

Vrije Universiteit Brussel

Digisprudence: the design of legitimate code
Diver, Laurence

Published in:
Law, Innovation and Technology

DOI:
10.31228/osf.io/nechu
10.1080/17579961.2021.1977217

Publication date:
2021

License:
CC BY-NC

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Diver, L. (2021). Digisprudence: the design of legitimate code. Law, Innovation and Technology, 13(2), 325-354.
https://doi.org/10.31228/osf.io/nechu, https://doi.org/10.1080/17579961.2021.1977217

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 03. Apr. 2024

https://doi.org/10.31228/osf.io/nechu
https://doi.org/10.1080/17579961.2021.1977217
https://cris.vub.be/en/publications/digisprudence-the-design-of-legitimate-code(e870bc8f-3d01-43d5-a711-7749cef19fbf).html
https://doi.org/10.31228/osf.io/nechu
https://doi.org/10.1080/17579961.2021.1977217

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

1

Digisprudence: the design of legitimate code

Laurence Diver

laurence.diver@vub.be ◾ @laurence_diver

Abstract: This article introduces digisprudence, a theory about the legitimacy of software that

both conceptualises regulative code’s potential illegitimacies and suggests concrete ways to

ameliorate them. First it develops the notion of computational legalism – code’s ruleishness,

opacity, immediacy, immutability, pervasiveness, and private production – before sketching

how it is that code regulates, according to design theory and the philosophy of technology.

These ideas are synthesised into a framework of digisprudential affordances, which are

translations of legitimacy requirements, derived from legal philosophy, into the conceptual

language of design. The ex ante focus on code’s production is pivotal, in turn suggesting a

guiding ‘constitutional’ role for design processes. The article includes a case study on blockchain

applications and concludes by setting out some avenues for future work.

Keywords: code as law, normativity, legitimacy, computational legalism, affordance,

design, blockchain, techno-regulation

Funding statement

This work was supported by the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (grant agreement No 788734).

COHUBICOL project (Counting as a Human Being in the Era of Computational Law), Law, Science,

Technology & Society research group (LSTS), Vrije Universiteit Brussel, Belgium ◾ cohubicol.com

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

2

1. Introduction

Ļe interplay between legal theory and design is a crucially important but under-theorised area. In this

contribution I set out the idea of digisprudence, a descriptive and normative lens through which to

consider the legitimacy of digital systems that govern behaviour. Why the name ‘digisprudence’? In

short, it aims to be to the design of software-based rules as legisprudence is to the design of legal rules.

Where the latter seeks to justify the imposition by the state of freedom-limiting rules through the

inclusion of formal features that legitimate their design,1 digisprudence seeks to do the same for code-

based normative orders, framing the legitimacy of a digital system in terms of the affordances described

in section 3.3 below. Ļe legisprudential principles respect the autonomy of the citizen in the face of a

potentially overbearing state; by analogy the digisprudential affordances require that, in its structuring

of our social and economic interactions, the material design of code also rełect that fundamental respect

for autonomy, and indeed legal protection. Ļe analysis thus aims to synthesise the practical issue of

how the material design of code regulates with a legal-theoretical view of what constitutes legitimate

regulation. It views software code2 as an a-legal normative order that regulates human behaviour more

effectively and directly than law does, can, or should, which for that essential reason ought therefore to

be legitimated. If we expect behavioural governance in the form of laws to be legitimate, then we should

expect the same from code that has, or aims to have, a similar or even stronger effect. Ļis is the case

even – and indeed especially – in the absence of positive laws that seek to guide code’s design. As we

shall see, lawmakers cannot possibly keep abreast of the normativities imposed by the vast, overlapping,

and intersecting assemblages of code that structure and govern our lives, and so a basic, ‘constitutional’

level of design legitimacy is required, to ensure that such systems provide citizens with transparency,

intelligibility, choice, oversight, and contestability.3 Ļe need for these design features is underlined by

code’s unique ability to regulate and, crucially, to constitute the terms of our behaviour. Ļat ability łows

from its characteristics of ‘ruleishness’, opacity, immediacy, immutability, pervasiveness and, perhaps

most importantly, its production by private enterprise for commercial gain. Ļese characteristics have

1 See L. Wintgens, Legisprudence: Practical Reason in Legislation (Surrey: Routledge, 2012) p. 297.

2 I refer to ‘software’ and ‘code’ synonymously in the rest of this article.

3 These are the digisprudential affordances, discussed below in section 3.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

3

the potential to exhibit what I call computational legalism, an extreme form of unrełective rule-following,

explored further in section 2.1 below. Ļe implications of computational legalism are troubling,

particularly in societies where we expect that rules regulating behaviour have some connection to

democratic processes and ex post judicial oversight. Ļe central claim, then, is that the standards that

make legal norms formally legitimate ought mutatis mutandis to be applicable to other normative orders

that enable and constrain behaviour, regardless of the positive content of those rules (although form

will, of course, constrain content). Legal philosophy already provides tools for combatting unrełective

legalism in the legislative realm; my contention is that these might be adopted and adapted for

application within the realm of design, to achieve code that as far as possible avoids the characteristics

of computational legalism.

In this article I begin by discussing the need for digisprudence, and why reliance on positive

law to achieve ‘compliance by design’ is, by itself, insufficient. I then brieły sketch the elements of the

theory’s dialectical structure, which runs along the following lines. First, I describe from the perspectives

of both design and legal theory how code is an a-legal normative order: how its designed materiality

regulates and constitutes behaviour, and thereby how it is apt to rełect legalism, leading a fortiori to

computational legalism. By way of example, I discuss blockchain applications as a technology whose

characteristics have the potential to embody particularly strongly the characteristics of computational

legalism. Next, I move on to the normative element of the theory, considering how legal-theoretical

frameworks intended to mitigate or oppose legalism in legal domain – particularly Fuller’s internal

morality of law and Wintgens’ legisprudence – might be used to combat legalism in the computational

domain. Ļis analysis provides the scaffolding for a bridge between legal theory and design practice,

namely the affordance of legitimacy in code.

Ultimately, this kind of analysis requires a focus on the production of code, rather than just its

operation. If lawyers are properly to grapple with the realities of how code regulates, we must embrace

an analytical shift that takes into account not just its effects but also the practical realities of its

production. Ļis means we ought to consider the processes and tools that make up the ‘legislature’ where

code is ‘enacted’, including, for example, software development methodologies and the integrated

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

4

development environments (IDEs) where the text of code is actually written. Ļey are the point at

which ‘constitutional’ protections can be built into the very fabric of the code.

Digisprudence is thus a contribution to the nascent ‘design turn’ in legal scholarship, according

to which the material design of digital artefacts can (and should) be critiqued from the perspective of

legal philosophy.4 Ļis might be achieved by translating notions of (legal) legitimacy into the language

of design theory, while at the same time maintaining sensitivity to the unique technical and temporal

aspects of the code development process. Although a full exposition of the theory will involve additional

work, the article aims to set out its main contours and thereafter to identify avenues for that future

research.

1.1 The need for ‘digisprudence’

Why is this kind of analysis necessary? Goldoni expresses the problem well:

Given that code is not exactly like law, it is difficult in the realm of code to adopt a kind

of rule of law (or ‘rule of code’) approach. Yet, we have also seen that when a particular

code is ‘enacted’, it may be too late to remedy the violation of certain rights. This is why

the accent should be put on the moment of production, rather than on the moment of

distribution.5

Code is like law in that it governs behaviour, but is also different from it in crucial ways. Like legislation,

it is created to achieve some purposive end; it is ‘enacted’. In operation, code is capable of violating

rights, but its ontological characteristics are resistant to the constraints of legality and the rule of law.

