nmol) administration resulted in a significant decrease of the 

corticosterone concentration in plasma 10 min post-injection compared to saline controls (p=0.033, U=6, 

Cohen’s d=1.48; Figure 4) in mice that remained in the home cage. 
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following administration of NMU-8 would be associated with an increase in the plasma concentration 

of corticosterone. Surprisingly, we found that NMU-8 decreases the plasma concentration of 

corticosterone in C57Bl/6J mice as quickly as 10 min following its central administration. When 

administered centrally, NMU-23 administration (0.3-1 nmol i.c.v.) was previously shown to increase 

plasma corticosterone in male Wistar rats (Ozaki et al., 2002; Wren et al., 2002). In line with this 

observation, repeated administration of NMU-23 (0.3 nmol) in the PVH of male Wistar rats for a 

duration of 7 days resulted in a significant increase in plasma corticosterone when measured one day 

after the final injection (Thompson et al., 2004). Moreover, lowered plasma corticosterone 
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4. Discussion 

 
In the present study we refined existing knowledge on the effects of central NMU-8 administration on 

the stress response. We confirmed previous observations that central administration of NMU-8 stress- 

related behavior and c-Fos expression in the PVH and ARC of C57BL6/J mice. However, in contrast to 

other studies we observed that central administration of NMU-8 evoked a significant decrease in plasma 

corticosterone. We propose that the effects of NMU-8 may depend on previous stress exposure. 

4.1 NMU-8 effects in home cage conditions 

 
Our study showed that i.c.v. administration of NMU-8 in a dose of 5 nmol increased grooming behavior 

in mice that remained in the home cage. This finding is in line with previous studies, reporting increased 

grooming behavior in rats following central NMU-23 administration (Gartlon et al., 2004; Hanada et al., 

2001; Wren et al., 2002). This effect of NMU-23 was attributed to activation of the HPA axis, since it 

resulted in activation of CRH cells in the PVH and treatment with CRH antagonists blocked the stress 

response (Gartlon et al., 2004; Hanada et al., 2001; Wren et al., 2002). While these studies also reported 

a NMU-23-induced increase in overall locomotor activity in rats (Gartlon et al., 2004; Hanada et al., 

2001), we could not observe this effect in C57BL/6J mice. Moreover, another study showed decreased 

locomotor activity in NMU knockout mice compared to wildtype littermates (Hanada et al., 2004). These 

inconsistencies may be due to the different time span for observation. Indeed, while we observed 

locomotor activity over a time span of 20 min, other studies explored activity for 120 min up to 24 hours 

(Gartlon et al., 2004; Hanada et al., 2004). 

At the cellular level, we found that the NMU-8-induced grooming behavior was accompanied by 

increased c-Fos expression in the PVH and ARC. Our findings are consistent with previous observations 

of increased c-Fos immunoreactivity in both the PVH and ARC of mice or rats treated with NMU 

(Ivanov et al., 2002; Nagai et al., 2018; Nakahara et al., 2004; Niimi et al., 2001). In the PVH, the 

increase in c-Fos expression was observed in CRH-containing cells and in the ARC it was observed in 

POMC cells. However, increased c-Fos expression was not restricted to these cell types or brain regions. 

The CRH-containing cells have been described to release CRH upon their activation (McEwen, 2007; 

Zhang et al., 2017). We therefore expected that the increased expression of c-Fos in the hypothalamus 
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of the forced swim test, ascribing antidepressant-like effects to NMU-23 (Tanaka and Telegdy, 2014). 

In this study, mice were exposed to a 15-min forced swim session on day one, followed by NMU-23 

treatment and a 5-min forced swim test on day two (Tanaka and Telegdy, 2014). Therefore, we carried 

out an experiment where we administered NMU-8 under these experimental conditions. Interestingly, 

we again found increased immobility in mice treated with NMU-8. One potential explanation of the 

observed discrepancy is the difference in used mouse strains. While our experiments were performed 

with mice of the widely used inbred strain C57BL/6J, the reported study used the outbred CFLP mouse 

strain. Indeed, mouse strain is an important factor in both baseline performances and pharmacological 
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Dawley rats (Gartlon et al., 2004). Similarly, central administration of NMU-23 (1 μg i.c.v.) had no 

significant effect on plasma corticosterone in male NMRI mice (Vallof et al., 2017). Moreover, central 

delivery of NMU-23 for 14 days did not affect plasma corticosterone in male C57BL6/J mice (Peier et 

al., 2011). The notion that we used NMU-8 cannot explain differences with literature given that it is also 

an agonist of NMUR1/2 and when we administered NMU-23 (5 nmol i.c.v.) we similarly observed a 

significant decrease in plasma corticosterone. We note however that the highest dose of NMU-8 used in 

our study is slightly higher compared to those used in previous literature. Given that cerebrospinal fluid 

is rapidly cleared from the brain through meningeal lymphatic vessels (Ahn et al., 2019), we cannot 

exclude that NMU-8 would reach the periphery after i.c.v. administration. This may be relevant given 

that NMU-8 was initially reported to exert biphasic effects on corticosterone. Administration of a single 

systemic dose of NMU-8 (6 μg/100g sc) was reported to induce a transient increase in serum 

corticosterone in adult female Wistar rats (Malendowicz et al., 1993). However, 6-day regimen of 

systemic NMU-8 administration significantly increased serum corticosterone in a low dose (1.5 μg/100g 

s.c.) whereas a high dose (6 μg/100g s.c.) did not affect basal serum corticosterone in female Wistar rats 

