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Abstract

Let U be a connected, simply connected compact Lie group with complexification G. Let u and g be the
associated Lie algebras. Let Γ be the Dynkin diagram of g with underlying set I, and let Uq(u) be the
associated quantized universal enveloping ∗-algebra of u for some 0 < q distinct from 1. Let Oq(U) be
the coquasitriangular quantized function Hopf ∗-algebra of U , whose Drinfeld double Oq(GR) we view
as the quantized function ∗-algebra of G considered as a real algebraic group. We show how the datum
ν = (τ, ϵ) of an involution τ of Γ and a τ -invariant function ϵ : I → R can be used to deform Oq(GR)
into a ∗-algebra Oν,id

q (GR) by a modification of the Drinfeld double construction. We then show how, by

a generalized theory of universal K-matrices, a specific ∗-subalgebra Oq(Gν\\GR) of Oν,id
q (GR) admits

∗-homomorphisms into both Uq(u) and Oq(U), the images being coideal ∗-subalgebras of respectively
Uq(u) and Oq(U). We illustrate the theory by showing that two main classes of examples arise by such
coideals, namely quantum flag manifolds and quantum symmetric spaces (except possibly for certain
exceptional cases). In the former case this connects to work of the first author and Neshveyev, while for
the latter case we heavily rely on recent results of Balagović and Kolb.
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Introduction

Let U be a connected, simply connected compact Lie group with complexification G, and let u and g be
the respective Lie algebras. Fix Chevalley-Serre generators for g which are compatible with the compact
form u (see Section 1.1), and let b and h ⊆ b be the respective positive Borel and Cartan subalgebra in
g. From this data a natural Poisson-Lie group structure {−,−} can be constructed on U [LW90]. Let Γ
be the Dynkin diagram of g, with underlying set I. Then one has the following two important classes of
Poisson homogeneous spaces for U :

(1) Flag manifolds KS\U = PS\G for S ⊆ I a subset of the simple roots, PS ⊆ G the associated
parabolic subgroup and KS = PS ∩ U the compact form of the reductive Levi factor of PS .

(2) Symmetric spaces Uθ\U for Uθ the set of fixed points of a Lie group involution θ of U in maximally
split position with respect to the fixed Cartan subalgebra of u [FL04].

Note that the behaviour of the above two classes is different: whereas in the first case KS ⊆ U will be a
Poisson-Lie subgroup, one has in the symmetric case only that Uθ is coisotropic.

This discrepancy persists when turning to their quantizations. Let Uq(g) be the standard Drinfeld-Jimbo
quantized enveloping algebra of g, where we take q > 0 a fixed number distinct from 1. Dually, one has a
Hopf algebra Oq(G) quantizing the algebra of regular functions on G as a complex affine group variety.
When endowed with appropriate ∗-structures, reflecting the choice of a compact real form, we will denote
the resulting Hopf ∗-algebras as Uq(u) and Oq(U). For PS ⊆ G a parabolic subgroup with Lie algebra
pS and kS = pS ∩u the Lie algebra of KS = PS ∩U , we have a natural Hopf ∗-subalgebra Uq(kS) ⊆ Uq(u)
and dually a surjection of Hopf ∗-algebras Oq(U) ↠ Oq(KS). This allows one to make sense immediately
of the associated quantum flag manifold through its coordinate ∗-algebra Oq(KS\U). These quantum
flag manifolds are studied intensively both from the algebraic and the operator algebraic viewpoint, see
e.g. [SV91,Soi92,Do94a,Do94b,DK94,DT99,DS99,HK04,Kr04,CFG08,NT12,DCN15,OB17].

Quantum symmetric spaces turn out to be less direct to construct. After an initial period in which
particular cases were studied [NS95,Dij96,Nou96,BF97,DN98], using for example the formalism of the
reflection equation, Letzter developed in a series of papers [Let99,Let00,Let02,Let03,Let04,Let08] a uni-
form approach to quantum symmetric spaces through a concrete construction of their associated coideal
subalgebras Uq(u

θ) ⊆ Uq(u). This construction was extended to the Kac-Moody case by Kolb [Kol14],
who also in joint work with Balagović elucidated the precise connection to the reflection equation in this
full generality [BK19,Kol20] through the formalism of the universal K-matrix ; we also mention the ear-
lier work [Kol08] in this setting. Associated quantized function algebras Oq(U

θ\U) for the corresponding
homogeneous spaces can then be constructed by a general procedure.

Our main aim will be to realize the above coideals Oq(KS\U) and Oq(U
θ\U) through the method of

quantum characters [DM03b], building on and extending the techniques developed in [KoSt09,Kol20].
Let ν = (τ, ϵ) be a couple consisting of an involution τ of Γ and a τ -invariant function ϵ : I → R.
Through a straightforward modification by ν of the commutation relations for Uq(u), one arrives at a
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quantized enveloping ∗-algebra Uq(gν) where gν is a real Lie algebra determined directly in terms of ν,
see Section 2.2. We note the following particular cases:

� When τ = id and ϵ(I) ⊆ {0, 1}, one has gν = kS⊕n−S where kS and n−S are respectively the compact
Levi part and the nilradical of the negative parabolic algebra p−S associated to the support S of ϵ.

� When on the other hand τ is an arbitrary involution and ϵ(I) ⊆ {±1}, we have that gν is the real
form of g obtained by modifying the compact form u of g with ν. The couple (τ, ϵ) then encodes
the so-called Vogan diagram of gν .

Returning back to the general case, Uq(gν) will still be a quasitriangular Hopf ∗-algebra, with a dual
Hopf ∗-algebra Oq(Gν). As Oq(Gν) is coquasitriangular, one can consider its Drinfeld double Oν

q (GR),
which is a quantization of the function algebra of G = GR as a real affine group along a Poisson-Lie group
structure {−,−}ν . Now the precise form of the double construction allows the flexibility to let the latter
depend rather on two distinct data ν = (τ, ϵ) and µ = (τ ′, η), creating a Poisson manifold (GR, {−,−}ν,µ)
which is a Poisson bitorsor between (GR, {−,−}ν) and (GR, {−,−}µ) [Wei90,Lu90]. Similarly, one can
construct a ∗-algebra Oν,µ

q (GR) with a left coaction by Oν
q (GR) and a right coaction by Oµ

q (GR).

We will be interested in the case where ν is non-trivial but µ = id = (id,+), where + is a shorthand for
the constant function r 7→ 1. We write in this case Oid

q (GR) = Oq(GR) and Oq(Gid) = Oq(U). As we have
a Hopf ∗-algebra surjection Oν

q (GR) ↠ Oq(Gν), we can consider the ∗-algebra Oq(Gν\\GR) of Oq(Gν)-

coinvariant elements in Oν,id
q (GR), together with its natural right Oq(GR)-coaction. The method of

quantum characters then gives a one-to-one correspondence between ∗-characters χ : Oq(Gν\\GR) → C
and Oq(GR)-equivariant ∗-homomorphisms Φ : Oq(Gν\\GR) → Oq(GR). The image of Φ will be a
coideal ∗-subalgebra Oq(L\\GR) of Oq(GR), giving rise through appropriate projection maps to coideal
∗-subalgebras Oq(K\U) and U f

q(k
′) of respectively Oq(U) and Uq(u). Our main theorems can now be

stated as follows.

Theorem (Theorem 3.4, Theorem 3.5 and Theorem 3.6). Let Oq(KS\U) be a quantum flag manifold,
and let S0 = τ0(S) be the image of S under the Dynkin diagram automorphism τ0 induced by the longest
word in the Weyl group of g. Let ϵ be the characteristic function of S0, and let ν = (id, ϵ). Then there
exists a ∗-character χ : Oq(Gν\\GR) → C such that:

� The equality Oq(K\U) = Oq(KS\U) holds.

� The inclusion U f
q(k

′) ⊆ Uq(kS) holds, and moreover their completions coincide.

Here ‘completion’ is understood in the weak sense, and can equivalently be formulated as equality of
their images in any admissible finite dimensional representation of Uq(u).

Theorem (Theorem 4.30, Theorem 4.40 and Theorem 4.41). Let Oq(U
θ\U) be a quantum symmetric

space. Let ν = (τ, ϵ) be such that ϵ(I) ⊆ {±1} with gν inner equivalent to gθ inside g, for gθ the real
form of g associated to θ. Then there exists a ∗-character χ : Oq(Gν\\GR) → C such that:

� The equality Oq(K\U) = Oq(U
θ\U) holds, except possibly for Uθ ⊆ U of type EIII, EIV , EV I,

EV II or EIX, using notation as in [Ar62].

� The inclusion U f
q(k

′) ⊆ Uq(u
θ) holds, and their completions coincide.

Note that in both cases, the character χ will be constructed upon realising Oq(Gν\\GR) as a ν-modified
braided Hopf algebra structure on Oq(G), for which the ∗-characters are then determined by a modified
theory of universal K-matrices, see also [KoSt09, Section 3.5].

Let us end the introduction by motivating the above results from the Poisson-Lie point of view, without
specifying precise details. Drinfeld has shown that a Poisson homogeneous manifold for a Poisson-Lie
group is completely determined, up to local isomorphism, by a Lagrangian subalgebra in the Drinfeld
double of its associated infinitesimal Lie bialgebra [Dri93]. For our compact group U in question, the
Drinfeld double Lie bialgebra of u will be g with a particular real Lie bialgebra structure which integrates
to the real Poisson-Lie group structure {−,−} = {−,−}id on G mentioned before. We then have the
following:
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� In the case of flag manifolds KS\U , the associated Lagrangian subgroup is L = KSNS ⊆ G, with
NS the unipotent radical of the associated parabolic PS .

� In the case of symmetric spaces, the associated Lagrangian subgroup is L = Gθ ⊆ G, with Gθ the
real form of G determined by θ.

The given U -homogeneous space can then be reconstructed as the U -orbit at the unit of the space
L\G. In [STS85,STS94] one can find similar ideas in the purely complex Poisson and quantum setting,
using however the (twisted) Heisenberg double instead of (twisted) Drinfeld double. We make a brief
comparison with this alternative viewpoint in Appendix A.

In general, in its given position L will not be a Poisson-Lie subgroup of G with its usual Poisson
bracket {−,−}. However, we can take an inner conjugate copy L′ = Gν of L such that it will become a
Poisson-Lie subgroup of G with the Poisson-Lie group structure {−,−}ν , for ν suitably chosen. Denoting
G′ = (G, {−,−}ν) and G′′ = (G, {−,−}ν,id), one may then expect an isomorphism of Poisson G-spaces

L′\G′′ ∼= L\G.

In our two specific settings, this isomorphism looks as follows, using notation as in the above theorems:

� In the flag case, we have KS0N
−
S0
\G ∼= KSNS\G.

� In the symmetric case, we have Gν\G ∼= Gθ\G.

We note however that a complication results from establishing our results in the purely algebraic frame-
work, for the quotient space L\G or L′\G′′ will not necessarily be a real affine variety, i.e. the fixed point
set of a complex-conjugate involution on a complex affine variety. There will however be a natural real
affine variety L\\G with a Zariski-dense embedding L\G ⊆ L\\G, allowing us to continue to work within
the usual framework of unital algebras when quantizing varieties. One can view L\\G as a GIT quotient
in the setting of real algebraic geometry.

To end, let us mention that important motivation for this paper, in particular with respect to the use
of the reflection equation, can be found in [STS85, STS94,NS95,KoSt09] and the work of Mudrov and
collaborators [DM02,DM03a,DM03b,DM04,Mud07a,Mud07b,Mud12,AM13,Mud13a,Mud13b,AM14,
AM15]. We also mention that in a more restricted setting, constructions closely related to the ones in
this paper were performed in [DeC13]. Finally, we mention that this paper is a step towards proving part
of the conjecture posed as [DCNTY19, Conjecture 4.1]. However, to prove this part of the conjecture
completely, one needs to complement the results of this paper with more refined representation-theoretic
results. This falls outside the scope of the current paper.

The precise structure of this paper is as follows. In the first section, we establish the necessary prelim-
inaries on quantized enveloping algebras and the associated quantized function algebras. In the second
section, we construct quantum bitorsors for complex quantum groups, and examine the quantum orbit
spaces with respect to certain quantum subgroups. We then relate these to quantum homogeneous spaces
for the associated compact quantum groups through the method of quantum characters, establishing the
connection to the twisted reflection equation and modified universal K-matrices. In the short third sec-
tion, we examine in more detail the case of quantum flag manifolds, and in the fourth section we look
at the connection to the quantum symmetric spaces of Letzter. In the Appendix A, we consider some
variations of the results in Section 2, connecting to the work in [STS85, STS94]. In the Appendix B,
we establish in detail a technical result concerning the relation between Satake and Vogan diagrams for
involutions of semisimple compact Lie algebras. This result will be verified directly by diagram checking.
It would however be nice to find a more conceptual proof. In Appendix C we establish certain results on
spherical vectors in quantized exterior products. In Appendix D, we gather some explicit computations
regarding the case of a symmetric pair of type FII.

Acknowledgements: The work of K. De Commer was partially supported by the FWO grant G.0251.15N
and the grant H2020-MSCA-RISE-2015-691246-QUANTUM DYNAMICS. The work of M. Matassa was
supported by the FWO grant G.0251.15N while working at the Vrije Universiteit Brussel (VUB), Belgium.
K. De Commer would like to thank D. Jordan, A. Mudrov and T. Weelinck for discussions around the
topics of this paper.
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1. Preliminaries

1.1. Quantized enveloping algebras

Definition 1.1. A Lie ∗-algebra consists of a complex Lie algebra g together with an antilinear, antim-
ultiplicative involution ∗ : g → g.

There is a one-to-one correspondence between Lie ∗-algebras and real Lie algebras by means of the
correspondence

(g, ∗) 7→ g∗ = {X ∈ g | X∗ = −X},
s 7→ (sC, ∗), (X + iY )∗ = −X + iY, X, Y ∈ s,

where sC = s⊗
R
C is the complexification. One calls g∗ the real form of g associated to ∗.

Let now g be a complex semisimple Lie algebra. We fix a Borel subalgebra b and associated Cartan
subalgebra h, and let b− be the opposite Borel subalgebra. We write {αr | r ∈ I} for the set of simple
positive roots, and let Γ be the corresponding Dynkin diagram on the set I. We write respectively
Q ⊇ ∆ ⊇ ∆+ for the root lattice, the root system and the positive roots. We let W be the Weyl
group of g, and we fix a W -invariant positive-definite bilinear real form (−,−) on Q ⊗Z R. We write
dr = (αr, αr)/2, and use the standard notation α∨ = 2α

(α,α) for coroots. We write P for the weight lattice,

P+ for its positive cone and {ϖr | r ∈ I} for the set of fundamental weights. We let A = (ars)rs be the
associated Cartan matrix under the convention

ars = (α∨
r , αs) = 2

(αr, αs)

(αr, αr)
.

We further fix Chevalley-Serre generators

hr ∈ h, er ∈ b, fr ∈ b−.

Concretely, this means that we identify g with the abstract complex Lie algebra generated by

S = {hr, er, fr | r ∈ I}

such that
[hr, hs] = 0, [hr, es] = arses, [hr, fs] = −arsfs, [er, fs] = δrshr

and for r ̸= s the Serre relations

ad1−ars
er (es) = ad1−ars

fr
(fs) = 0,

where adx(y) = [x, y]. We can then endow g with the unique Lie ∗-algebra structure such that

h∗
r = hr, e∗r = fr.

The associated real Lie algebra u = {X ∈ g | X∗ = −X} is called the compact real form of g.

We now introduce the quantized enveloping algebra of g and u, see e.g. [KS97,NT13] for details on the
associated ∗-structures.

Definition 1.2. Fix 0 < q with q ̸= 1. We denote by Uq(g) the quantized enveloping algebra of g.
Specifically, Uq(g) is generated by Kω, Er, Fr, where r ∈ I and ω takes values in the integral weight
lattice P , with K0 = 1 and commutation relations

KωKχ = Kω+χ,

KωEr = q(ω,αr)ErKω, KωFr = q−(ω,αr)FrKω,

[Er, Fs] = δrs
Kαr

−K−1
αr

qdr − q−dr

and the quantum Serre relations, whose precise form we will not need in what follows. We will in the
following use the shorthand Kr = Kαr

and qr = qdr . We endow Uq(g) with the Hopf algebra structure

∆(Er) = Er ⊗ 1 +Kr ⊗ Er, ∆(Fr) = Fr ⊗K−1
r + 1⊗ Fr, ∆(Kω) = Kω ⊗Kω.
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We denote by ε the counit, given by ε(Er) = ε(Fr) = 0 and ε(Kω) = 1, and the antipode map by S,
determined by

S(Er) = −K−1
r Er, S(Fr) = −FrKr, S(Kω) = K−1

ω .

For α ∈ Q we write
Uq(g)α = {X ∈ Uq(g) | KωX = q(ω,α)XKω}.

We write Uq(b) = Uq(b
+) for the positive Borel part of Uq(g), generated by the Kω and Er, and Uq(b

−)
for the negative Borel part generated by the Kω and Fr. We write Uq(n) = Uq(n

+) for the unital algebra
generated by the Er, Uq(n

−) for the unital algebra generated by the Fr, and Uq(h) for the algebra
generated by the Kω. We denote Uq(u) for Uq(g) as a Hopf ∗-algebra with the ∗-structure

K∗
ω = Kω, E∗

r = FrKr, F ∗
r = K−1

r Er.

Note that the antipode map S is not ∗-preserving. To correct this, one introduces the unitary antipode
R : Uq(u) → Uq(u), which is a ∗-preserving, involutive, antimultiplicative and anticomultiplicative map
determined on generators by

R(Er) = −qrK
−1
r Er, R(Fr) = −q−1

r FrKr, R(Kω) = K−1
ω . (1.1)

We call admissible representation of Uq(g) any representation on a finite dimensional complex vector
space in which the Kω assume positive values. Each admissible representation is spanned by joint
eigenvectors of the Kω, called weight vectors, and for ξ a weight vector there exists a unique wt(ξ) ∈ P
with

Kωξ = q(ω,wt(ξ))ξ, ∀ω ∈ P.

Commonly we will use weight vectors when displaying a formula, with the implicit understanding that
the formula extens (bi-)linearly to other vectors.

One can choose natural representatives Vϖ for the isomorphism classes of irreducible admissible repre-
sentations, indexed by the positive integral weights ϖ ∈ P+, and characterized by the existence of a
one-dimensional space of highest weight vectors at weight ϖ, vanishing under the Er. We can densily
embed

Uq(g) ⊆ Uq(g) :=
∏
ϖ

End(Vϖ), (1.2)

where Uq(g) is endowed with the weak topology, that is xα → x if πϖ(xα) → πϖ(x) for all ϖ ∈ P+. The
coproduct ∆ then extends continuously to a homomorphism

∆ : Uq(g) → Uq(g)⊗̂Uq(g) :=
∏
ϖ,ϖ′

End(Vϖ)⊗ End(Vϖ′),

coassociative in the natural way, where the symbol ⊗̂ denotes the weak completion of a tensor product.
Similarly the antipode and unitary antipode can be extended to Uq(g). In general, we will use also the
notation Uq(n) etc. to denote the weak closure of the respective subalgebra of Uq(g). We note that if
H ⊆ Uq(g) is a ∗-subalgebra, the weak closure of H will coincide with its bicommutant inside Uq(g).

We endow each Vϖ with a Hilbert space structure, unique up to a non-zero positive constant, such that
it becomes a ∗-representation of Uq(u). The inclusion (1.2) then becomes an embedding of ∗-algebras,
and we will consequently write the right hand side ∗-algebra as Uq(u). In the following, we write V ∗

for the contragredient representation of V , where V ∗ = {ξ∗ | ξ ∈ V } is a copy of the conjugate-linear
Hilbert space of V realized as the dual of V by the scalar product, ξ∗ = ⟨ξ,−⟩, and endowed with the
left Uq(g)-module structure

X · ξ∗ = ξ∗ ◦ S(X). (1.3)

To make this a ∗-representation of Uq(u), the space V
∗ has to be endowed with a Hilbert space structure

different from the canonical one, but this will not come in to play in what follows.

Let R be the universal R-matrix for Uq(u), so

R ∈ Uq(b
+)⊗̂Uq(b

−) ⊆
∏
ϖ,ϖ′

End(Vϖ)⊗ End(Vϖ′)
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and

(∆⊗ id)R = R13R23, (id⊗∆)R = R13R12, R∆(−)R−1 = ∆op, R∗ = R21. (1.4)

It is completely determined by the above relations and the rule

R(ξ ⊗ η) = q−(wt(ξ),wt(η))ξ ⊗ η (1.5)

for a highest weight vector ξ and a lowest weight vector η. We then have that R = R̃Q, where for
general weight vectors ξ, η

Q(ξ ⊗ η) = q−(wt(ξ),wt(η))ξ ⊗ η, R̃ =
∑

α∈Q+

R̃α (1.6)

with R̃α ∈ Uq(n)α ⊗ Uq(n
−)−α and where the sum converges weakly. We have for example

R̃0 = 1⊗ 1, R̃αr
= (q−1

r − qr)Er ⊗ Fr. (1.7)

1.2. Quantized function algebras

Let Oq(G) = (Oq(G),∆, ε, S) be the dual Hopf algebra of matrix coefficients for Uq(g) in admissible
representations. We write the pairing as

Uq(g)×Oq(G) → C, (X, f) 7→ (X, f) = (f,X) = X(f) = f(X).

We equip Oq(G) with the ∗-structure dual to that of Uq(u),

(X, f∗) = (S(X)∗, f), X ∈ Uq(u), f ∈ Oq(G),

and write the resulting Hopf ∗-algebra as Oq(U) in the appropriate contexts.

Remark 1.3. Performing the analogues of the above constructions at q = 1, we obtain the Hopf algebra
O(G) of regular functions on the connected, simply connected complex affine group G having g as its
complex Lie algebra. The given ∗-structure on O(G) endows G ∼= Spec(O(G)) with a complex conjugate
involution, determined by

f(ḡ) := f∗(g), g ∈ G, f ∈ O(G).

The real affine group variety U ⊆ G of ∗-preserving characters, i.e. of elements g ∈ G with g = ḡ, is then
the connected, simply connected compact Lie group with Lie algebra u.

When (Vπ, π) is a Uq(u)-representation, we consider

Yπ ∈ End(Vπ)⊗Oq(G)

for the associated corepresentation matrix of matrix coefficients, and

Y (ξ, η) = (ξ∗ ⊗ id)Yπ(η ⊗ id) ∈ Oq(G), ξ, η ∈ Vπ

for the matrix coefficients. When considering these as unitary corepresentations of Oq(U), we will rather
write the coefficients as U(ξ, η).

We can consider the Hopf algebra pairings between Oq(G) and respectively Uq(b
+) and Uq(b

−) obtained
by restriction, and we let Oq(B) = Oq(B

+) and Oq(B
−) be the respective coimages of Oq(G). We write

the corresponding Hopf algebra quotient homomorphisms as

P± : Oq(G) ↠ Oq(B
±).

We write
T±
π = (id⊗P±)Yπ ∈ End(Vπ)⊗Oq(B

±).

We let
r : Oq(G)×Oq(G) → C, (f, g) 7→ (R, f ⊗ g)
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be the natural skew pairing of Oq(G) with itself. Then r factors over a skew pairing

Oq(B)×Oq(B
−) → C.

In fact, we get homomorphisms of Hopf algebras

ι− : Oq(B) → Uq(b
−)cop, f 7→ (f ⊗ id)R, ι+ : Oq(B

−) → Uq(b
+)cop, f 7→ (id⊗f)R−1, (1.8)

where cop means that we take the opposite coproduct, i.e. the coproduct composed with the tensor flip.

The following result is well-known in the formal setting, and is an instance of Drinfeld’s duality between
quantized universal enveloping algebras and quantized function algebras [Dri87,Gav02]. A proof in the
non-formal setting can be found in [Jos95, Corollary 9.2.12]. We repeat the proof, mainly to introduce
notation.

Proposition 1.4. The maps ι± in (1.8) are isomorphisms.

Proof. By (1.6) and (1.7), we have

ι−(T
+
ϖ (ξ, ξ)) = K−wt(ξ), ι−(T

+
ϖr

(ξϖr
, Frξϖr

)) = (q−1
r − qr)FrKαr−ϖr

,

ι+(T
−
ϖ (ξ, ξ)) = Kwt(ξ), ι+(T

−
ϖr

(Frξϖr
, ξϖr

)) = q−2
r (qr − q−1

r )ErKϖr−αr
.

Since the image of ι± will be closed under the antipode map, this proves that the maps ι± are surjective.
If then f ∈ Oq(B) with ι−(f) = 0, we have for all g ∈ Oq(G) that

(S−1(g), ι−(f)) = (f, ι+(P−(g))) = 0.

As P− and ι+ are surjective, and the pairing between Oq(B) and Uq(b) is non-degenerate by definition,
it follows that f = 0, and ι− injective. Similarly one shows ι+ injective.

In the following we write

ι−1
+ (Er) = X+

r , ι−1
− (Fr) = X−

r ι−1
± (Kω) = L±

ω . (1.9)

As in the proof of Proposition 1.4, we have

T+
ϖ (ξ, ξ) = L−

−wt(ξ), T+
ϖr

(ξϖr
, Frξϖr

) = (q−1
r − qr)X

−
r L−

αr−ϖr
,

T−
ϖ (ξ, ξ) = L+

wt(ξ), T−
ϖr

(Frξϖr
, ξϖr

) = q−2
r (qr − q−1

r )X+
r L+

ϖr−αr
,

The skew pairing between generators is then determined by

r(L−
ϖ, L+

χ ) = q(ϖ,χ), r(X−
r , X+

s ) =
δrs

qr − q−1
r

, r(L−
ϖ, X+

r ) = r(X−
r , L+

ϖ) = 0.

Let Oq(G) be an antilinear, antihomomorphic, cohomomorphic copy of Oq(G), with the copy of the
element f written as f†. Then we can view the tensor product Hopf algebra Oq(G)⊗Oq(G) as a Hopf
∗-algebra, which we will denote by Ocom

q (GR), by the ∗-structure

(f ⊗ g†)† = g ⊗ f†.

In the following we will drop the tensor product symbol, and simply write elements of Ocom
q (GR) as

fg† = g†f .

Remark 1.5. At q = 1, one has that Ocom(GR) is the ∗-algebra of regular functions on G viewed as a
real algebraic variety by the embedding

G ↪→ G× Ḡ, x 7→ (x, x̄),

8



where Ḡ is an antiholomorphic copy of G and where G × Ḡ is endowed with the complex conjugation
(x, ȳ) = (y, x̄). We then have

(fg†)(x, ȳ) = f(x)g(y).

Alternatively, we may view Ocom(GR) as generated by the holomorphic and antiholomorphic regular
functions on G. For the above particular quantization Ocom

q (GR), the quasi-classical Poisson structure
is such that the holomorphic and antiholomorphic functions Poisson commute. In the following section,
we will consider deformations where there is a more interesting interaction between the holomorphic and
antiholomorphic structures.