4 Other emerging work hints at such a ‘turn’, although principally in relation to privacy. See W. Hartzog,

Privacy’s Blueprint: The Battle to Control the Design of New Technologies (Cambridge, Mass: Harvard University

Press, 2018); S. Gürses and J. van Hoboken, ‘Privacy after the Agile Turn’ in E Selinger, J Polonetsky and O

Tene (eds.), The Cambridge Handbook of Consumer Privacy (1st edn., Cambridge University Press, 2018) See

also P. Nemitz, ‘Constitutional Democracy and Technology in the Age of Artificial Intelligence’ (2018) 376

Philosophical Transactions of the Royal Society A 20180089, arguing for a design perspective on the effects that

artificial intelligence is having on constitutional democracy.

5 M. Goldoni, ‘The Politics of Code as Law: Toward Input Reasons’ in J Reichel and AS Lind (eds.), Freedom

of Expression, the Internet and Democracy (Leiden: Brill, 2015) p. 128.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

5

Lastly, we can observe that there are essentially two stages at which code can be assessed: ex ante at the

point of production, or ex post at the point of operation.

When commercial enterprises create code, they create a-legal normative orders that are apt to

replace or augment positive law as a primary source of behavioural regulation. Crucially, the private

contexts within which this code is created are not subject to the legitimising procedural or formal

standards of rule-making we might expect to ŀnd in constitutional democracies or the Rechtstaat. In

the move from public to private rule-making, the effects of such code on behaviour therefore risk being

illegitimate, whether or not this is intended.6

Even though code is not law per se, it can be useful to ask similar questions about the two

normative orders, given they each govern human behaviour. In this respect, I take regulation to straddle

two of the deŀnitions provided by Black, namely (i) the ‘promulgation of rules by government

accompanied by mechanisms for monitoring and enforcement’ (i.e. positive law and its institutional

framework), and (ii) ‘all mechanisms of social control or inłuence affecting all aspects of behaviour from

whatever source, whether they are intentional or not’.7 Code may not be law per se, exemplifying the

second deŀnition rather than the ŀrst, but it is precisely because of the ways in which it is unlike law

that this kind of analysis is made necessary: code can control behaviour more directly than can ‘true’

law, but simultaneously it lacks the latter’s mechanisms of ex ante legitimation and ex post remediation,

i.e. its ‘legality’. In seeking solutions to this problem, it makes sense to look at the standards that other

ŀelds have considered in relation to the legitimacy of behaviour-governing rules – namely certain

domains of legal philosophy.8 In any event, code does not just regulate behaviour, but indeed constitutes

6 E. Bayamlıoğlu and R. Leenes, ‘The “Rule of Law” Implications of Data-Driven Decision-Making: A

Techno-Regulatory Perspective’ [2018] Law, Innovation and Technology 1, p. 12.

7 J. Black, ‘Critical Reflections on Regulation’ (2002) 27 Australian Journal of Legal Philosophy 1, p. 11.

8 B.-J. Koops, ‘Criteria for Normative Technology: The Acceptability of “Code as Law” in Light of Democratic

and Constitutional Values’ in R Brownsword and K Yeung (eds.), Regulating Technologies: Legal Futures,

Regulatory Frames and Technological Fixes (Oxford; Portland, Or: Hart, 2008) p. 162. Asscher’s earlier

observation of this was insightful; see L. Asscher, ‘“Code” as Law: Using Fuller to Assess Code Rules’ in E

Dommering and L Asscher (eds.), Coding Regulation: Essays on the Normative Role of Information Technology

(The Hague: TMC Asser Press, 2006) p. 86.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

6

it, creating new conditions of possibility that frame our actions from the outset.9 While it might seem

odd to think of new possibilities as regulating, it is precisely in the deŀning of those possibilities and the

network effects they inaugurate that the regulative dimension can again come in, as it were by the back

door, to ‘enforce compliance beyond anything that a written law can achieve.’10

Ļose who deŀne those possibilities in code, and whose work is veiled by the private context of

its production, ought to wield that power legitimately.11 Generally speaking, rules that shape our

behaviour ought to meet pre-existing standards of accountability, transparency, and contestability12

(although, as we shall see, these standards require unpacking in the code context). If notionally sovereign

state legislatures are bound by constitutions so that they cannot arbitrarily create rules in contravention

of that ideal, then neither should this be possible for private enterprises in their creation of normative

code that shapes behaviour in myriad and potentially arbitrary ways.13 Whether or not the producer of

the code claims authority to regulate is a moot point; in a sense, by creating code that structures its user’s

behaviour or mediates her experience of the world, its creator is staking a claim to at least some part of

her autonomy. What matters in the end is how the code in fact regulates and constitutes behaviour, and

in turn the exercise by the designer of power over citizens’ behaviour once they have entered its sphere

of inłuence. Of course, the citizen may never actually engage with the code, and so the analogy with

law would to that extent appear limited, at least with respect to generality of application.14 Ļis will vary

from code to code, however, since the general imposition of technological normativity varies

considerably, due for example to network effects or the infrastructural nature of a software system. (It

9 M. Hildebrandt, ‘Legal and Technological Normativity: More (and Less) than Twin Sisters’ (2008) 12 Techné:

Research in Philosophy and Technology 169.

10 Ibid., p. 178.

11 K. Yeung, ‘Can We Employ Design-Based Regulation While Avoiding Brave New World?’ (2011) 3 Law,

Innovation & Technology 1.

12 See for example J. Waldron, ‘Can There Be a Democratic Jurisprudence?’ (2009) 58 Emory Law Journal 675.

13 See Hildebrandt, supra n. 9, p. 173 et seq. See also Goldoni, supra n. 5, p. 119. This understanding is similar

to the concept of ‘governance’ in the regulatory literature – see C. Reed and A. Murray, Rethinking the

Jurisprudence of Cyberspace (Cheltenham, UK: Edward Elgar Publishing, 2018) p. 140.

14 This of course is Fuller’s first principle of legality. See L.L. Fuller, The Morality of Law (Yale University Press,

1977) pp. 46–49.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

7

would be difficult, for example, to argue that the rules deŀned in the Internet Protocol do not have

general – if not completely universal – applicability, at whatever level of abstraction is relevant to a given

individual.15 Ļis pervasive aspect of computational legalism is considered in more detail below.)

Despite Lessig’s inłuential work on ‘code as law’ generating a sizeable literature, the design of

code artefacts per se is a topic that has received relatively little attention in the legal world, especially

with regard to the normative standards to which code designers, acting as ‘quasi-legislators’, ought to

be held. Insofar as this topic has been considered, the emphasis has tended to be on the legitimacy of

the decision to use code, as opposed to some other mechanism, to enforce a norm, and not on the

materiality of the code itself (its normativity per se) or the mechanisms of its production. Ļe designed

materiality of artefacts is where the behaviour-shaping action takes place, and so it should not escape

our analysis – a failure to do so will seriously compromise our understanding of the regulative landscape.

