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Abstract Background-Oriented Schlieren (BOS) is an optical visualization technique which
reconstructs a whole-field flow based on its density gradient. BOS is similar to particle image
velocimetry (PIV) in terms of experiments design and the computation of the displacements.
However, in BOS, the reconstruction of the refraction index field involves further mathemat-
ical calculations, which depends on the flow geometry, such as Poisson solver, Abel inver-
sion, algebraic reconstruction technique, and filtered back projection. This lengthy combi-
nation of experimental measurements, cross-correlation evaluation, and mathematical com-
putation complicates the uncertainty quantification of the reconstructed field. In this study,
we present a detailed approach for an a-posteriori estimation of uncertainty when using BOS
to reconstruct the refractive index/density field. The proposed framework is based on Monte
Carlo Simulation (MCS) method and can consider all kinds of sources of error, ranging from
experimental measurements to image processing. The key features of this methodology are
its capacity to handle different mathematical reconstruction procedures and the ease with
which it can integrate additional sources of error. We demonstrate this method first by using
synthetic images and a Poisson solver with mixed boundary conditions in a 2D domain. The
accuracy of the proposed approach is assessed by comparing analytical and MCS results.
Then, the modular nature of the proposed framework is experimentally demonstrated using
a combination of Abel inversion and inverse gradient techniques to reconstruct a 3D axisym-
metric density field around a supersonic projectile in free-flight. The results are compared
with computational fluid dynamics (CFD) and show high levels of agreement with only lim-
ited discrepancies; this is probably due to the space-filtering effect within cross-correlation
resulting from shocks waves.
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List of symbols

A,B Uncertainty evaluation type
c50 Covariance factor (overlap = 50%)
eruler Ruler fabrication error
e∆y Total error in ∆y computation
F Refractive index reconstruction function
f Lens focal length
G Gladstone–Dale constant
h Ambient humidity
k Coverage factor
L Length read on the ruler image
M Background image magnification
Ma Mach number
Mob j Object plan image magnification
Ne f f effective number of pixels
Ns Number of samples
NT Total number of a matrix elements
n Refractive index
n0 Reference refractive index
nn Normalized refractive index difference.
p Ambient pressure
pix Number of pixels that corresponds to L
r Radial coordinate
s Grid size in pixel
S Poisson equation source term
σ Distribution standard deviation
T Ambient temperature
u Standard uncertainty
uc Combined uncertainty
U% Extended uncertainty
χ⊥ Component ∈ (x,y) normal to the boundary
v True assigned displacement in y-direction
ZB Distance object—background
ZT Distance camera—background
ZW Object width
V Extended vector
∆x,y Displacements in the image plan
∆x′,y′ Displacements in the background plan
δ Elemental error
λ Wavelength of light
εx,y Light deflection in x,y direction
Ω Real but unknown quantity value
ω Elemental measurement
ρ Density
τ Background element particle image size
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1 Introduction

Background Oriented Schlieren (BOS) is a density-based optical measurement technique.
The recent development of this technique by Meier (1998) is a considerable progress in
the capacity for quantitative flow visualization. BOS is increasingly employed in a broad
range of areas ranging from ballistics (Moumen et al. (2020)) to aeronautics research (Raf-
fel (2015)) thanks to its simplicity and low cost. Moreover, its large field of view has enabled
to expand from laboratory to real-scale experiments (Hargather and Settles (2010)). Addi-
tionally, it is seen as a promising approach which can be employed as a validation tool for
numerical code due to its non-intrusive nature and whole field measurement.
BOS is a similar and complementary investigation tool to PIV. However, it has a number of
differentiating features. In BOS experiments, the particle displacement is due to an artificial
distortion of image due to the local density gradient in between the camera and a fully con-
trolled patterned background. As such, BOS is not affected by some of error sources found
in PIV such as low seeding density or loss-of-pair (Raffel et al. (2018)). In contrast the
reconstruction of the refraction index field through BOS requires additional computational
procedures similar to the reconstruction of the velocity-based pressure field in PIV. These
computation procedures can be categorized into three types (Raffel (2015)): First, Poisson
equations for the 2D flows or 3D flows with prior knowledge of the flow dimensions (path
integrated density). Second, Abel inversion for 3D axisymmetric flows. Finally, filtered back
projection (FBP) or algebraic reconstruction technique (ART) or a mix of both for general
3D flows .
The measurement of refraction index (and subsequently the density) through BOS can be
split into three successive steps:

– Measurements in the laboratory which includes the measurement of the setup dimen-
sions and image acquisition

– The computation of the shift of background features determination using cross-correlation
or optical flow algorithms.

– The reconstruction of the refraction index using one or a combination of the above-
mentioned mathematical procedures

Consequently, the sources of error in the BOS technique can be divided into three groups,
that correspond to its three-phases implementation. Firstly, the initial phase may cause sev-
eral errors which are related to both the experimental setup as well as the medium. The er-
rors in the experimental setup cover those due to the alignment and vibration, non-stability
of the light source, and the optical layout dimensions measurement. Furthermore, the fluid
may engender many errors due to the blurring effect, being out of focus, and the presence
of important gradients such as the case of shock waves and boundary layers. Secondly, sim-
ilarly to PIV, the evaluation algorithm causes errors on the computed displacement fields
in both directions ∆x and ∆y, such as the presence of outliers, Space-filtering, and peak-
locking effect. Thirdly, errors concerning mathematical procedures consisting of two parts:
physical and numerical. The first part deals with the propagation of the inputs errors and how
it contaminates the reconstructed refraction index field. The numerical errors as well can-
not be ignored as they are twice present: on the approximations concerning the uncertainty
propagation equations (i.g. truncation errors in Taylor Series expansion Method (TSM)) and
on the computation schemes (e.g. finite difference schemes for Poisson solver).

As an experimental technique, BOS results are judged incomplete or even invalid when-
ever they are not supported by an uncertainty quantification. This quantification is an ex-
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pression of the results’ quality and a key component in all project stages ranging from the
planning to the final results’ evaluation. Moreover, the uncertainty quantification is relevant
especially when the experimental results are used for numerical code validation. The latter
can be rejected by an erroneous conclusion drawn from a validation comparison between
experimental and numeric results.
Despite its relative simplicity, the fairly long BOS measurement chain, and subsequently the
numerous error sources, makes the uncertainty quantification of the reconstructed refractive
index field a laborious exercise. In addition, the uncertainty quantification may be biased by
the possible existence of hidden errors and, more importantly, by the complexity of identi-
fying and evaluating correlations between the identified errors. For example, to overcome
the tedious task of identifying possible correlations in a steady-state case, the most reliable
approach is to evaluate the final equation several times with multiple measurements and
conclude on the uncertainty as a function of its distribution (Coleman and Steele (2009)).
This is, of course, impractical in our case given the variety of fluids and processes involved,
however, it is definitely conceivable by applying Monte Carlo Simulation (MCS) principle
(JCGM (2008)).

