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Abstract

Reinforcement Learning (RL) enables artificial agents to learn through
direct interaction with the environment without the need for perfect
models. However, RL usually does not scale up well to large prob-
lems as learning from interaction comes at a high sampling cost.
Several approaches have been proposed to incorporate domain knowl-
edge in RL to allow for more efficient learning. Reward Shaping is
one well-established approach to incorporate domain knowledge in RL
by providing the learning agent with supplementary rewards. In this
work, we propose a novel methodology that automatically generates
reward shaping functions from user-provided Linear Temporal Logic
on finite traces (LTLf ) formulas. LTLf in our work serves as a rich
language that allows the user to communicate domain knowledge to
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the learning agent. In both single and multi-agent settings, we demon-
strate that our approach performs at least as well as the baseline
approach while providing essential advantages in terms of flexibility
and ease of use. We elaborate on some of these advantages empiri-
cally by demonstrating that our approach can handle domain knowledge
functions with different levels of accuracy and provides the user with
the flexibility to express aspects of uncertainty in the provided advice.

Keywords: Linear Temporal Logic on finite traces, Reward Shaping,
Reinforcement Learning, Multi-Agent Systems

1 Introduction

Reinforcement Learning (RL, [26]) enables artificial agents to learn through
direct interaction with the environment without the need for perfect models.
This makes RL relevant for controlling agents in numerous applications e.g.
when it is difficult to obtain a model that allows for computing an optimal pol-
icy. However, vanilla RL starts from a blank slate and improves only through
trial and error. Such a learning approach might take a huge amount of trials
until the learning agent can reach a satisfying policy which is prohibitively
expensive in many scenarios. One step in the right direction is to incorporate
available domain knowledge in RL.

The use of prior knowledge in the form of advice, feedback, and demon-
strations has been proven to significantly increase the sample efficiency of the
RL algorithms in single-agent settings e.g. [27, 17, 16, 25, 21, 6]. But little has
been done in the area in multi-agent settings e.g. [5].

Reward Shaping (RS) is a well-established method to incorporate domain
knowledge in RL by providing the learning agent with supplementary rewards.
When used properly, RS becomes a powerful tool that enables agents to learn
more efficiently and thus reach a satisfying policy faster. But when used
improperly, RS can change the optimal policy of the original task e.g [23].
That said, RS is however guaranteed to preserve the optimal policy in single-
agent settings [20] and the Nash Equilibria in multi-agent settings [7] when
expressed as potential-based reward shaping functions (PBRS). The guaran-
tee also holds, given additional conditions, in the case of dynamic potential
functions [9] and in episodic RL [11].

In this work, we introduce a novel methodology that incorporates domain
knowledge in the RL agents through Linear Temporal Logic on finite traces
(LTLf ) formulas. The LTLf formulas are used to generate PBRS functions
to provide the agent with supplementary rewards which in turn allow more
efficient learning. This work also investigates several ways to extend the
methodology to multi-agent systems (MAS). In MAS, we use our method to
guide the coordination behaviors between agents in cooperative teams. In both
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single and multi-agent settings, we elaborate on the flexibility LTLf provides
in guiding the learning agents especially in the case of uncertainty.

Grzes et al. [12] propose a method to generate PBRS functions from
STRIPS plans. The authors demonstrate their method on the challenging flag
collection domain where a vanilla RL agent can easily get stuck into a sub-
optimal policy. In this work, we compare our approach to the plan-based
approach using different variants of the flag collection domain.

Camacho et al. [2] introduce a method to transform formal languages,
including LTLf , to Reward Machines (RMs) [14], a type of finite-state automa-
ton used to specify Markovian and a subset of non-Markovian rewards. The
authors argue that the artificial agents cannot inherently perceive the reward
from the environment (although e.g. [18] is a counterexample), and thus they
expose the reward function (in this case a set of RMs) to the agent so that
it can exploit its underlying structure. As a consequence, the authors opt
to develop tailor-made learning algorithms to take advantage of the exposed
reward function. Although the authors’ method is indeed interesting when a
designer explicitly writes the reward function, this assumption is not aligned
with the general goal of designing autonomous learning agents. In this work,
we instead assume a Markovian reward function that is unknown to the agent,
and we use LTLf to provide supplementary rewards to guide the RL agent to
reach a satisfying policy faster.

To the best of our knowledge, the work of Icarte et al. [15] is the only work
that uses LTLf to guide the RL agent’s learning. The authors use heuristics
generated from LTLf formulas to bias the agent’s exploration in a tailor-made
variant of Rmax. Our work is highly motivated by their findings but instead, we
propose to use LTLf to automatically generate PBRS functions which makes
our method more advantageous in two main ways: 1. Incorporating the heuris-
tics in the RL agent as a supplementary reward via PBRS makes our method
applicable to many RL algorithms while preserving the optimal policy (or
Nash Equilibria in MAS) of the original problem. 2. Our method tracks the
stage of satisfaction of the LTLf formulas to guide the agent to achieve tem-
poral subgoals and thus increasing the learning speed. Moreover, in our work,
we focus on elaborating on the flexibility LTLf provides in guiding learning
agents in both single and multi-agent settings, including settings where the
user provides LTLf advice with aspects of uncertainty.

2 Preliminaries

For a finite set X , let D (X ) =
{
P :X → [0, 1] |

∑
x∈X P (x) = 1

}
be the set of

probability distributions over X . We write N0 = N\{0}, [T ] = {n ∈ N | n ≤ T},
and [T ]0 = [T ] \ {0}. For x = ⟨x0, . . . , xn⟩ ∈ IRn, let xJiK be the ith entry of
x, i.e., xi.



Springer Nature 2021 LATEX template

4 A Framework for Flexibly Guiding Learning Agents

2.1 Reinforcement Learning and Markov Decision
Processes

We start this section by introducing Markov Decision Processes (MDPs) as the
framework for formalizing the problem of RL. MDPs [1] are used to formalize
the problem of sequential decision-making. An MDP can be represented as a
tuple ⟨S,A, δ,R, γ⟩: S is the set of states, A is the set of actions, δ:S × A →
D (S) is the transition function, R:S×A×S → IR is the reward function and
γ is the discount factor. In MDPs, the agent interacts with the environment
by executing an action a in a state s then makes the transition to the next
state s′ according to δ (s′ | s, a) and receives a scalar reward r ∈ IR. Therefore,
a finite trajectory of the MDP is a sequence of states and actions ⟨s0:T , a0:T−1⟩
such that δ(st+1 | st, at) > 0 for all t ∈ [T ], T ∈ N0. The RL agent should learn
a policy π:S → D (A) to maximize the cumulative discounted reward, where
the policy is a probabilistic function that defines the probability of selecting an
action a ∈ A at a given state s ∈ S. The cumulative discounted reward under
the agent’s current policy π is the expectation of the sum of the discounted
rewards the agent receives Eπ[r1 + γr2 + γ2r3 + . . . ].