Ļe point of departure then is the focus on the form of the design ‘rule’ itself, and the question of

whether that form is legitimate, viewed separately from either any higher-level decision-making that

precedes its creation, or any substantive legal compliance requirements motivating that creation.

1.1.1 Digisprudence vs. ‘compliance by design’

One could argue that it is properly the task of legislatures to develop rules aimed at designers, and that

any failure of the latter to follow them ought to be dealt with according to orthodox judicial processes.

Ļe compliance of code with relevant substantive laws is of course very important, but on its own it

overlooks (i) the sui generis nature of code and its unique ability directly to constitute and shape

behaviour (i.e. computational legalism), and (ii) how the translation from textual norms to code-based

norms invariably involves some level of modiŀcation of the rule.16 Ļe reality envisioned by legal text is

not rełected in the reality constructed by code, partly because law itself is (and in many cases should

15 A casual user may have less awareness of IP’s strictures than a network administrator, but they are nevertheless

both bound by them.

16 L. Diver, ‘Law as a User: Design, Affordance, and the Technological Mediation of Norms’ (2018) 15

SCRIPTed 4; Goldoni, supra n. 5, p. 129; M. Hildebrandt and B.-J. Koops, ‘The Challenges of Ambient Law

and Legal Protection in the Profiling Era’ (2010) 73 The Modern Law Review 428, p. 452 et seq.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

8

be) vague or underdetermined,17 and partly because the two ways of representing meaning (text and

software code) are categorically different, both because language is underdetermined where code is

precise18 and because words require translation into behaviour whereas code is simultaneously ‘words

and actions’.19

Ļe problems involved in creating representations of natural language rules in code are well

known, but more relevant for the present argument are what van den Berg and Leenes call ‘techno-

effects’, or the unintended or unexpected constellations of normativity that are continually brought into

being by digital artefacts.20 Ļis notion of techno-effects points to the aggregate normativity of an

artefact, whatever it may in fact be, observed separately from the intent of its designer. Ļis contrasts

with ‘techno-regulation’, where the focus is on the use of technology as a tool to effect legal norms, rather

than on the altogether more pervasive techno-effects.21 Ļe difference is important, given that ‘[t]he

“regulatory” potential of technologies – in the broadest sense – is tremendous, and daunting, indeed.’22

Ļe notion of techno-effects points to the difficulty in discerning the intention of the designer, as well

as where the line lies between what they ostensibly intend their code to do and the additional,

17 Hildebrandt, supra n. 9, p. 177; C. Reed, ‘How to Make Bad Law: Lessons from Cyberspace’ (2010) 73 The

Modern Law Review 903, p. 904; T. Endicott, ‘Law Is Necessarily Vague’ (2001) 7 Legal Theory 379.

18 Golumbia contrasts human language and programming languages thus: ‘Programming languages, as Derrida

knew, are codes: they have one and one only correct interpretation (or, at the absolute limit, a determinate

number of discrete interpretations). Human language practice almost never has a single correct interpretation

[… t]he use of the term [programming] language to describe them is a deliberate metaphor, one that is meant

to help us interact with machines […]’. See D. Golumbia, The Cultural Logic of Computation (Cambridge,

Mass: Harvard University Press, 2009) p. 19.

19 B. Latour, ‘Where Are the Missing Masses? The Sociology of a Few Mundane Artifacts’ in WE Bijker and J

Law (eds.), Shaping Technology/Building Society: Studies in Sociotechnical Change (MIT Press, 1992) n. 1. See

also N.K. Hayles, ‘Print Is Flat, Code Is Deep: The Importance of Media-Specific Analysis’ (2004) 25 Poetics

Today 67. This is not to deny the performative nature of speech acts within the law’s form of life.

20 B. van den Berg and R.E. Leenes, ‘Abort, Retry, Fail: Scoping Techno-Regulation and Other Techno-Effects’

in M Hildebrandt and J Gaakeer (eds.), Human Law and Computer Law: Comparative Perspectives (Dordrecht:

Springer Netherlands, 2013).

21 On techno-regulation, see for example C. Gavaghan, ‘Lex Machina: Techno-Regulatory Mechanisms and

Rules by Design’ (2017) 15 Otago L. Rev. 123; R. Brownsword, ‘Lost in Translation: Legality, Regulatory

Margins, and Technological Management’ (2011) 26 Berkeley Technology Law Journal 1321.

22 van den Berg and Leenes, supra n. 20, p. 83.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

9

unintended normativity it nevertheless imposes: ‘[t]he affected individual cannot discern which part of

the normativity (as could be inferred from the output) is intentional and which part is merely spin-off

in the form [of] unforeseen or secondary effects’.23

As we will see later in the discussion of computational legalism, those architectural norms tend

by nature toward ŀxed conŀgurations of behaviour-shaping normativity, which are applied with

unqualiŀed force in every case where the necessary computational conditions exist, regardless of any

other relevant consideration. A narrow focus on substantive ‘compliance by design’ is thus

unsatisfactory, or at least insufficient, because it elides the very active role that designers play in the

creation of such contingent normative ‘reality’ in and through the code that they produce.24 To rely on

substantive compliance would require an explosion of statutory rules to cover all the normative

conŀgurations that code facilitates – plainly an unworkable idea.

Instead of focusing on substantive compliance, then, the idea is to focus on notions of ‘by design’

that operate at a deeper level, providing universal design-based protection beyond compliance with a

necessarily limited set of substantive legal rules.25 What matters then is not just compliance with the

substantive law, but how to implement within the fabric of the code the kinds of constitutional

safeguard that institutional law is expected to provide, regardless of its posited content.26

23 Bayamlıoğlu and Leenes, supra n. 6, p. 12. They refer to this phenomenon as ‘normative opaqueness’.

24 Diver, supra n. 16.

25 Similarly, Hildebrandt’s notion of ‘legal protection by design’ is built around both substantive compliance and

more foundational abilities of the individual to resist and contest the code. See M. Hildebrandt, Smart

Technologies and the End(s) of Law: Novel Entanglements of Law and Technology (London: Edward Elgar

Publishing, 2015) p. 218. Nemitz points to a similar goal in his reference to ‘the principles of democracy, the

rule of law and human rights by design’ – see Nemitz, supra n. 4 passim.

26 Koops, supra n. 8.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

10

2. Code as an a-legal normative order

To further clarify the location at which digisprudence is located, we can visualise the normative

relationships in the digital sphere like this:

Figure 1. Relationships of legal and technological normativity

Relationship (b) represents the compact between the citizen and the state (the latter being bound by a

constitution under relationship (a)), where the democratic process results in legal norms promulgated

both through that relationship and relationship (c). Ļe latter represents the traditional understanding

of ‘compliance by design’, where state rules lay down requirements for code that designers must follow.

In relationship (d), the product designer regulates via legal and/or technological normativity. Ļe legal

normativity in this relationship łows from public-order legislative norms on the one hand, or private-

order contractual norms on the other. Ļese are operationalised by (i) legal effect, which operates

regardless of the code’s design and is enforced in the orthodox way by the courts, (ii) the implementation

of those norms in and through that design, or (iii) a mixture of the two. Scenarios (ii) and (iii) involve

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

11

code complementing law in what Leenes calls ‘state-endorsed techno-regulation’,27 discussed above.

Examples of this might include encryption used to implement data protection requirements, or a ŀrewall

preventing an employee from accessing social media in accordance with an employment contract.