(Malendowicz et al., 1994). Interestingly, in the same study, the highest dose of NMU-8 suppressed the 

ACTH-induced increase in serum corticosterone (Malendowicz et al., 1994). Based on these findings, 

the authors concluded higher doses of NMU-8 may exert a direct inhibitory effect on adrenal function 

(Malendowicz et al., 1994). We acknowledge that these pioneering studies were carried out in female 

rats and that the lack of inclusion of female mice is a weakness of our study. 

4.2 NMU-8 effects in a stressful context 

 
Given its previously described effects on HPA axis activity, we hypothesized that NMU would 

aggravate stress-related behaviors, such as passive stress-coping in the forced swim test. We indeed 

observed that central NMU-8 administration increased immobility in a 5-min forced swim test. 

However, this finding contrasted with a previous study in which i.c.v. administration of NMU-23 

resulted in a decreased immobility while increasing climbing and swimming time in a modified version 

concentrations were also reported in mice lacking the functional NMU peptide compared to their 

wildtype littermates in naïve conditions (Hanada et al., 2004). In contrast, another study found no 

significant effect of central administration of NMU-23 on plasma corticosterone in male Sprague- 



47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

demonstrated that short-term immobilization stress increased plasma corticosterone in wildtype mice 

while no effect was seen in NMU knockout mice (Nakahara et al., 2004). However, we found that NMU- 

8 decreased plasma corticosterone levels in naïve mice as well as in mice subjected to a single 5-min 

forced swim test. Intriguingly, the corticosterone-reducing effect of NMU-8 was not observed when 

mice were pre-exposed to a 15-min forced swim session one day before the 5-min forced swim test. 

Importantly, the increase in baseline plasma corticosterone levels compared to mice that remained in the 

home cage was also less pronounced when mice were subjected to a second forced swim test. Our data 
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responses to antidepressants in the forced swim test (Lucki et al., 2001). Likewise, it is possible that 

NMU acts differently in these mouse strains. It can also be noted that we used the truncated peptide 

NMU-8 in contrast to the longer isoform NMU-23 in the previously reported study. However, NMU-8 

has been shown to act as a full agonist on NMUR1 and NMUR2 without loss in potency (Brighton et 

al., 2004; De Prins et al., 2018a; De Prins et al., 2018b). This makes it unlikely that the observed 

differences are due to differences in the used peptide forms. Moreover, we showed that NMU-23 has 

similar effects as NMU-8 on plasma corticosterone. Interestingly, it has been suggested that NMU 

peptides may also act through other, yet undiscovered receptors (Martinez and O'Driscoll, 2015). In this 

context, we cannot fully exclude that the use of a different isoform did not contribute to the behavioral 

outcomes in the forced swim test, given the assumption that a different isoform could also exert effects 

independently of NMUR2. However, it is worth mentioning that stress-coping behavior has been 

previously investigated in NMUR2 knockout mice, using the mouse tail suspension test (Zeng et al., 

2006). Similar to the forced swim test, the mouse tail suspension test induces an inescapable and stressful 

state (Cryan et al., 2005). Interestingly, the mentioned study did not report significant differences 

between NMUR2 knockout mice and their wildtype littermates in the mouse tail suspension test (Zeng 

et al., 2006). This may suggest that the loss of NMUR2 function does not critically affect passive stress- 

coping behavior in the mouse tail suspension test. 

We found that c-Fos expression was high in the PVH after a single 5-min forced swim test. This 

corresponds to previous literature findings demonstrating that swim-stress increases c-Fos positive cells 

in the PVH, a stress-sensitive region and key modulator of HPA axis (Duncan et al., 1993; Stone et al., 

2007). However, we found that central administration of NMU-8 did not further elevate c-Fos expression 

in the PVH under these experimental conditions while it did increase c-Fos immunoreactivity in the 

ARC. Interestingly, when mice were previously exposed to swim stress, c-Fos immunoreactivity in the 

PVH following a 5-min forced swim test was less pronounced. Under these experimental conditions, 

NMU-8 increased neuronal activity in both the PVH and ARC. Overall, it appears that central 

administration of NMU-8 increases c-Fos expression in both the PVH and ARC, but that these effects 

depend on prior stress exposure. 

Corticosterone levels in plasma typically increase upon stress exposure. Interestingly, a previous study 
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indicate that the effects of NMU may depend on previous stress exposure but the mechanism through 

which central administration of NMU-8 decreases plasma corticosterone remains unknown. 