2.2 Potential-based Reward Shaping

In this work, we use PBRS to incorporate prior knowledge in RL. RS is a
well-established method that allows the RL agent to learn more efficiently. RS
works by providing the RL agent with a supplementary reward F (st, st+1). So
the augmented reward function of the MDP becomes

R′(st, at, st+1) = F (st, st+1) +R(st, at, st+1) (2.1)

PBRS represents the RS function as the difference of values of a potential
function, formally defined as the following:

F (st, st+1) = γΦ(st+1)− Φ(st) (2.2)

The reward function in this form is both sufficient and necessary to guarantee
policy invariance [20], meaning that even if the domain knowledge is wrong,
the agent will eventually still learn the optimal policy. In the episodic case, in
the case of multiple terminal states, the potential of the terminal states must
also be set to zero [11].

The PBRS functions can also be dynamic i.e., change during the learning
process [9]. Policy invariance is preserved if the RS function is given in the
following form

F (st, st+1) = γΦt+1(st+1)− Φt(st) (2.3)
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2.3 Multi-agent Reinforcement Learning

In this section, we introduce Multi-agent Reinforcement Learning (MARL) as
our method can also be applied to MAS. MDPs can be extended to the multi-
agent case by formalizing the environment as a Markov Game (MG), which is
defined as a tuple ⟨N,S,A, δ, R, γ⟩ where N is the number of agents, S ⊆ SN

is the joint state space of the MG with individual state space S, A ⊆ AN

is the joint action space with individual action space A, R:S ×A × S → IR
is the reward function, and δ:S × A → D (S) is the probabilistic transition
function. Intuitively, δ (s′ | s,a) gives the probability of going from joint state
s = ⟨s1, . . . , sN ⟩ to the next one s′ = ⟨s′1, . . . , s′N ⟩ when each agent has chosen
its action ai ∈ A, forming this way the joint action a = ⟨a1, . . . , aN ⟩, where
si ∈ S represents the current state of agent i ∈ [N ]0. Finite trajectories of
MGs are defined in a similar way to those of MDPs.

2.4 Linear Temporal Logic

Linear Temporal Logic (LTL, [22]) is a type of temporal logic that allows
expressing and reasoning over propositions qualified in terms of time. LTL
is a modal temporal logic with an expressive and reasoning power limited to
timelines. Since we assume finite horizon RL in this work, we utilize LTL
formulas interpreted over finite traces, i.e., LTLf [4]. Formulas of LTLf are
constructed from a set of propositional symbols P and closed under boolean
connectives and temporal operators X (next) and U (until). The LTLf syntax
is recursively defined as

φ ::= ⊤ | α | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

where α ∈ P and ⊤ is read as “True”. Intuitively, Xφ means that φ holds at
the next time step, while φ1Uφ2 means that φ1 holds in the current step and
will hold in the next steps until φ2 holds. LTLf allows for standard logical
connective abbreviations via φ1∨φ2 ≡ ¬(¬φ1∧¬φ2), and φ1 → φ2 ≡ ¬φ1∨φ2.
Temporal operators can further be derived: Fφ ≡ ⊤Uφ (finally) means that
φ will eventually hold, and Gφ ≡ ¬F¬φ (globally) means that φ always hold
from the current time step. Note that, compared to classic LTL, ¬X⊤ always
eventually holds, since executions are assumed finite.

To enable reasoning about finite executions, we attach a labeling function
ℓ:S → 2P to the MDP, mapping each state to its labels formed of literals. A
trace τ of this MDP records the labels encountered through a trajectory: this
is a sequence τ = l0:T such that lt = ℓ(st) for some trajectory ⟨s0:T , a0:T−1⟩ and
all t ∈ [T ]. Let τt define the segment of τ starting from t ∈ [T ], i.e., τt = lt:T ,
then the semantics of LTLf formulas are defined recursively as follows:

• τt |= ⊤,
• τt |= α iff α ∈ lt for α ∈ P,
• τt |= ¬φ iff τt ̸|= φ,
• τt |= φ1 ∧ φ2 iff τt |= φ1 and τt |= φ2,
• τt |= Xφ iff t < T and τt+1 |= φ, and



Springer Nature 2021 LATEX template

6 A Framework for Flexibly Guiding Learning Agents

• τt |= φ1Uφ2 iff ∃i ∈ N with t ≤ i ≤ T such that τi |= φ2 and ∀j ∈ N such
that t ≤ j < i, τj |= φ1.

We enable LTLf for MGs by considering formulas constructed from P ′ =
(P ∪ {⋆})N \ {α⋆}, where ⋆ is a special symbol read as “any” and α⋆JiK = ⋆
for all i ∈ [N ]0. Consider a Markov game with state space S ⊆ SN

and let ℓ be the labeling function defined over the individual state space
S, a trace of this MG is a multi-labeled sequence τ = l0:T recording
the labels encountered by each agent through some trajectory ⟨s0:T ,a0:T−1⟩:
ltJiK = {⟨α1, . . . , αN ⟩ | αi ∈ ℓ (stJiK) ∪ {⋆} , for all i ∈ [N ]0} with t ∈ [T ].
Intuitively, an LTLf formula over P ′ features multi-dimensional literals α =
⟨α1, . . . , αN ⟩ ∈ P ′ (one literal per agent), where αi represents either a literal
that could be encountered by the ith agent through a trajectory, or any literal,
encoded via the special symbol ⋆. That way, according to the LTLf semantics
and by definition of MG traces, α does not hold in τt (written τt |= ¬α) iff
there is an agent i which has not encountered the ith (specific) literal from α,
i.e., αJiK ̸∈ ℓ (stJiK) and αJiK ̸= ⋆. Notice that α records at least one specific
literal: by definition of P ′, all entries of α cannot be ⋆ simultaneously.

Any LTLf formula φ can be translated to a Deterministic Finite Automaton
(DFA) that accepts a trace only if there exists an associated trajectory τ that
satisfies formula φ, i.e., τ0 |= φ [10]. DFAs are used in this work to track the
stage of satisfaction of the LTLf formulas.

2.5 Deterministic Finite Automaton

A Deterministic Finite Automaton (DFA, e.g., [13]) is a tuple ⟨Q, qI ,∆,Σ, F ⟩
where Q is the set of states, qI ∈ Q is the initial state, Σ is the set of possible
inputs, ∆:Q×Σ → Q is the transition function (maps a state and an input to
another state) and F ⊆ Q is the set of accepting states. DFAs are mathematical
models that deterministically map an input sequence to an output so that the
computation is unique. Therefore, it can be exactly in one state at a given time
and it makes the transition from one state q ∈ Q given some input σ ∈ Σ to
another state q′ ∈ Q according to the transition function ∆, i.e., ∆(q, σ) = q′.
A finite input sequence σ0:T is accepted by the DFA if the sequence drives it
to one of its accepting states, i.e., if there is a sequence q0:T where q0 = qI ,
qT ∈ F , and qt+1 = ∆(qt, σt) for all t ≤ T and T ∈ N.

DFAs translated from LTLf take state labels as input, i.e., Σ = 2P for

MDPs and Σ = 2P
′
for MGs. We define the edges of such DFAs via the guarded

transition relation
ϕ−→= {⟨q, l, q′⟩ ∈ Q× Σ×Q | ∆(q, l) = q′ and l |= ϕ},

where ϕ is an LTLf formula whose syntax is restricted to the following fragment
without other logical connectives abbreviations permitted:

ϕ ::= ⊤ | α | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2.