Relationship (e) concerns the ‘programmer of the programmer’, a concept I will elaborate on in section

3.3 below.

Crucially, while code can complement legal norms, it can also supplant them altogether.28

Separately from these architectural implementations of public or private legal norms, code can

implement normativity that is purely technological, which is to say rules that constitute and regulate

behaviour outside any legal requirement, whether public or private, to do so. Here, norms are created,

intentionally or otherwise, that shape user behaviour.29

Whether or not these assemblages of code rules aim explicitly to instrumentalise legal norms,

their normativity exists separately from the legal system’s normativity and its corpus of rules. But it is

precisely this separateness that necessitates the present analysis. With legal norms, the legal effect of

the data protection statute or the employment contract applies regardless of either instrument’s

implementation in or through code (subject, of course, to enforcement by a court, if that becomes

necessary). But a corollary arises from this: it is precisely in the separateness of the two mechanisms of

regulation that the architectural force of code, which implements some form of normativity, is able to

supplant the normative infrastructure of law. Text-based laws are created in a world of legal-

institutional speech acts30 whose mode of existence relies on the delay, multi-interpretability, and ex

post contestability of text as a medium.31 So whereas text-based legal norms are in a sense passive, lying

in wait to be interpreted, complied with, and perhaps enforced or declared null by a court, code simply

goes ahead and enforces some conŀguration of regulative force that might bear no relation whatsoever

27 R. Leenes, ‘Framing Techno-Regulation: An Exploration of State and Non-State Regulation by Technology’

(2011) 5 Legisprudence 143, p. 160

28 Leenes terms this ‘non-state techno-regulation’ (Ibid.). See also Asscher, supra n. 8, pp. 67, 69.

29 Goldoni, supra n. 5, p. 118.

30 See generally N. MacCormick, Institutions of Law: An Essay in Legal Theory (New York: Oxford University

Press, 2007) chs. 1–2.

31 Hildebrandt, supra n. 25, p. 143 et seq.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

12

to either the requirements of substantive law or any other external requirement. Ļis becomes more

problematic when we take into account the ontological characteristics of code that constitute its

potentially legalistic nature (these are described in more detail below).

Ļe statute that is improperly enacted or the contract that is improperly concluded are

defeasible, i.e. presumed valid but nevertheless always open to challenge in, and reduction by, a court

with the relevant authority.32 Ļe characteristics of code admit of no such possibility, within the domain

of their execution: once its rules are ‘promulgated’, any ‘illegality’ has no bearing on the code’s ability to

execute and impose any latent technological normativity that it harbours. Put another way, the power

need not be valid for it to be exercised.33 From the point of execution onward the code will operate as

though it was legitimately ‘enacted’, even where this is manifestly not the case. Ļere is, therefore, a

fundamental difference between invalid legal norms and ‘invalid’ code. With the former, the

‘hermeneutic gap’ that exists between text and action allows for a space in which validity can be

considered, whereas with the latter there is no such opportunity, either to arrest execution or, in many

cases, even to observe the invalidity.34

It is clear from the above that code is not the same as institutional law, but in observing this

fact we must not reach the conclusion that it is not the proper concern of legal theorists. Indeed, it is

precisely because of the ways in which code is unlike law that it is necessary to consider the ex ante

design choices that digisprudence is concerned with. Although code artefacts are to an extent facilitated

by law (through contracts, intellectual property, and recursively via the legally-recognised infrastructure

upon which the code runs), the relationship between the two is lopsided when it comes to behavioural

regulation. Ļe immediacy and normative power of code and the ‘sovereignty’ of the designer in deŀning

its effects tip the balance dramatically away from law, rendering the latter ‘a paper dragon in the age of

the “digital tsunami”’.35 Under code, the social and rhetorical power of legal ŀctions are swept aside by

32 N. MacCormick, Rhetoric and the Rule of Law: A Theory of Legal Reasoning (Oxford ; New York: Oxford

University Press, 2005) ch. 12.

33 Cf. in law. See MacCormick, supra n. 30, pp. 158–165

34 Diver, supra n. 16, p. 33

35 Hildebrandt and Koops, supra n. 16, p. 440.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

13

a ‘digital virtuality’36 that directly constitutes an empirical reality, shaped according to the whim of the

designer, potentially with little respect for or even knowledge of the institutionality that law

fundamentally relies upon.37 Ex post adjudication is thus threatened by collapse into pre-determined

obedience,38 since the rule in the code also represents the immediate reality for the citizen, in many

cases without any opportunity for re-interpretation or contestation. Ļe materiality of the code is what

matters, and it is in its profoundly ex ante nature that the problem lies.39 Although to the citizen code

may not consist of ‘rules’ in their commonly-understood textual form,40 the purposive ‘scripts’ embodied

in the design of software artefacts do channel our behaviour in ways that are to a greater or lesser extent

predetermined, and pre-envisaged, by the rule-giver.41 To that extent there is a strong parallel with top-

down norms that succeed in ordering our behaviour in ways that differ from what we might naturally

have done.42

I will return to the role of design later, but for now it suffices to note that the power that inheres

in those who decide on the ends of those code rules is signiŀcant, outstripping the power that inheres

36 C. Vismann and M. Krajewski, ‘Computer Juridisms’ [2007] Grey Room 90, p. 92.

37 For an argument contrasting the materialities of text and code, see Hayles, supra n. 19.

38 Z. Bańkowski and B. Schafer, ‘Double-Click Justice: Legalism in the Computer Age’ (2007) 1 Legisprudence

31, p. 48.

39 As Longford puts it, code increasingly constitutes the very ‘terms and conditions of existence and action.’ See

G. Longford, ‘Pedagogies of Digital Citizenship and the Politics of Code’ (2005) 9 Techné: Research in

Philosophy and Technology 68, p. 71 See also A. Le Sueur, ‘Robot Government: Automated Decision-Making

and Its Implications for Parliament’ in A Horne and A Le Sueur (eds.), Parliament - Legislation and

Accountability (Oxford; Portland, Oregon: Hart, 2016) p. 201

40 Koops and Leenes observe that designs which respect or disregard a particular value (privacy, in the case they

consider), it can be viewed as the embedding of a ‘rule’ in that technology. See R. Leenes and B.-J. Koops,

‘“Code” and Privacy or How Technology Is Slowly Eroding Privacy’ in E Dommering and L Asscher (eds.),

Coding Regulation: Essays on the Normative Role of Information Technology (The Hague: TMC Asser Press,

2006) p. 191.

41 M.T. Young, ‘Artifacts as Rules: Wittgenstein and the Sociology of Technology’ (2018) 22 Techné: Research

in Philosophy and Technology 377. On inscription within design, see Akrich’s classic account: M. Akrich, ‘The

De-Scription of Technical Objects’ in WE Bijker and J Law (eds.), Shaping Technology/Building Society: Studies

in Sociotechnical Change (MIT Press, 1992).

42 This accords with Piekarski and Wachowski’s notion of ‘broad normativity’. See M. Piekarski and W.

Wachowski, ‘Artefacts as Social Things: Design-Based Approach to Normativity’ (2018) 22 Techné: Research

in Philosophy and Technology 400.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

14

in other forms of private ordering that are, like law, fundamentally built around text that requires

interpretation prior to its having any regulative force in the world. As Vismann and Krajewski put it,

The quasi-sovereign power of the computer engineer’s code stems from the ease by

which posing, implementing, and applying a norm are achieved in technology

compared with the cumbersome procedures that legal code must pass through. The

swift effectiveness of a technological code, which cannot, when seen through legal eyes,

appear as anything other than uncanny, renders any possible competition between law

and computer pointless.43

Code is thus not law; it is instead both more, and less, than law. More, because of the instrumental

power of design to constitute and regulate user behaviour. But simultaneously less, because it lacks the

normative mechanisms that aim to keep its textually-bound sister in check.