Similarly, we can form Oq(B) and Ocom
q (BR). In the latter case, we will identify Oq(B) with Oq(B

−) by
the identification

Oq(B
−) → Oq(B), f 7→ (f∗)†, (1.10)

where ∗ : Oq(B
−) → Oq(B) is again determined by

(X, f∗) = (S(X)∗, f), f ∈ Oq(B
−), X ∈ Uq(b),

so in particular
P+(f

∗) = P−(f)
∗. (1.11)

Moreover, from

((f∗ ⊗ id)R)∗ = (f ⊗ id)(((S ⊗ id)R)∗) = (f ⊗ id)((R−1)∗) = (id⊗f)(R−1)

we see that ∗ is compatible with the ι±-maps,

ι−(f
∗) = ι+(f)

∗, f ∈ Oq(B
−).

We then also write ∗ for the inverse map ∗ : Oq(B) → Oq(B
−). Note that as we are assuming our

admissible representations π to be ∗-preserving for the compact ∗-structure, we have that

(T±
π )∗ = (T∓

π )−1. (1.12)

1.3. Lusztig braid operators

The following results will only be needed from Section 4 onwards.

For r ∈ I, we let Tr be the Lusztig braid operator

Tr ∈ Uq(u), Trξ =
∑

a,b,c≥0

−a+b−c=(wt(ξ),α∨
r )

(−1)bqb−ac
r E(a)

r F (b)
r E(c)

r ξ, ξ ∈ Vπ,

where

E(a)
r =

1

[a]qr !
Ea

r

in standard notation with the convention

[a]q =
qa − q−a

q − q−1
, [a]q! = [1]q[2]q . . . [a− 1]q[a]q.

We will need to know the behaviour of the Tr under the ∗-operation. In the following, we will interpret
the maximal torus T = exp(i(h∩u)) ⊆ U as the space of unitary characters of the integral weight lattice
P , ω 7→ tω, so that we have a natural embedding

T ⊆ Uq(u), tξ = twt(ξ)ξ, ξ ∈ Vπ.

We can then consider

Sr = eπiα
∨
r ∈ T ⊆ Uq(u), Srξ = (−1)(wt(ξ),α∨

r )ξ, ξ ∈ Vπ.
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Lemma 1.6. We have
T ∗
r = R(Tr) = TrSr = SrTr, (1.13)

where we recall that R is the unitary antipode of (1.1), extended to Uq(u).

Proof. As in [Jan96, Section 8], it is sufficient to consider the case Uq(su(2)) for su(2) with its positive
root α such that (α, α) = 2 and in particular α∨ = α. We then write the generators of Uq(su(2)) as
{K,E, F} with Lusztig braid operator T . It is also sufficient to verify (1.13) in the Hilbert space V = Vn

with orthonormal basis e0, . . . , en and with irreducible representation

Kek = qn−2kek,

Eek = q(n−2k+2)/2[n+ 1− k]1/2q [k]1/2q ek−1,

F ek = q−(n−2k)/2[n− k]1/2q [k + 1]1/2q ek+1,

with the right hand expressions = 0 if ill-defined. Then

Tek = (−1)n−kqn/2qk(n−k)en−k, (1.14)

and it follows that
T ∗ek = (−1)nTek = (−1)n−2kTek = (−1)(wt(vk),α)Tek.

Let us now show that R(T ) = T ∗, so R(T )∗ = T . Note that the conjugate Hilbert space V (with its
usual Hilbert space structure) can be endowed with the ∗-representation Xv̄ = R(X)∗v. Since v̄ has
negative the weight of v, we then have, following again the notation of [Jan96, Section 8],

R(T )∗v = T v̄ =
∑

a,b,c≥0

−a+b−c=−m

(−1)bqb−ac(−q)a−b+cF (a)E(b)F (c)v = (−q)m ωTv,

where m = (wt(v), α). From [Jan96, 8.6.(7)] we now see that R(T )∗ = T .

Recall that W denotes the Weyl group of g. For r ∈ I we write sr for the simple root reflections
generating W . Let w0 be the longest element in W , and choose a specific reduced expression for w0,

w0 = sr1 . . . srN . (1.15)

We then write
Tw0 = Tr1 . . . TrN ∈ Uq(u),

which is independent of the choice of reduced expression for w0. Further write

S0 = e2πiρ
∨
∈ T, (1.16)

where

ρ∨ =
1

2

∑
α∈∆+

α∨.

Proposition 1.7. We have
T ∗
w0

= R(Tw0
) = Tw0

S0 = S0Tw0
.

Proof. An easy consideration of weight spaces shows that

Tre
πiα∨

T−1
r = eπisr(α

∨), α ∈ ∆.

The elements in ∆+ can be enumerated as

β1 = αr1 , β2 = sr1(αr2), . . . , βN = sr1 . . . srN−1
(αrN ).

Then it follows from (1.13) and the above observation, together with the fact that Tw0 is independent of
the choice of reduced decomposition of w0, that

T ∗
w0

= T ∗
rN . . . T ∗

r1 = Tw0
e2πiρ

∨
= e2πiρ

∨
Tw0

.

The identity for R follows immediately from the fact that R(−)∗ leaves each factor of Tw0
invariant, and

hence the whole of Tw0
.
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Denote now by Ad(Tr) the Lusztig algebra automorphism of Uq(g), uniquely determined by

Ad(Tr)(X) = TrXT−1
r , X ∈ Uq(g).

From [Kol14, Lemma 3.4], we obtain

Ad(Tw0
)(Er)

∗ = −Eτ0(r), Ad(Tw0
)(Fr)

∗ = −Fτ0(r), Ad(Tw0
)(Kω)

∗ = K−τ0(ω), (1.17)

where τ0 is the automorphism induced on the Dynkin diagram by the action of −w0. Together with the
definition of Tr and (1.13), we obtain the following lemma, which also follows from the fact that the Tr

satisfy the braid relations.

Lemma 1.8. The following identity holds in Uq(u):

Tw0
TrT

−1
w0

= Tτ0(r).

2. Twist-braided Hopf algebras and associated characters

We resume the notation from Sections 1.1 and 1.2.

2.1. Endomorphisms of Uq(b)

Let τ be an involutive Dynkin diagram automorphism. We also write τ for the corresponding linear
automorphism of the weight lattice P determined by

τ(ϖr) = ϖτ(r).

We can extend τ to a Hopf algebra isomorphism of Uq(g), compatible with the compact ∗-structure, such
that

τ(Er) = Eτ(r), τ(Fr) = Fτ(r), τ(Kω) = Kτ(ω).

By duality, we obtain a Hopf algebra automorphism τ of Oq(G).

Let ϵ : I → R be a real-valued τ -invariant function on I. We can extend ϵ to a semigroup homomorphism

ϵ : (Q+,+) → (R, ·).

From the couple (τ, ϵ) we construct a Hopf algebra endomorphism

ν : Uq(b) → Uq(b), Kω 7→ Kτ(ω), Er 7→ ϵrEτ(r).

Denote also by ν the corresponding Hopf algebra endomorphism of Uq(b
−) determined by

ν(X) = ν(X∗)∗, X ∈ Uq(b
−),

where we restrict ∗ from Uq(u) to a conjugate-linear algebra antihomomorphism from Uq(b
±) to Uq(b

∓).
Concretely,

ν : Uq(b
−) → Uq(b

−), Kω 7→ Kτ(ω), Fr 7→ ϵrFτ(r).

Note that because of the involutivity of τ and τ -invariance of ϵ, we have

(ν ⊗ id)R = (id⊗ν)R. (2.1)

We will write End∗(Uq(b)) for the class of all homomorphisms ν of Uq(b) of the above form. Then ν
completely determines τ and ϵ, and we write

ν = ντ,ϵ, τ = τν , ϵ = ϵν .

When τ = id, we will also write ν = νϵ. On the other hand, we have ντ,ϵ = τ in case ϵr = 1 for all r.

Definition 2.1. We say that ν is of symmetric type if ϵ2r = 1 for all r. We say ν is of flag type if ϵ2r = ϵr
for all r and τ = id.

11



Remark 2.2. It is not hard to show that a general Hopf algebra endomorphism of Uq(b) satisfying (2.1)
must be of the form

Er 7→ ϵrEτ(r), Kω 7→ Kσ(ω)

where τ is an involution of I, ϵr ∈ C satisfies ϵτ(r) = ϵr, and σ is an endomorphism of P with σ = σt

(the tranpose with respect to the pairing (−,−)) and σ(αr) = ατ(r) for all r ∈ I with ϵr ̸= 0.

Remark 2.3. Note that for ν ∈ End∗(Uq(b)), the endomorphisms ν of Uq(b
±) glue together to an

algebra ∗-endomorphism of Uq(u) if and only if ν is of symmetric type, in which case it defines a Hopf
∗-algebra automorphism ν of Uq(u). By duality, we obtain in this case a Hopf ∗-algebra automorphism
ν of Oq(U).

Remark 2.4. By rescaling, one can always reduce to the case ϵr ∈ {−1, 0, 1}, but the extra flexibility
of an arbitrary ϵr can be convenient with respect to the contraction method [IW53,DeC13].

For ν ∈ End∗(Uq(b)) we write

Rν = (ν ⊗ id)R, rν(f, g) = (Rν , f ⊗ g), f, g ∈ Oq(G).

From (2.1), (S ⊗ S)R = R and R∗ = R21 we find

rν(f, g
∗) = rν(g, f∗). (2.2)

Consider the following bilinear functional

ων : Ocom
q (GR)×Ocom

q (GR) → C, ων(fg
†, hk†) = ε(f)rν(h, g

∗)ε(k).

Then ων is a convolution invertible real 2-cocycle functional with

ω−1
ν (fg†, hk†) = ε(f)rν(h, S(g)

∗)ε(k), f, g, h, k ∈ Oq(G). (2.3)

By (2.2) we also have
ων(f

†, g†) = ων(g, f), f, g ∈ Ocom
q (GR). (2.4)

The following definition extends the usual ‘complexification’ of a Hopf ∗-algebra [Maj93b], see also
[Maj95, Section 7.3] and [VY17][Section 3.5]. We will in the following use the Sweedler notation for
(Oq(G),∆) and other Hopf algebras,

∆(f) = f(1) ⊗ f(2).

Definition 2.5. For ν, µ ∈ End∗(Uq(b)) the (ν, µ)-Drinfeld double Oν,µ
q (GR) is defined as the vector

space Ocom
q (GR) endowed with the new multiplication

mν,µ(f, g) = ων(f(1), g(1))f(2)g(2)ω
−1
µ (f(3), g(3)), f, g ∈ Ocom

q (GR),

and the original ∗-structure.

As the ων are 2-cocycle functionals for Ocom
q (GR) satisfying (2.4), it follows that the Oν,µ

q (GR) are
associative ∗-algebras, where by the particular form of ων one has

mν,µ(f, g
†) = fg†, f, g ∈ Oq(G).

The Oν,µ
q (GR) form a connected cogroupoid with compatible ∗-structure [Bic14, Definition 2.4 and Def-

inition 3.14] by means of the unital ∗-homorphisms

∆κ
νµ : Oν,µ

q (GR) → Oν,κ
q (GR)⊗Oκ,µ

q (GR), fg† 7→ f(1)g
†
(1) ⊗ f(2)g

†
(2), f, g ∈ Oq(G).

In particular, the
(Oν

q (GR),∆ν) = (Oν,ν
q (GR),∆

ν
ν,ν)

are Hopf ∗-algebras. We also write
Oq(GR) = Oid

q (GR).

In the following, we will sometimes in general simply write ∆ = ∆κ
νµ as this will not lead to confusion.
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Remark 2.6. The above interchange relations lead to a family of Poisson structures {−,−}ν,µ on
G considered as a real manifold. They can be viewed as manifolds with an affine Poisson structure
[Wei90,Lu90].

For π, π′ representations of Uq(g), let us write

Rπ,π′
= (π ⊗ π′)R.

Lemma 2.7. Let ν, µ ∈ End∗(Uq(b)). In Oν,µ
q (GR) we have the following defining commutation relations

between the holomorphic and the antiholomorphic part: with Y = Yπ and Y ′ = Yπ′ ,

Y ′
13R

π′,π
µ,12Y

†
23 = Y †

23R
π′,π
ν,12Y

′
13 (2.5)

as identities in End(Vπ′)⊗ End(Vπ)⊗Oν,µ
q (GR).

Proof. We can rewrite (2.5) as

(Y †
23)

−1Y ′
13 = Rπ′,π

ν,12Y
′
13(Y

†
23)

−1(Rπ′,π
µ,12)

−1.

Then this relation follows straightforwardly from the definition of the product in Oν,µ
q (GR), using that

(Y †)−1 = (Y −1)† = ((id⊗S)Y )†,

together with the fact that (id⊗S−1)R = R−1 and S(Y (ξ, η))∗ = Y (η, ξ).

As rν factors over a skew pairing between Oq(B
+) and Oq(B

−), it follows that similarly as above we
can form the (ν, µ)-Drinfeld double Oν,µ

q (BR). Using (1.10) and (1.11), we then have a unique surjective
∗-homomorphism

P : Oν,µ
q (GR) → Oν,µ

q (BR), fg† 7→ P+(f)P−(g
∗) (2.6)

extending the homomorphism Oq(G) → Oq(B). This map preserves also the comultiplications ∆κ
ν,µ. In

particular, we have a surjective map of Hopf ∗-algebras Oν
q (GR) → Oν

q (BR), where Oν
q (BR) = Oν,ν

q (BR).

Recall now the notation from (1.9). Then we have for ν = (τν , ϵ) and µ = (τµ, η) that

ων(L
+
ω , L

−
χ ) = q(ω,τν(χ)), ων(X

+
r , X−

s ) =
ϵrδr,τν(s)

qr − q−1
r

, ων(L
+
ω , X

−
s ) = ων(X

+
r , L−

ω ) = 0,

ω−1
µ (L+

ω , L
−
χ ) = q−(ω,τµ(χ)), ω−1

µ (X+
r , X−

s ) =
ηrδr,τµ(s)

q−1
r − qr

, ω−1
µ (L+

ω , X
−
s ) = ω−1

µ (X+
r , L−

ω ) = 0.

Moreover,

∆(L±
ϖ) = L±

ϖ ⊗ L±
ϖ, ∆(X+

r ) = X+
r ⊗ L+

r + 1⊗X+
r , ∆(X−

r ) = X−
r ⊗ 1 + (L−

r )
−1 ⊗X−

r .

Hence in Oν,µ
q (BR) the following defining interchange rules hold, see also [DCNTY19, Section 3]:

L+
ωL

−
χ = q(ω,τν(χ)−τµ(χ))L−

χL
+
ω ,

L−
ωX

+
r = q(αr,τµ(ω))X+

r L−
ω , L+

ωX
−
r = q−(αr,τν(ω))X−

r L+
ω , (2.7)

[X+
r , X−

s ] =
δr,τν(s)ϵrL

+
r − δr,τµ(s)ηs(L

−
s )

−1

qr − q−1
r

.
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2.2. The quantized enveloping Lie ∗-algebra Uq(gν) and its dual Oq(Gν)

For ϵ as above a real-valued function on I, let U ϵ
q (g) be the Hopf algebra obtained by changing in Uq(g)

the commutation relation between Er, Fs to

[Er, Fs] = δrsϵr
Kr −K−1

r

qr − q−1
r

.

Then with τ an involutive automorphism of the Dynkin diagram preserving ϵ, we have on U ϵ
q (g) the Hopf

∗-algebra structure
K†

ω = Kτ(ω), E†
r = Fτ(r)Kτ(r), F †

r = K−1
τ(r)Eτ(r).

Definition 2.8. For ν = ντ,ϵ, we denote by Uq(gν) the Hopf ∗-algebra obtained by endowing U ϵ
q (g) with

the ∗-structure †.

From (2.7), we see immediately that we have a surjective Hopf ∗-algebra morphism

ιν : Oν
q (BR) → Uq(gν)

cop, X+
r 7→ Eτ(r), X−

r 7→ Fr, L+
ω 7→ Kτ(ω), L−

ω 7→ Kω, (2.8)

with kernel generated by the central elements L+
−τ(ω)L

−
ω − 1.

Remark 2.9. As in [DeC13, Appendix B], one sees that Uq(gν) is a quantization of the enveloping
∗-algebra of the real Lie algebra gν ⊆ g spanned (over the reals) by the compact Cartan algebra t =
R[ihr] ⊆ h and the fα− ϵαeτ(α) and i(fα+ ϵαeτ(α)), where the fα run through the negative root vectors.

In the flag case, we obtain the real Lie subalgebra kS ⊕ n−S of the negative parabolic subalgebra p−S of
g at S = {r ∈ I | ϵr = 1}, consisting of the nilpotent part n−S , generated by the fr with r /∈ S, and
the compact part kS of the Levi factor. In the symmetric case this gives the real semisimple Lie algebra
associated to the involution ν, consisting of all elements X ∈ g with ν(X)∗ = −X.

Proposition 2.10. There is a unique pairing (−,−)ϵ of Hopf algebras between U ϵ
q (g) and Oq(G) such

that
(Kω, f)ϵ = (Kω, f), (Er, f)ϵ = ϵr(Er, f), (Fr, f)ϵ = (Fr, f). (2.9)

Moreover, there is a unique pairing (−,−)ν of Hopf ∗-algebras between Uq(gν) and Oν
q (GR) extending

the above pairing (−,−)ϵ.

Proof. It is easily seen by a rescaling argument that there exists a unique pairing of Hopf algebras between
U ϵ
q (g) and Oq(G) satisfying (2.9). It follows that there can be at most one extension to a pairing of Hopf

∗-algebras between Uq(gν) and Oν
q (GR), defined by

(X, fg†)ν = (X(1), f)ϵ(S(X(2))†, g)ϵ, f, g ∈ Oq(G). (2.10)

To see that this is indeed a pairing of Hopf ∗-algebras, the only non-trivial relation to verify is that also

(X, f†g)ν = (S(X(1))†, f)ϵ(X(2), g)ϵ. (2.11)

Now the left hand side equals

(X, f†g)ν = ων(f
†
(1), g(1))(X, g(2)f

†
(2))νω

−1
ν (f†

(3), g(3))

= rν(g(1), f
∗
(1))(X(1), g(2))ϵ(S(X(2))†, f(2))ϵrν(g(3), S(f(3))

∗)

It is then sufficient to verify that this equals (2.11) for X ∈ Uq(b)∪Uq(b
−). Now for X ∈ Uq(b), we have

(X, f†g)ν = rν(g(1), f
∗
(1))(νϵ(X(1)), g(2))(τ(X(2)), f

∗
(2))rν(g(3), S(f(3))

∗)

= (Rν(νϵ ⊗ τ)∆(X)R−1
ν , g ⊗ f∗)

= ((νϵ ⊗ τ)(R∆(X)R−1), g ⊗ f∗)

= ((νϵ ⊗ τ)∆op(X), g ⊗ f∗)

= (τ(X(1)), f
∗)(νϵ(X(2)), g)

= (S(X(1))†, f)ϵ(X(2), g)ϵ.
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Similarly, for X ∈ Uq(b
−) we have

(X, f†g)ν = rν(g(1), f
∗
(1))(X(1), g(2))(ν(X(2)), f

∗
(2))rν(g(3), S(f(3))

∗)

= (Rν(id⊗ν)∆(X)R−1
ν , g ⊗ f∗)

= ((id⊗ν)(R∆(X)R−1), g ⊗ f∗)

= ((id⊗ν)∆op(X), g ⊗ f∗)

= (ν(X(1)), f
∗)(X(2), g)

= (S(X(1))†, f)ϵ(X(2), g)ϵ.

The above pairing will of course not be non-degenerate.

Definition 2.11. We define Oq(Gν) as the coimage Hopf ∗-algebra of Oν
q (GR) under the ∗-homomor-

phism
f 7→ (f,−)ν

into the dual of Uq(gν). We denote by πν the quotient map

πν : Oν
q (GR) → Oq(Gν)

To see which extra relations one is quotienting out by, we introduce the following definition.

Definition 2.12. Fixing ϵ as above, we let E = Eϵ be the unique element in Uq(g) =
∏

ϖ End(Vϖ)
determined by

E ξ = ϵϖ−wt(ξ)ξ, ξ ∈ Vϖ.

We then let Eπ be the corresponding action of E in a general representation, and Eϖ the action in a
particular irreducible representation of highest weight ϖ.

Definition 2.13. We denote Oq(G̃ν) for the Hopf ∗-algebra obtained by quotienting out Oν
q (GR) by the

extra (∗-compatible) relations
τ(Y †

ϖ)EϖYϖ = Eϖ (2.12)

for all ϖ ∈ P+, where we use the shorthand τ(Y ) = (id⊗τ)(Y ).

Note that we can rewrite the defining relations (2.12) of Oq(G̃ν) as

τ(Y †
ϖ)Eϖ = EϖS(Yϖ), (2.13)

which makes it clear that we are dividing out by a Hopf ideal,

Y †
13Y

′†
12E − E S(Y )13S(Y

′)12 = Y †
13(Y

′†
12E − E S(Y ′)12) + (Y †

13E − E S(Y )13)S(Y
′)12.

Remark 2.14. As Eϖ ⊗ Eϖ′ restricts to and equals ∆(E ) on the irreducible module spanned by the
tensor product of the highest weight vectors, it follows that we only need to impose the relations (2.13)
on the highest weight representations for the fundamental weights.

Lemma 2.15. The pairing (−,−)ν factors through Oq(G̃ν).

Proof. We have to check that (2.13) is satisfied when applying the pairing (−,−)ν to this equation with
respect to the generators Er, Fr and Kω. Now for f ∈ Oν

q (GR), we have

(Kω, f
†)ν = (K−1

τ(ω), f), (Er, f
†)ν = −(Fτ(r), f), (Fr, f

†)ν = −ϵr(Eν(r), f).

15



Hence (2.13) translates to

πϖ(Kω)Eϖ = Eϖπϖ(Kω), πϖ(Fr)
∗Eϖ = ϵrEϖπϖ(K−1

r Er), ϵrπϖ(Er)
∗Eϖ = Eϖπϖ(FrKr).

The first relation is obviously true, while using πϖ(X)∗ = πϖ(X∗) and self-adjointness of Eϖ the last
two relations reduce to

πϖ(Er)Eϖ = ϵrEϖπϖ(Er).

This however follows from the fact that if ErVϖ(ϖ−α) ̸= 0 for some α ∈ Q+, where Vϖ(ω) is the weight
space at weight ω, then α− αr ∈ Q+ and hence ϵα = ϵα−αr

ϵr.

Remark 2.16. It follows that we obtain a surjective Hopf ∗-algebra homomorphism

Oq(G̃ν) ↠ Oq(Gν).

It is easy to see that this will be an isomorphism when ϵr ̸= 0 for all r, as the defining relations for
Oq(G̃ν) can then be written

τ(Y †
ϖ) = EϖS(Yϖ)E −1

ϖ ,

from which it follows that Oq(G̃ν) will be non-degenerately paired with Uq(gν). We suspect that this
will be true in general.

Remark 2.17. As we are only interested in the classical limit for motivational reasons, the classical
limit O(Gν) for q → 1 will be interpreted without further justification as the algebra of regular functions
on the real affine group Gν = Spec∗(O(Gν)) ⊆ G with Lie algebra gν . For example, in the flag case
we have that the group Gν of ∗-preserving characters of O(Gν) equals KSN

−
S , with N−

S the unipotent
part of the negative parabolic subgroup P−

S associated to the simple roots S = {r ∈ I | ϵr = 1}, and
with KS = U ∩ P−

S . In the symmetric case, we have that the space of ∗-characters of O(Gν) is the
subgroup Gν = {g ∈ G | ν(g)∗ = g−1}, which has Lie algebra gν but is not necessarily connected or
simply connected.

2.3. ν-braided deformation of Oq(G)

Consider the left, resp. right coactions (= ∗-preserving comodule algebra structures)

λν,µ = (πν ⊗ id)∆ν
ν,µ : Oν,µ

q (GR) → Oq(Gν)⊗Oν,µ
q (GR),

ρν,µ = (id⊗πµ)∆
µ
ν,µ : Oν,µ

q (GR) → Oν,µ
q (GR)⊗Oq(Gµ).

In the following, we will be interested in characterizing the fixed point ∗-subalgebra of λν,µ in case µ = id,
which we will denote

Oq(Gν\\GR) = Oν,id
q (GR)

λν,id = {f ∈ Oν,id
q (GR) | λν,id(f) = 1⊗ f}.

We then put λν = λν,id and ρν = ρν,id.

Remark 2.18. We are mimicking notation from geometric invariant theory (GIT): for q = 1 we will
not necessarily have that the ordinary quotient Gν\GR is a real affine variety, and in particular will not
equal the (real) spectrum Gν\\GR of O(GR)

λν,id . However, Gν\GR will be embedded in this spectrum
as a Zariski dense open subset, see Remark 2.29.

Let us write
Wπ = (id⊗πν)Yπ ∈ End(Vπ)⊗Oq(Gν).

Then the left and right coactions λν and ρν of resp. Oq(Gν) and Oq(U) on Oν,id
q (GR) are determined by

(id⊗λν)Yπ = Wπ,12Yπ,13, (id⊗ρν)Yπ = Yπ,12Uπ,13. (2.14)

Recall the element E introduced in Definition 2.12.
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Lemma 2.19. The elements

Zπ = τ(Y †
π )(Eπ ⊗ 1)Yπ ∈ End(Vπ)⊗Oν,id

q (GR)

lie in End(Vπ)⊗Oq(Gν\\GR).

Proof. By Lemma 2.15 we can use the relation (2.12), so that using (2.14) we find

(id⊗λν)(Zπ) = τ(Y †
π,13)τ(W

†
π,12)(Eπ ⊗ 1)Wπ,12Yπ,13 = τ(Y †

π,13)(Eπ ⊗ 1)Yπ,13,

so Zπ has entries in Oq(Gν\\GR).

Lemma 2.20. The matrices Zπ satisfy the τ -modified reflection equation: with Z = Zπ and Z ′ = Zπ′ ,
we have

Rπ,π′

21 Z13R
π,π′

τ,12Z
′
23 = Z ′

23R
π,π′

τ,21Z13R
π,π′

12 ,

where we write Rπ,π′
= (π ⊗ π′)R and Rπ,π′

21 = (π ⊗ π′)R21.

Proof. Writing also Yπ = Y etc., we compute using (2.5) that

Rπ,π′

21 Z13R
π,π′

τ,12Z23 = Rπ,π′

21 τ(Y )†13E1Y13R
π,π′

τ,12 τ(Y
′)†23E

′
2Y

′
23

= Rπ,π′

21 τ(Y )†13E1τ(Y
′)†23R

π,π′

ϵ,12 Y13E
′
2Y

′
23

= Rπ,π′

21 τ(Y )†13τ(Y
′)†23E1R

π,π′

ϵ,12 E ′
2Y13Y

′
23

= τ(Y ′)†23τ(Y )†13R
π,π′

21 E1R
π,π′

ϵ,12 E ′
2Y13Y

′
23

Now we use that

R21(E ⊗ 1)Rϵ(1⊗ E ) = R21R(E ⊗ E ) = (1⊗ E )Rϵ,21(E ⊗ 1)R,

which follows from an easy weight argument. Hence

Rπ,π′

21 Z13R
π,π′

τ,12Z
′
23 = τ(Y ′)†23τ(Y )†13E

′
2R

π,π′

ϵ,21 E1R
π,π′

12 Y13Y
′
23

= τ(Y ′)†23τ(Y )†13E
′
2R

π,π′

ϵ,21 E1Y
′
23Y13R

π,π′

12

= τ(Y ′)†23E
′
2τ(Y )†13R

π,π′

ϵ,21 Y
′
23E1Y13R

π,π′

12

= τ(Y ′)†23E
′
2Y

′
23R

π,π′

τ,21 τ(Y )†13E1Y13R
π,π′

12

= Z ′
23R

π,π′

τ,21Z13R
π,π′

12 .