4.3 Conclusions 

 
Altogether, our findings contribute to the better understanding of the effects of NMU on stress- 

responsiveness. We conclude that NMU-8 increases c-Fos activity in the PVH and ARC and stress- 

related behaviors in C57BL/6J mice, while it surprisingly decreases corticosterone plasma 

concentrations. Importantly, we found that the observed effects of NMU-8 were dependent on previous 

stress exposure. We hypothesize NMU might be an interesting target to further explore novel treatments 

for stress-related disorders. However, the inconsistencies found with literature at both the behavioral 

and endocrinal level emphasize the need for further investigation of the mechanisms through which 

NMU affects physiological functions. 
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Figure legends 

 
Figure 1. Effects of central NMU-8 administration on stress-related behavior in C57BL/6J mice. 

Intracerebroventricular (i.c.v.) administration of saline or NMU-8 (5 nmol) was carried out at the onset 

of a 20 min observation period and the total time spent grooming, digging and the total distance moved 

were scored by an observer blinded to treatment while mice remained in the home cage (A-C). In a 

separate series of experiments, we investigated the effect of i.c.v. administration of saline or NMU-8 (5 

nmol) on immobility, swimming and climbing behavior in a 5 min forced swim test in naïve mice (D- 

F) or in mice exposed to a 15 min forced swim session one day before the 5 min forced swim test session 

(G-I). NMU-8 was administered 15 min before the forced swim test. Data are presented as a dot blot for 

individual values with designation of the median and n = 9-14 per group. * P<0.05, ** P <0.01 versus 

saline controls analyzed by Mann-Whitney U test. 

 

 

Figure 2. Effects of central NMU-8 administration on expression of the immediate early gene c- 

Fos in the paraventricular hypothalamus (PVH) and in the arcuate nucleus (ARC) of C57BL/6J 

mice. Representative images of c-Fos positive cells in the PVH, co-labeled with an antibody against 

CRH (A) and ARC, co-labeled with an antibody against POMC (E). Quantification by an observer 

blinded to treatment shows that intracerebroventricular (i.c.v.) administration of NMU-8 (5 nmol) 

differentially affected the amount of c-Fos immunoreactive cells/µm² in both the ARC and PVH of mice 

that remained in their home cage (B,F), mice subjected to a single forced swim test (C,G) or mice 

subjected to a 15 min forced swim session one day before the forced swim test (D,H). Data are presented 

as a dot blot for individual values with designation of the median and n = 4-6 per group. * P<0.05, ** P 

<0.01 versus saline controls analyzed by Mann-Whitney U test. 3V, third ventricle; CRH, corticotropic 

releasing hormone; DMH, dorsomedial hypothalamus; LHA, lateral hypothalamus; ME, median 

eminence; POMC, pro-opiomelanocortin. 
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Figure 3. Effects of central NMU-8 administration on the plasma concentration of corticosterone 

in C57BL/6J mice. Plasma corticosterone was measured 10 min after intracerebroventricular (i.c.v.) 

administration of NMU-8 in mice remaining in the home cage (A), 10 min after a 5 min forced swim 

test in naïve mice (B) or 10 min after a 5 min forced swim test in mice that were subjected to a 15 min 

forced swim session one day earlier (C). NMU-8 was administered 15 min before the forced swim test. 

Data are presented as a dot blot for individual values with designation of the median and n = 5-9 per 

group. * P<0.05, ** P <0.01 versus saline controls analyzed by Mann-Whitney U test. 

 

 

Figure 4. Effects of central NMU-23 administration on the plasma concentration of corticosterone 

in C57BL/6J mice. Plasma corticosterone was measured 10 min after intracerebroventricular 

administration of NMU-23 (5 nmol) in mice remaining in the home cage. NMU-23 significantly 

decreased plasma corticosterone concentrations compared to saline treated mice. Data are presented as 

a dot blot for individual values with designation of the median and n=6-7 per group. *P<0.05 versus 

saline controls analyzed by Mann-Whitney U test. 
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Supplemental figures 
 

 

FIGURE S1 
 

Figure S1. Effects of central NMU-8 administration on home cage behavior. Time spent grooming 

(A), digging (B) and total distance moved (C) in the home cage after intracerebroventricular 

administration of saline or NMU-8 (0.5 or 5 nmol), divided in 5-min time bins. A significant increase in 

grooming behavior after injection of 5 nmol NMU-8 is observed at 5-10 min, 10-15 min and 15-20 min 

compared to saline controls (A). No significant effects of NMU-8 on time spent digging were observed 

(B). However, at 15-20 min, 5 nmol NMU-8 decreased locomotor activity as measured by the 



 

distance moved (C). Data are presented as bars with mean±SEM and n=11-14 per group. *P<0.05, 

**p<0.01 versus saline controls, analyzed using two-way ANOVA followed by Dunnett’s multiple 

comparisons test. 



 

FIGURE S2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S2. Effects of central NMU-8 administration on POMC cells in the arcuate nucleus. 

Intracerebroventricular administration of NMU-8 (5 nmol) significantly increased the percentage of 

POMC cells expressing c-Fos (A), while the number of POMC expressing cells remained unchanged 

(B) in mice that remained in the home cage. Data are presented as a dot blot for individual values with 

designation of the median and n=4-6 per group. **P<0.01 versus saline controls analyzed by Mann- 

Whitney U test. 
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