Whenever a state q goes to q′ through a transition guarded by ϕ, written

q
ϕ−→ q′, we have for all labels l ∈ Σ that ∆ (q, l) = q′ iff l |= ϕ, where l is
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Fig. 1: An example of flag collection problem; the start position (S in red), the
flag A and B (A and B in black) and the goal position (G in green). Starting
from the start position the agent should collect flags A and B and then go to
the goal, in the minimum number of steps.

here considered as a trace τ of unit size (i.e., τ = l). We call this fragment
LTL→

f and we use it henceforth to formulate the guards of the transitions of
DFAs translated from LTLf formulas.

3 Methodology

In this section, we introduce our method that utilizes LTLf to incorporate
domain knowledge in RL agents. Our usage of LTLf as a guidance formalism for
RL agents is motivated by the following aspects: 1. LTLf provides an intuitive
way to describe many common RL tasks (e.g. [15, 2]). 2. LTLf is a rich language
that can validate whole sequences over time which makes LTLf a compact
language for providing guidance. 3. LTLf is rather easy to be expressed in
natural language. Thus, it has the potential to be easier for non-expert users,
especially when syntactic sugar is added. 4. LTLf can allow the user to express
uncertainty about his/her advice as we will demonstrate in this work.

Example 3.1 (Flag collection domain [12]). We consider a simple flag collec-
tion problem (Figure 1) as a running example to introduce our approach. In
the flag collection domain, the agent should learn how to collect all the flags
and then go to the goal position, in the minimum number of steps. The state
is defined by the agent’s position and the flags collected by the agent. The
agent has 8 actions that deterministically move it to the adjacent cells (the
agent remains in place in the case of an obstacle in the intended direction of
the executed action). The agent collects a flag automatically when it is at the
position of the flag. The agent is punished with a small negative reward of
−0.1 at each time step and receives a positive reward of 100 multiplied by the
number of flags collected only at the end of the episode. This sparsity in the
reward makes the problem challenging to a vanilla RL agent.
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Fig. 2: The corresponding DFA for the LTLf formula in Equation 3.1. This
DFA still accepts a trajectory even if flag B is collected first. For the sake of
readability, we draw the transitions with their corresponding edges guarded
by LTL→

f formulas.

3.1 Constructing the LTLf Formula

Typically in RL tasks, the available domain knowledge is in the form of abstract
(high-level) heuristics and it is up to the RL agents to learn the optimal policy
i.e. which action should be taken in each of the states the agent encounters.
Our method allows the user to communicate this abstract domain knowledge
using an LTLf formula.

The LTLf formula is constructed from a finite set of propositional symbols
P. Intuitively, P relates to the task at hand and the guidance the user wants
to provide.

Example 3.1. (continued) Related to the running example, the set of propo-
sitional symbols P = {have flagA, have flagB, at goal} where have flagA
and have flagB hold in states where the agent has collected flag A and flag B
respectively and at goal holds in states where the agent is at the goal position.
In this problem, the user may provide the following LTLf formula:

F(have flagA ∧ F(have flagB ∧ (at goal ∨ XFat goal))) (3.1)

this formula is still satisfied even if flag A is not collected before flag B (this is
more clear when looking at the corresponding DFA in Figure 2). This kind of
LTLf formula is relevant when the user is uncertain about the correct order.
We will explain down the road how our method would utilize this kind of
formulas to encourage the agent to follow the user’s recommended ordering
but still give the supplementary rewards even if the ordering is not respected.
This formula is best expressed in natural language as “Collect flag A then flag
B, probably best in this ordering, and then go to the goal position”.
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3.2 Transforming LTLf Formula to DFA

We transform the user-provided LTLf formula to a DFA in order to track the
satisfaction stage of the corresponding LTLf formula1. In this case, the DFA
would provide abstract subgoals that we use to guide the agent to satisfy. By
doing so, we guide the agent towards the accepting states of the DFA and thus
satisfying the corresponding LTLf formula.

Example 3.1. (continued) The DFA ⟨Q, qI ,∆,Σ, F ⟩ translated from the
LTLf formula of Equation 3.1 is depicted in Figure 2. Here, the set of states
is Q = {q0, q1, q2, q3}, the initial state is qI = q0, the set of accepting states
is F = {q3}, and the alphabet is Σ = 2P = 2{have flagA,have flagB,at goal}. We
draw transitions with their corresponding edges, guarded by LTL→

f formulas.

3.3 Tracking the Current State of the DFA

As stated earlier, the DFA provides subgoals towards satisfying the
LTLf formula. Therefore, our method generates potential functions that
depend on the current state of the DFA. Using the labeling function ℓ, one
can track the current state of the DFA given the trace associated with the
current trajectory resulting from the interaction of the agent with the envi-
ronment: let st be the current state of the environment at time step t ∈ N, the
DFA updates its current state qt to qt+1 according to the label observed in st,
i.e., qt+1 = ∆(qt, l), where ∆ is the DFA transition function and l is the label
observed.

Example 3.1. (continued) Let ⟨s0:T , a0:T−1⟩ be a finite trajectory resulting
from the interaction of the agent with the environment. The initial state
of the DFA of Figure 2 is q0. The DFA transitions out of q0 when the lit-
eral have flagA is encountered for the first time, i.e., if ∃t1 ∈ [T ] such that
have flagA ∈ ℓ (st1) and have flagA ̸∈ ℓ (st) for all t < t1. If have flagB ̸∈
ℓ (st1), then q1 is visited. Otherwise, the DFA transitions directly to q2.

The DFA transitions to q2 when have flagB is visited for the first time
and flag A has been visited beforehand, i.e., if ∃t2 ∈ [T ], such that t2 ≥ t1,
have flagB ∈ ℓ (st2), and have flagB ̸∈ ℓ (st) for t1 < t < t2. From q2, the
DFA transitions to the accepting state q3 whenever at goal is finally visited,
i.e., if ∃t3 ∈ [T ] where ∃t3 > t2 such that at goal ∈ ℓ (st3). In this case,
the DFA has reached its only (absorbing) accepting state, thus the provided
LTLf formula is satisfied.

3.4 Estimating the Number of Transitions to an
Accepting State

Estimating how close the agent is to reach an accepting state of the DFA
provides heuristics that we use later to assign potentials to the MDP states.

1We use the LTLf2DFA tool to obtain minimal DFA: github.com/whitemech/LTLf2DFA
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Therefore, we make use of the longest acyclic path to an accepting state as a
heuristic to estimate the number of transitions required in the DFA to finally
enter an accepting state. We define the set of acyclic paths from a given DFA
state q to a final state through the mapping acyclic:Q → Q∗,

q 7→ {q0:T | ∀t ≤ T, ∃ϕ s.t. ϕ is an LTL→
f formula and qt

ϕ−→ qt+1,

qt = q′ =⇒ ∀t′ ∈ [T ] with t < t′, qt′ ̸= q′, and

q0 = q, qT ∈ F}.

Then, we define the longest acyclic path via the distance function
Distance:Q → N,

q 7→


max

q0:T∈acyclic(q)
T if acyclic(q) ̸= ∅

max
q′∈Q, q′0:T∈acyclic(q′)

T + 1 otherwise.