Note also that
Z†
π = τ(Zπ). (2.15)

We want to view Oq(Gν\\GR) as a deformation of Oq(G). We will need some preparation. For ξ, η ∈ Vπ,
denote

Z(ξ, η) = (ξ∗ ⊗ 1)Zπ(η ⊗ 1) ∈ Oq(Gν\\GR)

for the associated matrix coefficient. Recall that we view V ∗ as the dual of V with the contragredient
representation (1.3). By the Peter-Weyl-decomposition, we have a vector space isomorphism

⊕ϖ∈P+V ∗
ϖ ⊗ Vϖ → Oq(G), ξ∗ ⊗ η 7→ Y (ξ, η) = (ξ∗ ⊗ 1)Yϖ(η ⊗ 1)

Proposition 2.21. The map

jν : Oq(G) → Oq(Gν\\GR), Y (ξ, η) 7→ Z(ξ, η) (2.16)

is a linear bijection.
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Proof. Let us identify the space of operators Hom(V,W ) with W ⊗ V ∗ in the natural way,

W ⊗ V ∗ ∼= Hom(V,W ), ξ ⊗ η∗ 7→ ξη∗.

Since the multiplication map Oq(G) ⊗ Oq(G) → Oν,id
q (GR) is bijective, it follows from the Peter-Weyl-

decomposition that we have a bijective linear map

PW : ⊕ϖ,ϖ′∈P+V ∗
ϖ ⊗Hom(Vϖ′ , Vϖ)⊗ Vϖ′ → Oν,id

q (GR), (2.17)

ξ∗ ⊗ (η ⊗ ξ′∗)⊗ η′ 7→ τ(Yϖ(η, ξ)†)Yϖ′(ξ′, η′).

Since
jν(Yϖ(ξ, η)) = PW(ξ∗ ⊗ Eϖ ⊗ η)

and none of the Eϖ are zero, this proves that the map jν is injective.

To see that the map is surjective, consider on Oν,id
q (GR) the infinitesimal right action of Uq(gν) via

f �X = ((X,−)ν ⊗ id)λν(f), X ∈ Uq(gν), f ∈ Oν,id
q (GR).

It is easy to see that under the isomorphism (2.17), the action � restricts to each of the components
V ∗
ϖ ⊗Hom(Vϖ′ , Vϖ)⊗ Vϖ′ , on which it is given by

(ξ∗ ⊗ T ⊗ η)�X = ξ∗ ⊗ (T �X)⊗ η

for an action of Uq(gν) on Hom(Vϖ′ , Vϖ). We are to show that T � X = ε(X)T for all X ∈ Uq(gν)
implies ϖ = ϖ′ and T ∈ CEϖ. However, it is easily seen that

T � Er = −K−1
r ErT + ϵrK

−1
r TEr, T � Fr = −ϵrFrKrTK

−1
r + TFr, T �Kχ = K−1

χ TKχ.

Hence if T �X = ε(X)T for all X ∈ Uq(gν), it follows that

ErT = ϵrTEr, TFr = ϵrFrT, KχT = TKχ.

The first identity implies that T preserves the vector space spanned by highest weight vectors, while
the second identity implies that the action of T on the highest weight vector completely determines the
action. Combined with the third identity, it then follows that T = 0 unless ϖ′ = ϖ, in which case the
space of T ’s is one-dimensional, consisting of multiples of Eϖ.

We want to determine explicitly the resulting ∗-algebra structure that Oq(G) inherits through jν .

Definition 2.22. Let ϵ : I → R, and extend ϵ as before to a semigroup homomorphism (Q+,+) → (R, ·).
We define

Ωϵ ∈ Uq(g)⊗̂Uq(g)

as the unique element such that

Ωϵι = ϵϖ+ϖ′−ϖ′′ι, ∀ι ∈ HomUq(u)(Vϖ′′ , Vϖ ⊗ Vϖ′).

It is easily seen that Ωϵ is well-defined, as non-zero ι as above exist only when ϖ + ϖ′ − ϖ′′ ∈ Q+.
Moreover, when ϵ has no zero values, it is easily seen that

Ωϵ = (E ⊗ E )∆(E −1).

It follows by continuity that, in general, Ωϵ satisfies the 2-cocycle identity

(Ωϵ ⊗ 1)(∆⊗ id)(Ωϵ) = (1⊗ Ωϵ)(id⊗∆)(Ωϵ).

Moreover, as Ωϵ assumes constant values on isotypical components in the tensor product, we have

Ωϵ∆(X) = ∆(X)Ωϵ, X ∈ Uq(u). (2.18)

Finally, we note the following behaviour with respect to the universal R-matrix.
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Lemma 2.23. The following identity holds:

RΩϵ = Ωϵ,21R. (2.19)

Proof. This follows immediately from the fact that, with Σ the flip map, the elements Σ(π ⊗ π′)R
preserve spectral subspaces, while the (π ⊗ π′)Ωϵ are constant on spectral subspaces.

The following modifies the construction of braided Hopf algebras as in [Maj93a, Theorem 4.1], see also
[KS97, Proposition 10.3.30] and the references in [Maj95].

Definition 2.24. We define Oq(Zν) = Oν−br
q (G) to be the vector space Oq(G) with the product

f ∗ g = (g(2) ⊗ f(1),Ωϵ)r(f(2), g(3))f(3)g(4)r(f(4), τ(S(g(1)))) (2.20)

and the ∗-structure
f ♯ = τ(S(f)∗), (2.21)

where on the right hand sides one uses the Hopf ∗-algebra structure of Oq(U).

We will show in a moment, by an indirect argument, that this defines a unital ∗-algebra structure, but
for now we just view the above as a binary and unary operation.

Definition 2.25. We will call Oq(Zν) the ν-modified braided Hopf algebra.

Note that the unit 1 ∈ Oq(G) is still the unit of Oq(Zν). We record the following ‘inverse formula’ to
(2.20).

Lemma 2.26. For all f, g ∈ Oq(Zν) we have

(f(1) ⊗ g(1),Ωϵ)f(2)g(2) = r(S(f(1)), g(1))f(2) ∗ g(3)r(f(3), τ(g(2))). (2.22)

Proof. From (2.19), we see that

f ∗ g = r(f(1), g(2))(f(2) ⊗ g(3),Ωϵ)f(3)g(4)r(f(4), τ(S(g(1)))).

The result then follows from the fact that (S ⊗ id)R = R−1, while (id⊗S)R is the inverse of R with
respect to Uq(g)⊗̂Uq(g)

op, where Uq(g)
op has the opposite product.

Remark 2.27. In case E is invertible, we can further reduce (2.22) by inverting Ωϵ and using (2.19),

fg = r(S(f(1)), g(1))(g(2) ⊗ f(2),Ω
−1
ϵ )f(3) ∗ g(4)r(f(4), τ(g(3))). (2.23)

Theorem 2.28. The map jν introduced in (2.16) induces an isomorphism of ∗-algebras

jν : Oq(Zν) ∼= Oq(Gν\\GR).

Remark that, borrowing again the coproduct from Oq(U), the map jν can be written more intrinsically
as

jν : Oq(Zν) → Oq(Gν\\GR), f 7→ f(2)(E )τ(S(f(1)))
∗†f(3). (2.24)

Proof. By Proposition 2.21, it only remains to show that jν is a ∗-algebra map. Now the preservation
of ∗-structures follows immediately from the definitions and (2.16). On the other hand, to show that jν
is multiplicative we may restrict to the case where none of the ϵr are zero, as the structure coefficients
of our algebras depend continuously on the ϵr. Let us fix elements f, g ∈ Oq(Zν). By the bijectivity of
the map jν , there exists h ∈ Oq(Zν) such that

jν(f)jν(g) = jν(h).
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We are to show that h = f ∗ g. We have

jν(f)jν(g)

= f(2)(E )g(2)(E )τ(S(f(1)))
∗†f(3)τ(S(g(1)))

∗†g(3)

= f(2)(E )g(4)(E )ω−1
ν (τ(S(g(3)))

∗†, f(3))τ(S(f(1)))
∗†τ(S(g(2)))

∗†f(4)g(5)ωid(τ(S(g(1)))
∗†, f(5))

= f(2)(E )g(4)(E )rν(f(3), τ(g(3)))τ(S(f(1)))
∗†τ(S(g(2)))

∗†f(4)g(5)r(f(5), τ(S(g(1))))

= h(2)(E )τ(S(h(1)))
∗†h(3).

Applying the counit to the ∗†-parts and bringing E to the other side, this reads

h = f(1)(E )g(3)(E )rν(f(2), τ(g(2)))(f(3)g(4)(E
−1))f(4)g(5)r(f(5), τ(S(g(1)))).

But since
rν(f, g) = g(1)(E )r(f, τ(g(2)))g(3)(E

−1),

we then have for X ∈ Uq(g) that

h(X) = f(1)(E )g(2)(E )r(f(2), g(3))(f(3)g(4)(E
−1))(f(4)g(5)(X))r(f(5), τ(S(g(1))))

= (f ⊗ g,E R1E
−1
(1) X(1)R1′ ⊗ τ(S(R2′))E R2E

−1
(2) X(2)).

= (f ⊗ g,E E −1
(2) R1X(1)R1′ ⊗ τ(S(R2′))E E −1

(1) R2X(2)).

It follows that h = f ∗ g.

Now as the left coaction λν commutes with the comultiplication ∆id
ν,id, viewed as a right coaction on

Oν,id
q (GR), it follows that the latter descends to a right coaction of Oq(GR) = Oid

q (GR) on Oq(Gν\\GR).
From the bijectivity of jν , we get that Oq(Zν) inherits this coaction, given concretely via

δν : Oq(Zν) → Oq(Zν)⊗Oq(GR) : Zπ 7→ τ(Yπ)
†
13Zπ,12Yπ,13, (2.25)

where we transport the matrices Zπ to Oq(Zν). This in particular descends to a coaction of Oq(U) as

ρν : Zπ 7→ τ(Uπ)
∗
13Zπ,12Uπ,13, (2.26)

which we can also write as a twisted coadjoint coaction

ρν(f) = f(2) ⊗ S(τ(f(1)))f(3), f ∈ Oq(Zν). (2.27)

On the other hand, we can also descend to a coaction of Oq(BR) by

βν : Zπ 7→ τ(T−
π )−1

13 Zπ,12T
+
π,13,

which through the natural Hopf ∗-algebra surjection ι : Oq(BR) → Uq(u)
cop introduced in (2.8) descends

to a left coaction
γν : Oq(Zν) → Uq(u)⊗Oq(Zν). (2.28)

Since (id⊗ι)T+
π = (π ⊗ id)R and (id⊗ι)T−

π = (π ⊗ id)R−1
21 , we can write

(id⊗γν)Zπ = (π ⊗ id)(Rτ,21)Zπ,13(π ⊗ id)(R)12. (2.29)

Remark 2.29. The notation Zν refers to an isomorphic copy of the real spectrum of O(Gν\\GR).
Classically, it corresponds to the real variety of Y ∈

∏
ϖ End(Vϖ) satisfying the identities

Y ⊗ Y = Ωϵ∆(Y ), τ(Y )∗ = Y. (2.30)

We have
Gν\GR → Zν , Gνg 7→ τ(g)∗E g.
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When E is invertible, we can rewrite (2.30) as

E −1Y ⊗ E −1Y = ∆(E −1Y ),

so that we can naturally identify

Zν
∼= Hν := {g ∈ G | τ(g)∗ = E gE −1} ⊆ G ⊆

∏
ϖ

End(Vϖ), Y 7→ E −1Y.

If moreover ν is of symmetric type, so that we can view ν as an involutive automorphism of G, we obtain
that

Hν = {g ∈ G | ν(g)∗ = g}, (2.31)

and the map Gν\GR → Zν
∼= Hν is in this case given by Gνg 7→ ν(g)∗g, which is in general not surjective

but has Zariski dense image.

2.4. Embedding of Oq(Zν) inside Oν,id
q (BR)

We want to relate now Oq(Zν) with Oν,id
q (BR). Recall the ∗-homomorphism P introduced in (2.6).

Proposition 2.30. The natural ∗-homomorphism

Iν = P ◦ jν : Oq(Zν) → Oν,id
q (BR)

is injective.

Proof. Using the expression (2.24) for jν , we have

Iν(f) = f(2)(E )P−(τ(S(f(1))))P+(f(3)). (2.32)

Assume now that P(jν(f)) = 0. Using the natural vector space pairing of Uq(b
−) ⊗ Uq(b

+) with
Oν,id

q (BR) ∼= Oq(B
−)⊗Oq(B

+), together with the stability of Uq(b
−) under τ ◦ S, we see that

f(XE Y ) = 0, ∀X ∈ Uq(b
−), Y ∈ Uq(b

+).

Now since
Y E = E νϵ(Y ), EX = νϵ(X)E , Y ∈ Uq(b

+), X ∈ Uq(b
−), (2.33)

it follows from Uq(g) = Uq(b
+)Uq(b

−) = Uq(b
−)Uq(b

+) that in fact

f(XE Y ) = 0, ∀X,Y ∈ Uq(g).

Since E is non-zero in each irreducible representation, it follows easily, using the Peter-Weyl decompo-
sition and the fact that the center of Uq(g) separates representations of Uq(g), that f = 0.

The map Iν has an important equivariance property. Note first that the right Oq(U)-coaction ρν endows
Oq(Zν) with an infinitesimal left Uq(u)-module ∗-algebra structure

X � f = (id⊗(X,−))ρν(f), X � Z(ξ, η) = Z(S(τ(X(1)))
∗ξ,X(2)η), (2.34)

where compatibility with the ∗-structure means that

(X � f)# = S(X)∗ � f#.

On the other hand, as Oν,id
q (BR) forms part of a connected cogroupoid, it is in particular a right Galois

object for Oq(BR) = Oid
q (BR). We thus have on Oν,id

q (BR) the adjoint (or Miyashita-Ulbrich) action
of Oq(BR) [Sch04, Definition 2.1.8], which is a right Oq(BR)-module ∗-algebra structure determined
explicitly in our case by

X ◀ Y = S(Y(1))XY(2), X ∈ Oν,id
q (BR), Y ∈ Oq(B) ∪ Oq(B

−),

using the usual Hopf algebra structure of Oq(B
±). Recall now again the Hopf ∗-algebra homomorphism

ι = ιid : Oq(BR) → Uq(u)
cop introduced in (2.8).
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Proposition 2.31. The following equivariance property holds: for all f ∈ Oq(Zν) and g ∈ Oq(BR) we
have

Iν(ι(S(g))� f) = Iν(f) ◀ g.

Proof. It is enough to verify this for g ∈ Oq(B), as both sides are module ∗-algebras and ιS = S−1ι. Fix
now π, π′, and note that

(id⊗πι)T+
π′ = (π′ ⊗ π)R = Rπ′,π.

As ι flips the coproduct, it follows that

(id⊗ιS)(T+
π′)13 � Zπ,23 = (Rπ′,π◦τ ⊗ 1)(1⊗ Zπ)(R

−1
π′,π ⊗ 1). (2.35)

On the other hand, as (id⊗Iν)Zπ = τ(T+,∗
π )(Eπ⊗1)T+

π , we have by the fundamental interchange relation
(2.7) and (1.12) that

((id⊗Iν)Zπ)23 ◀ T+
π′,13 = (T+

π′)
−1
13 τ(T

−
π )−1

23 Eπ,2T
+
π,23T

+
π′,13

= (T+
π′)

−1
13 τ(T

−
π )−1

23 Eπ,2Rπ′,π,12T
+
π′,13T

+
π,23R

−1
π′,π,12

= (T+
π′)

−1
13 (T

−
π◦τ )

−1
23 Rν,π′,π◦τ,12T

+
π′,13Eπ,2T

+
π,23R

−1
π′,π,12

= Rπ′,π◦τ,12(T
−
π◦τ )

−1
23 Eπ,2T

+
π,23R

−1
π′,π,12

= Rπ′,π◦τ,12((id⊗Iν)Zπ)23R
−1
π′,π,12.

Comparing this with (2.35) finishes the proof.

Remark 2.32. In the case ν = id this result is well-known, see e.g. [Bau00, Theorem 3] and the
references loc. cit.

We want to characterize the image of Iν . Note first that from the proof of Proposition 2.30, we see that
for ξϖ a unit highest weight vector and X ∈ Uq(b

−), Y ∈ Uq(b
+)

(Iν(Zϖ(ξϖ, ξϖ)), X ⊗ Y ) = ⟨ξϖ, τ(S(X))EϖY ξϖ⟩
= (L−

−ϖ, Y )(L+
−τ(ϖ), X)⟨ξϖ,Eϖξϖ⟩

= (L+
−τ(ϖ)L

−
−ϖ, X ⊗ Y ).

As the above pairing of Oq(BR) with Uq(b
−)⊗ Uq(b

+) is non-degenerate, we deduce that

Iν(Z(ξϖ, ξϖ)) = L+
−τ(ϖ)L

−
−ϖ. (2.36)

Let us denote in the following
aϖ = Z(ξϖ, ξϖ). (2.37)

Lemma 2.33. We have the following relations

a♯ϖ = aτ(ϖ), aϖZ(ξ, η) = q((id+τ)ϖ,wt(ξ)−wt(η))Z(ξ, η)aϖ.

Proof. The identity for a♯ϖ follows immediately upon applying the ∗-homomorphism Iν and using (2.36).
For the second identity, we have by Proposition 2.31 and (2.36) that

aϖZ(ξ, η) = (K−(id+τ)ϖ � Z(ξ, η))aϖ = q(ϖ,(id+τ)wt(ξ)−(id+τ)wt(η))Z(ξ, η)aϖ.

It follows from the above that we can consider the ∗-algebra

Oloc
q (Zν) = Oq(Zν)[a

−1
ϖ ]

obtained by localising the aϖ. We can extend ϖ 7→ aϖ to the whole of P by requiring the relations

aω+χ = q((id−τ)ω,χ)aωaχ, ω, χ ∈ P. (2.38)

The map Iν then extends to Oloc
q (Zν).
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Proposition 2.34. The elements X+
r lie in the image of Oloc

q (Zν) under Iν . Moreover, as a ∗-algebra
Oloc

q (Zν) is generated by the aω and the

xr = I−1
ν (X+

r ).

Proof. Since Iν(Oq(Zν)) is closed under the right action of Oq(BR), it follows by (2.36) that the range
of Iν contains

L+
−τ(ϖ)L

−
−ϖ ◀ X+

r = (1− q((id+τ)ϖ,αr))L+
−τ(ϖ)L

−
−ϖX+

r ,

and so X+
r ∈ Iν(Oloc

q (Zν)). Now by (2.34) and the definition (2.37) of the aϖ, we have that Oq(Zν) is
generated as a left Uq(u)-module by the aϖ. It follows that Iν(Oq(Zν)) is the smallest subspace containing
the aϖ and stable under the ◀ X+

r and ◀ (X+
r )∗. As the latter operations can be implemented by left and

right multiplication with the X+
r and (X+

r )∗, it follows that Iν(Oloc
q (Zν)) is contained in the ∗-algebra

generated by the aω and xr, and must hence coincide with it.

It follows that we can present Oloc
q (Zν) directly by generators and relations: using (2.7), we see that it

is generated by elements aω, xr, yr = x♯
r, with a♯ϖ = aτ(ϖ), such that the xr and yr satisfy the quantum

Serre relations for the Dynkin diagram under consideration, and such that (2.38) holds together with
a0 = 1 and

aωxr = q−((id+τ)ω,αr)xraω, aωyr = q((id+τ)ω,αr)yraω

xrys − q−(αr,αs)ysxr =
δr,τ(s)ϵsa−αs

− δr,s

qr − q−1
r

.

Remark 2.35. For ν = id, one can characterize the image of Iν(Oq(Zν)) into Uq(g) by means of ι as
the locally finite part of Uq(g) with respect to the adjoint action [JL92]. The precise connection with
the locally finite part of Oν,id

q (BR), or a quotient ∗-algebra thereof, becomes more muddy in the general
case, particularly when τ ̸= id, but will not be needed in what follows.

Remark 2.36. The embedding Iν puts ‘spectral conditions’ on the ∗-algebra Oq(Zν) ∼= Oq(Gν\\GR).
For example if ϖ = τ(ϖ), then Iν(aϖ) = (L+

−ϖ)∗L+
−ϖ is a positive element. This might allow one to

define Oq(Gν\GR) as the finer structure of Oq(Gν\\GR) together with such spectral conditions, putting
a restriction on its ∗-representation theory. We will however not dive deeper into these matters here.

2.5. Characters of Oq(Zν)

Lemma 2.37. The unital ∗-characters of Oq(Zν) are in one-to-one correspondence with elements

K ∈ Uq(g) =
∏
ϖ

End(Vϖ)

such that ε(K ) = 1,
K ∗ = τ(K ) (2.39)

and
Ωϵ∆(K ) = R−1(K ⊗ 1)Rτ (1⊗ K ). (2.40)

Proof. Using Definition 2.24 and the fact that Uq(g) is the linear dual of Oq(G), it follows that any linear
functional of Oq(Zν) is given by a map

Zπ 7→ Kπ

for some K ∈ Uq(g). This map will then be unital if Kε = ε(K ) = 1, and from (2.15) it will be
∗-preserving if and only if (2.39) holds. Finally, from (2.22) it follows that K is a character if and only
if

(f(1) ⊗ g(1),Ωϵ)(f(2)g(2),K ) = r(S(f(1)), g(1))(f(2),K )(g(3),K )r(f(3), τ(g(2))), ∀f, g ∈ Oq(G).

Regrouping, this becomes

(f ⊗ g,Ωϵ∆(K )) = (f ⊗ g,R−1(K ⊗ 1)Rτ (1⊗ K )), ∀f, g ∈ Oq(G),

which is equivalent with (2.40)
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Note that in case E is invertible, (2.40) can be rewritten as

∆(E −1K ) = R−1(E −1K ⊗ 1)Rν(1⊗ E −1K ). (2.41)

Another way of writing this is

∆(E −1K ) = (1⊗ E −1K )Rν,21(E
−1K ⊗ 1)R−1

21 , (2.42)

but it is not clear what the corresponding limit would be in the case of E not invertible. However, if
(2.39) holds, we get using (2.18) that, upon applying ∗ to (2.40),

Ωϵ∆(K ) = (1⊗ K )Rτ,21(K ⊗ 1)R−1
21 , (2.43)

so that in particular we have the τ -modified reflection equation

(1⊗ K )Rτ,21(K ⊗ 1)R−1
21 = R−1(K ⊗ 1)Rτ (1⊗ K ). (2.44)

Finally, note that the counitality assumption ε(K ) = 1 is automatic once K ̸= 0.

Definition 2.38. A non-zero element K ∈ Uq(g) satisfying (2.40) will be called a ν-modified universal
K-matrix. If also (2.39) holds, we call K ∗-compatible.

Theorem 2.39. There is a one-to-one correspondence between

(1) ∗-compatible ν-modified universal K-matrices K ∈ Uq(u),
(2) unital ∗-characters χ : Oq(Zν) → C,
(3) unital ∗-homomorphisms ϕ : Oq(Zν) → Oq(U) intertwining ρν with ∆,

(4) unital ∗-homomorphisms ϕ̂ : Oq(Zν) → Uq(u) intertwining γν with ∆,
(5) unital ∗-homomorphisms Φ : Oq(Zν) → Oq(GR) intertwining δν with ∆.

The correspondence is determined by

χK (f) = f(K ), ϕχ(f) = (χ⊗ id)ρν(f), ϕ̂χ(f) = (id⊗χ)γν(f), Φχ(f) = (χ⊗ id)δν(f).

Proof. The equivalence between the first two items is the content of Lemma 2.37.

If (L,∆) is any Hopf ∗-algebra, and (A,α) a right L-comodule ∗-algebra, it is well-known that there is
a one-to-one correspondence between ∗-characters on A and ∗-algebra maps π : A → L intertwining α
and ∆, given by the correspondence

f 7→ πf = (f ⊗ id)α, π 7→ fπ = ε ◦ π,

where ε is the counit of L; see e.g. [DM03b] for a discussion. A similar correspondence holds for left
coactions. This gives the correspondence between the last four items.

Note that by (2.25) and (2.26), we have

(id⊗Φ)Zϖ = τ(Yπ)
†
12(π(K )⊗ 1)Yπ, (2.45)

(id⊗ϕ)Zϖ = τ(Uπ)
∗
12(π(K )⊗ 1)Uπ. (2.46)

In the following, we fix a unital ∗-character

χ : Oq(Zν) → C,

and we let K be the associated ∗-compatible ν-modified universal K-matrix. Then ϕ, ϕ̂ and Φ are the
associated equivariant maps into respectively Oq(U), Uq(u) and Oq(GR). We write the images of ϕ, ϕ̂
and Φ respectively as

Oq(K\U) = ϕ(Oq(Zν)) ⊆ Oq(U),

U f
q(k

′) = ϕ̂(Oq(Zν)) ⊆ Uq(u),

Oq(L\\GR) = Φ(Oq(Zν)) ⊆ Oq(GR).

24



Then Oq(K\U) and Oq(L\\GR) are right coideal ∗-subalgebras in their respective Hopf ∗-algebras, while
U f
q(k

′) is a left coideal ∗-subalgebra in Uq(u), which (slightly deviating from [KoSt09]) we call a Noumi-

Sugitani coideal subalgebra. We may view Oq(L\\GR) as the Drinfeld codouble of Oq(K\U) and U f
q(k

′).

Remark 2.40. Interpreting K classically as an element in the spectrum of Zν , the groups L and K are
its stabilizers under the respective actions of G and U on Zν . The symbol ‘ f’ in U f

q(k
′) should be seen as

indicating that it corresponds to some ‘locally finite part’ of a quantized enveloping coideal subalgebra.
Finally, as we will justify in Proposition 2.44, k′ should be seen as a Lie subalgebra of the Lie algebra k
of K, and will coincide with it in many cases of interest. In the setting of Poisson homogeneous spaces,
L corresponds to the Lagrangian in the Drinfeld double G of U associated to the Poisson homogeneous
space K\U [Dri93].

Proposition 2.41. The ∗-homomorphism Φ : Oq(Zν) → Oq(L\\GR) is a ∗-isomorphism.

Proof. We claim that π(K ) ̸= 0 for all representations π. Indeed, assume that πϖ(K ) = 0 for some
ϖ ∈ P+. Then (2.40) and (2.18) imply that

(πϖ ⊗ id)∆(K )(πϖ ⊗ id)Ωϵ = 0.

However, let ι be a non-zero Uq(u)-intertwiner C = V0 → Vϖ ⊗ Vτ0(ϖ). Then it follows that

(πϖ ⊗ πτ0(ϖ))∆(K )(πϖ ⊗ πτ0(ϖ))Ωϵι = (πϖ ⊗ πτ0(ϖ))∆(K )ι = ε(K )ι = 0,

contradicting ε(K ) = 1.