Whereas traditional regulative norms derive their legitimacy in a constitutional democracy from

their legality and their operation under the rule of law, code-based norms do not by necessity have the

same (or any) democratic connection.44 Whereas legal normativity invites the citizen to comply (she has

always, at least notionally, the option to interpret the norm, contest it, or ignore it entirely),

technological normativity can make compliance a necessity, either in the form of imposing a response

to a given circumstance represented in the code’s ontology, or by constituting at the outset all the courses

of action that the user can possibly take. Ļe fact that code is not ‘true’ law is not relevant to this central

point, and indeed dismissing it on that ground is dangerous for all the reasons here discussed. As many

have noted, normative systems exist in many contexts that have no explicit or implicit connection with

the state.45 Examples abound, from the rules regulating membership of a community association to the

internal governance structures of a political party. What differs with code, however, is that the

behaviour-shaping rules it applies are usually not open to scrutiny, and so the latent role of the law as

the arbiter of last resort cannot be invoked. Ļe hermeneutic gap between what the rule says and the

43 Vismann and Krajewski, supra n. 36, p. 93 (my emphasis).

44 Cf. L. Winner, ‘Do Artifacts Have Politics?’ [1980] Daedalus 121, p. 129

45 See for example MacCormick, supra n. 30, ch. 1; Fuller, supra n. 14, p. 125 et seq.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

15

behavioural possibilities it imposes is thus collapsed.46 It is precisely because code lacks the checks and

balances of legality but nevertheless has immense power to shape behaviour that it is necessary to

instantiate some form of ‘constitutional’ protection in the materiality of its design.

2.1 Code is both more and less than law

2.1.1 Design and the constituting of behaviour

Ļe article has so far discussed the differences between law and code, and why the latter ought to be of

particular interest to legal theorists. I have claimed above that code is ‘more’ than law because of its

capacity to constitute individual behaviour through its material design, as distinct from text-based

normative orders that must, by deŀnition, be interpreted by those to whom the norms are addressed

before the latter can have any effect on behaviour.47 How does code do this? Various concepts from

design and the philosophy of technology can help us in framing the answer to this question, in particular

the notions of affordance (which I employ again in the normative part of digisprudence, discussed

below), inscription, and technological mediation. I have already mentioned inscription above, which is

the notion of embodying in the design of an artefact a particular ‘story’ or script that dictates what the

user ought and ought not to do.48 Many of these scripts are so embedded as to become second-nature

to the artefact’s user – consider, for example, the steps involved in saving a document or typing a URL

into a web browser. However natural or ‘ready to hand’ these code artefacts and their processes might

appear to us, they are none of them a given; every one has to whatever extent been purposively

46 Diver, supra n. 16, p. 33f

47 For a discussion of the ‘efficacy gap’ in law see MacCormick, supra n. 30, pp. 71–74. I have previously referred

to the ‘hermeneutic gap’ as an important difference between the normativity of text-driven law and the

immediacy of code’s impact on behaviour – see Diver, supra n. 16, p. 35.

48 Akrich, supra n. 41, p. 208; B. Latour, ‘The Berlin Key or How To Do Words with Things’ in P Graves-

Brown (ed.), Matter, Materiality and Modern Culture (London: Routledge, 2000).

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

16

designed.49 Of course, this idea of channelling or ‘tunnelling’50 behaviour can be used for different ends,

but whatever the choices made by the designer, these invariably leave out other possibilities that existed

at the outset. What is left in will constitute the affordances of the artefact, or the ways in which it can

be used by a particular user, given her characteristics and those of the code in question.51 Although

many affordances are incidental relationships between user and artefact, they are often consciously

designed as features of the system, in which case they will (usually) be signiŀed to the user.52 A common

example is a pad on the surface of a door that signiŀes the affordance of pushing (but not pulling).

Another is the underlining of a hyperlink on a web page, distinguishing it from plain text.

In contrast to the enablement of behavioural possibilities that designed affordances and their

signiŀers represent, the concept of disaffordance points to the conscious and strategic choice of a

designer to ‘enforce or restrict certain user behaviour’.53 Ļis builds on Lessig’s notion of ‘architectures

of control’,54 and is of course central to the claim made here about the (il)legitimacy of such

technological normativity.

Code is designed with a particular class of user in mind, and so its (dis)affordances, inscriptions,

and mediations are all fundamentally affected by the directed choices made by the designers who

produce it. Although some forms of action are emergent or open to (re)interpretation or resistance on

the part of the user,55 it is nevertheless true to a greater or lesser degree that design choices embed

49 Lessig hints at this truth when he notes that ‘there is no choice that does not include some kind of building.

Code is never found; it is only ever made’. See L. Lessig, Code: Version 2.0 (New York: Basic Books, 2006) p.

6.

50 On the latter see B.J. Fogg, Persuasive Technology: Using Computers to Change What We Think and Do

(Amsterdam; Boston: Morgan Kaufmann Publishers, 2003) p. 34 et seq.

51 D.A. Norman, The Design of Everyday Things (Cambridge, Mass; London, UK: MIT Press, 2013) p. 11.

52 Ibid., p. 13 et seq.

53 D. Lockton, ‘Architectures of Control in Product Design’ [2006] Engineering Designer: The Journal of the

Institution of Engineering Designers 28. See also D. Lockton, ‘Disaffordances and Engineering Obedience’

<http://architectures.danlockton.co.uk/2006/10/22/disaffordances-and-engineering-obedience/> accessed 18

June 2020.

54 Lessig, supra n. 49, ch. 4.

55 This relates to Ihde’s notion of multistability, see his Technology and the Lifeworld: From Garden to Earth

(Indiana University Press, 1990) p. 144 et seq.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

17

‘programs of action’56 within the artefact, and so signiŀcant normative power inheres in those who make

those choices. When a designer embeds (dis)affordances in the design of her artefact, she affects what

it is possible to do with that artefact, either expanding or contracting those possibilities.

All of this points to the ways that designers fashion the geography of the artefacts they create,

thereby controlling, at least to the extent it plays a role in her experience, that part of the user’s mediated

reality.57 Ļe extent to which that control is imposed will differ depending on the artefact and how far

it exempliŀes the elements of computational legalism, discussed in the next section.

2.1.2 From strong legalism to computational legalism

One of the central problematics of code from a legal-theoretical perspective is its ‘ruleishness’, meaning

its application of deŀned rules in all instances where certain ŀxed conditions, predetermined in the code

itself, obtain.58 In the technical context this is of course a major beneŀt: even the most complex body of

rules can be expected to execute in pre-determined ways under precisely-deŀned and controlled

conditions, giving a predictability that has facilitated rapid incremental innovation in modern

technological society.