We, therefore, intend to develop a MCS-based methodology for posterior uncertainty
quantification on the refractive index/density field reconstructed using BOS. The final frame-
work should handle the experimental, the cross-correlation, and the mathematical schemes
uncertainties. Also, due to the diversity of the reconstruction mathematical approaches and
the experimental performance techniques (e.g. use of a laser instead of white light and its
inherent errors), the framework should be easily extensible and modular.
To the authors’ best knowledge, there is only a single attempt in this area by Rajendran
et al. (2019). The purpose of this unique effort was to quantify the uncertainty in the den-
sity field determined by BOS. The described methodology produces uncertainty bounds in
the reconstructed field that are based on the displacement uncertainty propagation through
the Poisson solver. Although this study is of particular importance as a pioneering work, it
has several limitations. Indeed, it has only included the calculation using the Poisson solver
without considering the other reconstructions methods. Moreover, the possible correlations
between the different parameters were not taken into consideration.
To address a similar problem, which is PIV based quantities, various methods have been
proposed on the PIV community. This is abundantly the case for the PIV-based pressure
field computed using the Poisson equation. For instance, Pan et al. (2016) have examined
the problem based on the Cauchy-Schwarz and Poincare inequalities. Through this study,
the authors have shown that the error level on the pressure field can be bounded. Azijli
et al. (2016) have considered the same problem by proposing an uncertainty quantification
based on the Bayesian rule, which relies on prior knowledge of the velocity field proprieties
based on its divergence error. Sciacchitano and Wieneke (2016) have presented uncertainty
propagation formulas from PIV velocity measurements. Based on TSM, they have derived
uncertainty equations for vorticity, divergence, Reynolds stress, and statistical quantities.
Also, during their work, they have pointed out the significance of the spatial correlation
between the errors on the displacements in the two directions.

From the above discussion, it can be inferred that, despite the complexity and the length
of the BOS measurement chain, the uncertainty quantification by an analytical expression is
conceivable. However, this conception is doubly disadvantageous. The main barrier to such
implementation is the variety of the mathematical reconstruction procedure imposed by the
flow nature. Indeed, the problem formulation in terms of the Poisson equation is certainly
insufficient, conversely, this is a particular situation that requires a perfect knowledge of the
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Fig. 1: Monte Carlo uncertainty quantification methodology for BOS.

flow dimensions, as well as adopting the assumption of a 2D flow where the ray deflection
occurs at the median plane. For such an approach to be effective, it should be readily expand-
able into other mathematical procedures. The problem is more acute as the latter noticeably
is increasing in number according to specific configurations, such as the use of ART com-
bined with FBP (Hartmann and Seume (2016)) or the use of inverse gradient instead of the
Poisson equation when derivation is not possible (presence of an object in the field). Another
concern is that this kind of formulas requires the determination of correlation coefficients
between errors.
Motivated by the need to create a flexible and customizable BOS uncertainty toolbox, in this
work, we propose and implement an approach for uncertainty quantification of the refrac-
tive index/density fields in BOS based on the MCS. This method was chosen given that the
integration of a new error source, studying its impact on the results or switching between
the different mathematical processes of reconstruction are straightforward tasks. In addi-
tion, this method does not use the approximation and assumption that should be made when
using the TSM, therefore, the JCGM (2008) considers it a more accurate technique and en-
courages using it at least once as a verification. This study represents a detailed investigation
covering both errors on the displacement fields and those arising from the experimental mea-
surements. The paper is composed of 6 sections: Sec. 2 presents the proposed methodology,
Sec. 3 and 4 focus on the elementary uncertainties determination methods, Sec. 5 and 6
demonstrate and asses the methodology accuracy via a Poisson solver and Abel inversion
algorithm on synthetic and experimental images, respectively.
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2 Methodology

In BOS, the refraction index field n is not measured directly, instead it is calculated as a
function F of several elemental measurements ωi:

n = F(ω1,ω2,ω3 . . .ωm) (1)

Each of these measurements ωi approximates the actual and unknown value Ω of the mea-
sured quantity. Therefore, it includes one or several error(s) δi that is/are associated with a
specific elementary source of error. Hence, the uncertainty u, which is defined as the range of
±u around ωi within which we think that Ω lies, is an indication of the measurement quality.
The JCGM (2008) essentially distinguish three kinds of uncertainty. To describe this, let’s
assume that we are measuring a steady-state physical quantity. For N successive measure-
ments, carried out under the same conditions and using the same instruments, we obtain N
different results. This statistical evaluation outcomes follow a certain distribution (uniform,
triangular, Gaussian...). This approach of error evaluation is referred to as Type A evaluation,
whereas all other evaluations based on non-statistical procedures are referred to as Type B
evaluation (JCGM (2008)). In the former, the further N tends towards infinity the closer the
error distribution approaches that of the parent population, hence its mean and standard de-
viation (std). The standard uncertainty u is defined as the std of this measurement outcomes
distribution, which is an estimate of the parent distribution std. To increase the confidence
level that the true value lies inside the ±u interval, we can enlarge it by multiplying its
bounds by a coverage factor k, thus obtaining the expanded uncertainty U%=k%u where the
subscript % is the given percent level of confidence. For instance, for a Gaussian distribution
this factor is 1.0, 1.96, and 3.0 for a respective confidence degree of approximately 68.3%,
95%, and 99.7%. It should be noted that the Gaussian distribution is the most experienced in
combined uncertainty, which is guaranteed by the standard central limit theorem (Coleman
and Steele (2009)). Finally, the uncertainty in the refractive index is the propagation of the
elemental standard uncertainties ui via the function F, known as the combined uncertainty
uc.