Let now {ek} be an orthonormal basis of Vπ. Then by (2.45) the map Φ is given by

Zπ(ek, el) 7→
∑
ij

π(K )ijτ(Yπ(ei, ek))
†Yπ(ej , el). (2.47)

As the τ(Y (ei, ek))
†Y (ej , el) are all linearly independent when π = πϖ, i, j, k, l vary, it follows that that

the kernel is trivial unless π(K ) = 0 for some π, which we have shown is impossible.

Let us end by showing a duality relation between Oq(K\U) and U f
q(k

′). We start with a general result,
see [KS14] for similar results in the operator algebraic framework and [LVD07,FS09] for the framework
of algebraic quantum groups. In the following proposition, we will use again the unitary antipode R
(1.1), acting by duality also on Oq(U) as an involutive Hopf ∗-algebra anti-automorphism.

Proposition 2.42. Let Ir/l be a right/left coideal ∗-subalgebra of Oq(U), and let Jl/r be a left/right
coideal ∗-subalgebra of Uq(u). Then

Îr = {X ∈ Uq(u) | ∀f ∈ Ir : X(−f) = ε(f)X} ⊆ Uq(u),

Îl = {X ∈ Uq(u) | ∀f ∈ Il : X(f−) = ε(f)X} ⊆ Uq(u)

are respectively a left/right coideal ∗-subalgebra of Uq(u), while

Ĵl = {f ∈ Oq(U) | ∀X ∈ Jl : f(X−) = ε(X)f} ⊆ Oq(U),

Ĵr = {f ∈ Oq(U) | ∀X ∈ Jr : f(−X) = ε(X)f} ⊆ Oq(U)

are respectively a right/left coideal ∗-subalgebra of Oq(U). Moreover,

(1)
ˆ̂
Ir/l = Ir/l,

(2)
ˆ̂
Jl/r is the weak closure of Jl/r,

(3) if Ir/l,1 ⊆ Ir/l,2, resp. Jl/r,1 ⊆ Jl/r,2, then Îr/l,1 ⊇ Îr/l,2, resp. Ĵl/r,1 ⊇ Ĵl/r,2.
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Proof. By means of the unitary antipode R, we can switch between left and right coideal ∗-subalgebras,
in a way which is compatible with the above dualities. It is thus sufficient to show that the above
proposition holds for a left coideal ∗-subalgebra I ⊆ Oq(U) and a right coideal ∗-subalgebra J ⊆ Uq(u).
Moreover, item (3) is immediately clear from the definitions.

It is further clear that Î and Ĵ are respectively right and left coideals. To see that they are ∗-algebras,
we consider the Heisenberg ∗-algebra H = Uq(u)⊗Oq(U) consisting of Uq(u) and Oq(U) as ∗-subalgebras
with the interchange relation

X · f = f(1) ·X(f(2)−).

Put

Ĩ = {X ∈ Uq(u) | ∀f ∈ I : X · f = f ·X}, J̃ = {f ∈ Oq(U) | ∀X ∈ J : X · f = f ·X}. (2.48)

Then clearly Ĩ and J̃ are ∗-subalgebras. As Oq(U) and Uq(u) are independent within H, we have that

X ∈ Ĩ ⇔ ∀f ∈ I : f(1) ⊗X(f(2)−) = f ⊗X. (2.49)

Applying the counit to the first leg, we find Ĩ ⊆ Î. On the other hand, since I is a left coideal, it follows
that (2.49) holds for all X ∈ Î, whence Ĩ = Î and Î a ∗-algebra. On the other hand,

f ∈ J̃ ⇔ ∀X ∈ J : f(1) ⊗X(f(2)−) = f ⊗X. (2.50)

Applying the counit to the second leg, we find J̃ ⊆ Ĵ , and the right coideal property of J ensures that
X(−g) ∈ J for all g ∈ Oq(U), from which the equality J̃ = Ĵ follows. In particular Ĵ is a ∗-algebra.

Let us now prove item (2). It is clear that J ⊆ ˆ̂
J , and that

ˆ̂
J is weakly closed. To see that

ˆ̂
J equals

the weak closure of J , note first that since J ⊆ Uq(u) ∼=
∏

ϖ End(Vϖ) is a unital ∗-algebra, the weak
closure J will be isomorphic to

∏
π End(Wπ) for certain finite dimensional Hilbert spaces Wπ. Moreover,

since ε is a non-trivial character on J , it corresponds to a particular one-dimensional W0. Let p be the
projection on W0. Considering p as an element of Uq(g), we have that pVϖ consists of vectors on which

J acts by the counit, and hence Ĵ is spanned by all U(ξ, pη). In turn, this implies that
ˆ̂
J consists of all

X ∈ Uq(u) with
∆(X)(p⊗ 1) = p⊗X. (2.51)

Let now X be an element satisfying (2.51). Applying the comultiplication to the first leg and multiplying
the second leg to the left with S−1 of the third leg reveals that

(X ⊗ 1)∆(p) = (1⊗ S−1(X))∆(p). (2.52)

In particular, since p ∈ J and J a right coideal, we find that

X(id⊗f)(∆(p)) ∈ J, ∀f ∈ Oq(U).

Since all Y ∈ J satisfy (2.52), we then obtain that also

XY (id⊗f)(∆(p))Z ∈ J, ∀f ∈ Oq(U), Y, Z ∈ J.

In particular, let B be the weak closure of the algebra generated by the Y (id⊗f)(∆(p))Z where f ∈
Oq(U) and Y,Z ∈ J . Then B is a weakly closed, ∗-closed two-sided ideal in J , with

XB ⊆ J.

To finish the proof of (2), we need to show that B = J (and hence contains the unit). Suppose however
this were not the case. Then as B is a weakly closed, ∗-closed two-sided ideal in J ∼=

∏
π End(Wπ), there

would exist a finite dimensional representation V of Uq(u) and a non-zero vector ξ with Bξ = 0. This
implies however ∆(p)(1⊗ ξ) = 0, and hence 0 = S(p(1))p(2)ξ = ε(p)ξ = ξ, a contradiction.

Finally, let us prove item (1). Again, the inclusion I ⊆ ˆ̂
I is immediate. As I is a left coideal, it is clear

that I will be spanned by elements Uϖ(ξ, η) where ξ ranges over Vϖ and where η ∈ Wϖ for a certain
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subspace Wϖ ⊆ Vϖ. Let qϖ be the projection of Vϖ onto Wϖ, and let q =
∏

qϖ ∈ Uq(u). Let p ∈ Î be

the projection onto the orthogonal complement of the kernel projection of the restriction of ε to Î. Since

I ⊆ ˆ̂
I, we have p ≤ q. If we can show that p ∈ Î, then also q ≤ p (since ε(p) = 1), and hence I =

ˆ̂
I.

To see that p ∈ Î, we will first faithfully represent H on Oq(U). Consider on Oq(U) the Haar state
φ : Oq(U) → C, uniquely characterized by the conditions φ(1) = 1 and φ(Uϖ(ξ, η)) = 0 for ϖ ̸= 0. Then
φ is faithful, and Oq(U) becomes a pre-Hilbert space for the inner product

⟨f, g⟩ = φ(f∗g).

Concretely, we have

⟨Uϖ(ξ, η), Uϖ′(ξ′, η′)⟩ = δϖ,ϖ′
⟨ξ′,K2ρξ⟩⟨η, η′⟩
Tr(πϖ(K2ρ))

,

see e.g. [NT13, Theorem 1.4.3 and Proposition 2.4.10]. Consider the following representations:

π : Oq(U) → End(Oq(U)), π(f)g = fg,

π̂ : Uq(u) → End(Oq(U)), π̂(X)f = f(−X),

so in particular π̂(X)U(ξ, η) = U(ξ,Xη). Then we obtain in particular a ∗-representation

πH : H → End∗(Oq(U)), X 7→ π̂(X), f 7→ π(f),

where End∗(Oq(U)) denotes the ∗-algebra of adjointable endomorphisms. We claim that πH is faithful.
To see this, consider also the ∗-representation

π̂′ : Uq(u) → End∗(Oq(U)), π̂′(X)f = f(S−1(X)−),

so that π̂′(X)U(ξ, η) = U(S−1(X)∗ξ, η). Then End∗(Oq(U)) has the right π̂′-adjoint Uq(u)-module
∗-algebra structure

y �X = π̂′(S(X(1)))yπ̂
′(X(2)).

Let Endf∗(Oq(U)) be the locally finite part of End∗(Oq(U)) with respect to �, i.e. the ∗-algebra of
elements which span a finite-dimensional subspace under �. Then we can consider the projection map

E : Endf∗(Oq(U)) → Endf∗(Oq(U))0

onto the �-trivial subspace. Since x ∈ End∗(Oq(U)) is �-trivial if and only if x commutes with all π̂′(X)
for X ∈ Uq(u), and since the π(Y ) commute with the π̂′(X) for X ∈ Uq(u) and Y ∈ Uq(u), it follows

that in fact Endf∗(Oq(U))0 = π̂(Uq(u)). On the other hand, an easy computation reveals

π(f)�X = π(f(X−)),

so in particular π(U(ξ, η))�X = π(U(X∗ξ, η)). It follows that

E(π̂(X)π(f)) = φ(f)π̂(X), f ∈ Oq(U), X ∈ Uq(u),

which implies πH is faithful.

We are now ready to show that p ∈ Î. Indeed, by the characterisation of Î in (2.48) and the faithfulness
of πH, it is sufficient to show that π̂(p)π(f) = π(f)π̂(p). However, this follows immediately from the fact
that I is a ∗-algebra, for then we have

π(f)π̂(p)U(ξ, η) = fU(ξ, pη) = π̂(p)(fU(ξ, pη)) = π̂(p)π(f)π̂(p)U(ξ, η), ∀f ∈ I, ∀ξ, η.

Definition 2.43. We define

Û f
q(k

′) = {f ∈ Oq(U) | ∀X ∈ U f
q(k

′) : f(X−) = ε(X)f} ⊆ Oq(U),

Ôq(K\U) = {X ∈ Uq(u) | ∀f ∈ Oq(K\U) : X(−f) = ε(f)X} ⊆ Uq(u).
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It follows from Proposition 2.42 that Û f
q(k

′) is a right coideal ∗-subalgebra in Oq(U), while Ôq(K\U) is
a left coideal ∗-subalgebra in Uq(u) in the sense that

(f ⊗ id)∆(X) ∈ Ôq(K\U), X ∈ Ôq(K\U), f ∈ Oq(U). (2.53)

Moreover, if we denote by Uq(k
′) the weak closure of U f

q(k
′), we also have

̂̂Uq
f(k′) = Uq(k

′), ̂̂Oq(K\U) = Oq(K\U).

Part of the following proposition can be found (in the untwisted case) in [KoSt09, Corollary 4.5].

Proposition 2.44. We have

Oq(K\U) ⊆ Û f
q(k

′), U f
q(k

′) ⊆ Ôq(K\U).

Furthermore,

Ôq(K\U) = {X ∈ Uq(u) | (1⊗ K )∆(X) = (id⊗τ)(∆(X))(1⊗ K )}. (2.54)

Proof. From (2.27), we have that

ϕ(f)(Y ) = f(S(τ(Y(1)))K Y(2)), (2.55)

hence X ∈ Ôq(K\U) if and only if

X(1) ⊗ S(τ(X(2)))K X(3) = X ⊗ K ,

which is equivalent to
(1⊗ K )∆(X) = (id⊗τ)(∆(X))(1⊗ K ),

proving (2.54).

On the other hand, by (2.29) we see that

ϕ̂(f) = (f ⊗ id)(Rτ,21(K ⊗ 1)R), f ∈ Oq(Zν). (2.56)

We then compute, using that R∗R commutes with ∆(X) for X ∈ Uq(u) and with Ωϵ, that

(1⊗ 1⊗ K )(id⊗∆)(Rτ,21(K ⊗ 1)R) = K3Rτ,21Rτ,31K1R13R12

= Rτ,21K3Rτ,31K1R13R12

= Rτ,21(K3Rτ,31K1R
−1
31 )(R∗R)13R12

=
(2.40)

Rτ,21Ωϵ,13∆(K)13(R
∗R)13R12

= Rτ,21(R
∗R)13Ωϵ,13∆(K)13R12

=
(2.43)

Rτ,21(R
∗R)13(R

−1
13 K1Rτ,13K3)R12

= Rτ,21R31K1Rτ,13K3R12

= Rτ,21R31K1Rτ,13R12K3

= (id⊗(id⊗τ)∆)(Rτ,21(K ⊗ 1)R)(1⊗ 1⊗ K ).

From (2.54), it now follows that ϕ̂(f) ∈ Ôq(K\U) for all f ∈ Oq(Zν), i.e. U
f
q(k

′) ⊆ Ôq(K\U).

We then have also Oq(K\U) = ̂̂Oq(K\U) ⊆ Û f
q(k

′).

Remark 2.45. It is possible that the equality Oq(K\U) = Û f
q(k

′) holds in full generality, but we were not
able to prove this. Conditions for equality of these algebras were already asked for in the non-modified
case in [KoSt09, Remark 4.6]. We will however verify this property directly in many cases, sometimes
by quite ad hoc computations.

In the next sections, we will construct ∗-compatible ν-modified universal K-matrices in the case where
ν is either of flag type or of symmetric type.
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3. Quantum flag varieties

In this section, we will examine in more detail the case where ν = (id, ϵ) ∈ End∗(Uq(b)) is of flag type,
so ϵr ∈ {0, 1} for all r. We resume notation from Section 1 and Section 2.

3.1. Construction of a ∗-compatible ν-modified universal K-matrix
Let S0 = {r | ϵr = 1}, and let S = {τ0(r) | r ∈ S0}, where we recall that τ0 is the Dynkin diagram
automorphism defined by the longest word w0 of W , that is τ0(ω) = −w0(ω) for ω ∈ P .

Definition 3.1. We define K ∈ Uq(u) by

K ξ := ϵϖ−w0(wt(ξ))ξ, ξ ∈ Vϖ.

Note that this is meaningful: if ξ is a non-zero weight vector at ω, then Tw0
ξ is a non-zero weight vector

at w0ω, hence w0ω = ϖ − α for some α ∈ Q+.

We will in the following also write ν0 := τ0 ◦ ν ◦ τ0 ∈ End∗(Uq(b)). Explicitly we have

ν0(Kω) = Kω, ν0(Er) = ϵτ0(r)Er, ν0(Fr) = ϵτ0(r)Fr.

Observe that ν0(Er) = Er for r ∈ S and ν0(Er) = 0 for r /∈ S. Similarly for Fr.

We denote by Q+
S the positive span of the simple roots αr with r ∈ S.

Lemma 3.2. Let X ∈ Uq(b) and Y ∈ Uq(b
−). Then

K X = ν0(X)K , Y K = K ν0(Y ).

Moreover, if X ∈ Uq(b)α and Y ∈ Uq(b
−)−β for α, β ∈ Q+

S then K X = XK and K Y = Y K .

Proof. Let ξ be of weight ω. First we compute

K Erξ = ϵϖ−w0(ω+αr)Erξ = ϵτ0(r)Erϵϖ−w0(ω)ξ = ν0(Er)K ξ.

Next we compute

FrK ξ = ϵϖ−w0(ω)Frξ = ϵϖ−w0(ω−αr)ϵτ0(r)Frξ = K ν0(Fr)ξ.

The final statement in the lemma follows immediately from the fact that ϵτ0(r) = 1 for r ∈ S.

Lemma 3.3. We have Ωϵ∆(K ) = K ⊗ K .

Proof. Given Vϖ ⊆ Vϖ′ ⊗ Vϖ′′ we have Ωϵ|Vϖ
= ϵϖ′+ϖ′′−ϖ. For ξ ∈ Vϖ of weight ω we get

Ωϵ∆(K )ξ = ϵϖ′+ϖ′′−ϖϵϖ−w0(ω)ξ = ϵϖ′+ϖ′′−w0(ω)ξ.

Now consider ξ′ ⊗ ξ′′ ∈ Vϖ′ ⊗ Vϖ′′ with wt(ξ′) = ω′ and wt(ξ′′) = ω′′. Then we have

K ξ′ ⊗ K ξ′′ = ϵϖ′−w0(ω′)ξ
′ ⊗ ϵϖ′′−w0(ω′′)ξ

′′ = ϵϖ′+ϖ′′−w0(ω′+ω′′)ξ
′ ⊗ ξ′′.

From this we conclude that (K ⊗K )ξ = ϵϖ′+ϖ′′−w0(ω)ξ. Comparing the two expressions we obtain the
equality Ωϵ∆(K ) = K ⊗ K .

Theorem 3.4. The element K is a ∗-compatible ν-modified universal K-matrix.

Proof. Since R ∈ Uq(b
+)⊗̂Uq(b

−), we obtain by Lemma 3.2

(1⊗ K )R21(K ⊗ 1)R−1
21 = Rν0,21(K ⊗ K )R−1

21 = Rν0,21(K ⊗ 1)R−1
ν0,21

(1⊗ K ).

We have ν0(Fr) = 0 for r /∈ S, hence the first leg of the element Rν0,21 only contains expressions
in the generators Fr with r ∈ S, and similarly for its inverse. Then again by Lemma 3.2 we have
(K ⊗ 1)R−1

ν0,21
= R−1

ν0,21
(K ⊗ 1) and we get

(1⊗ K )R21(K ⊗ 1)R−1
21 = Rν0,21R

−1
ν0,21

(K ⊗ K ) = K ⊗ K .

Since Ωϵ∆(K ) = K ⊗ K by the previous lemma, we see that K is a ν-modified universal K-matrix.
The ∗-compatibility is immediate, since K ∗ = K .
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3.2. Comparison of the coideal subalgebras U f
q(k

′) and Uq(kS)
Fix S, S0 as in the previous section. Recall the notations introduced following Theorem 2.39, using
the ∗-compatible ν-modified universal K-matrix K constucted in Definition 3.1. Let further kS be the
compact form of the Levi factor of the parabolic subalgebra associated to S, so that the complexification
kCS ⊆ g is generated by h and the er, fr with r ∈ S. Let Uq(kS) ⊆ Uq(u) be the quantized enveloping
∗-algebra of kS , generated by the Kω for ω ∈ P and the Er, Fr for r ∈ S, and let Uq(kS) be its weak

completion. Finally, let Oq(KS\U) = Ûq(kS) be the dual right coideal ∗-subalgebra of Oq(U).

We denote by WS ⊆ W the subgroup generated by the sr with r ∈ S, and wS,0 the longest element in
WS with respect to the natural word length on WS . We let wS = wS,0w0.

Theorem 3.5. The equality Uq(k
′) = Uq(kS) holds.

Proof. We recall from (2.56) that

ϕ̂(f) = (f ⊗ id)(R21(K ⊗ 1)R).

Since by Lemma 3.2

R21(K ⊗ 1) = (K ⊗ 1)Rν0,21, (K ⊗ 1)R = Rν0
(K ⊗ 1),

we obtain from the fact that K is a self-adjoint projection that

ϕ̂(Z(ξ, η)) = (U(K ξ,K η)⊗ id)(Rν0,21Rν0
).

This shows that Uf
q (k

′) ⊆ Uq(kS), and hence Uq(k
′) ⊆ Uq(kS).

On the other hand, let ηw0ϖ ∈ Vϖ be a lowest weight vector for Uq(u). Then Uq(kS)ηw0ϖ is an irreducible
Uq(kS)-module of highest weight wS(ϖ) = wS,0w0(ϖ). Then with ξwS(ϖ) a corresponding highest weight
vector of unit norm, we find

ϕ̂(Z(ξwS(ϖ), ξwS(ϖ))) = (U(K ξwS(ϖ),K ξwS(ϖ))⊗ id)(Rν0,21Rν0
).

Now
K ξwS(ϖ) = ϵϖ−w0wS(ϖ)ξwS(ϖ) = ϵϖ−wS,0(ϖ)ξwS(ϖ) = ξwS(ϖ),

since ϖ − wS,0(ϖ) ∈ Q+
S . It follows that

ϕ̂(Z(ξwS(ϖ), ξwS(ϖ))) = (U(ξwS(ϖ), ξwS(ϖ))⊗ id)(Rν0,21Rν0
)

= (U(ξwS(ϖ), ξwS(ϖ))⊗ id)(Q2)

= K−2wS(ϖ).

Similarly, since FrξwS(ϖ) still lies in the range of K for r ∈ S, it follows that

ϕ̂(Z(ξwS(ϖ), FrξwS(ϖ))) = (U(ξwS(ϖ), FrξwS(ϖ))⊗ id)(Rν0,21Rν0
)

will be a scalar multiple of Kαr−2wS(ϖ)Fr. Since Uq(k
′) can be identified with the bicommutant of the

∗-algebra U f
q(k

′), it now follows immediately that Uq(k
′) = Uq(kS).

3.3. Comparison of the coideal subalgebras Oq(K\U) and Oq(KS\U)
Fix again the setting as in the previous subsection. We then also have the following dual result.

Theorem 3.6. The equality Oq(K\U) = Oq(KS\U) holds.

Proof. We already know by Proposition 2.44 and Theorem 3.5 that Oq(K\U) ⊆ Oq(KS\U). On the
other hand, consider the elements aϖ = Z(ξϖ, ξϖ) introduced in (2.37). Then

ϕ(aϖ) =
∑
i

Uϖ(ei, ξϖ)∗Uϖ(K ei, ξϖ),

for ei an orthonormal basis of Vϖ. However, choosing the ei to be eigenvectors of K , the non-zero K ei
then form an orthonormal basis of the Uq(kS)-module spanned by the Uq(u)-lowest weight vector ηw0ϖ in
Vϖ. Following the reasoning as in [DCN15, Proposition 2.3], we see that the ϕ(aϖ) generate Oq(KS\U)
as a Uq(u)-module. Since ϕ is Uq(u)-equivariant, we must have Oq(K\U) = Oq(KS\U).
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4. Quantum symmetric spaces

In this section we fix a semisimple Lie algebra g with Dynkin diagram Γ and underlying set I, and use
again notation as in Section 1 and Section 2. We will further write a ⊆ g for the real span of the hr, and
T = eia ⊆ U for the maximal torus of U associated to h.

4.1. Involutions in Satake form

We recall some preliminaries on involutions of g in maximally split form. We follow mainly the exposition
in [Kol14, Section 2].

For X ⊆ I, we write gX for the semisimple Lie algebra generated by the {er, fr, hr | r ∈ X}, and we
write ∆X ⊆ ∆ for the associated root system. We denote by QX ⊆ Q the root lattice spanned by ∆X ,
equipped with the restriction of the bilinear form (−,−). We write WX ⊆ W for the Weyl group of gX ,
and wX for the longest element in WX . We further write

ρ∨X =
1

2

∑
α∈∆+

X

α∨ ∈ P.

Definition 4.1. We call concrete Satake diagram1 on the Dynkin diagram Γ the datum of a subset
X ⊆ I and a Dynkin diagram involution τ of I such that the following two conditions are satisfied:

� τ preserves X and coincides on it with the action of −wX ,

� (αr, ρ
∨
X) ∈ Z for all r ∈ I \X with τ(r) = r.

We call enhanced Satake diagram a concrete Satake diagram that is also equipped with a function

z : I → {±1}

such that
zr = 1 when (αr, ρ

∨
X) ∈ Z, zrzτ(r) = −1 when (αr, ρ

∨
X) /∈ Z.

Note that such a z always exists, since (αr, ρ
∨
X) /∈ Z implies τ(r) ̸= r. Moreover, zr = 1 for r ∈ X as

then (αr, ρ
∨
X) = 1. A function z as above satisfies in particular

zrzτ(r)(−1)(αr,2ρ
∨
X) = 1, ∀r ∈ I. (4.1)

By direct diagram checking, one verifies that the resulting Satake diagrams correspond to the (unions of)
Satake diagrams as in [Ar62], from which we also borrow the nomenclature, together with the diagrams
consisting of two copies of the same Dynkin diagram and the involution interchanging the two copies.
Note however that as we are fixing the Dynkin diagram beforehand, we also need to treat as separate
the Satake diagrams obtained by applying Dynkin diagram automorphisms. This means:

(1) In the non-simple case, the ordering of the different components is taken into account.

(2) In the DIII-case u∗2p(H) = so∗(4p) we include also the Satake diagram with the coloring of the
fork endpoints interchanged, see Table 1.

Table 1: Concrete Satake diagrams for so∗(4p)

1 2 3 2p − 2

2p − 1

2p

1 2 3 2p − 2

2p − 1

2p

(3) In the D-cases so(1, 7), so(2, 6) and so(3, 5) we include the Satake diagrams obtained by rotation,
see Table 2. Note that one of these establishes the isomorphism so(2, 6) ∼= so∗(8).

1In what follows, we will exclude the trivial Satake diagram X = I and τ = id.
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Table 2: Concrete Satake diagrams for so(p, 8 − p) with 1 ≤ p ≤ 3

so(1, 7) (DII) 1 2
3

4

1 2
3

4

1 2
3

4

so(2, 6) (DI) 1 2
3

4

1 2
3

4

1 2
3

4

so(3, 5) (DI) 1 2
3

4

1 2
3

4
1 2

3

4

When we do not care about the connection with the underlying Dynkin diagram, we will talk of an
abstract Satake diagram. More precisely, let us call concrete Satake diagrams on respective Dynkin
diagrams Γ,Γ′ equivalent if one is carried to the other by an isomorphism of Dynkin diagrams. Then we
refer to abstract Satake diagram as an equivalence class under this relation.

Recall that τ0 is the Dynkin diagram automorphism induced by −w0.

Lemma 4.2. Let (X, τ, z) be an enhanced Satake diagram. Then

� τ0(X) = τ(X) = X,

� ττ0 = τ0τ ,

� z is ττ0-invariant,

� z is wX-invariant.

Proof. For the first three properties we refer to [BK19, Remark 7.2]. Note here that τ0 commutes in fact
with any Dynkin diagram automorphism, as τ0 is trivial in the only case (namely D4) where there is
more than one non-trivial Dynkin diagram automorphism. The last property follows from the fact that
zr = 1 for r ∈ X.

Fix now an enhanced Satake diagram (X, τ, z). One constructs explicitly an involution θ = θ(X, τ, z) of
g as follows.

Extend first again τ to an automorphism of g by

τ(er) = eτ(r), τ(fr) = fτ(r), τ(hr) = hτ(r).

Let ω be the Chevalley involution of g, which is the complex Lie algebra automorphism determined by

ω(er) = −fr, ω(fr) = −er, ω(h) = −h.

Let
mr = exp(er) exp(−fr) exp(er) ∈ U (4.2)

and identify sr = Ad(mr)|h ∈ W . Let

w0 = sr1 . . . srN , wX = sr′1 . . . sr′M (4.3)

be reduced expressions for the longest elements in respectively W and WX , and write the corresponding
elements in U as

m0 = mr1 . . .mrN ∈ U, mX = mr′1
. . .mr′M

∈ U.
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We note that m0,mX are independent of the chosen reduced expressions.

Finally, note that z may be extended uniquely to a unitary character on Q. The following lemma ensures
that z can be extended to a character on the weight lattice, i.e. an element of T , such that some of the
symmetry properties of z are preserved.

Lemma 4.3. Let (X, τ, z) be an enhanced Satake diagram. Then we can pick χ0 ∈ a with ττ0(χ0) = χ0

and such that z̃ = e2πiχ0 ∈ T is an extension of z.