Intuitively, Distance assigns the length of the longest path starting from a
given DFA state q ∈ Q. In case such a path does not exist (i.e., acyclic(q) = ∅),
then it assigns the length of the longest acyclic path which can be reached in
the DFA plus one.

The estimate we choose here fits the type of guidance we want to provide to
the RL agent (guidance with uncertainty) e.g. the LTLf formula in Equation
3.1. However, the choice of the estimate is flexible and can be left for the
designer to adapt it to the problem and/or the type of guidance desired.

Example 3.1. (continued) The mapping Distance assigns the following val-
ues to the DFA states of Figure 2: Distance(q0) = 3, Distance(q1) = 2,
Distance(q2) = 1, and Distance(q3) = 0.

3.5 Defining the Guiding Formula

We also utilize another heuristic to guide the RL agent to satisfy the
LTLf formula. This heuristic estimates how close the agent is from satisfying

any useful edge, an edge that leads to progress in the DFA. An edge q
ϕ−→ q′

of the current DFA state q is a useful edge if Distance(q′) < Distance(q). We
denote the set of useful edges at time step t ∈ N as Ut.

Now, we define the guiding formula as the disjunction of the formulas
associated to the useful edges. This is formally defined at step t ∈ N as follows:

ϕt =
∨

q
ϕ−→q′∈Ut

ϕ (3.2)

Example 3.1. (continued) In Figure 2, if the DFA state is q0 at time step

t ∈ N, then Ut = {q0
have flagA∧¬have flagB−−−−−−−−−−−−−−−−−→ q1, q0

have flagA∧have flagB−−−−−−−−−−−−−−−−→ q2}
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and ϕt = have flagA , if it is in q1, then Ut = {q1
have flagB−−−−−−−→ q2} and

ϕt = have flagB, and if it is in q2, then Ut = {q2
at goal−−−−→ q3} and ϕt = at goal.

Finally, if the DFA current state is the accepting state q2, then Ut = ∅ and
ϕt = ⊤.

3.6 Estimating the Number of Primitive Actions to a
DFA Transition

To estimate how close the RL agent is to make a transition through a useful
edge, we borrow the definition of a domain knowledge function from the work of
Icarte et al. [15]. This assumes that the agent has domain knowledge expressed
as a function hα:S → IR for each α ∈ P+, where P+ = P ∪{¬p : p ∈ P}, that
provides an estimate of the number of actions needed for α to be satisfied from
any MDP state s ∈ S. Using domain knowledge functions, we define a more
general function h⃗:S × Φ⃗(P+) (where Φ⃗(P+) is the set of all LTL→

f formulas
over P+), providing an estimate of the number of actions needed to satisfy any
LTL→

f formula ϕ from a given state s ∈ S. Given that ϕ is put in the Disjunctive
Normal Form (DNF), which means that ϕ is a disjunction of conjunctions, we

define h⃗ recursively as follows:

h⃗(s, α) = hα(s) for any α ∈ P+

h⃗(s, ϕ1 ∧ ϕ2) = h⃗(s, ϕ1) + h⃗(s, ϕ2) for any LTL→
f formulas ϕ1 and ϕ2

h⃗(s, ϕ1 ∨ ϕ2) = min
{
h⃗(s, ϕ1), h⃗(s, ϕ2)

}
for any LTL→

f formulas ϕ1 and ϕ2

(3.3)

Example 3.1. (continued) Consider the MDP modeling the flag collec-
tion problem of Figure 1 as well as the formula translated to the DFA of
Figure 2. We define a domain knowledge function for propositional sym-
bols from P = {have flagA, have flagB, at goal} as follows. Let α ∈
{have flagA, have flagB},

hα(s) =

{
d⃗α(s) if α ̸∈ ℓ (s)

0 otherwise
(3.4)

h¬α(s) =

{
0 if hα(s) ̸= 0

undefined otherwise
(3.5)

hat goal(s) = d⃗at goal(s) (3.6)

h¬at goal(s) =

{
0 if hat goal(s) ̸= 0

1 otherwise
(3.7)

for each s ∈ S and where d⃗have flagA(s), d⃗have flagB(s), and d⃗at goal(s) are
heuristics functions that return estimated distances (e.g., ℓ1 or ℓ2 distance
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disregarding the obstacles) of state s to flag A, flag B and the goal position
respectively. The domain knowledge functions for satisfying ¬have flagA and
¬have flagB are not defined when the agent already has flag A (or flag B)
since the agent cannot drop a flag after it is collected in the flag collection
domain.

3.7 Building the Potential Function

Finally, we define the potential of state s ∈ S at step t ∈ N as follows

Φt(st) = −ω ×
[
Distance(qt) +

1

n
· h⃗(st, ϕt)

]
(3.8)

where ω is a scaling factor, qt is the current state of the DFA and 1/n is a

normalization factor where n = maxs∈S h⃗(s, ϕt).
The intuition behind Equation 3.8 is that a state st gets a higher potential

if the DFA is closer to their accepting states at time t. This “closeness” is
proportional to the evaluation of the Distance function given the current DFA
state qt (3.4, an estimate of the number of DFA transitions to an accepting

state) and the evaluation of the heuristics function h⃗ given the current guiding
formula ϕt (3.6, an estimate of the number of primitive actions needed to make
a “useful” DFA transition).

3.8 The Augmented Reward Function

We now build the PBRS function as the difference between different evalua-
tions of the potential function Φt, formally as the following

F (st, st+1) = γΦt+1(st+1)− Φt(st) (3.9)

and then we combine the original reward function of the MDP and the shap-
ing reward function as commonly done by taking the sum. Formally, the
augmented reward function is

R′(st, at, st+1) = F (st, st+1) +R(st, at, st+1) (3.10)

4 Experiments in Single-agent Settings

In this section, we evaluate our method in the single-agent settings in the flag
collection domain [12]. First, we compare the performance of the LTLf method
to that of the plan-based RS method [12] in the classic flag collection problem
(Figure 3). Then, we demonstrate how the LTLf method is flexible regarding
the accuracy of the domain knowledge used (from vague to accurate) report-
ing the performance of different domain knowledge functions with different
accuracy levels. Finally, we demonstrate how our method can allow the user
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Fig. 3: The classic flag collection problem [12] (with added obstacles as black
squares); the start position (S in red), the flags from A to F (in black) and
the goal position (G in green). The agent should collect all flags (A to F ) and
then go to the goal, in the minimum number of steps.

to express partial knowledge (uncertainty) in the communicated advice using
a variation of the flag collection domain (Figure 6).

Throughout this work, we use the following setup unless explicitly stated
otherwise. We use vanilla SARSA [26] with the Q-table initialized to zero
(we did not notice remarkable performance differences when using eligibility
traces). We use a learning rate α = 0.1 and a discount factor γ = 1 (this choice
is motivated by the findings in the PhD thesis of Grzes regarding the effect of
γ on the shaping rewards 2). We use a scaling factor ω = 10 for the shaping
rewards. For ϵ-greedy and softmax strategies [26], we use a linearly decreasing
ϵ from 0.3 to 0.01 and a fixed temperature T = 0.25 (where the numerical
preference for choosing an action is: Ht(at) = Qt(st, at)/T ), respectively. Each
experiment consists of 104 episodes and we report the average results over 10
experiments. The plots always show the mean (in solid line) and the standard
deviation (shaded region) of the results data.