To perform an uncertainty propagation evaluation, the JCGM (2008) recommends the
TSM. The TSM is based on the first-order Taylor series expansion of the refraction index
function F (Eq. 1) and can be expressed as:

u2
c =

m

∑
i=1

m

∑
j=1

∂F
∂ωi

∂F
∂ω j

c(ωi,ω j) =
m

∑
i=1

(
∂F
∂ωi

)2u2(ωi)+2
m−1

∑
i=1

m

∑
j=i+1

∂F
∂ωi

∂F
∂ω j

c(ωi,ω j) (2)

where c(ωi,ω j) is the covariance between two parameters ωi and ω j. The use of this method
for BOS is unpractical for several reasons. Among others, we highlight the multiplicity of
variables and complexity in evaluating accurately their covariances which is especially cru-
cial and parameters-dependent in the case of cross-correlation evaluation. Furthermore, this
complexity is more pronounced proportionally to the variety of mathematical procedures
(Poisson, Abel inversion, ART, FBP...) that can be performed according to a specific con-
figuration. This leads to the consequent necessity for developing their TSM formulas and
quantifying the mathematical schemes induced error. This turns on a tedious task owing to
the wide diversity of methods to implement each one from the aforementioned procedures
such as ring method, Henkel Fourier or Fourier expansion techniques for Abel inversion im-
plementation (Kolhe and Agrawal (2009); Pretzier (1991); Fomin (1998)). Besides, in cer-
tain applications, multiple mathematical procedures are used in combination to reconstruct
the refractive index field (Hartmann and Seume (2016)). Hence, the need for a modular and
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generic framework that can, in one hand, easily integrate and switch between the different
reconstruction functions and, on the other hand, accounts for all possible errors regardless
of their possible correlation. Therefore, in this work, we propose to implement the refraction
index uncertainty analysis based on MCS.

The refractive index field uncertainty quantification methodology via MCS is depicted in
Fig. 1. The proposed method involves three steps: the identification of the error sources, the
generation of the input’s possible values, and the evaluation of the data reduction function F.

The first step consists in identifying the error sources and specifying their respective
distributions nature as well as their parameters. In BOS, similarly to PIV (Guillaume et al.
(2018)), we can distinguish between two error categories which will be evaluated differ-
ently. The first category includes errors regarding the experimentally conducted measure-
ments such as the optical layout dimensions measurement. The second category concerns
the uncertainty quantification on the displacement fields in both directions, ∆x and ∆y, de-
rived from cross-correlation. This part is performed through a technique adopted from the
PIV community. The work-flow for this first step is detailed in Sec. 3 and Sec. 4. It should
be pointed out that all errors handled along the way are considered as random errors, and
that all systematic errors of known sign and magnitude have been corrected by calibration
or through specific post-treatment.

During the second step, according to the nature of each error distribution, defined in
the previous step, a number Ns of samples are randomly picked to generate a measurement
vector for each parameter i, we name it hereafter the extended vector Vi. So instead of
being represented by a single value, each parameter will be represented by its extended vec-
tor that includes Ns samples from its corresponding distribution determined during the first
step. We have chosen to create such vectors than to sample progressively, as the simulation
progresses, to achieve the representativeness of the samples and to bypass the memoryless
drawback in this process, and, more importantly, these vectors will be saved and will be
available for use in any other uncertainty assessment as long as the same measurement tools
are used. Thus, this step will only be performed once. Also, to enhance the quality of the
simulation results and to decrease the computation time, we have employed the Latin Hy-
percube Sampling method (LHS) during this study (Stein (1987)). Furthermore, the size Ns
of the extended vectors Vi will be overly selected, thanks to a fast implementation of LHS
method, to ensure the convergence of the evaluation function F outcomes.

This evaluation is carried out in the third step through an iteration loop. Such evaluation
simulates the response of the reconstruction function F under numerous inputs that considers
the different error sources. During each iteration, a set of parameter values is taken from
their respective extended vectors to evaluate F. All evaluation results are then saved in the
refractive index extended vector Vn whose size increases after each iteration. This loop stops
once the convergence criterion is reached; the stability of Vn std within 5% is considered
here. Thereafter, Vn distribution is checked. This should be carefully considered since the
distribution’s type defines the way how the mean, the std values, and thus the uncertainty
should be derived. Note that although the central limit theorem assumes that the distribution
would be Gaussian, it doesn’t guarantee its symmetry.
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3 Measurement chain uncertainty

In this section, we describe the BOS experimental measurement uncertainty quantification
approach.
The refraction index reconstruction through BOS requires the distance measurement from
the camera to the flow and to the background, the magnification factor (M), temperature
(T), pressure (p), and the medium humidity (h) (to compute the reference refractive index).
During this study, we have limited our analysis to these cited errors; additional sources of
error are omitted. This is due to either the difficulty of their prediction or the considerable
attention or correction that was assigned to it during data processing. These include errors in
the camera orientation angle relative to the background (tilt angle) or their vibrations during
the experiment. To overcome this, for example, particular attention was given to their posi-
tioning and orientation, which are constantly evaluated during all stages of the experiment.
On the other hand, during cross-correlation processing the displacements in both directions
in areas that are not expected to have a density variation were treated as an indication of
vibration (camera, background, light source). These displacements are averaged and sub-
tracted from their respective fields. All the setup geometric distances Zi measurements in
the experiences were performed with a measuring tape with a least scale resolution equal to
1 mm. In this kind of distance reading, we estimate that the measurement can equally fall
in the range of Zitrue± 0.5mm, where Zitrue is the unknown real distance (JCGM (2008)).
Therefore, the distance measurement error follows a rectangular (uniform) distribution cen-
tered around the reported value, here the standard uncertainty uz is Type B evaluated and is
equal to 0.5/

√
3 mm.

In this paper, we have chosen to work with a magnification factor M to illustrate the method-
ology, though more sophisticated calibration methods can be integrated. The magnification
(M) is the conversion factor between the pixel dimensions and the physical (metric) domain.
In this work, this factor was determined based on an image of a photographer ruler placed
in the background plane. The factor M calculated within the camera software by dividing a
known distance (read in the ruler image) by its corresponding pixels count. In this case, the
various principal sources of errors that could impact the determination of this factor may be
identified through its definition which can be written as:

M =
L+ eruler

pix
(3)

where L is the read length on the rule, eruler is its fabrication error and pix is the number
of pixels that corresponds to L. The employed ruler has a minimum scale resolution equal
to 1 mm, but the reported value here is constrained by two sources of error which are the
error at the origin (the so-called zero error) and the reading error. This yields to a standard
uncertainty, u, equal to 2uz. The same reasoning leads to an estimate that the standard un-
certainty on the number of pixels is constant and is equal to two pixels. For the fabrication
error, eruler, we adopt the maximum permissible measurement error norm which gives an er-
ror equal to±0.1 mm for medium tolerance class according to DIN ISO 2768 (International
Organization for Standardization (1989)). Therefore, the uncertainty associated to the ruler
error is of type B and ueruler = 0.1/

√
3 mm.