Proof. For X = ∅ or τ = id we have z = 1, and we can hence take χ0 = 0. On the other hand, if ττ0 = id
the existence of χ0 follows from T = exp(ia). We may thus assume that g is simple with X ̸= ∅, τ ̸= id
and ττ0 ̸= id. By direct diagram checking (see again also [BK19, Remark 7.2]) it can be verified however
that this can only happen for g of type Dl for l even and gθ ∼= so(p, 2l − p) for p odd, for which the
Satake diagram is given by

1 p p + 1
ℓ− 1

ℓ

(where contrary to custom we indicated also the action of τ on X for clarity). It is clear that then
(αr, ρ

∨
X) ∈ Z for all r ∈ I, except possibly for r = p. However, using e.g. [OV90, Reference Chapter,

Section 2, Table 1], we find that also (αp, ρ
∨
X) = l − p − 1 ∈ Z. Hence z = 1, so we can take χ0 = 0 in

this case.

In the following, we will fix χ0 and z̃ as above.

Definition 4.4. Let (X, τ, z) be an enhanced Satake diagram for Γ. We define

θ = θ(X, τ, z) = Ad(z̃) ◦ τ ◦ ω ◦Ad(mX) ∈ Aut(g), (4.4)

and call it the Satake involution of g associated to (X, τ, z).

Remark 4.5. Note that the Satake involution indeed only depends on (X, τ, z). Moreover, it is easy to
see that θ depends only on (X, τ) up to inner conjugacy, with (X, τ) corresponding to a unique inner
conjugacy class, see Theorem B.1.

Remark 4.6. It is not hard to check that θ is indeed an involution, and that θ commutes with ∗. In
particular, θ restricts to a Lie algebra involution of u. Associated to θ we then have the real Lie algebra

gθ = {X ∈ g | θ(X)∗ = −X},

and all real semisimple Lie algebras arise in this way, their isomorphism class uniquely determined by
the associated abstract Satake diagram.

Note (for example by [B-VB-PBMR95, Lemme 4.9]) that one can write ω = τ0 ◦Ad(m0) = Ad(m0) ◦ τ0,
from which it follows that we can also write the Satake involution as

θ = Ad(z̃) ◦ τ ◦ τ0 ◦Ad(m0) ◦Ad(mX). (4.5)

Let us write Θ for the dual of the restriction of θ to h. From the Definition of θ and Lemma 4.2, we
immediately obtain the following.

Lemma 4.7 ([Kol14, Equation (2.10)]). We have Θ(α) = −wXτ(α), and Θ commutes with τ0 and τ .
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4.2. Construction of a ∗-compatible ν-modified universal K-matrix

Let (X, τ, z) be an enhanced Satake diagram for Γ, and let θ = θ(X, τ, z) be the associated Satake
involution. Fix an extension to the weight lattice

z̃ = e2πiχ0 ∈ T

with χ0 ∈ a a ττ0-invariant element as in Lemma 4.3. We then put

z̃τ = z̃ ◦ τ = τ(z̃). (4.6)

Let us write

ρ =
1

2

∑
α∈∆+

α, ρX =
1

2

∑
α∈∆+

X

α,

and let
cr = q

1
2 (αr,Θ(αr)−2ρX), r ∈ I,

where we note that cr = 1 for r ∈ X.

Write
TwX

= Tr′1
. . . Tr′M

∈ Uq(g)

for the Lusztig braid operator associated to wX .

Lemma 4.8. The Lusztig braid operators Tw0
and TwX

commute.

Proof. This follows from Lemma 1.8, Lemma 4.2 and the fact that TwX
is independent of the chosen

reduced expression for wX .

The following algebras were introduced by Letzter [Let99]. We follow the conventions of [Kol14,BK19].

Definition 4.9. We define U ′
q(gX) as the subalgebra of Uq(g) generated by the Kr, Er, Fr for r ∈ X.

We define Uq(h
Θ) as the subalgebra of Uq(h) generated by the elements Kω with Θ(ω) = ω. We define

B ⊆ Uq(g) as the subalgebra of Uq(g) generated by U ′
q(gX) and Uq(h

Θ) together with the elements

Br = Fr + crXrK
−1
r , r ∈ I \X,

where
Xr = −zτ(r) Ad(TwX

)(Eτ(r)).

One then has that B is a right coideal subalgebra,

∆(B) ⊆ B ⊗ Uq(g).

Remark 4.10. In [Kol14, Definition 4.3] a specific function z = s(X, τ) is used which does not satisfy our
requirements as it takes values in {±1,±i} in general. However, one can also use the current conventions
for z throughout the theory, see [BK19, Remark 5.2].

Remark 4.11. In general B depends more freely on the parameter c, and can have an additional
parameter s. The specific choice for c is needed to apply the results of [BK19], while the choice s = 0
simplifies some of the constructions.

Remark 4.12. By Lemma 4.2 both z and c are ττ0-invariant, from which it follows that

ττ0(Br) = Bττ0(r).

In particular, B is ττ0-invariant.
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In the following, we also write c for the unique character

c : P → R>0, cαr = cr.

We then write γ for the C×-valued character on P given by

γ(ω) = z̃τ (ω)c(ω), ω ∈ P.

We further write2 ξ ∈ Uq(h) for the unique element such that for ω ∈ P

ξ(ω) = γ(ω)q−(ω+,ω+)+
∑

r∈I(α
−
r ,α−

r )(ω,ϖ∨
r ), (4.7)

where ϖ∨
r = 2ϖr

(αr,αr)
are the fundamental coweights determined by (ϖ∨

r , αs) = δrs and where

ω± =
1

2
(ω ±Θ(ω)). (4.8)

We now want to introduce the quasi-K-matrix as constructed in [BK19, Theorem 6.10]. This construction
is however performed in the formal setting. To be able to transfer the arguments, let us briefly make a
digression into the formal setting.

Let Uq(g) be defined as in Definition 1.2, except that we consider it over the field C(q1/N ) with q replaced
by the formal variable q. Here N can be taken for example to be the determinant of the Cartan matrix
for g, so that we can make sense of the variables qr. We can also make sense of the coideal subalgebra
B ⊆ Uq(g) in this setting. Note that in the definition of the Br one treats zr as a complex scalar, but
the q in cr as a formal parameter.

Define then the bar involution as the unique C-algebra automorphism of Uq(g) satisfying

f(q) = f(q−1), Er = Er, Fr = Fr, Kω = K−1
ω , f ∈ C(q).

Proposition 4.13. For r ∈ I \X we have

Br = Fr − (−1)(2ρ
∨
X ,ατ(r))q−(2ρX ,ατ(r))c−1

r zτ(r) Ad(T−1
wX

)(Eτ(r))Kr ∈ Uq(g). (4.9)

Proof. First of all we have
Br = Fr + crXrKr.

Since zτ(r) ∈ C, we have zτ(r) = zτ(r). On the other hand, we have in the notation of [Lusz94, 37.1] that
Ad(Tr) = T ′′

r,1 and Ad(T−1
r ) = T ′

r,−1, with

T ′′
r,±1(X) = T ′′

r,∓1(X), T ′
r,±1(X) = T ′

r,∓1(X), X ∈ Uq(g).

Hence we have
Xr = −zτ(r)Ad(TwX

)(Eτ(r)) = −zτ(r)T
′′
wX ,−1(Eτ(r)).

In the proof of [BK15, Lemma 2.9] it is shown that

T ′′
wX ,−1(Er) = (−1)(2ρ

∨
X ,αr)q−(2ρX ,αr)T ′

wX ,−1(Er).

Using this we get
Xr = −(−1)(2ρ

∨
X ,ατ(r))q−(2ρX ,ατ(r))zτ(r) Ad(T−1

wX
)(Eτ(r)).

Plugging this into Br and using cr = c−1
r shows (4.9).

2We follow the notation in [BK19], even though we also use ξ for an arbitrary vector in a Hilbert space. This should
however not lead to any confusion, as the rôles of the two different uses are quite different.
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The value of Br in (4.9) now of course makes sense also in the non-formal setting, independently of its
construction through the bar involution. We formalize this in the next definition.

Definition 4.14. For r ∈ I \X we define

Br = Fr − (−1)(2ρ
∨
X ,ατ(r))q−(2ρX ,ατ(r))c−1

r zτ(r) Ad(T−1
wX

)(Eτ(r))Kr ∈ Uq(g). (4.10)

Theorem 4.15. There exists a unique X =
∑

α∈Q+ Xα ∈ Uq(n) with Xα ∈ Uq(n)α, with X0 = 1 and

BrX = XBr, FsX = XFs, r ∈ I \X, s ∈ X.

Proof. Using the concrete formula (4.10), we see that the equivalence (2)⇔ (3) of [BK19, Proposition 6.1]
still holds in the non-formal setting. The uniqueness of X then follows as at the end of [BK19, Proposition
6.3], which is again still valid in the non-formal setting. For the existence one notes that the proof of
[BK19, Theorem 6.10] can be followed ad verbatim for q > 0 and distinct from 1.

Corollary 4.16. The quasi-K-matrix X satisfies ττ0(X) = X. Similarly, ττ0(K) = K.

Proof. As in Remark 4.12, we have ττ0(Br) = Bττ0(r) for r ∈ I\X. The equality ττ0(X) = X then follows
immediately from the uniqueness in Theorem 4.15. The ττ0-invariance of K then follows immediately
from its definition, Lemma 4.2 and the ττ0-invariance of c and z̃.

Theorem 4.17 ([BK19, Corollary 7.7 and Theorem 9.5]). The element

K = XξT−1
wX

T−1
w0

∈ Uq(g) (4.11)

satisfies
∆(K) = (K ⊗ 1)Rττ0,21(1⊗K)R = R21(1⊗K)Rττ0(K ⊗ 1). (4.12)

Moreover, for all X ∈ B
KX = ττ0(X)K. (4.13)

Remark 4.18. Note that when comparing conventions, the element R̂ in [BK19, Theorem 9.5] coincides
with our Σ ◦ R, where Σ is the flip map.

In the following, we will modify K so that it becomes a ∗-compatible ν-modified universal K-matrix for a
particular ν. We will need some preliminary results concerning the behaviour of X under the ∗-operation.

Our first goal will be to show the identities

X∗ = Ad(Tw0)(τ0(X)), Ad(z̃)(X) = τ(X),

see Theorem 4.22. We use here the notation Ad(t)(X) = tXt−1 for t a grouplike in Uq(h) and X ∈ Uq(g).

Let S0 be as in (1.16), and let similarly

SX = e2πiρ
∨
X ∈ T. (4.14)

Let us further denote
S = eπiρ

∨
∈ T,

so that S2 = S0. Note that since (ρ∨, αr) = 1 for all r ∈ I, we have

Ad(S)(Er) = −Er, Ad(S)(Fr) = −Fr, Ad(S)(Kω) = Kω.

Lemma 4.19. The identity ST−1
wX

= T−1
wX

SS−1
X holds.
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Proof. We have
ST−1

r ξ = eπi(ρ
∨,wt(ξ)−(wt(ξ),α∨

r )αr)T−1
r ξ = e−πi(wt(ξ),α∨

r )T−1
r Sξ.

Hence
ST−1

wX
ξ = e−2πi(wt(ξ),ρ∨

X)T−1
wX

Sξ = T−1
wX

SS−1
X ξ.

Let further σ : Uq(g) → Uq(g) be the unique algebra anti-isomorphism such that

σ(Er) = Er, σ(Fr) = Fr, σ(Kω) = K−1
ω .

Note that by [Jan96, 8.(10)], one has

σ(Ad(Tr)(X)) = Ad(T−1
r )(σ(X)), X ∈ Uq(g).

Lemma 4.20. For r ∈ I\X we have

(1) Ad(S)(σ(Br)) = −Br,
(2) Ad(z̃)(τ(Br)) = zτ(r)Bτ(r),

(3) Ad(z̃)(τ(Br)) = zτ(r)Bτ(r).

Proof. Let us first prove (1). We have

Ad(S)(σ(Br)) = −Fr + crKr Ad(S)(σ(Xr)).

Since Xr ∈ Uq(g)−Θ(αr), the same is true for Ad(S)(σ(Xr)). Therefore we can write

Ad(S)(σ(Br)) = −Fr + q−(αr,Θ(αr))cr Ad(S)(σ(Xr))Kr.

Now from the identity σ◦Ad(Tr) = Ad(T−1
r )◦σ we obtain σ◦Ad(TwX

) = Ad(T−1
wX

)◦σ. Since by Lemma
4.19 we have

Ad(S)Ad(T−1
wX

)(Eτ(r)) = −(−1)(2ρ
∨
X ,ατ(r)) Ad(T−1

wX
)(Eτ(r)),

we get
Ad(S)(σ(Xr)) = (−1)(2ρ

∨
X ,ατ(r))zτ(r) Ad(T−1

wX
)(Eτ(r)).

Plugging this into Ad(S)(σ(Br)) and observing that

q−(αr,Θ(αr))cr = q−
1
2 (αr,Θ(αr)+2ρX) = q−(2ρX ,ατ(r))c−1

r

gives the result.

Let us now prove (2). Using that τ(Xr) ∈ Uq(n)wXαr
, z2r = 1, z̃(wX(αr)) = zr and cτ(r) = cr, we find

Ad(z̃)(τ(Br)) = zτ(r)Fτ(r) + z̃(wXαr)zrzτ(r)crXτ(r)K
−1
τ(r) = zτ(r)Bτ(r).

The proof of (3) follows similarly.

Proposition 4.21. We have Ad(S)(σ(X)) = X.

Proof. We can write

Ad(S)(σ(X)) =
∑

α∈Q+

Ad(S)(σ(Xα))

with Ad(S)(σ(X0)) = 1 and Ad(S)(σ(Xα)) ∈ Uq(n)α.

Now since X commutes with Fr for r ∈ X, we also have that Ad(S)(σ(X)) commutes with Fr. On the
other hand, applying Ad(S) ◦ σ to BrX = XBr with r ∈ I\X, we get

Ad(S)(σ(X))Ad(S)(σ(Br)) = Ad(S)(σ(Br))Ad(S)(σ(X)).

But we have Ad(S)(σ(Br)) = −Br from Lemma 4.20, which is also equivalent to Br = −Ad(S)(σ(Br)).
Using these we get

Ad(S)(σ(X))Br = Br Ad(S)(σ(X)).
By Theorem 4.15 we conclude Ad(S)(σ(X)) = X.
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Let now
cc : Uq(g) → Uq(g)

be the unique antilinear algebra homomorphism which is the identity on Er, Fr,Kω. Then we have the
identities

Ad(Tw0
) = ∗ ◦ cc ◦Ad(S) ◦ σ ◦ τ0, Ad(T−1

w0
) = τ0 ◦ σ ◦Ad(S) ◦ cc ◦ ∗, (4.15)

where the first identity follows from (1.17) and where the second expression follows from the first, since
all the various maps are involutions. Note further that the maps Ad(S), τ0, σ and cc all commute among
themselves.

Theorem 4.22. We have X∗ = Ad(Tw0)(τ0(X)).

Proof. We clearly have cc(X) = X by the defining property in Theorem 4.15, using that z is real-valued
and hence the Br and Br are invariant under cc. The result then follows from (4.15) and Proposition
4.21.

We now perform various small changes to B, first to make it ∗-invariant and then to make it rather a
left coideal. Define

ω0 = −1

2
(ρ− ρX). (4.16)

Using the obvious notation Kω0
∈ Uq(h), let us write

B̃ = Ad(Kω0)(B), X̃ = Ad(Kω0)(X), K̃ = Ad(Kω0)(K).

Clearly B̃ is again a right coideal subalgebra. Note that B̃ is generated by U ′
q(gX), Uq(h

Θ) and the
elements

B̃r = Fr + q(ω0,αr−Θ(αr))crXrK
−1
r , r ∈ I \X.

Since wXρ = ρ− 2ρX , and hence wXω0 = ω0, we can simplify this expression as

B̃r = Fr + q2(ω0,αr)crXrK
−1
r = Fr + q−(α−

r ,α−
r )XrK

−1
r ,

using once more the notation (4.8) and the identity (2ρ, αr) = (αr, αr).

Lemma 4.23. The algebra B̃ is ∗-invariant.

Proof. By [DCNTY19, Theorem 3.11], we need to check that

q2(ω0,αr+ατ(r))crcτ(r) = q(Θ(αr)−αr,ατ(r)). (4.17)

Note that this theorem was proven under a different assumption on z mentioned in Remark 4.10, but it
is easily verified that for the ∗-invariance of B̃ the only feature of z which was used was (4.1) and the
fact that zr = 1 for αr ⊥ X, which is still valid in the current setup.

Following the discussion under [DCNTY19, Theorem 3.14], it is sufficient to show that (ω0, αr) = 0 for
r ∈ X, and

(ω0, αr) =
1

4
(Θ(ατ(r))− ατ(r) −Θ(αr) + 2ρX , αr), r ∈ I \X. (4.18)

Now since (ρX , αr) = (ρ, αr) for r ∈ X, we obtain (ω0, αr) = 0 for r ∈ X. On the other hand, if r ∈ I \X,
we have by [BK15, Lemma 3.2] that

Θ(ατ(r))− ατ(r) −Θ(αr) = −αr.

Since 2(ρ, αr) = (αr, αr) for all r ∈ I, it follows that (4.18) holds.

Remark 4.24. Remark that ∗-invariance of Letzter coideals was also discussed in [BW16, Proposition
4.6], and in a less concrete manner in [Let02, discussion before Theorem 7.6].
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We will now proceed to show that also K̃ has a nice behaviour with respect to ∗, see Proposition 4.29.
We again need some preliminaries.

Let
ξ′ = ξK2ω0

= K2ω0
ξ,

with ξ as in (4.7). Using that

Kω0Tw0 = Tw0K
−1
ω0

, Kω0TwX
= TwX

Kω0 ,

we find
K̃ = X̃ξ′T−1

wX
T−1
w0

.

Let CΘ ∈ Uq(h) be the unique operator such that

CΘη = q−(wt(ξ)+,wt(ξ)+)η, η ∈ Vϖ,

with ω± defined as in (4.8).

Lemma 4.25. We have
ξ′ = z̃τCΘ.

Proof. We can write

cr = q−2(ω0,αr)q−(α−
r ,αr), r ∈ I,

and hence for ω =
∑

r krαr ∈ P with kr ∈ Q we have

γ(ω) = z̃τ (ω)
∏
r∈I

ckr
r = z̃τ (ω)q

−(2ω0,ω)
∏
r∈I

q−
∑

r∈I\X kr(α
−
r ,αr).

On the other hand, since (α−
r , α

+
r ) = 0 by Θ-invariance of (−,−), we have∑

r∈I

(α−
r , α

−
r )(ω,ϖ

∨
r ) =

∑
r∈I

kr(α
−
r , α

−
r ) =

∑
r∈I

kr(α
−
r , αr),

and hence
ξ(ω) = z̃τ (ω)q

−(2ω0,ω)
∏

r∈I\X

q−
∑

r∈I\X kr(α
−
r ,α−

r −αr)q−(ω+,ω+),

from which the lemma follows.

Lemma 4.26. The element CΘ is invariant under τ and τ0, and commutes with X and Kω0
.

Proof. The invariance of CΘ under τ and τ0 follows immediately from Lemma 4.7. It is also immediate
that CΘ commutes with Kω0 . Finally, write again X =

∑
α∈Q+ Xα with Xα ∈ Uq(n)α. Let V be a

representation of Uq(g), and ξ ∈ V . Then CΘXαC
−1
Θ ξ = CΘ(wt(ξ)+α)

CΘ(wt(ξ)) Xαξ. From [BK19, Proposition 6.1],

we know that Xα ̸= 0 implies Θ(α) = −α (their argument still being valid for q non-formal). As the
latter implies in turn that CΘ(wt(ξ) + α) = CΘ(wt(ξ)), the commutation of X and CΘ follows.

Lemma 4.27. We have
Ad(Tw0

)(z̃) = z̃−1
τ , Ad(TwX

)(z̃) = z̃ (4.19)

and
Ad(Tw0)(ξ

′) = z̃−1z̃−1
τ ξ′. (4.20)

Proof. As zr = 1 for r ∈ X, it follows that z̃ is WX -invariant. The identities (4.19) then follow from the
assumption that τ(z̃) = τ0(z̃).

The identity (4.20) follows from (4.19) by the computation

CΘ(w0ω) = CΘ(−w0ω) = CΘ(τ0(ω)) = CΘ(ω).
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Lemma 4.28. We have
Ad(z̃)(X) = τ(X) (4.21)

and
Xξ′ = ξ′τ(X). (4.22)

Proof. For (4.21), it is by Theorem 4.15 sufficient to show that

Brτ(Ad(z̃)(X)) = τ(Ad(z̃)(X))Br, Fsτ(Ad(z̃)(X)) = τ(Ad(z̃)(X))Fs, r ∈ I \X, s ∈ X.

By Lemma 4.20 this is equivalent with the defining property of X.

For (4.22) we note that

Xξ′ = z̃τ Ad(z̃−1
τ )(X)CΘ = z̃ττ(Ad(z̃−1)(τ(X))CΘ.

From (4.21) and Lemma 4.26, it then follows that

Xξ′ = z̃ττ(X)CΘ = z̃τCΘτ(X) = ξ′τ(X).

Proposition 4.29. We have

∆(K̃) = (K̃ ⊗ 1)Rττ0,21(1⊗ K̃)R = R21(1⊗ K̃)Rττ0(K̃ ⊗ 1) (4.23)

and for all X ∈ B̃
K̃X = ττ0(X)K̃. (4.24)

Moreover,
ττ0(K̃) = K̃, K̃∗ = K̃SXS0z̃z̃

−1
τ . (4.25)

Proof. Since Kω0 is a ττ0-invariant grouplike element, the element K̃ satisfies (4.12), and (4.13) with

respect to B̃.

As ξ′, Tw0
and TwX

are ττ0-invariant, and as X̃ is ττ0-invariant by Corollary 4.16 and ττ0-invariance of

ω0, the identity ττ0(K̃) = K̃ follows.

Note now that TwX
commutes with ξ′, and with X by (4.13). Using also Lemma 4.28 and the fact that

Kω0
is τ -invariant, we see that we can write

K̃ = T−1
wX

ξ′τ(X̃)T−1
w0

.

Since Ad(Tw0
), τ and τ0 commute, since τ0(ω0) = ω0 and since Kω0

Tw0
Kω0

= Tw0
, we find from Theorem

4.22 and ττ0-invariance of X̃ that
K̃ = T−1

wX
ξ′T−1

w0
X̃∗,

and thus from Lemma 4.27

K̃ = T−1
wX

T−1
w0

z̃−1z̃−1
τ ξ′X̃∗ = z̃z̃τT

−1
wX

T−1
w0

ξ′X̃∗.

Using now Proposition 1.7, and the fact that SX ,S0 assume values in {±1}, we see that

K̃∗ = X̃ξ′∗T−1
w0

S0T
−1
wX

SX z̃−1z̃−1
τ = X̃ξ′∗T−1

w0
T−1
wX

S0SX z̃−1z̃−1
τ ,

where in the last step we used that wXρ∨ = ρ∨ − 2ρ∨X and e4πiρ
∨
X = 1. As ξ′∗ = ξ′z̃−2

τ , and as TwX

and Tw0 commute by Lemma 4.8, this becomes the second identity in (4.25) by another application of
(4.19).
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Let us now move from right coideals to left coideals to have compatibility with the conventions in Section
2. This can be achieved by means of the unitary antipode R defined in (1.1). We then write

Uq(u
θ) = R(B̃), (4.26)

which is a left coideal ∗-subalgebra of Uq(u). Note that by (1.13), we have that Uq(u
θ) is generated by

the U ′
q(gX), Uq(h

Θ) and the elements

Cr = −qrR(B̃r)
∗ = Er + q(α

+
r ,α+

r )YrKr, Yr = −zτ(r) Ad(TwX
)(Fτ(r)) (4.27)

for r ∈ I \X.

Let further v ∈ Uq(u) be the ribbon element

vη = q−(ϖ,ϖ+2ρ)η, η ∈ Vϖ, (4.28)

so that v is central, self-adjoint and

R21R = ∆(v)(v−1 ⊗ v−1). (4.29)

Put
K̃ = R(K̃)v−1.

Then since (R⊗R)R = R and R commutes with ττ0, we find by Proposition 4.29 that

∆(K̃ ) = (1⊗ K̃ )Rττ0,21(K̃ ⊗ 1)R−1
21 , K̃ ∗ = SXS0z̃τ z̃

−1ττ0(K̃ ). (4.30)

For a categorical motivation of passing between these different kinds of conditions for K-matrices, we
refer to [BZBJ18]. See also [tDH-O98, tD98,Wee19] for further discussion on the categorical origin of
K-matrices.

Let now τν = ττ0, and let ϵ = ϵν be an (X, τ)-admissible sign function on I as in Definition B.8. Put
ν = (τν , ϵν) ∈ End∗(Uq(b)). The crucial property we will need for ϵ is that by Theorem B.10 we can find
an extension ϵ̃ ∈ T of ϵ such that

ϵ̃ττ0(ϵ̃) = S0SX z̃z̃−1
τ . (4.31)

Define E as in Definition 2.12, and put

K = E ϵ̃−1K̃ ∈ Uq(u). (4.32)

Theorem 4.30. The element K is a ∗-compatible ν-modified universal K-matrix.

Proof. Since ϵ̃ is grouplike, it follows from (4.30) that E −1K satisfies (2.42), hence K is a ν-modified
universal K-matrix. To see that it is ∗-compatible, note that by selfadjointness of E we have (E ϵ̃−1)∗ =
E ϵ̃. Now E ϵ̃ is central, with

E ϵ̃ξ = ϵ̃ϖξ, ξ ∈ Vϖ.

Hence by (4.30) and the defining property of ϵ̃, we find that

K ∗ = ϵ̃−1ττ0(ϵ̃)
−1ττ0(K̃ )E ϵ̃ = ττ0(ϵ̃)

−1E ττ0(K̃ ) = ττ0(K ),

since ϵ and hence E is ττ0-invariant. This proves ∗-compatibility.

Note also that K satisfies the following commutation relation, using (4.24) and the fact that E ϵ̃−1 is
central,

K X = ττ0(X)K , X ∈ Uq(u
θ). (4.33)

Remark 4.31. The only property of the ττ0-invariant sign function ϵ which is needed in the above
construction is the existence of an extension ϵ̃ satisfying (4.31). This property is in general much weaker
than being (X, τ)-admissible (for example one could have ϵ = 1). However, we believe that only in case
of (X, τ)-admissible ϵ will the associated K-matrix lead to a ∗-homomorphism ϕ : Oq(Zν) → Oq(U)
with sufficiently nice spectral properties, cf. Remark 2.36. Again, we will not deal here with this subtle
phenomenon, which deserves further investigation.
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4.3. Comparison of the coideal subalgebras U f
q(k

′) and Uq(u
θ)

In this section, we clarify the connection between the left coideal ∗-subalgebra U f
q(k

′) ⊆ Uq(u) as con-

structed from the ∗-compatible ν-modified universal K-matrix of (4.32) by the map ϕ̂ in Theorem 2.39,
and the left coideal ∗-subalgebra Uq(u

θ) ⊆ Uq(u) as defined by (4.26).

We introduce first the following map

Φ̂ : Oq(U) → Uq(g), f 7→ (id⊗f)(Rττ0,21(1⊗K)R),

where K was introduced in (4.11). Recall further the unitary antipode R defined in (1.1)and the element
ω0 introduced in (4.16).