In the legal context, however, the rote application of rules is undesirable, at least in a society

built around the ideals of democracy and legality. Linked with the Kantian categorical imperative,

legalism is the jural equivalent of software code’s ruleishness. Although it has more than one form in

the literature, the strong conception of legalism that is rełected in code’s character is closely connected

with more ideological forms of analytical legal positivism,59 according to which rules and the strict

adherence to them are the proper fundaments of social ordering. Ļat the state deŀnes what is legal is

sufficient to legitimise the substance of the legal norms it chooses to declare; in constituting the ŀeld of

56 Latour, supra n. 19.

57 On the technological mediation of experience see P.-P. Verbeek, What Things Do: Philosophical Reflections on

Technology, Agency, and Design (Penn State Press, 2005) ch. 3. See also Ihde, supra n. 55, particularly ch. 5.

58 J. Grimmelmann, ‘Regulation by Software’ (2005) 114 The Yale Law Journal 1719.

59 See Z. Bańkowski and N. MacCormick, ‘Legality without Legalism’ in W Krawietz et al. (eds.), The

Reasonable as Rational? On Legal Argumentation and Justification; Festschrift for Aulis Aarnio (Berlin: Duncker

& Humblot, 2000) and J.N. Shklar, Legalism (Harvard University Press, 1964) p. 7.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

18

play (i.e. the legal system), the state legitimises de facto that which it consequently promulgates as the

rules of the game (i.e. positive law). Constitutive facts in the form of natural laws, the social

contract/constitution, or a mix of these, thus operate prospectively to legitimise any subsequent act of

the sovereign.60 Ļe citizen is required to act unthinkingly – the rules are ‘just there’, and she need only

act in accordance with their bare terms,61 since by virtue of those constitutive facts the rules are ‘imputed

to [the people], as if they were its author.’62 Ļe legalistic outlook thus tends towards the ‘narrow

governance of rules, unleavened by [a] principled approach to interpretation.’63 Ļe apparent simplicity

of this ‘narrow governance’ implies the risk of abuse: the prioritisation of heteronomy militates against

critical rełection and the application of other normative principles that we might aspire to in a

democracy (such as those of legality). Ļe autonomy of the citizen to interpret the rules to which she is

subject is seen as a crucial aspect of legality, without which those rules become ‘implements of tyranny’

and legalism a ‘vice of narrow governance’.64

From this very brief summary of legalism one can begin to appreciate how code might exemplify

these characteristics.65 Even in the most tyrannical state there is space to interpret, and even to disobey

– the hermeneutic gap between the text of a norm on the page and its translation into behaviour in the

world makes this at least a notional possibility. In the environments where code is designed, however,

the elision of that gap is not only easy to do but is entirely standard, not necessarily through malice or

intentional obfuscation (although they are certainly a concern), but simply by virtue of the ontological

characteristics of code, which by nature presents to the user norms that ‘just are’. Even where the code

does allow for choice via adjustable settings, the default conŀgurations of code tend to be seen by users

60 Wintgens, Legisprudence, supra n. 1, chs. 5–6.

61 Z. Bańkowski, ‘Don’t Think About It: Legalism and Legality’ in MM Karlsson, Ó Páll Jónsson and EM

Brynjarsdóttir (eds.), Rechtstheorie: Zeitschrift für Logik, Methodenlehre, Kybernetik und Soziologie des Rechts

(Berlin: Duncker & Humblot, 1993).

62 Wintgens, Legisprudence, supra n. 1, p. 208.

63 Bańkowski and MacCormick, supra n. 59, p. 194.

64 Ibid.

65 Bańkowski and Schafer, supra n. 38.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

19

as ‘a natural and immutable fact’.66 Ļe hermeneutic gap is thus closed, or at least signiŀcantly narrowed,

because the ‘text’ of the ‘rule’ (the source code) constitutes directly the geography of the artefact: they

are not just isomorphic, they are one and the same. Unlike institutional law, whose ‘carrier’ has hitherto

been the inherently passive medium of text, software code allows us to, in Latour’s words, ‘conceive of

a text (a programming language) that is at once words and actions’.67 What we have with code, then, is

potentially the apex of legalism: the normative collapses into the descriptive – what was once requested

becomes simply what is, or what will be. Ļere is no choice but to obey the rule as it is expressed by the

designer, much less to view and contest it, since it by deŀnition constitutes empirical reality.68

While code’s ruleishness is a central characteristic of computational legalism, there are several

additional characteristics that take it beyond even the strong legalism envisioned within the jural

domain. Ļe opacity of code makes its regulative operation inscrutable to the user. Ļis is true in the

course of the code’s execution, but also in relation to the provenance of the code (who created it) and,

by extension, its very purpose.69 Ļis characteristic is an ampliŀcation of the ‘veiling’, under strong

legalism, of sovereign power, where the political reasons for a particular rule are deemed not to be the

concern of the citizen – she must simply follow the rule without thinking about it.70 Ļese effects are

compounded by code’s immediacy, or the raw speed with which it imposes the predetermined

66 Goldoni, supra n. 5, p. 128. For an early recognition of code’s legalism see J. Boyle, ‘Foucault in Cyberspace:

Surveillance, Sovereignty, and Hardwired Censors’ (1997) 66 University of Cincinnati Law Review 177, p.

205.

67 Latour, supra n. 19, n. 1.

68 Bańkowski, supra n. 61; Bańkowski and Schafer, supra n. 38. Representationalism is a key element of the

legalistic outlook – see L. Wintgens, ‘Legisprudence as a New Theory of Legislation’ (2006) 19 Ratio Juris 1,

p. 5. Hildebrandt characterises this qualitative difference in her discussion contrasting architectural

‘constitutive rules’ (which define the scope of possible behaviour ex ante) and ‘regulative rules’ (which are akin

to tradition laws that require to be interpreted to have any effect). See Hildebrandt, supra n. 9, p. 172 et seq.

69 Social networks, for example, are clearly much more than the benign facilitators of ‘openness’ they claim to be.

See Asscher, supra n. 8, p. 84. See also Gürses and van Hoboken, supra n. 4, p. 584 and Z. Yu et al., ‘Tracking

the Trackers’, Proceedings of the 25th International Conference on World Wide Web - WWW ’16 (Montreal,

Quebec, Canada: ACM Press, 2016) which discusses the prevalence of hidden third-party trackers on

websites.

70 L. Wintgens, ‘Legislation as an Object of Study of Legal Theory: Legisprudence’, Legisprudence: A New

Theoretical Approach to Legislation (Oxford: Hart, 2002) p. 158; Bańkowski, supra n. 61, p. 46.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

20

conŀgurations of normativity that it embodies.71 Ļere, the user has little opportunity to arrest

execution; unlike textual laws there is no inherent gap between the expression of the norm and its

execution. Add to these code’s immutability (the tendency, for either technical or economic reasons, for

speciŀc codebases to become settled in an artefact72) and its pervasiveness (that is, one piece of code

regulating innumerable users via the same product, multiple artefacts regulating one user in the course

of her connected life, or a combination of the two). Factoring in code’s private production, all of this

contributes to the problematic agglomeration of normative effects that mean that in many cases code is

simultaneously more powerful and less adaptable than a law-system that is built around the

characteristics of delay, łexible interpretation, and ex post remediation. Computational legalism thus

tends towards a combination of brittleness, normative force, and lack of ex post control that is far in

excess of even the most strongly legalistic of legal systems. Ļus can code be said to be simultaneously

more, and less, than law.