The reference refractive index n0 is involved in the calculation of the deviation angles εx and
εy in 3D problems and directly appears in the Poisson equation source term and Dirichlet
boundary conditions (see Sec. 5.2 and 6). The computation of this value is performed via the
Ciddor’s equation using T, p, and h measurements. These are performed with calibrated dig-
ital sensors, in such cases, the results are subject to an error equal to±0.5 the last digit. This
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Table 1: Experimentally conducted measurements and their respective standard uncertain-
ties.

Source of error Parameter Error value Distribution u
ZB

Distance measurement ZT ±0.5 mm Rectangular 0.2887 mm
ZW
L ±1 mm Rectangular 0.5774 mm

Magnification factor M pix ±2 pixel Discrete rectangular 2 pixel
eruler ±0.1 mm rectangular 0.0578 mm
T ±0.05 C

Refractive index n0 p ±0.5 kPa Normal 1.00005.10−6

h ±0.5% mm

yields an error equal to±0.05 C,±0.5 kPa and±0.5% for T, p, and h measurements, respec-
tively. Furthermore, our tests are performed under typical laboratory conditions. In such a
case, the uncertainty in the refraction index n0, inferred from both the uncertainty in the Cid-
dor’s equation (un−ciddor) and from the magnitude of measurement errors (un−meas) recorded
herein is about 1.10−8 and 1.10−6, respectively (Stone and Zimmerman (2011)). Hence, un
was calculated based on the combination of these two uncertainties (JCGM (2008)):

un =
√

u2
n−ciddor +u2

n−meas (4)

The findings of this first step are summarized in Tab. 1.

4 The displacement fields uncertainty

The displacement fields ∆x and ∆y are derived through a digital comparison of two images
of the same pattern. One is the reference image and the other is the artificially deformed
image due to the presence of the flow in-between the camera and the background. This
comparison is conventionally performed by cross-correlation algorithms adopted from PIV.
Although BOS images do not incorporate some of the PIV errors like out-of-plane, loss-of-
pairs, or low tracer density, PIV uncertainty methods can be used in BOS experiences.
Several methods for the uncertainty quantification in PIV have been developed during re-
cent years. Here our primary concern lies in the uncertainty associated with the processing
method, namely the cross-correlation algorithm. The developed methods may be divided
into a-priori and a-posteriori uncertainty quantification approaches Sciacchitano (2019). The
first group, which contains the pioneering work in the field, has provided a general evalua-
tion of the experience uncertainty by means of the measurement chain theoretical modeling
which can be coupled with an evaluation of the used algorithm based on synthetic images.
The second group is more specific and its scope is to quantify the uncertainty in a specific
set of data. These a-posteriori uncertainty quantification approaches can also be subdivided
into two subgroups: direct and indirect methods (Bhattacharya et al. (2018)).
Indirect approaches are marked by the predetermination of calibration coefficients or the cre-
ation of uncertainty surfaces from synthetic images such as the uncertainty surface method
by Timmins et al. (2012) and Cross-correlation signal-to-noise ratio metrics developed by
Xue et al. (2015). However, direct methods do not require predetermined information, they
rely on the cross-correlation planes such as “the moment of correlation plane” (Bhattacharya
et al. (2018)) or the calculated displacement fields and the original images such as the par-
ticle disparity method (Sciacchitano et al. (2013)). For more information about the different
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techniques, the reader is referred to the review of the “Uncertainty quantification in particle
image velocimetry” (Sciacchitano (2019)).

Given that several comparative studies have shown that the above mentioned methods
perform roughly in a similar way (Bhattacharya et al. (2018); Sciacchitano et al. (2015);
Boomsma et al. (2016)), we have chosen to work with “the moment of correlation plane”
method proposed by Bhattacharya et al. (2018) which is the most recent published method
and its integration into the open-source program PIVLab (Thielicke and Stamhuis (2014)),
which is the evaluation algorithm employed during this study, is straightforward. In this
approach, Bhattacharya et al.have proposed to evaluate the displacement uncertainty based
on the primary peak shape in the correlation plane. Assuming that this plane is simply a
convolution between the probability density function (pdf) of particle images matches and
the contribution of the average particle image shape, the methodology starts by extracting
this contribution from the correlation plane to obtain the pdf of possible displacement. This
is expressed, in the frequency domain, by dividing the cross-correlation function by its am-
plitude. Then, the random and the systematic uncertainty are calculated based on the pdf
spread and the peak maximum location computed thanks to curve fitting. This process is
optimized by considering the shear rate and the effective number of pixels (Ne f f ) within the
interrogation window (IW).

The performance of the implemented algorithm was first tested with synthetic images
simulating a given situation. The simulated situations were chosen based on typical errors
encountered in BOS. For each situation, images of size 1024x1024-pixels were generated
and then processed with a multi-pass iterative window deformation algorithm. For each pro-
cessing, 4 passes with the same IW size (128, 64, 48) were performed with an overlap factor
equal to 50%. Then, on one side, all the computed displacements in a given direction (here
we show the y-direction displacement ∆y(i, j)) were merged into a single vector, whose size
NT is the total number of a matrix elements, from which we subtract the real displacement
to obtain the total error (Eq. 5). Afterward, the Root Mean Square (RMS) of the total error
was calculated (Eq. 6).

e∆y(i) = ∆y(i)− v(i) (5)

RMS(e∆y) =
1

NT

√√√√NT

∑
i=1

e2
∆y(i) (6)

where v is the true assigned displacement in y-direction. On the other side, the uncertainty
on the displacements in both directions were computed and merged each into one vector and
their RMS were calculated according to Eq. 7.