Lemma 4.32. The equality ϕ̂(Oq(Zν)) = (R ◦Ad(Kω0
) ◦ Φ̂)(Oq(U)) holds.

Proof. Recall from (2.56) that

ϕ̂(f) = (f ⊗ id)(Rττ0,21(K ⊗ 1)Rττ0) = (id⊗f ◦ ττ0)(R(1⊗ K )Rττ0,21),

where in the last step we used that K is ττ0-invariant by Corollary 4.16. On the other hand, since Kω0

is ττ0-invariant, we find that

R(Ad(Kω0)(f)) = (id⊗f ◦Ad(K−1
ω0

) ◦R)(R(1⊗R(K̃))Rττ0,21).

Since R(K̃) and K differ only by multiplication with an invertible central element, this proves the
lemma.

Corollary 4.33. We have U f
q(k

′) ⊆ Uq(u
θ).

Proof. By [Kol20, Theorem 3.11.(0)], the image of Φ̂ is contained in B (note that the element R in
[Kol20] indeed coincides with our element R). The corollary then follows from Lemma (4.32).

To obtain an inclusion in the opposite direction after completion, we need some preliminaries. Let us
write

R̃ =
∑
A

wAE
A ⊗ FA

where EA and FA denote the standard PBW-bases, A being words in the positive roots and wA are
non-zero scalars. We write wt(A) = wt(EA) ∈ Q+, where EA ∈ Uq(n)wt(EA). Write

K =
∑

γ∈Q+

Kγ , Kγ = XγξT
−1
wX

T−1
w0

(4.34)

with X =
∑

γ Xγ and Xγ ∈ Uq(n)γ as before. Then writing V (ω) for the ω-weight space of a representation
V , we have

Kγ : V (ω) → V (wXw0(ω) + γ).

Lemma 4.34. We have

Φ̂(Uϖ(ξ, η)) =
∑
A,B

∑
γ∈Q+

wAwBκA,B,γττ0(F
A)K−1

Θ(wt(η)−wt(B))+ττ0(γ)
EBK−1

wt(η)

where κA,B,γ = ⟨ξ, EAKγF
Bη⟩.

Proof. This follows straightforwardly by writing out the left hand expression using the formulas (1.6)
and (4.34).

42



Note that the (A,B, γ)-term in the sum for Φ̂(Uϖ(ξ, η)) has weight −ττ0(wt(A)) + wt(B).

Choose now for each ϖ ∈ P+ non-zero vectors ηw0(ϖ), ξwX(ϖ) ∈ Vϖ with respective weights w0(ϖ) and
wX(ϖ). Put

kϖ = Uϖ(ηw0(ϖ), ξwX(ϖ))

Lemma 4.35. We have
Φ̂(kϖ) = tϖKτ(ϖ)+Θ(τ(ϖ))

where tϖ = ⟨ηw0(ϖ),K0ξwX(ϖ)⟩ is non-zero.

Proof. We need to analyze the inner products

κA,B,γ = ⟨ηw0(ϖ), E
AKγF

BξwX(ϖ)⟩.

Since ηw0(ϖ) is a lowest weight vector, it follows that κA,B,γ = 0 unless A = γ = 0. On the other
hand, the element K0F

BξwX(ϖ) has weight wXw0(wX(ϖ) − wt(B)) = w0(ϖ) − wXw0(wt(B)), hence
κ0,B,0 = ⟨ηw0(ϖ),K0F

BξwX(ϖ)⟩ is zero unless w0(ϖ) = w0(ϖ)− wXw0(wt(B)) = 0, i.e. wt(B) = 0.

It follows that
Φ̂(kϖ) = κ0,0,0K

−1
Θ(wX(ϖ))K

−1
wX(ϖ).

Using wX(ϖ) = −Θ(τ(ϖ)), we can write K−1
Θ(wX(ϖ))K

−1
wX(ϖ) = Kτ(ϖ)+Θ(τ(ϖ)). Finally, κ0,0,0 ̸= 0 since

the weight spaces at w0(ϖ) and wX(ϖ) are one-dimensional and K0 = ξT−1
wX

T−1
w0

.

Write now
fϖ,r = Uϖ(Erηw0(ϖ), ξwX(ϖ))

Lemma 4.36. There exists tϖ,r ∈ C and Yϖ,r ∈ Uq(b) such that

Φ̂(fϖ,r) = tϖ,rFττ0(r)Kτ(ϖ)+Θ(τ(ϖ)) + Yϖ,r. (4.35)

Moreover,

(1) tϖ,r ̸= 0 if Erηw0(ϖ) ̸= 0,

(2) Yϖ,r = 0 if r ∈ X,

(3) Yϖ,r ∈ Uq(b)−Θττ0(αr) for r ∈ I \X.

Proof. Fix ϖ, r, where we assume that Erηw0(ϖ) ̸= 0. We have to analyze again the coefficients

κA,B,γ = ⟨Erηw0(ϖ), E
AKγF

BξwX(ϖ)⟩.

Since ηw0(ϖ) is a lowest weight vector, it is clear that κA,B,γ = 0 unless A is the simple root αr or the
empty word.

If A = αr, we have that

καr,B,γ = ⟨Erηw0(ϖ), ErKγF
BξwX(ϖ)⟩ = ⟨E∗

rErηw0(ϖ),KγF
BξwX(ϖ)⟩.

Since E∗
rErηw0(ϖ) is a non-zero multiple of ηw0(ϖ), it follows as before that καr,B,γ = 0 unless γ = B = 0,

in which case καr,B,γ is a non-zero scalar. This already accounts for the general form (4.35) and (1).

Assume now that A is the empty word. We claim that κ0,B,γ = 0 unless γ = 0. Indeed, from the proof
of [BK19, Proof of Theorem 6.10] it follows that Kαs = 0 for all s ∈ I, which proves the claim. On the
other hand, by weight arguments the element

κ0,B,0 = ⟨Erηw0(ϖ),K0F
BξwX(ϖ)⟩

will be zero unless
w0(ϖ) + αr = w0(ϖ)− wXw0(wt(B)).

This forces wt(B) = −Θττ0(αr). As Θ(αr) = αr for r ∈ X, it follows that in this case no such B exist,
and hence Yϖ,r = 0. On the other hand, this also shows that Yϖ,r ∈ U(b)−Θττ0(αr) for r ∈ I \X.
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We will need some more detailed information in the case r ∈ I \X. In the following, we write QX ⊆ Q
for the root lattice of gX , generated by the αr with r ∈ X.

Definition 4.37. For r ∈ I \X, we define

Λr = ϖr −Θ(ϖr) ∈ P+.

Proposition 4.38. The following identity holds for r ∈ I \X: Φ̂(fΛr,r) = tΛr,rBττ0(r) with tΛr,r ̸= 0.

Proof. Clearly Erηw0(Λr) ̸= 0 since (Λr, αr) > 0. This shows that tΛr,r ̸= 0. Also note that in this case

Φ̂(fΛr,r) = tΛr,rFττ0(r) + YΛr,r

since Θ(Λr) = −Λr. Using notation as in Definition (4.9), we can thus write Φ̂(fΛr,r) = tΛr,rBττ0(r)+Y ′
r

where
Y ′
r = YΛr,r − tΛr,rcττ0(r)Xττ0(r)K

−1
ττ0(αr)

.

We clearly still have Y ′
r ∈ U(b)β with β = −Θττ0(αr). We claim that β /∈ Q+

X . Indeed, if β were in Q+
X ,

it would follow from Θ|Q+
X
= id and Θ2 = id that β = −ττ0(αr), which is impossible. Since Y ′

r ∈ B, we

then find Y ′
r = 0 by the following lemma.

Lemma 4.39. Let β ∈ Q+ \Q+
X . Then B ∩ U(b)β = {0}.

Proof. As usual, let us put Br = Fr for r ∈ X. For J = (j1, . . . , jn) with jk ∈ I, write FJ = Fj1 . . . Fjn

and BJ = Bj1 . . . Bjn , and put |J | = n. Let J be a collection of indices such that {FJ | J ∈ J } is a basis
of U(n−). Let Uq(nX) be the unital algebra generated by the Er with r ∈ X, and let as before Uq(h

Θ)
be the algebra generated by the Kω with ω ∈ P and Θ(ω) = ω. In [Kol14, Proposition 6.2] it is shown
that {BJ | J ∈ J } is a basis for B as a left Uq(nX)Uq(h

Θ)-module. This uses the following fact: if we
take BJ with |J | = n, then BJ − FJ ∈ U(b)Fn−1(U(n−)), where F• is the filtration of U(n−) defined
by Fn(U(n−)) = span{FJ | |J | ≤ n}.

Assume now that Y ∈ U(b)β is a non-zero element with β /∈ Q+
X , and assume Y ∈ B. Write

Y =
∑
J∈J

TJBJ ,

for uniquely determined TJ ∈ Uq(nX)Uq(h
Θ) with only finitely many non-zero. Since Y is non-zero and

weights for Uq(nX)Uq(h
Θ) lie in Q+

X , there must exist J ∈ J with |J | > 0 and TJ ̸= 0. Let

N = max{|J | | TJ ̸= 0} > 0.

Then we have
Y −

∑
J∈J

TJFJ ∈ U(b)FN−1(U(n−)).

Since Y ∈ U(b)β , this would imply that also∑
J∈J

TJFJ ∈ U(b)FN−1(U(n−)).

However, as the FJ form a basis of Uq(g) as a left Uq(b)-module, this implies TJ = 0 for all J with
|J | = N , in contradiction with the definition of N . This concludes the proof.

Theorem 4.40. The equality Uq(k
′) = Uq(u

θ) holds.

Proof. From Corollary (4.33) we already know that ⊆ holds. For the reverse inclusion, it is by Lemma
4.32 sufficient to show that the weak closure of the image of Φ̂ equals the weak closure of B. However, by
Lemma 4.35, Lemma 4.36 and Proposition 4.38 we know that the range of Φ̂ contains the Kτ(ϖ)+Θ(τ(ϖ))

for all ϖ, the Fττ0(r)Kτ(ϖr)+Θ(τ(ϖr)) for all r ∈ X, and the Br for all r ∈ I \X. Since the range of Φ̂ is
∗-closed, its weak closure equals its bicommutant. This easily implies that the weak closure of the range
of Φ̂ will equal the weak closure of B.
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4.4. Comparison of the coideal subalgebras Oq(K\U) and Oq(U
θ\U)

Let again K be the ∗-compatible ν-modified universal K-matrix defined in (4.32), and let Oq(K\U) ⊆
Oq(U) be the right coideal ∗-subalgebra as constructed from the map ϕ in Theorem 2.39. LetOq(U

θ\U) =

Ûq(u
θ) ⊆ Oq(U) be the right coideal ∗-subalgebra dual to Uq(u

θ) ⊆ Uq(u) as defined by the general duality
in Definition 2.43. We will show the following theorem.

Theorem 4.41. The equality Oq(K\U) = Oq(U
θ\U) holds, except possibly for Uθ ⊆ U containing a

component of type EIII, EIV , EV I, EV II or EIX.

The proof of this theorem will not be uniform, and will be subdivided into a separate treatment for
different classes, see Proposition 4.49, Proposition 4.52, Proposition 4.53 and Proposition 4.54. For some
cases the proof is straightforward, and for others the proof is very ad hoc and computational. As such,
our methods were not strong enough to cover also the mentioned E-cases in the above theorem. However,
at the end of the section we will sketch a uniform proof for all cases when q is sufficiently close to 1,
Theorem 4.55, based on deformation theory.

Let us first start with the following easy result.

Proposition 4.42. The inclusion Oq(K\U) ⊆ Oq(U
θ\U) holds.

Proof. This follows by general duality for coideals, Theorem 4.40 and Proposition 2.44.

To obtain an inclusion in the other direction, we first recall the following classical terminology. Let us
write

Oq(U)ϖ = linear span{U(ξ, η) | ξ, η ∈ Vϖ}, Oq(U
θ\U)ϖ = Oq(U)ϖ ∩ Oq(U

θ\U)

for spectral subspaces, and call

mq,ϖ =
dim(Oq(U

θ\U)ϖ)

dim(Vϖ)

the associated multiplicity. We also use this notation at q = 1.

Definition 4.43. A positive integral weight ϖ ∈ P+ is called spherical with respect to Uθ if

O(Uθ\U)ϖ ̸= 0.

We denote by P+
s the set of spherical weights.

The following theorem states in particular that Uθ ⊆ U and its quantum companion are Gelfand pairs,
i.e. the multiplicity function is {0, 1}-valued.

Theorem 4.44. If ϖ ∈ P+ and q > 0, then mq,ϖ = δϖ∈P+
s
.

Proof. For q = 1 this is classical. For q ̸= 1 this is proven3 in [Let00, Theorem 4.2 and Theorem 4.3],
see also [Let02, Theorem 7.8].

Let now IΣ ⊆ I \X be a fundamental domain for τ , and define µr ∈ P+ for r ∈ IΣ as follows in terms
of the Satake diagram (X, τ) and the fundamental weights ϖr:

µr =

 ϖr if τ(r) = r and r is connected to a black vertex,
2ϖr if τ(r) = r and r is not connected to a black vertex,
ϖr +ϖτ(r) if τ(r) ̸= r.

Theorem 4.45 ([Sug62, Theorem 2 and Theorem 4], see also [Vre76]). A weight µ is spherical if and
only µ is a positive integer combination of the µr.

3The references assume that q is an indeterminate, but one can check that the proofs for these specific results are also
valid for the case of q a scalar.
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We call the µr the fundamental spherical weights. In particular, it follows that P+
s is a cone.

Corollary 4.46. The spectral subspaces Oq(U
θ\U)µr

generate Oq(U
θ\U) as an algebra.

Proof. Let vr be a non-zero Uq(u
θ)-invariant vector in Vµr , and let ξr be a highest weight vector in Vµr .

Then fr = U(vr, ξr) ∈ Oq(U
θ\U) must be non-zero, as it generates Oq(U

θ\U)µr as a Uq(g)-module
for the translation action X � f = f(−X). Now as Oq(U) does not have zero-divisors [Jos95, Lemma
9.1.9.(1)], it follows that fn = fn1

r1 . . . fna
ra ̸= 0, with r1, . . . , ra an enumeration of IΣ and ns ∈ N. On

the other hand, it is clear that fn ∈ Oq(U
θ\U)µ for µ =

∑a
s=1 nsµs. As the algebra generated by the

Oq(U
θ\U)µr

is closed under the Uq(u)-action, this shows that the latter algebra must equal the whole of
Oq(U

θ\U).

Lemma 4.47. Assume ϖ ∈ P+ vanishes on X. Then Oq(U
θ\U)ϖ+τ(ϖ) lies in the range of ϕ.

Proof. Let ξϖ and ηw0ϖ be respectively a non-zero highest weight and lowest weight vector in Vϖ. Then
it is clear that Z(ηw0ϖ, ξϖ) is a highest weight vector for the natural Uq(g)-action (2.34) on Oq(Zν), with
highest weight ϖ − ττ0w0(ϖ) = ϖ + τ(ϖ). It follows that

ϕ(Z(ηw0ϖ, ξϖ)) ∈ Oq(U
θ\U)ϖ+τ(ϖ).

Since the latter spectral subspace has multiplicity one, it now suffices by Uq(u)-equivariance of ϕ to show
that ϕ(Z(ηw0ϖ, ξϖ)) ̸= 0. This will follow once we show that

ε(ϕ(Z(ηw0ϖ, ξϖ))) = ⟨ηw0ϖ,K ξϖ⟩ ≠ 0.

Now from the correspondence between K = ττ0(K )∗ and K, it is clear from taking contragredient
representations that

⟨ηw0ϖ,K ξϖ⟩ ≠ 0 ⇔ ⟨ξτ0(ϖ),Kητ0(ϖ)⟩ ≠ 0.

Write now K =
∑

γ∈Q+ Kγ as in (4.34). As wXϖ = ϖ by the assumption ϖ|X = 0, we have that

T−1
wX

T−1
w0

ητ0(ϖ) will be a non-zero multiple of ξτ0(ϖ). Hence ⟨ξτ0(ϖ),Kγητ0(ϖ)⟩ = 0 for γ ̸= 0. From this,
it is clear that

⟨ξτ0(ϖ),Kητ0(ϖ)⟩ = ⟨ξτ0(ϖ),K0ητ0(ϖ)⟩ ≠ 0.

Corollary 4.48. The spectral subspace Oq(U
θ\U)µr lies in the range of ϕ for r ∈ IΣ with τ(r) ̸= r,

and for r ∈ IΣ with τ(r) = r but r not connected to a black vertex. For r ∈ IΣ with τ(r) = r and r
connected to a black vertex, we have that Oq(U

θ\U)2µr
lies in the range of ϕ.

Proposition 4.49. The equality Oq(K\U) = Oq(U
θ\U) holds in the following irreducible cases, using

still the classification as in [Ar62]:

� AI, AIII, AIV ,

� CI,

� DI in the case of so(p)× so(2l − p) ⊆ so(2l) with p = l − 1 or p = l,

� EI, EII, EV , EV III,

� FI,

� G,

� diagonal inclusions u ⊆ u⊕ u.

In particular, equality holds for all the symmetric pairs corresponding to split real semisimple Lie algebras.

Proof. This follows immediately from Corollary 4.46, Corollary 4.48 and the fact that in the Satake
diagrams corresponding to the above cases there are no τ -fixed white points connected to black vertices.
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There are some further cases which can be obtained by an easy argument, using the following lemma.

Lemma 4.50. For all ϖ ∈ P+, the operator πϖ(K ) is not a scalar.

Proof. If ξϖ is a highest weight vector, we have that K ξϖ is a non-zero scalar multiple of the vector
T−1
wX

T−1
w0

ξϖ. The latter is a weight vector at weight wXw0ϖ = −wXτ0(ϖ). We claim that −wXτ0(ϖ) ̸=
ϖ, which will finish the proof. For suppose this were not the case. Then wXϖ = −τ0(ϖ) is a negative
weight. However, let β ∈ ∆+ be the highest root. Since β =

∑
r∈I krαr with kr > 0 for all r, we know

that β /∈ ∆+
X . On the other hand, wX preserves the set ∆+ \∆+

X , and hence wXβ ≥ 0. It follows that

0 ≥ (wXϖ,wXβ) = (ϖ,β) > 0,

a contradiction.

Corollary 4.51. Let µ ∈ P+
s \ {0}, and assume that there exists a positive weight ϖ ∈ P+ such that

Vτ(ϖ) ⊗ Vϖ contains Vµ as its only non-trivial spherical representation. Then Oq(U
θ\U)µ lies in the

range of ϕ.

Proof. The matrix coefficients of the Zϖ(ξ, η) span an Uq(g)-module which is isomorphic to the tensor
product representation V ∗

ττ0(ϖ)⊗Vϖ
∼= Vτ(ϖ)⊗Vϖ. Hence the range of this module lies in C1+Oq(U

θ\U)µ
by assumption. However, the range can not be C1, as this would imply by (2.46) that πϖ(K ) intertwines
πϖ and πϖ ◦ ττ0, and must hence be a scalar, in contradiction with Lemma 4.50. This entails that
Oq(U

θ\U)µ lies in the range of ϕ.

Proposition 4.52. The equality Oq(K\U) = Oq(U
θ\U) holds also in the following irreducible cases:

� BI, BII,

� DI (remaining cases) and DII.

Proof. In these cases, there is a unique white vertex s which is τ -fixed and connected to a black vertex.
By Corollary 4.46, Corollary 4.48 and Corollary 4.51, it is then sufficient to show that there exists an
irreducible representation Vϖ such that Vµs

is the only non-trivial spherical representation in Vτ(ϖ)⊗Vϖ.

Let us consider the BI and BII cases first. In these cases g is of type Bℓ, τ = id and X = {p+ 1, · · · , ℓ}
with 1 ≤ p ≤ ℓ− 1. The Satake diagram is as follows.

1 p ℓ

The spherical weights are µr = 2ϖr for r = 1, · · · , p− 1 and µp = ϖp. We have

Vϖℓ
⊗ Vϖℓ

∼= V2ϖℓ
⊕

(
ℓ⊕

r=1

Vϖℓ−r

)
,

where by convention Vϖ0 is the trivial representation, see for instance [OV90, Reference Chapter, Section
2, Table 5]. Hence Vϖp is the only non-trivial spherical representation appearing in Vϖℓ

⊗ Vϖℓ
.

Next consider the cases DI and DII. In these cases g is of typeDℓ andX = {p+1, · · · , ℓ} with 1 ≤ p ≤ ℓ−2.
The automorphism τ depends on the parity of ℓ− p: we have τ = id for ℓ− p even, while for ℓ− p odd
we have that τ switches the two end nodes of the Dynkin diagram.

1 p
ℓ− 1

ℓ

1 p
ℓ− 1

ℓ
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The spherical weights in these cases are µr = 2ϖr for r = 1, · · · , p − 1 and µp = ϖp. We have the
following tensor product decompositions:

Vϖℓ
⊗ Vϖℓ

∼= V2ϖℓ
⊕

⊕
r≥1

Vϖℓ−2r

 , Vϖℓ
⊗ Vϖℓ−1

∼= Vϖℓ−1+ϖℓ
⊕

⊕
r≥1

Vϖℓ−2r−1

 ,

see again [OV90, Reference Chapter, Section 2, Table 5]. In the case ℓ − p even we use the first de-
composition. Then we have Vϖℓ−2r

= Vϖp
for r = (ℓ − p)/2 and this is the only non-trivial spherical

representation appearing. In the case ℓ−p odd we use the second decomposition, since τ(ℓ) = ℓ−1. Then
we have Vϖℓ−2r−1

= Vϖp
for r = (ℓ − p − 1)/2 and this is the only non-trivial spherical representation

appearing.

The only remaining classical cases to be dealt with are now the following.

Proposition 4.53. The equality Oq(K\U) = Oq(U
θ\U) holds also in the following irreducible cases:

� AII,

� CII,

� DIII.

Proof. We give the corresponding Satake diagrams of slp+1(H), sp(p, q) and su∗l (H) the standard ordering
as can be found for example in the tables 6 and 7. Then taking the weight ϖ = ϖ1 in Corollary 4.51, we
obtain that the range of ϕ contains Oq(U

θ\U)µ2
, where µ2 = ϖ2. It suffices to show that these elements

generate Oq(U
θ\U) as an algebra. This claim will be proven in Proposition C.2 in Appendix C.

Finally, we treat the case FII of g = f4. This corresponds to the following Satake diagram.

1 2 3 4

For this case, we will very explicitly verify that Oq(K\U)µ1 ̸= 0.

Proposition 4.54. The equality Oq(K\U) = Oq(U
θ\U) holds also in the case irreducible case FII.

Proof. By Corollary 4.46 and equivariance of ϕ, it is sufficient to show that Oq(U
θ\U)ϖ1

contains a
non-zero element. This is the content of Proposition D.4 in Appendix D.

In what follows, we will sketch a uniform argument showing that Theorem 4.41 holds true, also in the
exceptional cases, for q close to 1. As this result is not as strong as we would like, we will not be very
detailed.

Theorem 4.55. For any compact symmetric pair Uθ ⊆ U , the identity Oq(K\U) = Oq(U
θ\U) holds

for q sufficiently close to 1.

Proof. First we note that the highest weight modules Vϖ for Uq(g) can be identified as vector spaces over
all 0 < q in such a way that the structure coefficients of Oq(G) depend continuously on q [NT11, Theorem
1.2]. Similarly, the structure coefficients of the algebra Oq(Zν) depend then continuously on q, becoming
in the limit q = 1 the vector space O(G) with product and ∗-structure

f ∗ g = (g(1) ⊗ f(1),Ωϵ)f(2)g(2), f ♯(g) = f(τ(g)∗)

We now claim that the ∗-homomorphisms

ϕ = ϕq : Oq(Zν) → Oq(U)
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have a well-defined limit at q = 1. For this, it is enough to show that the K-matrix K = Kq, or
equivalently Kq has a well-defined limit at q = 1. Now Tw0

and TwX
converge respectively to m0 and

mX , while the functions ξ and ξ′ converge to z̃τ . Finally, from its construction in [BK19] one sees that
the quasi-K-matrix Xq becomes the unit at q = 1. Since also the ribbon element v becomes 1 in the
limit q = 1, it follows that the Kq indeed vary continuously over q, and at the limit q = 1 we have

K1 = E ϵ̃−1m0mX z̃−1
τ .

If now ϕ1 is surjective, it follows that ϕq will hit all the Oq(U
θ\U)µr

for q close to 1, and hence ϕq will
be surjective by Corollary 4.46.

To see that ϕ1 is surjective, note that the range of ϕ1, being a coideal, will be of the form O(K\U) for
K a closed subgroup of Uθ. Since

ϕ1(f)(u) = f(τ0τ(u)
−1K1u), u ∈ U,

it follows that
K = {u ∈ U | τ0τ(u)−1K1u = K1}.

But as E ϵ̃−1 is central, as θ = Ad(z̃) ◦ ττ0 ◦ Ad(m0)Ad(mX) and as m0mX z̃τ = z̃m0mX , we see that
K = Uθ.

Let us end with the following remark.

Remark 4.56. By construction, the Vogan automorphism ν of U determined by (ττ0, ϵ) will be inner
conjugate to θ, say by u ∈ U ,

θ = Ad(u)ν Ad(u−1).

Let
w = wν,θ = uν(u)∗ ∈ U.

Then w∗ = ν(w), i.e. w ∈ Hν with Hν as in (2.31), and moreover

Ad(w)(x) = ν(x), x ∈ Uθ.

In particular, we obtain a map

Uθ\U → Hν , Uθx 7→ ν(x)−1wx.

Now by the proof of Theorem 4.55, we see that in the classical limit K corresponds to the element
w′ = ε̃−1m0mX z̃−1

τ . It would hence be interesting to see if one can take w = w′, and if then the
factorisation w = uν(u)∗ passes through to the quantum setting for K . We believe that this will be
connected to a notion of quantum Cayley transform, see [Let19] for some closely related material.

A. Variations on twisting

In this appendix, we consider some variations on the results in Section 2 by modifying the twist. We
resume the notation of that section.

As a first variation, consider the opposite universal R-matrix and associated coquasitriangular structure

R̃ = R−1
21 , r̃ = r−1

21 .

With ν ∈ End∗(b), we can then also consider

R̃ν = R−1
ν,21, r̃ν = r−1

ν,21

and the associated convolution invertible real 2-cocycle functional

ω̃ν : Ocom
q (GR)×Ocom

q (GR) → C, ω̃ν(fg
†, hk†) = ε(f)r̃ν(h, g

∗)ε(k).
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Definition A.1. For ν, µ ∈ End∗(Uq(b)) we define Õν,µ
q (GR), resp.

≈
Oν,µ

q (GR) as the vector space
Ocom

q (GR) endowed with the respective new multiplications

m̃ν,µ(f, g) = ω̃ν(f(1), g(1))f(2)g(2)ω
−1
µ (f(3), g(3)), f, g ∈ Ocom

q (GR),

≈
mν,µ(f, g) = ω̃ν(f(1), g(1))f(2)g(2)ω̃

−1
µ (f(3), g(3)), f, g ∈ Ocom

q (GR)

and the original ∗-structure.