4.1 Comparing Performance to the Plan-based Approach

In this set of experiments, we compare the performance of the LTLf method
and the plan-based method using the classic flag collection problem (Figure 3).
This configuration is the original version used in [12] to which we add obstacles
that the agent cannot go through. We add the obstacles in order to make the
heuristics we use in our method realistic, more precisely by adding obstacles

2PhD thesis: Improving Exploration in RL through Domain Knowledge and Parameter Analysis.
URL: https://etheses.whiterose.ac.uk/936/
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the heuristics become less accurate yielding a more realistic setting . In this
problem, there is more than one optimal ordering of collecting the flags e.g.
(C, E, F , B, A then D) and (A, B, C, F , E then D) are examples of optimal
orderings.

The plan-based method would only consider one optimal ordering in this
case 3. Our LTLf -based method instead provides the flexibility for the user to
guide the agent to any optimal ordering. In our experiments, we provide the
following LTLf formula

F(have flagC ∧ F(have flagE ∧ . . . ∧ (have flagD ∨ XF have flagD))))))
(4.1)

to help the agent to collect the flags in the following order (C, E, F , B, A
then D). The LTLf formula in Equation 4.1 follows the same intuition as the
LTLf formula considered in the running example (Equation 3.1). The formula
guides the agent to collect the flags in a certain ordering but still provides
supplementary reward even if the flags are not collected in this order.

We define the set of propositional symbols and the domain knowledge
functions for all the flags in the same way as we did for flag A in the run-
ning example. Throughout this work, unless explicitly stated otherwise, we
use a domain knowledge function d⃗ that returns ℓ1 distance (disregarding the
obstacles but not the walls). This heuristic knowledge is available in many
applications in the real world where we would know the overall structure of the
environment e.g. the room structure but not the obstacles e.g. the furniture.

In this set of experiments, we use the ϵ-greedy exploration strategy. In
Figure 4, we report the results for the plan-based method and the LTLf -based
method guiding the agent to the same optimal ordering, namely (C, E, F , B,
A then D) (the corresponding STRIPS plan is reported in [12]). The LTLf -
based method achieved slightly better performance compared to the plan-based
method. Due to reward sparsity, the agent with no shaping easily gets stuck
in the sub-optimal policy of picking flag D and then going directly to the goal
(this behavior is also reported in [12]). The use of the LTLf method to guide
the agent to other optimal orderings reported similar performance (though not
reported in the plot for better visibility).

4.2 Evaluation with Different Levels of Heuristics
Accuracy

In this section, we aim to demonstrate the flexibility that our method offers
regarding the accuracy of the provided domain knowledge. Namely, we evaluate
two less informative domain knowledge functions in the same problem (Figure
3). In the first function (we name it to-doorstep), the estimate distance from
any state s is computed as before but to the door of the room where a literal
lit becomes ⊤ (instead of its position). If the agent is in the same room in
which lit becomes ⊤, the function returns 0. In the second function (we name

3The generated STRIPS plan in this problem is reported in Grzes et al. [12]
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Fig. 4: Results in the classic flag collection domain show that the LTLf method
at least performs as well as the plan-based method. While the vanilla SARSA
agent converges to the sub-optimal solution of collecting one flag (flag D)
and then go to straight to the goal. The first 1000 episodes are shown (no
remarkable changes afterward).

it no-of-doors function), we estimate the distance between any state s to the
position where a literal lit becomes ⊤ is the number of doors between the
agent position and the position where a literal lit becomes ⊤ e.g. the position
of a flag. We use the ϵ-greedy exploration strategy. And Figure 5 shows that
the performance of the functions is comparable to ℓ1-based function used in
the previous section.

4.3 Demonstrating the Flexibility to Provide Guidance
with Partial Knowledge

In this set of experiments, we aim at highlighting the flexibility LTLf can
provide when the user has partial knowledge about the task. Therefore, we
consider the flag collection problem shown in Figure 6. At each experiment
one of the two doors in the color red can be closed and the other is open. The
optimal ordering of collecting the flags depends on which door is open at the
current experiment e.g. if the (Room C - Room E) door is open, the optimal
ordering would be to collect flag B first then flag C. We assume the case that
the user providing the guidance (in our case the LTLf formulas) does not know
which door is open at the current experiment, therefore he/she does not know
which ordering is the optimal one.
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Fig. 5: The performance of domain knowledge functions with different accu-
racy levels in the class flag collection problem. Despite less knowledge domain
, both functions perform comparably to the performance of the ℓ1 distance
function used in the previous section. The first 1000 episodes are shown (no
remarkable changes afterward).

Fig. 6: A variation of the flag collection problem where the user does not
know which door is open (in red). As before, S in red is the start position, G
in green is the goal position and the flags B and C are in black.



Springer Nature 2021 LATEX template

A Framework for Flexibly Guiding Learning Agents 17

Fig. 7: The corresponding DFA for the LTLf formula F ((have flagB ∧
have flagC) ∧ XFat goal)). The formula guides the agent to collect flag B
and flag C in any order and then go to the goal position.

Fig. 8: Results in the flag collection domain with uncertainty (in the case of
the door (Room C - Room E) is the open door) show that with no shaping
the agent fails to collect both flags regardless of the exploration strategy used.
While the agent with LTLf -based shaping always collected both flags in the
correct ordering when utilizing softmax (although this is not clear in the plots
due to the relatively low difference in reward between the orderings).

In this case, we would like to have the flexibility to guide the agent to
collect both flags without indicating an ordering and then to go to the goal.
To the best of our knowledge, the plan-based RS method does not offer such
flexibility. In LTLf , this can be expressed elegantly by providing the following
formula

F((have flagB ∧ have flagC) ∧ XFat goal)) (4.2)

which can be expressed in natural language as “Collect flag B and flag C in any
order, and then go to the goal”. The corresponding DFA is depicted in Figure
7). Although the previous formula guides the agent to collect both flags, it
clearly does not recommend a certain order to collect them. The RS functions
that the previous LTLf formula generates will not bias the agent in any way
to collect one of the flags before the other one.
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Fig. 9: An instance of the rendez-vous domain [19]. The agents A1 and A2
(both in black) need to meet at position X (in red) and then go to positions
Y and Z (both in green), respectively, in the minimum number of steps.

In this set of experiments, we use both ϵ-greedy and softmax exploration
strategies with LTLf -based RS, and we also compare between the performance
of LTLf -based agent and vanilla SARSA.

In the set of experiments where (Room B - Room E) is the open door, the
LTLf -based agent managed to converge to the optimal ordering regardless of
the exploration strategy used4. However, when (Room B - Room E) door is the
open door, the LTLf -based agent utilizing ϵ-greedy could not converge even
once to the optimal ordering, while the softmax strategy always converged to
the optimal ordering (Figure 8) (although this is not clear in the plots due
to the relatively low difference in reward). These results support our initial
anticipation that the softmax strategy would do more efficient exploration
for two (or more) potentially optimal solutions. We expect the differences in
performance to be even more profound as we move to more complex settings.
And finally, the agent with no shaping, as expected, always gets stuck at the
sub-optimal policy of collecting one flag and then going directly to the goal.