RMS(u∆y) =
1

NT

√√√√NT

∑
i=1

u2
∆y(i) (7)

Finally, the two RMS, which are intended to be equal (Sciacchitano et al. (2015)), were
compared for each situation.
The findings from three different simulated situations are illustrated in Fig. 2. For the first

case, the particle image size (τ) was varied in the range from 1 to 8 pixels with a step size of
0.5 pixel, a uniform displacement of 2 pixels was imposed in the y-direction (v = 2 pixels),
and a zero-mean Gaussian white noise with std equal to 0.01 was added to the images (to
simulate the camera noise). For the second case, the displacement v is shifted between 0 and
2 pixels with a step of 0.2 pixel while keeping τ = 3 pixels with the same noise level as
the previous case. In the last situation, the variation in noise level was simulated with a std
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Fig. 2: RMS error and RMS uncertainty computed by the moment of correlation algorithm
comparison for various simulated situations and interrogation windows.

ranging from 0 to 0.07 while keeping the particle image size constant, τ = 3 pixels, and a
constant and uniform displacement v = 2 pixels.
The examination of these graphs leads to the conclusion that the RMS uncertainties fairly
match the change in the RMS error and that the quantitative comparison for all situations
is largely satisfactory. Generally, the difference between the calculated error RMS and the
RMS of the uncertainty derived from the moment of correlation does not exceed 0.02 pixel
except in the case of IW = 48 with extreme conditions such as τ = 1 pixel or a noise std
= 0.07. This is due to the deterioration of the primary peak in the correlation plane. This
method will be further evaluated in the analysis with the synthetic images in Sec. 5.
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Fig. 3: Synthetic refraction index field and its induced original and reconstructed displace-
ment.

5 Methodology assessment via synthetic images

In this section, we assess the overall BOS system uncertainty quantification methodology
using synthetic images. The inspected artificial schlieren object was a flow in a cubic form
with a side length equal to 10 mm. This object is composed by overlaid slices, along the z-
direction, each represented by a 2d refractive index field defined by the following Gaussian
distribution Fig. 3:

n(x,y) = n0 +n0.10−4.exp(
−x2− y2

8
) (8)

First, based on this distribution, synthetic images (reference and distorted images) were
generated. These images were produced from conclusions drawn after a PIVLab’s accuracy
study. Stand on this findings, we have concluded that PIVLab performs satisfactorily and
compares well with results reported in bibliography. The reference image was of 600x600-
pixel size with randomly distributed dots. The particle image size was chosen to be equal to
3 pixels with a density equal to 0.1 ppp. To consider the experimental noise, stemming es-
sentially from the camera, a zero-mean-Gaussian white noise with an std = 0.01 was added
to the image. The distorted image was created by shifting the reference particle image pro-
portionally to n gradient in the x and y-direction. To simulate a typical BOS experiment
layout, the flow mid-plane was considered to be placed halfway between the camera and the
background, the distance separating the two latter is 1 m. The reference refraction index is
set to be n0 = 1.000271373 and the magnification factor is set to be M = 0.04 mm/pix with
uM/M = 2%. Then, the generated images were processed with a multi-pass iterative window
deformation algorithm (3 passes 64x64, 32x32, 32x32) with a constant overlap factor equal
to 50%. The reference refractive index field, the real, and reconstructed displacement fields
can be seen in Fig. 3.
Since the flow thickness Zw is known, the density field 2D can be reconstructed from the

projected density gradient through the density path averaging and the Poisson equation.As
described in Sec. 2, the uncertainty quantification of the refractive index field reconstructed
by Poisson solver was performed in three steps. First, the uncertainty on the displacement
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Fig. 4: Displacements errors and uncertainties probability density functions (pdf) (a) in x-
direction and (b) in y-direction and their respective combined (x + y directions) error and
uncertainty RMS values for the synthetic images displacements.

fields and the experimental measurements (established as a general rule in Sec. 3) was char-
acterized. This was sampled and propagated into the source term and from the source term to
the refractive index field in the second and the third step,respectively. This is further detailed
in the succeeding paragraphs with a subsection discussing divergence uncertainty propaga-
tion comparison between TSM and MCS.
The displacements uncertainties were conducted by the moment of correlation algorithm
(implemented and integrated onto PIVLab package). The assessment of the uncertainty
quantification accuracy was once again based on the total error and the uncertainties RMS
comparison. To enhance the analysis statistical representativeness, the displacements errors
e∆x and e∆y were merged in a single vector (e), on one side, and the uncertainties u∆x and u∆y
on a vector (u) the other side. Then, the RMS of each of these vectors, which are foreseen to
be equal for an appropriate uncertainty computation, were calculated. We have obtained a
very close results with RMS(e)= 0.1085 pixels and RMS(u) = 0.0981 pixels. This confirms
that the displacements uncertainty quantification was conducted in a very satisfactory way.
This may also be deduced from Fig. 4, where the probability density function (pdf) of the
errors and uncertainties are shown with their respective RMS. From the figures, it can be
noticed that the standard uncertainty distribution in both directions follows closely the cor-
respondent displacement error, and it’s clear that the errors can be covered by an expanded
uncertainty.
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5.1 Divergence uncertainty

This subsection aims to assess the accuracy of the developed methodology and the corre-
sponding implemented algorithm. This was done by computing the displacement divergence
and its uncertainty using the MCS and comparing the results with the analytical solution and
the TSM formula, respectively. We opted to rely our assessment on the divergence compu-
tation for several reasons. First, the divergence computation involves the two displacement
components and their correlations coefficients. Second, the divergence is an important ele-
ment in the upcoming analysis (see Eq. 14). Third, the divergence Taylor series expansion
formula is straightforward which has allowed an appropriate comparability.
The displacement components ∆x and ∆y in BOS experiments are measured in a 2D domain.
The divergence is defined in the pixel domain as:

div(i, j) =
∂∆x(i, j)

∂x
+

∂∆y(i, j)
∂y

(9)

This can be computed by applying the central difference scheme as following:

div(i, j) =
∆x(i, j+ s)−∆x(i, j− s)

2s
+

∆y(i+ s, j)−∆y(i− s, j)
2s

(10)

with s is the grid size (in pixel).
The implemented MCS assessment was conducted as following. Firstly, The uncertainty
propagation to the 2D divergence was calculated based on the uncertainty TSM propagation
formula (Eq. 2) at each pixel (i,j) as a function of the displacement component uncertainty
u∆x and u∆y:

udiv(i, j)2 = (
1
2s

)2(u∆x(i, j+ s)2 +u∆x(i, j− s)2 +u∆y(i+ s, j)2 +u∆y(i− s, j)2

− 2c50u∆x(i, j + s)u∆x(i, j − s) − 2c50u∆y(i + s, j)u∆y(i − s, j))
(11)

where c50 is the covariance factor between two neighboring displacements in the same
direction, which was taken equal to 0.11 (Sciacchitano and Wieneke (2016)) for a cross-
correlation overlap equal to 50%. In the above formulation, we considered that the error of
each of the components ∆x and ∆y are equally spatially correlated and that the two compo-
nents’ errors are not correlated.