As before, these can be made into a connected cogroupoid with compatible ∗-structure using the tensor

product comultiplication on Ocom
q (GR). In particular, we have the Hopf ∗-algebra

≈
Oν

q (GR) =
≈
Oν,ν

q (GR),

and the ∗-algebra Õν,id
q (GR) with commuting left and right coactions by respectively

≈
Oν

q (GR) andOq(GR).
We then have the following straightforward modifications of the results in Section 2. Unexplained
notation should be straightforward to interpret.

Lemma A.2 (Cf. Lemma 2.7). Let ν, µ ∈ End∗(Uq(b)), and let π, π′ be representations of Uq(u). In

Õν,µ
q (GR), resp.

≈
Oν,µ

q (GR) we have the commutation relations

Ỹ ′
13R

π′,π
µ,12Ỹ

†
23 = Ỹ †

23R̃
π′,π
ν,12 Ỹ

′
13,

≈
Y ′
13R̃

π′,π
µ,12

≈
Y †
23 =

≈
Y †
23R̃

π′,π
ν,12

≈
Y ′
13.

Proposition A.3 (Cf. Proposition 2.10). There is a unique pairing (−,−)′ϵ of Hopf algebras between
U ϵ
q (g) and Oq(G) such that

(Kω, f)
′
ϵ = (Kω, f), (Er, f)

′
ϵ = (Er, f), (Fr, f)

′
ϵ = ϵr(Fr, f). (A.1)

Moreover, there is a unique pairing (−,−)ν of Hopf ∗-algebras between Uq(gν) and
≈
Oν

q (GR) extending
the above pairing (−,−)′ϵ.

We then denote by
≈
Oq(Gν) the Hopf ∗-algebra arising as the coimage of

≈
Oν

q (GR) obtained by dividing

out through the kernel of this pairing. Clearly
≈
Oq(Gν) ∼= Oq(Gν) as Hopf ∗-algebras.

Let us denote Õq(Gν\\GR) for the coinvariants in Õν,id
q (GR) with respect to the left coaction by

≈
Oq(Gν).

Denote by Õq(Zν) the vector space Oq(G) with the product

f ∗̃ g = r(f(1), g(2))(f(2) ⊗ g(3),Ωϵ)f(3)g(4)r̃(f(4), τ(S(g(1)))). (A.2)

and the ∗-structure f ♯ = τ(S(f)∗).

Theorem A.4 (Cf. Theorem 2.28). The map

ȷ̃ν : Õq(Zν) ∼= Õq(Gν\\GR), f 7→ (f(2),E )S(f(1))τ(f(3))
∗†

induces an isomorphism of ∗-algebras.

In terms of the generating matrices of Õq(Zν), which we write Z̃, this means

ȷ̃ν : Z̃π 7→ Ỹ −1
π (Eπ ⊗ 1)τ(Ỹ )−1,†

π .

We then have the following form of the reflection equation:

R̃π,π′

21 Z̃13R̃
π,π′

τ,12 Z̃
′
23 = Z̃ ′

23R̃
π,π′

τ,21 Z̃13R̃
π,π′

12 ,

with the induced right coaction of Oq(GR) now given by

Z̃π 7→ Y −1
π,13Z̃π,12τ(Yπ)

−1,†
13 .

Inverting (A.2) leads to

(f(1) ⊗ g(1),Ωϵ)f(2)g(2) = r(S(f(1)), g(1))f(2) ∗̃ g(3)r̃(f(3), τ(g(2))),

50



so that the corresponding ∗-characters of Õq(Zν) are those K̃ ∈ Uq(g) with

K̃ ∗ = τ(K̃ ), Ωϵ∆(K̃ ) = R−1(K̃ ⊗ 1)R̃τ (1⊗ K̃ ) = (1⊗ K̃ )R̃τ,21(K̃ ⊗ 1)R−1
21 . (A.3)

Let Õq(K\U) the corresponding right coideal ∗-subalgebra of Oq(U). Let v be the ribbon element as
defined in (4.28).

Proposition A.5. Assume that ν is of symmetric type. Then any ∗-compatible ν-modified universal K-
matrix is invertible, and there is a one-to-one correspondence between ∗-compatible ν-modified universal
K-matrices and elements satisfying (A.3), the correspondence being given by

K̃ = v−1K −1. (A.4)

Moreover,
Oq(K\U) = τ(Õq(K\U)). (A.5)

Proof. If K is a ∗-compatible ν-modified universal K-matrix, put Kϵ = E −1K . Then

∆(Kϵ) = R−1(Kϵ ⊗ 1)Rν(1⊗ Kϵ) = (1⊗ Kϵ)Rν,21(Kϵ ⊗ 1)R−1
21 . (A.6)

As in [KoSt09, Lemma 3.13] one finds by applying Kϵ to S(a(1))a(2) and using (A.6) that K ϵ ∈ Uq(u),
defined by

(K ϵ, a) = r(S(a(2)), a(4))(Kϵ, S(a(3)))rν(S(a(1)), a(5)),

is a left inverse to Kϵ. Similarly one constructs a right inverse, proving invertibility of K . The same
argument shows that any element satisfying (A.3) is invertible.

Using now the identities (2.18) and (4.29), the centrality of v and the fact that, in the symmetric case,
Ωϵ = Ω−1

ϵ , one deduces that the correspondence (A.4) is well-defined.

To see that (A.5) holds, note that the same argument as in Proposition 2.44 shows that

̂̃Oq(K\U) = {X ∈ Uq(u) | (1⊗ K̃ )(id⊗τ)∆(X) = ∆(X)(1⊗ K̃ )}.

Using centrality of v, it is then immediate that

̂̃Oq(K\U) = {X ∈ Uq(u) | (1⊗ K )∆(X) = (id⊗τ)∆(X)(1⊗ K )},

hence ̂̃Oq(K\U) = Ôq(K\U) by Proposition 2.44, and then Õq(K\U) = Oq(K\U) by the biduality
statement in Proposition 2.42.

Remark A.6. It was not clear to us how (or if) the above correspondence can be generalized to the
non-symmetric case, as one no longer has invertibility of K .

Let us now present a second variation. Let us for the moment identify Oq(Ḡ) with Oq(G) by the map
f† 7→ f∗, and identify then further Oν

q (GR) with Oq(G) ⊗ Oq(G) by applying this map to the second

component. In particular, we then have (f ⊗ g)† = g∗ ⊗ f∗. By general twisting arguments, Oν
q (GR) is

coquasitriangular with universal r-form

rν,D = rν,14r13r24r
−1
ν,32,

cf. [Maj95, Theorem 2.3.4 and Proposition 7.3.2]. Moreover, rν,D is real in the sense that

(S ⊗ S)(rν,D)† = rν,D,21 ∈ Uq(g)
⊗̂2⊗̂Uq(g)

⊗̂2.

It follows that we can consider the rν,D-twisted ∗-algebra Oν
q (GR)

′, obtained by endowing Oν
q (GR) with

the original ∗-structure and the new product

f · g = (rν,D, f(1) ⊗ g(1))f(2)g(2), f, g ∈ Oν
q (GR). (A.7)
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This ∗-algebra fits into a connected cogroupoid linking Oν
q (GR)

op with Oν
q (GR). By composition, we also

obtain an rν,D-twisted ∗-algebra Oν,id
q (GR)

′ with new product given again by (A.7), but interpreting

f, g ∈ Oν,id
q (GR). This time the ∗-algebra Oν,id

q (GR)
′ fits into a connected cogroupoid linking Oν

q (GR)
op

with Oq(GR). The ∗-algebra Oν,id
q (GR)

′ is the ν-twisted Heisenberg double analogon of the ν-twisted

Drinfeld double Oν,id
q (GR), and corresponds to4 the twisted doubles considered in respectively the Poisson

and quantum setting in [STS85,STS94].

Let us show that this second variation is actually isomorphic to the first variation. We will need some
preparations.

Theorem A.7. There exists an invertible element t ∈ Uq(g) such that the following holds: Ad(t) is an
algebra and anticoalgebra homomorphism satisfying

Ad(t)(Kω) = K−τ0(ω), Ad(t)(Er) = −q2rFτ0(r), Ad(t)(Fr) = −q−2
r Eτ0(r), (A.8)

and
R = (t⊗ t)∆(t−1) = ∆op(t−1)(t⊗ t). (A.9)

Moreover,
S(t)∗ = t. (A.10)

Proof. Let c ∈ Uq(u) be defined by cξ = q(wt(ξ),wt(ξ))/2ξ for ξ in some Vϖ, and let T ′
w0

be the alternative
Lusztig braid operator at the longest root constructed from the

T ′
rξ =

∑
a,b,c≥0

−a+b−c=(wt(ξ),α∨
r )

(−1)bqac−b
r E(a)

r F (b)
r E(c)

r ξ.

Then from [ST09, Lemma 3.10 and Theorem 3.11] (see also [KR90,LS91,KT09]) it follows that

t = cK−ρT
′
w0

= cT ′
w0

Kρ

satisfies (A.8) and (A.9), upon noting that

� the above references use the opposite comultiplication,

� their R-matrices hence correspond to our R−1,

� in [ST09, Definition 3.5] one should correct the small typo by adding an extra sign in the expression
under the summation sign and changing the root to the associated coroot, and

� we have changed the appearence of Kρ in [ST09, Definition] into K−ρ as this does not change (A.9)
but is important to have the right compatibility with the ∗-structure.

Finally, to see that S(t)∗ = t we first note that S(c)∗ = c. Since we can write K−ρT
′
w0

as a product of
the rank one operators K−αr/2T

′
r, it is hence sufficient to verify that K−α/2T

′ is stable under S(−)∗ in
the rank one case. However, since S(X)∗ = R(Ad(K−α/2)(X))∗, and since K−α/2T

′ = T ′Kα/2, this is
equivalent to R(T ′)∗ = T ′K2α. This now follows similarly as in Lemma 1.6.

Consider now the corestricted left coaction of Oq(Gν)
op on Oν,id

q (GR)
′, and let Oq(Gν\\GR)

′ be the
associated coinvariant ∗-subalgebra. Let t be as in Theorem A.7.

Proposition A.8. The map

F : Oν,id
q (GR)

′ → Õν,id
q (GR), f 7→ f((t⊗ t)R−1

ν,21−)

is a right Oq(GR)-equivariant ∗-isomorphism, carrying Oq(Gν\\GR)
′ isomorphically onto Õq(Gν\\GR).

4In [STS85, STS94] the constructions are carried out in the complex setting, without consideration of the ∗-structure.
This allows one to consider a more general class of automorphisms than the involutive ones.
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Proof. Pulling the algebra structures back to Ocom
q (GR) ∼= Oq(G)⊗Oq(G), we need to compare the two

products
f · g = (rν,14r13r24, f(1) ⊗ g(1))f(2)g(2)(r

−1
32 , f(3) ⊗ g(3)), f, g ∈ Ocom

q (GR)

of Oν,id
q (GR)

′ and

fg = (r−1
ν,23, f(1) ⊗ g(1))f(2)g(2)(r

−1
32 , f(3) ⊗ g(3)), f, g ∈ Ocom

q (GR)

of Õν,id
q (GR) by means of F . This entails checking that, with x = (t⊗ t)R−1

ν,21,

(x−1 ⊗ x−1)Rν,14R13R24∆
⊗(x) = R−1

ν,23, (A.11)

where ∆⊗ is the tensor product coalgebra structure. Now using (A.8), we easily see that

(t−1 ⊗ t−1)Rν = Rν,21(t
−1 ⊗ t−1).

By (A.9) we can then simplify (A.11) to

Rν,21Rν,43Rν,41∆
⊗(R−1

ν,21) = R−1
ν,23.

However, an easy calculation shows that ∆⊗(R−1
ν,21) = R−1

ν,41R
−1
ν,21R

−1
ν,43R

−1
ν,23, proving the above identity.

This shows that F is an algebra isomorphism, and it is right Oq(GR)-equivariant by construction. To
see that F is ∗-preserving, we need to show that x as above satisfies S(x)† = x, i.e.

(S ⊗ S)((t⊗ t)R−1
ν )∗⊗∗ = (t⊗ t)R−1

21,ν .

This follows from (S ⊗ S)Rν = Rν and R∗⊗∗
ν = Rν,21 together with (A.10).

Finally, to see that F (Oq(Gν\\GR)
′) = Õq(Gν\\GR), it is enough to compare the right infinitesimal

actions � of respectively Uq(gν) and Uq(gν)
cop on Õq(Gν\\GR) and Oq(Gν\\GR)

′. Transporting these

actions along the natural vector space isomorphisms Õq(Gν\\GR) ∼= Oq(G) ⊗ Oq(G) ∼= Oq(Gν\\GR)
′

and taking care of implementing correctly the pairings (−,−)ϵ and (−,−)′ϵ, we compute for example for
f ∈ Oq(G)⊗Oq(G) that

F (f)�Kω = f(x(Kω ⊗Kω)−) = f((K−τ0(ω) ⊗K−τ0(ω))x−) = F (f �K−τ0(ω)).

Similarly, using again (A.8), we find

F (f)� Er = f((t⊗ t)R−1
ν,21(Er ⊗ 1 + ϵrKr ⊗ Eτ(r))−)

= f((t⊗ t)(ϵr1⊗ Er + Er ⊗Kτ(r))R
−1
ν,21−)

= f((−ϵrq
2
r1⊗ Fτ0(r) − q2rFτ0(r) ⊗K−τ0τ(r))(t⊗ t)R−1

ν,21−)

= F (f � (−q2rFτ0(r))),

where in the last step we use that τ and τ0 commute, cf. Lemma 4.2. One similarly shows that F (f)�Fr =
F (f � (−q−2

r Eτ0(r))), from which the preservation of invariant subalgebras under F then follows.

B. Enhanced Satake diagrams and associated Vogan diagrams

Let g be a semisimple complex Lie algebra with Dynkin diagram Γ and compact form u. We use notation
as in Section 1. In particular, we endow g with the Lie ∗-algebra structure inducing u.

Recall that two Lie algebra involutions σ, σ′ of u or, equivalently, two Lie ∗-algebra involutions of g are
called inner equivalent or inner conjugate if there exists g ∈ G with

σ′ = Ad(g)σAd(g)−1.

It is not hard to see that one may always take g ∈ U , so that σ, σ′ are unitarily inner equivalent. More
generally, we call σ, σ′ equivalent or conjugate if there exists ϕ ∈ Aut(u) = Aut(g, ∗) such that

σ′ = ϕσϕ−1.
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Recall from Definition 4.4 the construction of involutions θ = θ(X, τ, z) starting from a concrete Satake
diagram (X, τ, z). It is straightforward to check that θ(X, τ, z) does not depend on z up to unitary inner
conjugacy by an element Ad(t) for t ∈ T , the maximal torus in U . We then have the following theorem.

Theorem B.1. The assignment
(X, τ, z) 7→ θ(X, τ, z)

descends to a one-to-one correspondence between concrete Satake diagrams (X, τ) on Γ and unitary inner
conjugacy classes of Lie algebra involutions of u.

Proof. It is well-known that any ∗-compatible involution is equivalent to a Satake involution up to
conjugacy with an automorphism of u [Ar62]. We have to show then that two concrete Satake diagrams
induce inner conjugate involutions if and only if the concrete Satake diagrams are equal. This follows
from [Hel88, Theorem 3.11].

In fact, for the proof of the previous theorem we may clearly restrict to the case of g simple, and then
only the cases of the Satake diagrams associated to u∗2p(H) = so∗(4p) and so(1, 7), so(2, 6) and so(3, 5)
need to be investigated, as they are the only ones admitting Dynkin diagram automorphisms which are
not Satake diagram automorphisms. In Proposition B.4 and Proposition B.5 we will show explicitly that
these automorphisms induce non-inner equivalences by using instead the Vogan form for the involutions.

Definition B.2. A ∗-preserving involution ν of g is said to be in Vogan form with respect to the
Chevalley-Serre generators S if there exists an involutive Dynkin diagram automorphism τ and a τ -
invariant sign function

ϵ : I → {±1}

such that
ν(hr) = hτ(r), ν(er) = ϵreτ(r), ν(fr) = ϵrfτ(r). (B.1)

Conversely, whenever τ is an involutive automorphism of the Dynkin diagram Γ and ϵ is a τ -invariant
sign function on the underlying set I, we can define a ∗-compatible involution ν = ν(Y, τ) by (B.1), where
we write Y = Yϵ for the set of points with ϵr = −1. One can reduce to the case with ϵr = 1 for τ(r) ̸= r,
but it will be more natural not to make this reduction a priori. The datum (Y, τ) can be encoded on the
Dynkin diagram by connecting 2-point orbits of τ via arrows and coloring the Y -elements black. One
calls the resulting diagram a concrete Vogan diagram.

It is well-known that any involution of u is inner conjugate to some some ν(Y, τ), see e.g. [Hel78, Chapter
X] or [Kna96, Chapter VI]. To see which ν(Y, τ) are inner conjugate, we will use the following lemma.
Note first that any sign function ϵ on I can be extended uniquely to a {±1}-valued character on the root
lattice Q. Given a subset Z ⊆ I, let us further write

ηZ : I → {±1},
{

r 7→ −1 if r ∈ Z
r 7→ 1 if r /∈ Z

Lemma B.3. Two Vogan involutions ν(Y, τ) and ν(Y ′, τ ′) with associated sign characters ϵ, ϵ′ are inner
conjugate if and only if τ = τ ′ and ϵ, ϵ′ are equivalent with respect to the smallest equivalence relation
generated by the following two types of relations:

� type 1: ϵ ∼ ϵ′ = ϵ ◦ sr for r ∈ I with τ(r) = r and ϵ(r) = −1.

� type 2: ϵ ∼ ϵ′ = η{r,τ(r)} · ϵ for r ∈ I with τ(r) ̸= r.

Proof. It is clear that (inner) conjugacy implies τ = τ ′, so we will assume this in what follows.

Fix ϵ. If ϵ′ = η{r,τ(r)} · ϵ for τ(r) ̸= r, we can pick z ∈ T such that

z(ατ(s))z(αs)
−1 = η{r,τ(r)}(s), for all s ∈ I.
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Then ν(Y ′, τ) = Ad(z)ν(Y, τ)Ad(z)−1. On the other hand, if ϵ′ = ϵ ◦ sr for τ(r) = r and ϵ(r) = −1, we
have, using the notation (4.2), that τ(mr) = mr, and it is then easy to see that

Ad(mr)ν Ad(mr)
−1 = ν′.

Hence ϵ ∼ ϵ′ implies ν(Y, τ) ∼ ν(Y ′, τ).

Conversely, assume that ν(Y, τ) ∼ ν(Y ′, τ). We may assume that g is simple. If τ = id, we only need to
use the first operation, and the result follows from5 [CH02, Theorem 5.1]. If τ ̸= id, we treat the three
cases A,D,E separately, following the arguments in [CH02, Section 4].

For the A-case, it is clear that any two inner equivalent ν, ν′ must have diagrams related by an equivalence
of type 2.

Table 3: Equivalence classes for Vogan diagrams of type A with non-trivial automorphism

For the E-case, there is only E6 to consider. It is easy to check directly in this case that the equivalence
relation on the possible signs creates two orbits, which correspond precisely to the two choices of real
forms.

Table 4: Equivalence classes for Vogan diagrams of type E with non-trivial automorphism

The same argument as in [CH02, Section 4] can be used in the D-case, whereby the operation of the first
kind can be used to reduce to the case of a single painted τ -fixed vertex. If the single painted vertex is
at position p, the Vogan diagram corresponds to the symmetric pair

so(2p+ 1)× so(2q + 1) ⊆ so(2p+ 2q + 2) = so(2l),

see e.g. [Kna96, Appendix C.3]. The only thing left to prove is then that the two sign functions associated
to the diagrams with non-trivial automorphism and a single painted vertex either at p or q = l − p − 1
(for p ≤ l − 2) are equivalent,

1 2 3 p ℓ− 2
ℓ− 1

ℓ

∼= 1 2 3 q ℓ− 2
ℓ− 1

ℓ

This follows by an easy direct verification (using also the type 2 equivalence!).

It is known from the Borel-de Siebenthal theorem [Kna96, Theorem 6.96] that any Vogan involution is
equivalent by conjugation with an automorphism to a Vogan involution coming from a diagram with at
most one painted vertex. Moreover, as we have seen there is no distinction between conjugation by an
automorphism and conjugation by an inner automorphism, except in the case corresponding to the real
forms so∗(4p) or real forms of so(8). In these cases, we have the following.

Proposition B.4. Consider the Vogan diagrams ({l}, id) and ({l − 1}, id) on Dl for l even,

1 2 3 ℓ − 2

ℓ − 1

ℓ

, 1 2 3 ℓ − 2

ℓ − 1

ℓ

.

5Note that the proof of [CH02, Theorem 5.1] is with respect to equivalence by inner conjugacy, although the authors
introduce the equivalence relation as being by general conjugacy with an automorphism.
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Then ν({l}, id) and ν({l − 1}, id) are equivalent but not inner equivalent.

Proof. As in the proof of Lemma B.3, we have that the two diagrams are inner equivalent if and only if
the associated sign functions satisfy ϵ = ϵ′ ◦ w for w ∈ W . But consider the value

c = ϵ(α1 + α3 + . . .+ αl−1).

Then it is easily seen that c is the same value on the whole of Wϵ. However, c differs for the two choices
of Vogan diagrams.

Proposition B.5. There are nine inner equivalence classes for Vogan diagrams of so(8), obtained by
rotations of the following three cases:

(1) so(1, 7): Y = ∅, τ(3) = 4,

(2) so(2, 6): Y ∈ {{1}, {1, 2}, {3, 4}, {2, 3, 4}}, τ = id,

(3) so(3, 5): Y ∈ {{1}, {1, 2}, {3, 4}, {2, 3, 4}}, τ(3) = 4.

Table 5: Vogan diagrams for so(p, 8 − p) with 1 ≤ p ≤ 3 with at most one colored vertex

so(1, 7) 1 2
3

4

1 2
3

4
1 2

3

4

so(2, 6) 1 2
3

4

1 2
3

4

1 2
3

4

so(3, 5) 1 2
3

4

1 2
3

4
1 2

3

4

Proof. It follows by an immediate verification on the Dynkin diagram D4 by means of Lemma B.3.

Definition B.6. We call a concrete Satake diagram (X, τ) and a concrete Vogan diagram (Y, τ ′) com-
patible if θ(X, τ) and ν(Y, τ ′) are inner conjugate.

The following lemma is clear by (4.5).

Lemma B.7. If a concrete Satake diagram (X, τ) and a concrete Vogan diagram (Y, τ ′) are compatible,
then τ ′ = ττ0.

We can hence reformulate Definition B.6 as follows. Recall that if ϵ is a sign-function, we denote by Yϵ

the set of points with value −1.

Definition B.8. Let (X, τ) be a concrete Satake diagram. We call (X, τ)-admissible sign function
ϵ : I → {±1} any sign function which is ττ0-invariant and such that ν(Yϵ, ττ0) is inner conjugate to
θ(X, τ). We call two sign functions ϵ, ϵ′ equivalent if they are (X, τ)-admissible for the same Satake
diagram (X, τ).

One can find at least one (X, τ)-admissible sign function by comparing the classifications of involutions
in terms of Satake diagrams on the one hand, and of special Vogan diagrams with at most one painted
root on the other. Again, one can use standard tables to look up the equivalence, but we need to know
more specifically the correspondence up to inner conjugacy in the case of so∗(4p).
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1 2 3 2p − 2

2p − 1

2p

Satake

∼= 1 2 3 2p − 2

2p − 1

2p

V ogan

Lemma B.9. Consider the concrete Satake diagram (X, τ) corresponding to so∗(4p) with the 2p − 1th
root painted as in Table 1. Then θ = θ(X, τ) is inner conjugate to ν({2p}, id).

Proof. Let us realize so(4p) concretely on C4p with basis {ek}. We have that

θ = Ad(m0mX).

We can easily see that for a constant sign c

m0ek = c(−1)kek.

On the other hand,
mX = m1m3 . . .m2p−1

is a diagonal block matrix with constant blocks in M4(C). It follows that θ can be put into Vogan
form inside SO(4) × . . . × SO(4). Looking at the bottom block, we see that this corresponds to the
transformation of the Satake diagram of SO(4) ∼ SU(2) × SU(2), with the top vertex colored, into
Vogan form, with the lower vertex colored.

2p− 1

2p

Satake

→

2p− 1

2p

V ogan

As the same happens in each copy, and only the simple roots of the form ei−ei+1 appear in the remainder
of the Dynkin diagram, it follows that the complete Vogan diagram is the one described in the lemma.

We will be interested in verifying a certain compatibility between the sign function of a Vogan diagram
and a particular sign function constructed from an equivalent Satake diagram.

Fix χ0 as in Lemma 4.3, and recall the notations S0,SX , z̃ and z̃τ from (1.16), (4.14), Lemma 4.3 and
(4.6).

Theorem B.10. Let (X, τ, z) be an enhanced Satake diagram, and let ϵ be an (X, τ)-compatible sign
function. Then there exists an extension ϵ̃ ∈ T of ϵ such that

ϵ̃ττ0(ϵ̃) = S0SX z̃z̃−1
τ . (B.2)

Proof. We may assume that g simple. Note that by (4.1), the right hand side of (B.2) lies in the center
Z (U) = Char(P/Q), while by Lemma 4.2 and the choice of z̃ we have that the right hand side of (B.2)
is ττ0-invariant. It is then easily seen that if ϵ admits an extension ϵ̃ satisfying (B.2), any ϵ′ = sr(ϵ), for
τ(r) = r and ϵr = −1, admits the extension ϵ̃′ = sr(ϵ̃) satisfying (B.2). It is also easy to see that the
existence of an extension is stable under an equivalence of type 2 in Lemma B.3, since we can extend
any η{r,ττ0(r)} for r ̸= ττ0(r) to an element η̃ ∈ T with η̃ττ0(η̃) = 1: for example, choosing n ∈ N such

that 1
nQ ⊇ P ⊇ Q, and choosing a fundamental domain for the ττ0-action on I, we can put η̃

(
1
nαr

)
= 1

for r fixed under ττ0 and

η̃

(
1

n
αr

)
= eπi/n, η̃

(
1

n
αττ0(r)

)
= e−πi/n

for r ̸= ττ0(r) in the fundamental domain. By Lemma B.3 we may hence restrict to the case of a reduced
Vogan diagram with at most one painted root. By applying an automorphism, we may also assume that
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the Satake diagram corresponds to the standard presentation in, say, [OV90, Reference Chapter, Section
2].

For A an abelian group we write Char(A) for the characters A → U(1). Consider the group homomor-
phism

π : P ×Q → P, (ω, α) 7→ ω + ττ0(ω) + α.

Then π dualizes to a homomorphism

π̂ : Char(P ) → Char(P )× Char(Q), ρ 7→ (ρττ0(ρ), ρ|Q).

Let us write
η : P → U(1), ω 7→ S0SX z̃z̃−1

τ (ω) = e2πi(ρ
∨+ρ∨

X+χ0−τ(χ0),ω).

Then we are to show that (η, ϵ) lies in the range of π̂. This is equivalent with (η, ϵ) vanishing on Ker(π).
Now since χ0 is ττ0-invariant, this means that we have to check

ϵ(α) = eπi(ρ
∨+ρ∨

X+χ0−τ(χ0),α), ∀α ∈ Q′, (B.3)

where
Q′ = {α ∈ Q | ∃ω ∈ P such that α = ω + ττ0(ω)}.