2.2 An example: blockchains

To give some practical context, this section will brieły analyse from a digisprudential perspective

blockchain applications, or what are sometimes called ‘smart contracts’.73 Like digital rights

71 On this point see Krajewski’s discussion of code’s ‘closure’ in M. Krajewski, ‘Against the Power of Algorithms

Closing, Literate Programming, and Source Code Critique’ (2019) 23 Law Text Culture 119.

72 This is particularly true for Internet of Things devices whose code may be costly or impractical to update – see

W. Hartzog and E. Selinger, ‘The Internet of Heirlooms and Disposable Things’ (2016) 17 North Carolina

Journal of Law & Technology 581, p. 597. For a real example see L. Franceschi-Bicchierai, ‘Hacked Toy

Company VTech’s TOS Now Says It’s Not Liable for Hacks’ [2016] Motherboard

<http://motherboard.vice.com/read/hacked-toy-company-vtech-tos-now-says-its-not-liable-for-hacks>

accessed 10 October 2016. Lack of oversight is also a concern for blockchains built around the notional benefits

of immutability. See P. De Filippi and A. Wright, Blockchain and the Law: The Rule of Code (Cambridge,

Massachusetts: Harvard University Press, 2018) p. 201 and the case study below.

73 This latter term is controversial. See for example E. Felten, ‘Smart Contracts: Neither Smart nor Contracts?’

<https://freedom-to-tinker.com/2017/02/20/smart-contracts-neither-smart-not-contracts/> accessed 2

January 2019. Buterin, the creator of the Ethereum blockchain and environment, discussed below, has

lamented his adoption of the term and suggested that ‘persistent script’ would have been better: V. Buterin

(Twitter, 13 October 2018) <https://twitter.com/VitalikButerin/status/1051160932699770882> accessed 5

January 2019.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

21

management (‘DRM’) systems before them, blockchain applications are an explicit example of the

transposition of rules (legal or otherwise) into the technological normativity of a digital artefact, in ways

that guide or limit the user’s behaviour.74

To assess blockchain applications from a digisprudential perspective we must consider the basic

elements of their design.75 Blockchains are public databases, stored on a number of computers (‘miners’)

that together constitute a peer-to-peer network. (Although private blockchains do exist, they are

generally used internally within an organisation and so they lack the focus on user behavioural regulation

I am primarily concerned with.76) Adding new records, or transactions, to a blockchain requires

consensus among the network’s nodes, and so a new ‘block’ of data will only be added if a majority of

the miners agree that its addition is in accordance with the set of rules (the protocol) that governs how

that particular blockchain should operate.77 Two prominent examples of blockchain protocols are

Bitcoin,78 the cryptocurrency and the original application of a blockchain design, and Ethereum,79 the

ŀrst protocol to enable sophisticated automation through its support for a variety of general-purpose

programming languages.

A blockchain’s protocol includes a mechanism for miners to reach a consensus on what should

be stored on the blockchain, including metadata about transactions that have taken place and new

application code (‘smart contracts’) that will be executed by it. Ļe challenge of anonymous computers

reaching consensus is an example of the ‘Byzantine fault problem’, where temporally and geographically

74 The question of digital versus legal jurisdiction in blockchain applications has received some recent attention,

albeit with limited engagement from the internal technologist’s perspective. For a nuanced account from a

legal perspective see for example F. Möslein, ‘Conflicts of Laws and Codes: Defining the Boundaries of Digital

Jurisdictions’ in P Hacker et al. (eds.), Regulating Blockchain (Oxford University Press, 2019).

75 For a useful, in-depth discussion see M. Pilkington, ‘Blockchain Technology: Principles and Applications’ in

FX Olleros and M Zhegu (eds.), Research Handbook on Digital Transformations (Cheltenham, UK;

Northampton, MA: Edward Elgar Publishing, 2016).

76 For more on private blockchains see V. Buterin, ‘On Public and Private Blockchains’ (Ethereum Blog, 8 June

2015) <https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/>.

77 De Filippi and Wright, supra n. 72, p. 2.

78 S. Nakamoto, ‘Bitcoin: A Peer-to-Peer Electronic Cash System’.

79 ‘Ethereum White Paper’ (The Ethereum Wiki, 22 August 2018)

<https://github.com/ethereum/wiki/wiki/White-Paper>.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

22

dispersed machines have copies of the blockchain, potentially in different states. For the blockchain to

be workable, consensus must nevertheless be reachable despite this distributed nature. Blockchain

protocols overcome this using a combination of public key cryptography and ‘hashing’.80 Ļe former is

a mechanism for conclusively identifying each node within the network by a unique public signature

(‘key’), while the latter is a method for generating a unique signature (hash) from any given volume of

data, which in the case of blockchains is the totality of the data and code it contains at the moment a

new block is added to the chain. At that point, the new block is assigned a hash generated from a

combination of that block’s new contents (data and application code) and the hashes of all the blocks

already stored on the chain. Ļe mathematical properties of the hashing algorithm mean that changing

even one character anywhere within the entire data structure of the chain will result in a different hash

being generated, and thus one can reliably deduce from two identical hashes that the two data sources

from which they were generated are also identical. Ļis in turn means that if two nodes in the distributed

network derive the same hash from their copies of the blockchain, they can be sure that those copies are

identical (the converse is also, therefore, true).

When a miner solves the computationally-intensive mathematical challenge speciŀed in the

chain’s protocol – miners are incentivised to do this because ŀnding the answer means a reward – the

proposed solution is broadcast to the network for the other miners to verify. Ļey independently

generate a new hash from a combination of their local copies of the chain and the broadcast solution,

and if it meets the requirements of the protocol’s rules, each miner adds the block to their local copy of

the chain and the winning miner receives its reward. Ļe process then starts again for the next block.

In this way the copies of the chain are kept identical and up-to-date across the many anonymous miners

that store them. An important corollary of this consensus mechanism, particularly in its use of hashes

that represent the historical state of the chain, is that once a block has been added its contents are de

facto immutable81 and veriŀable by external observers.82

80 Pilkington, supra n. 75, p. 228.

81 Ibid., p. 233f.

82 Ibid., p. 227.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

23

Copies of the blockchain, including both its protocol and the data that it stores are replicated

across the network, providing resilience and decentralisation.83 Ļis absence of a centralised authority

controlling what gets added to the chain is part of the ideology behind the design of the technology:

provided participants follow the rules contained in the protocol, they get the notional beneŀts of a

tamper-resistant, ‘trustless’ database with no centralised controlling authority.84

2.2.1 Blockchain applications

At present blockchains are probably best-known as the foundation of cryptocurrencies, but another

related application that is more problematic from a legal perspective are so-called ‘smart contracts’

(SCs). Blockchain platforms provide varying levels of sophistication. Ļe Bitcoin protocol provides

some very basic programming capabilities which can allow very limited blockchain applications (BAs)

to be written. Some other platforms, known as ‘sidechains’, provide more sophisticated computation

that runs separately from the primary Bitcoin blockchain but which rely on its relative stability as the

ultimate store, or ledger, of transaction activity.85 Yet others are completely separate from the Bitcoin

blockchain, providing both an independent transaction ledger and a protocol that is speciŀcally designed

to provide a more sophisticated programming foundation for BAs. Of these ‘smarter’ platforms,

Ethereum is the most prominent86 and is therefore the focus of the following discussion.