5 Extension to Multi-agent Settings

In this section, we extend our method to MAS and then demonstrate in dif-
ferent domains the advantages our method can offer in MAS. Namely, we
investigate two ways to utilize our method in MAS: centralized guidance and
decentralized guidance. We use a variant of the rendez-vous domain [19] to

4We do not display the plots of this set of experiments because of the similarity to the plots in
Figure 8
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serve as a running example to introduce our method in MAS. In the rendez-
vous domain, the agents should all meet at a rendez-vous position and then
go to their (own) final positions, in the minimum number of steps.

Example 5.1 (Rendez-vous domain). We consider a rendez-vous problem
(Figure 9) with two agents. The agents should meet at position X and then
should go to positions Y and Z, respectively. Each agent’s state is defined by
its position and whether the rendez-vous happened or not. The agents have 4
actions that deterministically move it to the adjacent cells in the conventional
directions (the agent remains in place in the case of an obstacle). The agents
share the same reward, namely the agents are punished with a small negative
reward of −0.1 at each time step and receive a positive reward of 100 when they
complete the task successfully. The positions Y and Z are absorbing states
for the first and second agents, respectively. And the episode ends when both
agents reach their final positions whether the task was completed successfully
or not, i.e. whether the rendez-vous happened.

5.1 Decentralized Guidance

In the decentralized guidance approach, we consider the case where different
users are guiding the different agents in a MAS without coordination e.g. due
to lack of communication capabilities. In this case, the LTLf method can be
used to guide the individual behavior of each agent separately. Therefore, we
treat each agent as a standalone system and provide the LTLf guidance as we
did in single-agent settings.

Example 5.1. (continued) For the rendez-vous problem in Figure 9, the
LTLf formulas will be constructed from the set of propositional symbols
P = {at x, at y, at z}. And we consider the following LTLf formulas for the
first and second agent respectively: F(at x ∧ XFat y)) and F(at x ∧ XFat z)).
It is clear the agents in this case are not guided to coordinate with each other
to meet at position X, but instead each agent is guided to reach position X
and then reach their final positions, independently.

5.2 Centralized Guidance

In the centralized guidance approach, we consider the case where the set-
tings allow that one user guides the whole MAS as one unit. In this case,
the user provides the LTLf formula to a central entity which in turn provides
each individual agent with the appropriate shaping rewards. Therefore, we
use our extension of LTLf to MGs (in Section 2.4) to provide the MAS with
multi-dimensional LTLf formulas (i.e., LTLf formulas over P ′) that guide the
coordination between the agents.
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Fig. 10: The corresponding DFA for the multi-dimensional LTLf formula
F(⟨at x, at x⟩ ∧ XF⟨at y, ⋆⟩ ∨ ⟨⋆, at z⟩)). The formula guides the agents to be
at position X at the same time and then go to positions Y and Z respectively.

Example 5.1. (continued) For the rendez-vous problem in Figure 9, we
define the set of propositional symbols P = {at x, at y, at z} and the multi-
dimensional LTLf formula will be then constructed from P ′ (as defined
in Section 2.4). We can now consider the following multi-dimensional
LTLf formula: F(⟨at x, at x⟩∧XF⟨at y, ⋆⟩∨⟨⋆, at z⟩)) (The corresponding DFA
shown in Figure 10). This LTLf formula guides the agent to coordinate and
be at position X at the same time and then go to their final positions.

In order to use multi-dimensional LTLf formulas to generate meaningful
heuristics for each agent in the MAS centralized guidance setup, we need to
redefine the following from our methodology in Section 3.

5.2.1 Estimate of Primitive Actions Needed for a DFA
Transition in MAS

Let S = SN be the state space of an MG and N be the number of agents
involved in this MG, then we can define a general function h⃗:S× Φ⃗((P+)′) →
IRN (where Φ⃗((P+)′) is the set of all LTL→

f formulas over (P+)′), providing
an estimate of the number of steps required to satisfy a given LTL→

f formula
ϕ from an MG state s ∈ S. To do so, we estimate how close are the RL agents
from making a transition through a useful edge in the MAS by using a similar
domain knowledge function to the one used in Section 3.6, namely hα:S → IR
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for each α ∈ P+, which provides an estimate of the number of steps required
for the agent to satisfy α from state s ∈ S. Given that α is in DNF, we define
h⃗ recursively as follows:

h⃗JiK(s,α) =

{
hαJiK(sJiK) if αJiK ̸= ⋆, and

0 otherwise.

h⃗(s,¬α) =

{
minj∈[N ]0 h¬αJjK(sJjK) if h⃗(s,α) = 0, and

0 otherwise

for α ∈ P ′,

i ∈ [N ]0

h⃗(s, ϕ1 ∧ ϕ2) = h⃗ (s, ϕ1) + h⃗ (s, ϕ2)

h⃗(s,

M∨
k=1

ϕk) = h⃗(s, ϕ′) s.t. ϕ′ = argmin
k∈[M ]0

max
j∈[N ]0

h⃗j(s, ϕk)
for ϕ1, ϕ2, ϕk ∈ Φ⃗((P+)′).

(5.1)
we highlight the following facts to clarify the intuition behind the equations:
1. α holds iff for all i ∈ [N ]0, αJiK holds. 2. ¬α holds iff ∃i ∈ [N ]0 where ¬αJiK
holds. With the same intuition as in the single-agent settings, the heuristics
of satisfying a disjunction between a set of formulas is equal to the heuris-
tics of satisfying the formula which is “easier” to satisfy e.g. lower estimated
distance to satisfaction. Given the first fact and the fact that the agents are
independent, we choose the heuristics to satisfy a disjunction to be: the heuris-
tics of the formula (a vector of size N) with the lower maximum element-wise
heuristic value. And given the second fact, we choose the heuristics to satisfy
a negation of α to be: the minimum element-wise heuristic value of α.

Example 5.1. (continued) For the rendez-vous problem in Figure 9, we
define a domain knowledge function for each propositional symbol α ∈
{at x, at y, at z} as follows

hα(s) = d⃗α(s)

h¬α(s) =

{
0 if hα(s) ̸= 0

1 otherwise

(5.2)

for each s ∈ S and where d⃗α(s) are heuristics functions that return estimate
distance from state s to the state where α holds.

5.2.2 Building the Potential Function in MAS

We then define the potential of st at time t for agent i where i ∈ [N ]0 as
follows:

Φi
t(st) = −ω ×

[
Distance(qt) +

1

n
· h⃗JiK(st, ϕt)

]
(5.3)

where ω is a scaling factor, qt is the current state of the DFA and 1/n is a

normalization factor where n = maxs∈S h⃗JiK(s, ϕt). The potential formula has
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the same intuition as the one used in single-agent settings (Section 3.7). The
augmented reward functions will then be built in a similar way as in single
agent (Section 3.8).