Secondly, we computed the divergence uncertainty by applying the MCS. To do so,
the error of each displacement (i, j) of ∆x and ∆y was assumed to follow a Gaussian dis-
tribution with a mean µ corresponding to the displacement magnitude determined by the
cross-correlation algorithm in that pixel and an std σ(i, j) = u∆x,y(i, j) determined by the mo-
ment correlation algorithm —this hypothesis is founded on central limit theorem since these
errors originate from several sources—. Then, 10000 values were randomly sampled from
each Gaussian distribution. Thus, we generated a 3D array in which every element (pixel)
representing a displacement value (∆x(i, j) or ∆y(i, j)) was presented by its extended vector
realized as previously explained. Next, the uncertainty propagation to the divergence was
calculated by the evaluation of a central difference scheme at each sample. Each pixel of
the divergence field will then be represented by its extended vector Vdiv−MCS which are the
outcomes from the function evaluation at the sampled points. Finally, the mean and std de-
viation will be derived based on Vdiv−MCS distribution.
The assessment of the MCS results was carried out in three steps:
The first step consists of the simulation outputs monitoring which is essential for conver-
gence study and Vdiv−MCS distribution check. The MCS convergence study based on an
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Fig. 5: MCS convergence study. (a) A sample vector std variation as a function of the sim-
ulation iteration. (b) The statistical distribution of the same vector and it’s corresponding
Gaussian fitting.

arbitrary vector std, for two sampling method, is shown in Fig. 5 (a), where the blue line
stands for completely random sampling results, the red line represents the LHS results and
the black dashed line represents the TSM value (Eq. 11) for that particular pixel. Follow-
ing the two curves, we noticed that both results converged towards the same value around
7.05.10−3, here the TSM result was considered as the real value. As expected, the LHS re-
sults converge faster than the random sampling at about 3000 iterations and its relatively
more accurate. Thus, indicating that the selected number of samples is largely sufficient and
that LHS is a more efficient sampling method. This method will be retained for the remain-
der of the study. The histogram of this same vector is plotted in Fig. 5 (b) together with a
Gaussian fit approximating the parent distribution. It shows that the statistical distribution of
the simulation outcomes exhibits a symmetric bell-shape. Known that the outcomes follow
a Gaussian distribution, which is a sample from the parent distribution, we calculated its
mean ( ¯divi) and std (σdiv)as following (Coleman and Steele (2009)):

¯divi =
1
N

Σ
N
i=1divi (12)

σdiv =

√
1

N−1
Σ N

i=1(
¯divi−divi)2 (13)

where N is the number of the evaluations (the needed number to reach the convergence) and
divi is the individual outcome from the ith iteration. Referring to the uncertainty definition,
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Fig. 6: Displacement divergence and its associated uncertainty. (a): the divergence calculated
by central difference scheme, (b): by MCS, (c): cross-sectional comparison in the middle of
the filed, (d): TSM uncertainty, (e): MCS uncertainty, (f): cross-sectional comparison in the
middle of the field.

the divergence uncertainty udiv = σdiv.
The second step in MCS assessment consists of the comparison between the analytically
calculated divergence and that which was determined by MCS method. Both fields should
show identical values (at least very close). Fig. 6 (a) displays the divergence field calculated
as a function of the displacement fields ∆x and ∆y by direct application of the central dif-
ference scheme. Fig. 6 (b) displays the one calculated by MCS (the mean of each vector
Vdiv−MCS) alongside with a cross-sectional comparison of the divergence in the middle of
the field where the highest gradient occurs. The examination of these profiles reveals a com-
plete match between the two results. This confirms the accuracy of the MCS method and the
above-mentioned convergence and distribution study as well as the application of the Eq. 12
for mean calculation.
The last step of our assessment consists in comparing the results of the uncertainty propa-
gation computed with the two methods. The bottom part of the same figure shows a com-
parison between the divergence standard uncertainty computed by TSM and MCS and a
cross-sectional comparison in the center of the field. Here, the correspondence is excellent
with quite minimal discrepancy which is likely due to the truncation error of TSM and the
approximations made on the choice of the cross-correlation coefficients. This rather satis-
factory observation is an indication of the appropriateness of the adopted assumptions, the
sampling method, and the use of the Eq. 13 for the std calculation.

5.2 Uncertainty propagation in 2D refraction index field using Poisson equation

In BOS experiment, the investigated flow’s refraction index distribution is proportional to
the measured displacements and it can be reconstructed by solving the following Poisson
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Fig. 7: Poisson equation source term and its associated uncertainty. (a): the analytic solution,
(b): MCS result, (c): cross-sectional comparison in the middle of the filed, (d): the source
term uncertainty.

equation in the pixel domain (Vinnichenko et al. (2012)):[
∂ 2n
∂ 2x
∂ 2n
∂ 2y

]
=

2MMob jn0

Zw(Zw +2ZB)

[
∂∆x
∂x

∂∆y
∂y

]
(14)

where Mob j denotes the magnification factor in the object plan and it can be expressed as:

Mob j = M
(ZT − (ZB +(ZW/2)))

ZT
(15)

where ZB and ZT denotes, respectively, the distances that separate the flow middle plan,
whose width ZW , from the background and the camera. The divergence extended array in
the right-hand side term was calculated flowing the process underlined in Sec 5.1. Simi-
larly, for all other parameters, the respective extended vector was generated through LHS
from their respective error distribution centered around the measured value. To compute the
source term S, these vectors together with the divergence extended matrix were then applied
to evaluate a function that has the same form of the right-hand side in Eq 14. After ascer-
taining the convergence of the simulation and the symmetrical Gaussian distribution of its
outcomes, we compared the directly calculated source term (the analytic solution using the
measured values and the displacement fields) against the mean Eq 12 of the MCS’s result.
The results together with the source term standard uncertainty (us) are shown in Fig. 7. It
can be seen that, as expected, the two fields match perfectly. The S extended matrix, which
is the outcome of this simulation, was used as input of the final simulation (Poisson solver
evaluation).
Obviously, the solution of Eq 14 requires adequate boundary conditions (Dirichlet/Neumann)
specification. For the sake of generality, in this example, we used mixed boundary condi-
tions. The Neumann boundary condition is given by:

∂n
∂ χ⊥

=
2MMob jn0∆ χ⊥
Zw(Zw +2ZB)