Now it is easy to see that

Q′ = {α ∈ Q | ττ0(α) = α, (α, α∨
r ) ∈ 2Z for ττ0(r) = r}.

Write
δr = eπi(ρ

∨+ρ∨
X+χ0−τ(χ0),αr) ∈ {±1}.

Identify Zl ∼= Q via k 7→
∑

krαr, where l is the rank of g, and let I0 ⊆ I be the set of ττ0-fixed points.
Let A′ be the rectangular matrix obtained by restricting the rows of the Cartan matrix A to the index
set I0. Then we see that (B.3) becomes

l∏
r=1

(ϵrδr)
kr = 1, ∀k ∈ Zl such that ττ0(k) = k, A′k ∈ 2Z|I0|. (B.4)

As the left hand side takes values in ±1, we can consider the condition on k modulo two, and are thus
to check (B.4) on

B = {k = (kr) ∈ (Z/2Z)l | ττ0(k) = k, A′k = 0 mod 2}.

Let us present the elements of B in the different cases, listing only those for which B ̸= {0}. We will use
the ordering of simple roots as in [OV90, Reference Chapter, Section 2].

(1) Case of ττ0 = id. Then B = Ker(A) mod 2, and we find the following non-zero elements of B:

(a) Al for l odd: k = (1, 0, 1, . . . , 1, 0, 1).
(b) Bl: k = (1, 0, 1, 0, . . . , 1, 0) for l even, (1, 0, 1, 0, . . . , 1, 0, 1) for l odd.
(c) Cl: k = (0, 0, . . . , 0, 1),
(d) Dl for l odd: k = (0, 0, 0, . . . , 0, 1, 1).
(e) Dl for l even: k = (a, 0, a, 0, . . . , a, 0, b, c) with a+ b+ c = 0.
(f) E7: k = (1, 0, 1, 0, 0, 0, 1).

(2) Case of ττ0 ̸= id:

(a) Al for l = 2p: k = (a1, . . . , ap, ap, . . . , a1),
(b) Al for l = 2p+ 1: k = (a1, . . . , ap, ap+1, ap, . . . , a1).
(c) Dl for l odd: k = (a, 0, a, 0, . . . , a, 0, a, b, b).
(d) Dl for l even: k = (0, 0, . . . , 0, 0, a, a).
(e) E6: k = (a, b, 0, b, a, 0).

One can now check (B.4) by an easy case-by-case verification, using Tables 6,7,8 with the following
legend:
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� The first column presents an enhanced Satake diagram, with zr = ±1 indicated whenever the value
is not a priori determined, and (contrary to custom) with also the action of τ drawn for black
vertices when non-trivial (to avoid possible confusion).

� The second column encodes ττ0 and the function δ with a root colored black if δr = −1. Note that
δ depends on the choice of χ, but this will only come into play in the DIII-case so∗(2l) = su∗l (H)
for l odd, where we list the two possibilities.

� The third column presents an associated standard Vogan diagram, which can for example be
deduced from the Kac diagrams in [OV90, Reference Chapter, Table 7].

Remark B.11. Note that the theorem is no longer true if we work with conjugacy instead of inner
conjugacy, as then the case so∗(4p) fails!

Remark B.12. It is clear that the converse of the theorem does not hold. It would be interesting to
determine which extra conditions are needed to make the converse hold.
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Table 6: Satake diagrams, δ-function and Vogan diagrams, Type A/B/C

Lie algebra Satake (X, τ, z) (δ, ττ0) Vogan (ϵ, ττ0)

sl(ℓ,R)
ℓ odd 1 ℓ

sl(ℓ,R)
ℓ even

slp+1(H)
ℓ=2p+1

1 2 ℓ

su(p, ℓ+ 1− p)
ℓ odd,(ℓ−2p+1)/2 odd

1 p
−1

+1
ℓ

1 p

ℓ

1 p

ℓ

su(p, ℓ+ 1− p)
ℓ odd,(ℓ−2p+1)/2 even

1 p

ℓ

su(p, p)
ℓ=2p−1

1

p

ℓ

1

p

ℓ

1

p

ℓ

so(p, 2ℓ+ 1− p)
ℓ,p even

1 p

1 p

1 p/2

so(p, 2ℓ+ 1− p)
ℓ,p odd

1
2l+1−p

2

so(p, 2ℓ+ 1− p)
ℓ odd,p even 1 p

1 p/2

so(p, 2ℓ+ 1− p)
ℓ even,p odd

1
2l+1−p

2

sp2ℓ(R) 1 ℓ 1 ℓ 1 ℓ

sp(p, ℓ− p)
ℓ even 1 2 2p ℓ

2 2p ℓ

p ℓ

sp(p, ℓ− p)
ℓ odd

2 2p ℓ

sp(p, p)
ℓ=2p

1 2 ℓ ℓ ℓ/2 ℓ
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Table 7: Satake diagrams, δ-function and Vogan diagrams, Type D

Lie algebra Satake (X, τ) (δ, ττ0) Vogan (ϵ, ττ0)

so(p, 2ℓ− p)
ℓ,p odd

1 p
ℓ− 1

ℓ

1 p
ℓ− 1

ℓ

1
p−1
2

ℓ− 1

ℓ

so(p, 2ℓ− p)
ℓ,p even

1 p
ℓ− 1

ℓ

1
p
2

ℓ− 1

ℓ

so(p, 2ℓ− p)
ℓ odd,p even

1 p
ℓ− 1

ℓ

1 p
ℓ− 1

ℓ

1
p
2

ℓ− 1

ℓ

so(p, 2ℓ− p)
ℓ even,p odd

1 p
ℓ− 1

ℓ

1
p−1
2

ℓ− 1

ℓ

so(ℓ− 1, ℓ+ 1)
ℓ odd

1
ℓ− 1

ℓ

1
ℓ− 1

ℓ

1
ℓ−1
2

ℓ− 1

ℓ

so(ℓ− 1, ℓ+ 1)
ℓ even

1 p
ℓ− 1

ℓ

1
ℓ
2
− 1

ℓ− 1

ℓ

so(ℓ, ℓ)
ℓ odd

1
ℓ− 1

ℓ

1
ℓ− 1

ℓ

1
ℓ−1
2

ℓ− 1

ℓ

so(ℓ, ℓ)
ℓ even

1 p
ℓ− 1

ℓ

1
ℓ
2
− 1

ℓ− 1

ℓ

su∗ℓ (H)
ℓ even

1 2
ℓ− 1

ℓ

1
ℓ− 1

ℓ

1
ℓ− 1

ℓ

su∗ℓ (H)
ℓ odd

1 2
ℓ− 1

−1

ℓ
+1

1 p
ℓ− 1

ℓ 1
ℓ
2
− 1

ℓ− 1

ℓ
1 p

ℓ− 1

ℓ
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Table 8: Satake diagrams, δ-function and Vogan diagrams, Type E

Lie algebra Satake (X, τ) (δ, ττ0) Vogan (ϵ, ττ0)

EI
1 2 3 4 5

6

EIV

EV
1 2 3 4 5 6

7

EV I

EV II

C. Invariant vectors and exterior algebras

In this appendix we will prove a result concerning the spectral subspaces Oq(U
θ\U)µi

, for certain fun-
damental spherical weights µi in the cases AII, CII and DIII. The proof will make use of the explicit
results of Noumi and Sugitani [NS95], as well as some appropriate q-analogues of exterior algebras.

C.1. Noumi-Sugitani coideals

In [NS95] Noumi and Sugitani construct some quantum analogs of U(uθ) for certain involutions θ and
g of classical type. The construction is based on finding explicit solutions J of the reflection equation,
from which one can build coideals BJ ⊆ Uq(u) which specialize to U(uθ). In [Let99, Section 6], Letzter
shows that the coideals BJ are subalgebras of appropriate Bθ, where Bθ is the coideal corresponding to
the involution θ that she constructs in the cited paper. Moreover it follows from [NS95, Theorem 1] and
[Let02, Theorem 7.7] that one has equality of the invariant subspaces V BJ

ϖ = V Bθ
ϖ for all ϖ ∈ P+.

Let us give some more details regarding [NS95]. Let V = Vϖ1
be the N -dimensional fundamental

representation for g of classical type. Then, for the classical symmetric pairs considered in the cited
paper, V ⊗ V contains only one non-trivial spherical representation, namely Vϖ2 . A vector invariant
under BJ is then given by

wJ =

N∑
i,j=1

Jijvi ⊗ vj ∈ V ⊗ V,

where {vi}Ni=1 is a basis of V and J =
∑

i,j Jijeij in terms of the matrix units eij . The matrices J are
given explicitly for the classical symmetric pairs under consideration.

C.2. Classical and quantum exterior algebras

Let us consider the symmetric pairs AII, CII and DIII. We are concerned with those spherical weights µi

such that τ(i) = i and the node i is connected to a black vertex in the Satake diagram. These spherical
weights are summarized in Table 9, where we recall that we use the standard ordering for the Dynkin
diagrams as can be found in the tables 6 and 7.

Recall that most of the representations Vϖi can be constructed as exterior powers of the fundamental
representation Vϖ1 , see for instance [GW09, Section 5.5.2]. In the case An−1 = sln we have Λk(Vϖ1)

∼=
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Table 9: Relevant spherical weights for the AII, CII and DIII cases.

Case g Relevant spherical weights

AII A2n−1 = sl2n ϖ2, ϖ4, · · · , ϖ2n−2

CII (ℓ ≤ [n/2]) Cn = spn ϖ2, ϖ4, · · · , ϖ2ℓ

DIII (first case) D2ℓ = so4ℓ ϖ2, ϖ4, · · · , ϖ2ℓ−2

DIII (second case) D2ℓ+1 = so4ℓ+2 ϖ2, ϖ4, · · · , ϖ2ℓ−2

Vϖk
for k = 1, · · · , n − 1. In the case Dn = so2n we have Λk(Vϖ1

) ∼= Vϖk
for k = 1, · · · , n − 2. In the

case Cn = spn the exterior powers are reducible and we have the decomposition

Λk(Vϖ1
) ∼=

[k/2]⊕
p=0

Vϖk−2p
,

with the convention that Vϖ0 is the trivial representation. Observe that the weight space Λk(Vϖ1)ϖk
is

one-dimensional, since Vϖi
with i < k does not have the weight ϖk.

For each V = Vϖ1 as above, it is possible to construct a q-deformation Λq(V ) of the exterior algebra
of V which has the same graded dimension as the classical one. The relations in Λq(V ) are more
complicated that those of the classical exterior algebra, but nevertheless we have the following result,
see [HK06, Proposition 3.6] and [KTS15, Proposition 4.6].

Proposition C.1. Let {vi}Ni=1 be a basis of V . Then there is a filtration F of Λq(V ) such that grFΛq(V )
is generated the vi with relations vi ∧ vj = −qijvj ∧ vi for some qij > 0.

From this result it can be readily seen that the elements vi1 ∧ · · · ∧ vik with i1 < · · · < ik give a basis
of Λk

q (V ). Hence dimΛk
q (V ) = dimΛk(V ) for k = 1, · · · , N . Moreover the Uq(g)-module algebra Λk

q (V )
decomposes as in the classical case. The algebra Λq(V ) can be realized as a subspace of the tensor
algebra T (V ), see for instance [KTS15, Section 3.4]. Write πΛ : T (V ) → Λq(V ) for the projection.
Then we denote by π : T (V ) → grFΛq(V ) the map obtained by composing πΛ with the projection
Λq(V ) → grFΛq(V ).

C.3. Spectral subspaces

The content of the previous subsections will be used for the following result.

Proposition C.2. Let µi be a spherical weight from Table 9 for AII, CII or DIII. Then the spectral
subspace Oq(U

θ\U)µi
is contained in the algebra generated by Oq(U

θ\U)ϖ2
.

Proof. Recall that by Theorem 4.44 the subspace of Uq(u
θ)-invariant vectors in Vµi is one-dimensional.

Fix non-zero invariant vectors wi ∈ Vµi
for all i. Observe that if w is an invariant vector, then so is w⊗n

for any n ∈ N, since Uq(u
θ) is a coideal. Now consider the invariant vector w2 corresponding to µ2 = ϖ2.

Suppose that, for each i as in Table 9, there exists some ni ∈ N such that the component of w⊗ni
2 in Vµi

is non-zero. Then this component is a non-zero multiple of wi. If this holds then the claim follows from

U(w2, v1) · · ·U(w2, vni
) = U(w⊗ni

2 , v1 ⊗ · · · vni
).

Upon changing conventions, it is equivalent to prove the same statement for the algebra Oq(G)Bθ , where
Bθ is Letzter’s coideal. Moreover we have Oq(G)BJ = Oq(G)Bθ , where BJ is the coideal of Noumi and
Sugitani. In [NS95] a BJ -invariant vector wJ ∈ V ⊗ V is constructed explicitly for the cases AII, CII
and DIII, where V = Vϖ1 is the fundamental representation. The component of wJ in Vϖ2 ⊆ V ⊗ V is
non-zero. We will show in Lemma C.3 that w⊗m

J has non-zero component in Vϖ2m for the appropriate
values of m. Then the conclusion follows from the previous discussion.

In the next lemma we will use the explicit invariant vectors wJ given in [NS95].

Lemma C.3. Let wJ be the appropriate invariant vector for AII, CII or DIII.
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(1) For AII the component of w⊗m
J in Vϖ2m

is non-zero for 1 ≤ m ≤ n− 1.

(2) For DIII the component of w⊗m
J in Vϖ2m is non-zero for 1 ≤ m ≤ ℓ− 1.

(3) For CII the component of w⊗m
J in Vϖ2m

is non-zero for 1 ≤ m ≤ ℓ.

Proof. (1) We have g = A2n−1 and Vϖ1 has dimension N = 2n. The invariant vector is

wJ =

n∑
k=1

a2k(v2k−1 ⊗ v2k − qv2k ⊗ v2k−1),

where the a2k are non-zero. Applying the projection π we get π(wJ) =
∑n

k=1 bkv2k−1 ∧ v2k for some
non-zero bk. It is enough to show that π(wJ)

∧m ̸= 0 for 1 ≤ m ≤ n − 1. Let us focus on the term
w2m = v1 ∧ v2 ∧ · · · ∧ v2m−1 ∧ v2m. It follows from the commutation relations that we have

v2j−1 ∧ v2j ∧ v2k−1 ∧ v2k = c · v2k−1 ∧ v2k ∧ v2j−1 ∧ v2j ,

for some c > 0. Then w2m appears with non-zero coefficient in π(wJ)
∧m and hence π(wJ)

∧m ̸= 0.

(2) We have g = Dn and Vϖ1
has dimension N = 2n. We use the notation j′ = N + 1 − j. First we

consider the case when n = 2ℓ is even. The invariant vector is given by

wJ =

ℓ∑
k=1

a2k(v2k−1 ⊗ v2k − qv2k ⊗ v2k−1) +

ℓ∑
k=1

a(2k−1)′(v(2k)′ ⊗ v(2k−1)′ − qv(2k−1)′ ⊗ v(2k)′),

where the coefficients are non-zero. Therefore its projection is given by

π(wJ) =

ℓ∑
k=1

bkv2k−1 ∧ v2k +

ℓ∑
k=1

b′kv(2k)′ ∧ v(2k−1)′ .

Observe that (2k)′ > 2ℓ for 1 ≤ k ≤ ℓ. It is enough to show that π(wJ)
∧m ̸= 0 for 1 ≤ m ≤ ℓ− 1. As for

the AII case, we see that the term w2m = v1 ∧ v2 ∧ · · · ∧ v2m−1 ∧ v2m appears with non-zero coefficient,
hence π(wJ)

∧m ̸= 0. The odd case n = 2ℓ+ 1 is very similar. The only difference is that in wJ we also
have a term proportional to vn ⊗ vn′ − vn′ ⊗ vn. The rest of the argument is completely identical.

(3) We have g = Cn and Vϖ1
has dimension N = 2n. We will use the notation j′ = 2n + 1 − j and

consider the parameter ℓ ≤ [n/2]. We have the invariant vector

wJ =

ℓ∑
k=1

a2k(v2k−1 ⊗ v2k − qv2k ⊗ v2k−1) +

ℓ∑
k=1

a(2k−1)′(v(2k)′ ⊗ v(2k−1)′ − qv(2k−1)′ ⊗ v(2k)′)

+

n∑
j=2ℓ+1

(a′jvj ⊗ vj′ − a′−1
j vj′ ⊗ vj) +

2ℓ∑
j=1

a′′j vj ⊗ vj′ ,

where the coefficients are non-zero. Therefore applying the projection we get

π(wJ) =

ℓ∑
k=1

bkv2k−1 ∧ v2k +

ℓ∑
k=1

b′kv(2k)′ ∧ v(2k−1)′ +

n∑
j=2ℓ+1

cjvj ∧ vj′ +

2ℓ∑
j=1

c′jvj ∧ vj′ .

First we show that π(wJ)
∧m ̸= 0 for 1 ≤ m ≤ ℓ. Let us consider again w2m = v1∧ v2∧ · · ·∧v2m−1∧ v2m.

We claim that this element arises only from products of the terms v2k−1∧v2k with 1 ≤ k ≤ ℓ. Indeed, as
j′ > n for j ≤ n and j′ ≤ n for j > n, the element w2m can not contain any of the terms vj ∧ vj′ . Then,
as in the other cases, we conclude that w2m appears with non-zero coefficient and hence π(wJ)

∧m ̸= 0.

Finally, since Λ2m
q (V ) is reducible, we still need to show that we obtain a non-zero component in Vϖ2m .

Recall that the fundamental representation Vϖ1
of Cn has weights {λi}ni=1 ∪ {−λi}ni=1, where λi =

ϖi −ϖi−1 and we use the convention ϖ0 = 0. The vectors vi for i = 1, · · · , n have weight λi. Then we
see that the term w2m has weight

∑2m
i=1 λi = ϖ2m and hence belongs to Vϖ2m

.
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D. Computations for the symmetric pair of type FII

We realize the root system of g = f4 explicitly in R4 with the usual orthonormal basis {εr} by putting

α1 =
1

2
(ε1 − ε2 − ε3 − ε4), α2 = ε4, α3 = ε3 − ε4, α4 = ε2 − ε3.

In particular, with dr = 1
2 (αr, αr) we have d1 = d2 = 1/2 and d3, d4 = 1. Then ϖ1 = ε1, and V = Vϖ1

is a quasi-minuscule 26-dimensional ∗-representation of Uq(f4). To realize it explicitly, let us use the
notation

[n] =
qn/2 − q−n/2

q1/2 − q−1/2
,

so in particular [1] = 1, [2] = q1/2 + q−1/2 and [3] = q + 1 + q−1. Fix in V an orthonormal basis

es0k , fs1s2s3s4 , e0, e
′
0, 1 ≤ k ≤ 4, si ∈ {±},

and put
f0 = [2]−1(e0 + [3]1/2e′0),

so that f0 is a unit vector. Then we can let Uq(f4) act uniquely by the following rules: the vectors
fs1s2s3s4 have weight 1

2

∑
i siεi, the vectors e±k have weight ±εk, and the vectors e0, f0 have weight zero.

Further, the Fr act as in the diagram 1 below.

The operators Er = KrF
∗
r act in the obvious way by the adjoint operation, for example

E1f−+++ = [2]1/2f0, E1f0 = q1/2[2]1/2f+−−−, E1e0 = q1/2[2]−1/2f+−−−,

E2e
−
4 = [2]1/2e0, E2e0 = q1/2[2]1/2e+4 , E2f0 = q1/2[2]−1/2e+4 .

Put X = {α2, α3, α4}.

Lemma D.1. On basis vectors, we have the following action of TwX
,

TwX
fs1s2s3s4 = s2s4q

9/4fs1,−s2,−s3,−s4 ,

TwX
e±1 = e±1 , TwX

e±2 = q5/2e∓2 , TwX
e±3 = −q5/2e∓3 , TwX

e±4 = q5/2e∓4

and
TwX

e0 = −q3e0, TwX
f0 = f0 − q3/2([3]− 2)e0.

Proof. The longest word in WX is given by

wXε1 = ε1, wXεr = −εr for r ∈ {2, 3, 4},

with reduced expression
wX = sε2sε3sε4 = (s4s3s2s3s4)(s3s2s3)s2.

Now consider for Uqr (su(2)) the spin 1/2-representation and spin 1-representation determined by respec-
tive orthonormal weight bases {v±1/2} and {v−, v0, v+} with actions

Frv+1/2 = q−1/2
r v−1/2, Frv+ = q−1

r (qr + q−1
r )1/2v0, Frv0 = (qr + q−1

r )1/2v−.

Then with respect to these bases, we have from (1.14) that the Lusztig braid operator Tr acts via

Trv+1/2 = −q1/2r v−1/2, Trv−1/2 = q1/2r v+1/2, Trv+ = qrv−, Trv− = qrv+, Trv0 = −q2rv0.

One can then easily compute from this the action of TwX
on the e±r . For the fs1s2s3s4 one can compute

TwX
on f++++, and use the formula (1.17) for the remaining f+s2s3s4 . For the f−s2s3s4 one can then

use the U ′
q(gX)-isomorphism f+s2s3s4 7→ f−s2s3s4 . Finally, for e0 the value of TwX

is directly computed.
Since e0 − [2]f0 is a U ′

q(gX)-fixed vector, it must also be a TwX
-fixed vector, from which the value of

TwX
f0 can be computed.
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Diagram 1: Action of the Fr on V
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Consider now the enhanced Satake diagram (X, id, 1) with associated Satake involution θ and coideal
∗-subalgebra Uq(f

θ
4) ⊆ Uq(f4). Using that α+

1 = − 1
2 (ϵ2 + ϵ3 + ϵ4) and that z1 = 1, consider as in (4.27)

the generator
C1 = E1 − q3/4TwX

F1T
−1
wX

K1 ∈ Uq(f
θ
4).

Then by direct computations using Lemma D.1 one finds the following values:

C1e
+
1 = −q13/4f+−−−, C1e

−
1 = q1/4f−−−−,

C1f++++ = q1/4e+1 − q−5/2[2]1/2f0 + q−1[2]1/2([3]− 2)e0, C1f−+++ = [2]1/2f0 − q−11/4e−1 , (D.1)

C∗
1f+−−+ = q1/4e+4 , C∗

1f−−−+ = q−1/4e+4 .

Let now K be the ∗-compatible ν-modified universal K-matrix for Uq(f
θ
4).

Lemma D.2. There exists a non-zero scalar a ∈ C such that

aK e+1 = e−1 , aK f+s2s3s4 = −q−3f−s2s3s4 ,

aK e0 = −q−7/2e0, aK f0 = q−1/2f0 + [2]−1/2q−1/4(q3 − q−3)e−1 − q−2([3]− 2)e0.

Proof. Since
K : V (ω) 7→ V (−wXω)⊕ V (−wXω − ε1)⊕ V (−wXω − 2ε1)

on weight spaces, there will exist a non-zero a ∈ C such that aK e+1 = e−1 . Now since K commutes with
C1 and C1e

+
1 is a multiple of f+−−−, we can compute the action of aK on f+−−− using the formulas

in (D.1). As K commutes with U ′
q(gX), this then determines aK on all f+s2s3s4 . Since e0 is a scalar

multiple of F2C
∗
1f+−−+, we can once again use the commutation of K with C∗

1 and F2 to determine
the value of aK on e0.

Finally, using that

C1aK f++++ = −q−3C1f−+++ = −q−3([2]1/2f0 − q−11/4e−1 )

equals
aK C1f++++ = q1/4e−1 − q−5/2[2]1/2aK f0 − q−9/2[2]1/2([3]− 2)e0,

we find the expression for aK f0.

Consider now the span of the ZV (ξ, η) in Oq(Zν) with its left Uq(f4)-action

x� ZV (ξ, η) = ZV (S(x(1))
∗ξ, x(2)η).

Write
z0 =

∑
s2,s3,s4

as2,s3,s4ZV (f−s2s3s4 , f+s2s3s4),

where
a+++ = 1, a++− = q−1, a+−+ = q−3, a+−− = q−4,

a−++ = q−5, q−+− = q−6, a−−+ = q−8, a−−− = q−9.

Write further
z+ = ZV (e0 − [2]f0, e

+
1 ), z− = ZV (e

−
1 , e0 − [2]f0).

Then a straightforward computation shows the following lemma.

Lemma D.3. The elements z0, z+, z− are U ′
q(gX)-invariant, and

z = q5/4z+ − [3]

[2]1/2
z0 + q−41/4z−

is a highest weight vector for Uq(f4) at weight ε1.
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Proposition D.4. The element ϕ(z) is a non-zero element in Oq(U
θ\U)ϖ1

.

Proof. By Lemma D.3 and equivariance of ϕ it is clear that ϕ(z) ∈ Oq(U
θ\U)ϖ1

. To see that ϕ(z) ̸= 0
it is sufficient to compute that ε(ϕ(z)) ̸= 0. We have however by Lemma D.2 that

aε(ϕ(z))

= q5/4⟨e0 − [2]f0, aK e+1 ⟩ −
[3]

[2]1/2

∑
s2,s3,s4

as2s3s4⟨f−s2s3s4 , aK f+s2s3s4⟩+ q−41/4⟨e−1 , aK (e0 − [2]f0)⟩

= [2]−1/2(q−3[3]
∑

as2s3s4 + q−21/2[2](q−3 − q3))

= q−1/2[2]1/2(q−3[3](1 + q−3 + q−5 + q−8) + q−10(q−3 − q3))

> 0.
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de Kac–Moody: classification et racines relatives, J. Algebra 171 (1995), 43–96.

[BW16] H. Bao and W. Wang, Canonical bases arising from quantum symmetric pairs, Invent. Math. 213 (3) (2018),
1099–1177.

[Bau00] P. Baumann, Another proof of Joseph Letzter’s separation of variables theorem for quantum groups, Transform.
Groups 5 (1) (2000), 3–20.

[BZBJ18] D. Ben-Zvi, A. Brochier and D. Jordan, Quantum character varieties and braided module categories, Selecta
Math. (N.S.) 24 (2018), 4711–4748.

[Bic14] J. Bichon, Hopf-Galois objects and cogroupoids, Rev. Un. Mat. Argentina 55 (2) (2014), 11–69.

[CFG08] N. Ciccoli, R. Fioresi and F. Gavarini, Quantization of projective homogeneous spaces and duality principle, J.
Noncommut. Geom. 2 (2008), 449–496.

[CH02] M.-K. Chuah and C.-C. Hu, Equivalence classes of Vogan diagrams, J. Algebra 279 (2004), 22–37.

[DeC13] K. De Commer, Representation theory of quantized enveloping algebras with interpolating real structure, SIGMA
9 (081) (2013), 20 pages.

[DCN15] K. De Commer and S. Neshveyev, Quantum flag manifolds as quotients of degenerate quantized universal en-
veloping algebras, Transform. Groups 20 (3) (2015), 725–742.

[DCNTY19] K. De Commer, S. Neshveyev, L. Tuset and M. Yamashita, Ribbon braided module categories, quantum
symmetric pairs and Knizhnik-Zamolodchikov equations, Comm. Math. Phys 367 (3) (2019), 717–769.

[tD98] T. tom Dieck, Categories of rooted cylinder ribbons and their representations, J. Reine Angew. Math. 494 (1998),
35–63.
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