6 Experiments in Multi-agent Settings

In this section, we evaluate the performance of LTLf -based centralized guid-
ance in the rendez-vous domain and buttons domain [19], two benchmark
problems for coordination in MAS. Then, we move back to the flag collection
domain where we compare to the plan-based method and demonstrate the flex-
ibility of communicating guidance with partial knowledge (uncertainty) using
LTLf in MAS.

In all the experiments, we use independent learners (ILs), namely, we
use independent SARSA agents. Also, we only consider softmax exploration
strategy (motivated by the findings of Claus et al. [3] on the convergence of
exploitative-exploration strategies in the case of ILs).

6.1 Evaluating the Performance in the Rendez-vous
Domain

In this section, we evaluate the performance of our method in the rendez-
vous problem (in Figure 9). Since in the rendez-vous domain the agents need
to meet at a rendez-vous position, we choose to use the centralized guidance
approach since it is most relevant when the agents need to explicitly coordinate
to perform the task successfully.

The results are depicted in Figures 11. The LTLf -shaped agents always
converge to the optimal policy while the vanilla agents get stuck in the subop-
timal solution of going directly to the final positions (without the rendez-vous
happening) in 2 out of 10 runs. This suboptimal solution has −1.3 pay-
off (compared to 98.7 of the optimal solution). This demonstrates that the
LTLf method is capable of guiding the agents to coordinate even if the agents
do not explicitly take each other into account (ILs). Also, the LTLf -based
shaped MAS has a remarkable initial performance compared to the vanilla
MAS.

6.2 Evaluating the Performance in the Buttons domain

In this section, we again evaluate the LTLf -based centralized guidance in a
variant of the buttons domain [19]. Namely, we consider the buttons problem
in Figure 12. The goal is for the agents to coordinate to enable the agent A1 to
reach the goal state G. The agents A1, A2 and A3 are penalized with −5 reward
when they step on the red, yellow and green colored regions, respectively, if the
buttons with the corresponding colors are not pushed. Agent A1 and A3 can
press the yellow and green buttons respectively while the red button requires
both agents A2 and A3 to push it simultaneously. The agents share the same
reward and get a positive reward of 100 reward when the agent A1 reaches



Springer Nature 2021 LATEX template

A Framework for Flexibly Guiding Learning Agents 23

Fig. 11: Results in the rendez-vous problem 9 show smooth convergence to the
optimal solution in the case of LTLf -shaped agents while the vanilla agents
take much more time to reach a near optimal solution. As explained in the
text, vanilla agents get stuck in sub-optimal policies in 2 out of 10 runs. The
first 200 episodes are shown (no remarkable changes afterward) and the curve
smoothed over 50 consecutive episodes, for better visibility.

the goal position and is penalized at each time step with −0.1 reward. Each
agent’s state is defined by its position and whether the buttons (relevant to the
agent) are pushed e.g. the yellow button is relevant for agents A1 and A2 only.
The agents can move in the 4 conventional directions and can also stay still.
The agents remain in place if there is an obstacle in the intended direction of
the executed action.

We define P = {rb, gb, yb, g} corresponding to the 3 buttons and the goal
position. To guide the agents to the optimal policy, we provide the following
LTLf formula:

F(⟨yb, ⋆, ⋆⟩ ∧ XF(⟨⋆, gb, ⋆⟩ ∧ XF(⟨⋆, rb, rb⟩ ∧ XF⟨g, ⋆, ⋆⟩))) (6.1)

with the corresponding DFA in Figure 13.
Results in Figure 14 shows that the LTLf -shaped MAS converges to the

optimal policy in which agent A1 pushes the yellow button, agent A3 pushes
the green button, agents A2 and A3 push the red button, and then finally
agent A1 goes to the goal position. In 6 out of 10 runs, the vanilla MAS gets
stuck in the sub-optimal policy in which the agent A1 goes directly to the
goal position stepping on the red region while the red button is not pushed by
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Fig. 12: An instance of the buttons domain [19]. The goal for the agents A1,
A2, and A3 is to coordinate to enable the agent A1 to reach the goal state G.
The optimal policy is: A1 pushes the yellow button, agent A3 pushes the green
button, agents A2 and A3 push the red button, and then finally agent A1 goes
to the goal position.

Fig. 13: The corresponding DFA for the multi-dimensional LTLf formula in
Equation 6.1.

agents A2 and A3. This suboptimal solution has 93.4 payoff (compared to 98
payoff of the optimal policy).

6.3 Evaluating the LTLf -based Method in the Flag
Collection Domain

In this section, we evaluate our method in the classic flag collection problem
(Figure 3) in the MAS. First, we compare our method to the plan-based RS
method in MAS [8]. Then, we demonstrate the flexibility of LTLf in multi-
agent settings using different LTLf formulas to express different advice with
partial knowledge.
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Fig. 14: Results in the buttons problem in Figure 12. The LTLf -shaped MAS
always converges to the optimal policy while the vanilla MAS not only takes
much longer to improve their behavior but also gets stuck in a sub-optimal
policy in 6 out of 10 runs. The first 300 episodes are shown (no remarkable
changes afterward) and the curve smoothed over 10 consecutive episodes, for
better visibility.

In all experiments in this section, we run each experiment for 5 × 104

episodes with maximum of 105 steps per episode. In all the plots, we smooth
the curves by taking the average of each 10 consecutive episodes, for better
visibility. We calculate the temperature parameter T [24] as follows:

T =
c×max

a∈A
(max
b∈A

Q(s, b)−Q(s, a))

lnnt(s)
(6.2)

where nt(s) is the amount of times the agent visited state s in the current
experiment, and c is the scaling parameter which we empirically found to
provide good results when set to c = 0.5.

6.3.1 Comparing to the Plan-based Method

In this section, we compare the LTLf -based method to the plan-based method
in MAS [8]. Since Devlin et al. [8] do not assume any type of information
sharing between agents, we use the decentralized guidance of the LTLf method
to compare to their approach.

The agents start at positions (5, 4) and (5, 14), respectively. Both plan-
based and LTLf -based method guide the agents according to the optimal
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Fig. 15: Comparing the plan-based and the LTLf -based methods in the flag
collection problem (Figure 3) with a second agent starting at (5, 14). The
results remain stable after episode 800 (not shown for better visibility).

solution which has the first agent collecting flag A then flag D and the second
agent collecting flag F , E, C, then B. For the plan-based method we provide
the agents with plans 16a and 16b respectively. For the LTLf -based method,
we provide the agents with the formulas 6.5 and 6.6, respectively. As in the
single-agent experiments 4.1, these formulas still reward the agents if they
collect their assigned flags in a different order.

F(have flagA ∧ F(have flagD ∧ (at goal ∨ XF(at goal)))) (6.3)

F(have flagF ∧ F(have flagE ∧ F(have flagC ∧ . . .