(16)
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where ∆ χ⊥ is the displacement component normal to the boundary. The top and bottom
Neuman boundaries extended vectors were derived as previously mentioned with respect to
the displacement normal to those boundaries, the experimentally conducted measurements
and their respective associated errors. The Dirichlet boundaries extended vector were ob-
tained by evaluating the exact equation (Eq. 8) as a function of the n0 extended vector. The
MCS, which consists of the evaluation of second-order central differentiation scheme func-
tion, was conducted using the built source term and its mixed boundary conditions. The
simulation results were tracked, and we concluded that the outcomes converge at around
4000 iterations and it follows a normal symmetric distribution. Hence, we calculated the
mean and the std following Eq. 12 and Eq. 13. Furthermore, for such sample distribution,
the uncertainty on the mean follow a t-distribution whose parameters approach the Gaus-
sian ones regarding the sufficiently large number of samples employed herein (Coleman and
Steele (2009)). Thus, the expanded uncertainty Un95% corresponding to a 95% confidence
interval was obtained by a coverage factor k95% = 1.96.
To assess the potential of the proposed framework, a comparison between the reconstructed
and the true cross-sectional refraction index profiles is shown in Fig. 8, together with the
expanded uncertainty Un95%. It can be inferred that the reconstructed and the real profiles
are fairly close and, more importantly, the real value is all over covered by the expanded
uncertainty. This findings indicates the appropriateness of the hole process ranging from
the sampling passing by the central differentiation scheme, the boundary conditions and the
mean calculation. These profiles can be divided into two parts; the first part covers the left
and right boundaries, here the 4 curves merge into one which is due to the application of the
Dirichlet boundary conditions at these borders, thereby raising the results accuracy locally.
Therefore, we may conclude that the estimated error on the refractive index does not have
a significant effect on the final solution as it is much lower compared to any other errors.
The second group covers the summit area, here the solution is governed by the Neumann
boundary conditions and the refractive index gradient is higher in the center of the volume.
In this area, the offset between the reconstructed and the real profile is more pronounced but
remains consistently covered by the 95% confidence bounds corridor. It is worth mentioning
that the uncertainty propagation quantification in this case, besides to directly considering
the measurement errors, it implicitly accounts for additional features. This concerns the
truncation error of the employed mathematical scheme and the possible correlated varia-
tions among the measured variables. Note that the latter property is a major strength of this
method because it spares the difficult challenge in identifying all possible correlations and
in their covariance coefficients quantification. In more general terms, the uncertainty cal-
culation by evaluating the distribution of the data reduction equation response for multiple
measures, the statistical method, is qualified as more accurate than TSM equation when a
correlation is present (JCGM (2008)).

6 Uncertainty propagation in 3D axisymmetric refraction index field with
experimental images

We now turn to an illustration of both the modularity and the feasibility of the proposed
methodology in the case of 3D axisymmetric flow.
For this purpose, we conducted a BOS experiment to quantitatively visualize the flow field
around a transonic projectile in free-flight. The projectile was a .338-inch caliber (diameter)
freely flying at Mach Ma = 1.2. A background was developed with optimum characteris-
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Fig. 8: Comparison between Monte Carlo method (MCM) results and the real solution to-
gether with the expanded uncertainty interval (Un95%). (a): cross sectional comparison in the
middle of the field of view. (b): close up of the central area.

tics and printed on a transparency. Then, it was taped on a Plexiglas mounted on a relatively
heavy metal frame to reduce the vibration. The assembly was positioned at a distance ZB (see
Tab. 2) from the assumed projectile trajectory. The projectile velocity was measured using a
velocity light gate. A high-speed camera type Photron FASTCAM SA5 was used during the
experiment. Two images were selected after each firing. To minimize the effect of vibration
caused by the shooting, we considered the last image taken just before the projectile’s first
appearance in the camera’s field of view as the reference image. The experimental setup and
the employed projectile schematics are shown in Fig. 9.
We processed the image pair using PIVLab with a multi-pass iterative window deforma-

tion algorithm (3 passes 64x64, 32x32, 16x16) with an overlap factor equal to 50% without
smoothing nor outliner detection. Then we averaged the displacements on the supposedly
undisturbed area, and we subtracted it from their respective displacement fields. As well,
we calculated the uncertainties on the displacements thanks to the moment of correlation
algorithm previously described.
In BOS experiments, assuming that the projectile’s flow field is axisymmetric, with the

x-axis as the axis of symmetry, and the z-axis as the optical axis. Here the symmetry axis
is seen as known with certitude, i.e. the axis of symmetry of the projectile, in different sit-
uations the selection of this axis position may be considered as an error source and may
be integrated in the framework. Thanks to its axisymmetry, it can be observed that the di-
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(a)

(b)

Fig. 9: BOS experimental setup (a) for the flow field visualization around a (b) .338-inch
caliber projectile: HPBT (Hollow Point Boat Tail) 250 grains model bullets.

Table 2: Experimental setup parameters

Component Parameter Value
ZB 977 mm
ZT 2855 mm

Experimental setup L 300 mm
pix 710 pixel
n0 1.000271373
Focal length f 135 mm
Aperture (f -number) 8

Camera Shutter Speed 1/91000 s
Frame rate 15000 fps
Image Width x Height 768 x 648 pixel

mensions of the problem now depend only on r =
√

y2 + z2 and x. The components of the
measured deflection angle, εx and εy, can be formulated into cylindrical coordinates such as
(Fomin (1998)):

εx(x,y) =
2
n0

∫ R

r=y

∂n
∂x

rdr√
r2− y2

(17)

εy(x,y) =
2y
n0

∫ R

r=y

∂n
∂ r

dr√
r2− y2

(18)
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The integrals of equations Eq. 17 and Eq. 18 are both of Abel form, but of a different
nature. Their inverses have been also computed differently for each abscissa x and each
radial position r, from the symmetry axis previously defined to the edge of the acquisition
field, to obtain ∂n

∂x and ∂n
∂ r , respectively. Based on the geometry in Fig. 1 and assuming

a paraxial recording and small angular ray deflection angle εy can be written as (Raffel
(2015)):

εx =
∆x′

ZB
= M

∆x
ZB

(19)

εy =
∆y′

ZB
= M

∆y
ZB

(20)

with ∆x′ and ∆y′ are the displacements in the x- and y-directions in the background plane.
Then the refractive index field n can be calculated by solving the Poisson equation in cylin-
drical coordinates. However, due to the presence of the projectile in the integration domain
and that it is mathematically inconceivable to crop it in the symmetry axis, we employed
an inverse gradient method based on least squares optimization which is mathematically
equivalent to solving the Poisson equation.

The uncertainties on experimental measurements were reproduced as indicated in their
dedicated section except for the uncertainty on ZB. The particularity here is that the trajectory
of the projectile cannot be determined with precision, in this type of projectile (specific for
sniper) and for the distance that separating the camera-background from the weapon, the
uncertainty on the projectile position is estimated of upro jectile = 0.5 mm which results in
uZB being calculated based on the combination of these two uncertainties with a Gaussian
error distribution (JCGM (2008)):

uZB =
√

u2
pro jectile +u2

Z (21)

Here, similarly to the synthetic image’s treatment, the extended vectors of each parameter
were created based on their respective distributions. Then, these vectors were used to eval-
uate two functions corresponding to Eq. 19 and Eq. 20 to compute the extended matrices of
εx and εy. These matrices will serve as inputs for the two Abel inversion algorithms. These
were implemented according to the ring method where the unknown gradient of the refrac-
tive index field is subdivided in N rings with the assumption that within one annular zone the
refraction index is constant (Fomin (1998)). The outputs of this step, the extended matrices
of ∂n

∂x and ∂n
∂ r , together with Vn0 were used as the two surface gradients and the constant

of integration, respectively. The simulation convergence was achieved after approximately
2000 iterations and all outcome vectors follow Gaussian distributions whose mean and std
were calculated according to the Eq. 12 and Eq. 13.

Furthermore, MCS results were used to assess the accuracy of a numerical simulation.
A Computational Fluid Dynamics (CFD) analysis was done using steady RANS simulation
with a low-order turbulence model including transition with ANSYS Fluent 19.R1. Those
results were intended to do a first iteration comparison with the BOS technique, in order
to bring to light the possibility to quantify the density jumps of very precise phenomena.
Detailed investigations were conducted to assess modeling sensitivities (including a grid
sensitivity study) and limitations at transonic velocity regarding the numerical and aerody-
namic parameters. The final mesh used to visualize the development of the shock waves for
the steady RANS simulations of the full projectile in free-air consists typically of 7 million
elements with a prismatic boundary layer mesh comprising 20 layers resulting in an average
value for y+ of 1 along the adiabatic no-slip walls. The domain extends to 20 projectile-
lengths where pressure-far-field conditions were applied.
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Fig. 10: Comparison of cross-sectional expanded uncertainty density profile obtained
through BOS (experiment) and CFD for a transonic projectile Ma = 1,2 at two level; (a):
y = 10 mm, (b): y = 30 mm, the x-axis being oriented along the axis of symmetry of the
projectile with the origin located at the center of its base

In BOS, the density was calculated thanks to Gladstone-Dale equation offering a relation-
ship between the refraction index and the density (Fomin (1998)):

n−1 = G(λ )ρ (22)

where ρ is the density and G is the Gladstone-Dale constant, weakly dependent on the light
wavelength λ , which is taken as constant at 550 nm. This value was assumed to be known
with much smaller error than the conducted measurement and its uncertainty is negligible.
The density expanded uncertainty uρ95% corresponding to a 95% confidence interval was
obtained by a coverage factor k95% = 1.96.
The comparison between the cross-sectional profiles of the density expanded uncertainty at
different radial distances and the CFD results are shown in Fig. 10. We noticed a mostly
acceptable matching between the different profiles; we observed in both cases the specific
N-shape pattern due to compression-expansion at the shock and expansion waves before
returning to the ambient density. Both techniques have successfully detected the different
chocs with very close magnitude and positions. Besides, for the most part, the CFD profile
is within the confidence interval, except for few offsets. A closer inspection of these profiles
reveals that differences are mostly in the vicinity of steep gradients, related to the presence
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of the shock waves, which is probably due to a spatial filtering effect related to the cross-
correlation (Raffel et al. (2018)). This is a fairly known phenomenon associated with these
algorithms and is probably not well accounted for in the displacement uncertainty quantifi-
cation method. A part of the difference is, undoubtedly, due to numerical modeling errors
that are under investigation for future studies.

7 Conclusion

In this work, we have presented a modular framework for a-posteriori uncertainty quantifica-
tion of the refraction index and density field in BOS based on MCS. That is, to the authors’
best knowledge, the first work that considers all error sources instead of only focusing on
the displacement field errors. The model has been implemented through three steps.
First, the determination of the experimental and displacement related errors and their re-
spective distributions. During this study, We have presented a comprehensive analysis of the
experimental measurement chain. Indeed, we have pinpointed the main experimental error
sources, and we have identified and quantified their uncertainties. To compute displacement
uncertainty we have taken benefit from the new displacement uncertainty method named the
moment of correlation plane .
Second, the sampling of error distributions using the LHS method to create extended vec-
tors. This method has proven to be more efficient than random sampling regarding accuracy
and computation time.
Finally, the errors were propagated to the solution using MCM. This was realized by sim-
ulating a given reconstruction function response while submitted to the extended vector in-
puts. The response behavior has been tracked to evaluate its convergence and its distribution.
Then, according to this distribution type, the uncertainty propagation has been quantified.
We have demonstrated and tested these different steps with the help of a synthetic refractive
index field based on which we have simulated a typical BOS experiment. The refractive in-
dex field was reconstructed using a Poisson solver under mixed boundary conditions. From
the results, the accuracy and simplicity of the technique have been demonstrated. Further-
more, this method has been seen to be extremely flexible owing to the ease of integration
of a different construction procedure, which is the Abel inversion. We have demonstrated
this aspect using a BOS experimental setup for visualizing the flow around a .338 caliber
projectile in transonic free-flight. Both BOS and CFD results successfully captured the spe-
cific N-shape for the shock expansion pattern. The density profiles were very close except
for small deviations that can be attributed to drawbacks in numerical simulation and cross-
correlation algorithms. Given that Abel inversion is a specific application of the FBP and
ART, the same approach can be extended for the applications of those procedures.
Moreover, the exemption from the mandatory requirement of error correlation coefficients
determination, whose existence is evident and parameters-dependent in the cross-correlation
processing, is one of the strong points of this implementation. Additionally, evaluating the
function itself repeatedly to determine its uncertainty takes into account the employed math-
ematical procedure error which is not directly addressed elsewhere.
The necessary time to perform the simulations constitutes the weak aspect of the method. In
general, the simulation time depends on the numerical scheme to be evaluated and remains
comparable with the uncertainty evaluation techniques on displacements. Actually, such
constraints are no longer a real problem nowadays given CPU and memory improvements,
this is mostly viewed as an impediment exclusively in real-time applications.
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Guillaume G, Beaulieu C, Braud P, David L (2018) Démarche d’estimation des incertitudes en PIV basée sur
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