∧ (at goal ∨ XF(at goal))))))

(6.4)

The results are depicted in Figure 15. The vanilla agents get stuck in the
sub-optimal solution of collecting only 3 flags: C, E, and F are collected by
agent 2, while the shaped agents successfully converge to the optimal solu-
tion with the LTLf -based method achieving a better initial performance. Both
shaping methods successfully guide the agents to converge to the optimal
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1 MOVE( hallA , roomA)
2 TAKE( f lagA )
3 MOVE( hal lA )
4 MOVE(roomD)
5 TAKE(FlagD )

(a) Joint-plan part for agent 1

1 TAKE( f lagF )
2 TAKE( f lagE )
3 MOVE(roomE , roomC)
4 TAKE( f lagC )
5 MOVE(roomC , hal lB )
6 MOVE( hallB , roomB)
7 TAKE( f lagB )
8 MOVE(roomB , hal lB )
9 MOVE( hallB , hal lA )

10 MOVE( hallA , roomD)

(b) Joint-plan part for agent 2

Fig. 16: Joint plan for plan-based RS method abstractly representing the
optimal solution for the flag collection domain in MAS. The plan actions have
obvious effects as indicated by their names. For more details, please refer to
the original work [8]

solution with each agent collecting their assigned flags and then going to the
goal.

6.4 Demonstrating the Flexibility of the LTLf Method in
MAS

In this section, we demonstrate different aspects of flexibility centralized LTLf -
based RS can provide in the MAS. This is something the STRIPS plan-based
method can not express.

6.4.1 The user knows which agent should collect which set of
flags but not the ordering

Figure 17 shows the results with decentralized guidance where the agents were
given the formulas 6.5 and 6.6. The user does not know the correct order for
the flags to be collected in but does know which agent should collect which set
of flags. So the first agent is advised to collect flags A and D and then to go to
the goal, and the second agent is advised to do the same for flags B, C, E and
F . As shown in figure 17, the agents swiftly converge on the optimal solution,
learning to collect the flags in the optimal order. For the first agent that is A
and D, and for the second agent that is F , E, C, and B. The agents without
shaping converge on a solution that has agent 1 collecting no flags and agent
2 collecting flags F , E, and C in that order.

F((have flagA ∧ have flagD) ∧ XF(at goal)) (6.5)
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Fig. 17: LTLf -based decentralized RS with LTLf formulas 6.5 and 6.6 on the
MAS flag-collection domain (Figure 3 with added agent starting at (5, 14)).
The advice with partial knowledge causes the agents to need some more time
after learning to collect the easily accessible flags, but it still allows the agents
to converge upon the optimal solution. There are no remarkable changes in
the curves after episode 800 (not shown for better visibility).

F((have flagF ∧ have flagE ∧ have flagC ∧ have flagB) ∧ XF(at goal))
(6.6)

6.4.2 The user does not know which agent should collect
which set of flags

The results demonstrating the flexibility of LTLf are shown in Figure 18. The
user providing the decentralized guidance knows the order in which each set of
flags is best gathered. But the user does not know which agent should gather
which set of flags. The LTLf formula is the same for both agents, formula 6.7
advises to take the flags in a specified order and then go to the goal, reflecting
the uncertainty of the user. More precisely the agents are advised to either
take flags A and D in order and then go to the goal, or take flags F , E, C, and
B in that order and then go the goal. As can be seen in Figure 18, the agents
converge rapidly to the optimal solution even with the uncertainty present in
the advice. The agents without shaping converge on a solution that has agent
1 collecting no flags and agent 2 collecting flags F , E, and C in that order.
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Fig. 18: LTLf -based decentralized RS with LTLf formula 6.7 given to both
agents, on the MAS flag-collection domain (Figure 3 with added agent starting
at (5, 14)). The agents swiftly learn which set of flags is optimal for them and
converge upon the optimal solution. There are no remarkable changes in the
curves after episode 800 (not shown for better visibility).

F(F(have flagA ∧ F(have flagD ∧ (at goal ∨ XF(at goal))))∨
F(have flagF ∧ F(have flagE ∧ . . . ∧ (at goal ∨ XF(at goal)))))))

(6.7)

6.4.3 The user knows which agent should collect which flag
except for one flag

We consider the scenario where the user knows which agent should collect
which set of flags in which order except that he/she does not know which agent
should gather flag B. We consider the LTLf formula in Equation 6.12 which
express the user’s partial knowledge. We split the formula into sub-formulas
for readability. The meaning of the formulas 6.8, 6.9, 6.10, 6.11 and 6.12 are
relatively straightforward, Formula 6.8 guides the first agent to take flags A,
B, then D.

φ1 = ⟨have flagA, ⋆⟩ ∧ XF(⟨have flagB, ⋆⟩ ∧ XF(⟨have flagD, ⋆⟩)) (6.8)
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Fig. 19: LTLf -based centralized RS with LTLf formula 6.12 given to both
agents, on the MAS flag-collection domain (Figure 3 with added agent starting
at (5, 14)). There are no remarkable changes in the curves after episode 800
(not shown for better visibility).

Formula 6.9 guides the second agent to take flags F , E, then C.

φ2 = ⟨⋆, have flagF ⟩ ∧ XF(⟨⋆, have flagE⟩ ∧ XF(⟨⋆, have flagC⟩)) (6.9)

Formula 6.10 guides the first agent to take flags A then D.

φ3 = ⟨have flagA, ⋆⟩ ∧ XF(⟨have flagD, ⋆⟩) (6.10)

Formula 6.11 guides the second agent to take flags F , E, C, then B.

φ4 = ⟨⋆, have flagF ⟩ ∧ XF(⟨⋆, have flagE⟩∧
XF(⟨⋆, have flagC⟩ ∧ XF(⟨⋆, have flagB⟩)))

(6.11)

Finally formula 6.12 combines formulas 6.8, 6.9, 6.10 and 6.11 so that the
first and second agents respectively either take flags (A, B, D) and (F , E, C)
or flags (A, D) and(F , E, C, B).

F(φ1 ∧ φ2) ∨ F(φ3 ∧ φ4) (6.12)
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The results demonstrating the flexibility of LTLf are shown in Figure 19.
The agents using centralized guidance swiftly learn which set of flags is optimal
for them and converge upon the optimal solution. Which has agent 1 collecting
flags A and D in order and agent 2 collecting flags F , E, C, B in that order.
The agents without shaping converge on a solution that has agent 1 collecting
no flags and agent 2 collecting flags F , E, and C in that order.

7 Conclusion

In this paper, we introduced a framework that allows the flexible incor-
poration of domain knowledge in RL agents. Namely, we generate PBRS
functions, which guaranteed to preserve the optimal policy, from user-provided
LTLf formulas. We demonstrated in both single and multi-agent settings that
LTLf provides the flexibility to communicate guidance in the case of par-
tial knowledge (uncertain advice). Namely, we demonstrated empirically in
the flag collection domain that our method performs at least as well as the
STRIPS plan-based method while providing essential advantages in terms of
flexibility and ease of use. Our method could guide the learning agents to the
optimal policy despite the user’s partial knowledge. We also introduced two
approaches to extend our method to MAS: centralized and decentralized guid-
ance. We demonstrated that the LTLf -based centralized guidance could guide
the agents to coordinate, and thus learn the optimal policy, in two benchmark
domains: the rendez-vous domain and the buttons domain. Lastly, we believe
the flexibility we demonstrated in this work is an important added value for
RL to be used in real-life applications, such as robotic systems e.g. a machine
tending system.
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