Ethereum seeks to compliment the architectural characteristics of blockchains with a fully-

łedged programming execution environment that combines ‘Turing-completeness, value-awareness,

blockchain-awareness and state’.87 Programming languages have been created speciŀcally for the

83 De Filippi and Wright, supra n. 72, p. 2.

84 For a critical analysis of the ideological underpinnings of blockchain design, see D. Golumbia, The Politics of

Bitcoin: Software as Right-Wing Extremism (University of Minnesota Press, 2016)

<https://www.upress.umn.edu/book-division/books/the-politics-of-bitcoin> accessed 13 February 2017.

85 For a discussion of sidechains see T.I. Kiviat, ‘Beyond Bitcoin: Issues in Regulating Blockchain Transactions’

(2015) 65 Duke Law Journal 569, p. 604 et seq.

86 For an empirical overview of the current major SC platforms, including Bitcoin and Ethereum, see M.

Bartoletti and L. Pompianu, ‘An Empirical Analysis of Smart Contracts: Platforms, Applications, and Design

Patterns’ [2017] arXiv preprint arXiv:1703.06322 <https://arxiv.org/abs/1703.06322>.

87 ‘Ethereum White Paper’ supra n. 79

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

24

development of BAs on its platform,88 allowing the combination of rich computation with the notional

immutability, decentralisation, and ‘trustless trust’ described above. Ļe code of Ethereum BAs can thus

deŀne complex conditions, execute arbitrary behaviours when certain conditions are met, maintain and

monitor states over time, and record the outcomes in the underlying blockchain. All of this can take

place automatically; once conditions are deŀned in the ‘contract’ it remains ‘live’, awaiting the

appropriate change(s) in external conditions to trigger the rules it contains. In this sense BAs, then, are

not passive textual instructions on what the ‘contracting’ parties ought to do, but rather they are ‘like

“autonomous agents” that live inside of the Ethereum execution environment, always executing a

speciŀc piece of code when “poked” by a message or transaction’.89 Ļe notional result then is a

combination of software’s immense plasticity with the inherent anti-plasticity, or ‘persistence’, of

blockchain architecture.

Multiple BAs can be bundled together by a central business logic (itself written in code and

stored on the blockchain) to create a ‘distributed autonomous organisation’ (‘DAO’)90 which can operate

without human input.91 Ļe code of such an ‘organisation’ could, for example, require a majority vote

from its (human) members as a condition of another BA being executed (for example purchasing some

asset on behalf of the DAO). Again, the decentralised and ‘trustless’ nature of blockchain design

obviates the need for a trusted centralised authority (i.e. a traditional board or committee), and so

notional governance of the organisation can be achieved even where the membership is geographically

dispersed, or even unknown.92 BAs can also consult external sources of data, known in this context as

‘oracles’,93 executing code when predetermined external condition is met, for example a share price

88 For example Solidity, Serpent, and LLL.

89 ‘Ethereum White Paper’ supra n. 79

90 V. Buterin, ‘DAOs, DACs, DAs and More: An Incomplete Terminology Guide’

<https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/>.

91 Ibid.

92 A. Wright and P. De Filippi, ‘Decentralized Blockchain Technology and the Rise of Lex Cryptographia’

(Rochester, NY: Social Science Research Network, 2015) SSRN Scholarly Paper ID 2580664 pp. 15–16

<https://papers.ssrn.com/abstract=2580664>.

93 Cardozo Blockchain Project, ‘“Smart Contracts” & Legal Enforceability’ (New York: Benjamin N Cardozo

School of Law, 2018) p. 6.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

25

gaining a certain value. Ļis might then result in real-world effects through the BA’s automated

interaction with the open interfaces (APIs94) of other services. When coupled with a cryptocurrency, it

becomes possible to effect automated commercial transactions, even using APIs to automate the

involvement of human actors, such as those working in the so-called ‘gig economy’,95 or physical devices,

such as drones, to, for example, deliver goods.96

2.2.2 The computational legalism of blockchains

Ļe normative power of such code is intuitively appreciable. When speciŀc conditions that are

computationally represented (and representable) are met, the code self-executes according to its internal

logic, and the outcomes are enforced regardless of any (relevant) external circumstances or

considerations. With the outcomes of the code’s execution being stored in the underlying blockchain

alongside the code itself, what this means is both its logic and its results are immutable once they are

‘enacted’, executed, and stored. Ļus code, in a very real and legally-signiŀcant sense, becomes ‘law’,

through the ‘collapsing [of] contract formation and enforcement into a single instrument’.97 Ļis

coincidence of form and substance means that when a smart contract is executed, the material effects of

that execution are governed by the dictates of pure code, regardless of any ambiguity or subjective

understanding that might exist in the minds of the human individuals involved.

Code becomes at once rule and reality, with the normative ought collapsed into the descriptive

is (or, rather, will be). Ļis is the ruleish aspect of blockchain architecture, embodied in the applications

that run atop it. Between the bright lines of ruleishness and the ex ante ŀxity of immutable blockchain

94 Application programming interfaces.

95 Buterin describes a DAO as ‘an entity that lives on the internet and exists autonomously, but also heavily relies

on hiring individuals to perform certain tasks that the automaton itself cannot do’. See Buterin, ‘DAOs,

DACs, DAs and More’, supra n. 90.

96 De Filippi and Wright, supra n. 72, p. 156. For a recent real-world example of the latter, see J. Perez, ‘XYO

Game-Changer: We’ve Executed a Smart Contract With a Drone!’ Medium (21 November 2018)

<https://medium.com/xyonetwork/xyo-game-changer-weve-executed-a-smart-contract-with-a-drone-

4deb414af67b>.

97 K.E.C. Levy, ‘Book-Smart, Not Street-Smart: Blockchain-Based Smart Contracts and The Social Workings

of Law’ (2017) 3 Engaging Science, Technology, and Society 1, p. 3.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

26

code, we see the need for the affordances of choice, transparency of operation, and oversight: choice for the

user to have some role in what normative outcomes the code imposes at runtime, transparency about

what the code is doing as it does it (which also implies delay to facilitate intelligibility), and oversight

for those who might have an interest in altering that normativity ex post. Ļe latter will include, at least,

the designers of the code who, under certain blockchain conŀgurations, might in effect be ‘locked out’

of making changes after-the-fact because of the code-imposed requirement to hold a majority stake in

the distribution of mining power on the chain. In some circumstances such a majority might be

impossible to achieve in practice.98 It will also include the courts who, under the requirement to afford

contestability in service of the rule of law, must ultimately be empowered to make performative orders

that facilitate such changes.

Ļis is a symbiotic relationship that hints at the potentially troubling nature of blockchain

applications in terms of governance and legitimacy: if the court orders performance on the part of its

designers to alter the code in order to remedy some illegality, it might not be technically possible to

follow that order, for the reason just described99 – and so we circle back to the question of ex ante

legitimacy and the fundamental issue that animates digisprudence: can a blockchain protocol that does

not afford ex post oversight, and thus does not afford contestability, be said to be legitimate, particularly

given the exempliŀcation by the technology of the problematic characteristics of computational

legalism? If the answer is no, the design ought not to be released.

98 U.W. Chohan, ‘The Decentralized Autonomous Organization and Governance Issues’ (Rochester, NY: Social

Science Research Network, 2017) SSRN Scholarly Paper ID 3082055

<https://papers.ssrn.com/abstract=3082055> accessed 19 June 2020.

99 For a vivid example see the recent New Zealand case of Ruscoe v Cryptopia Ltd (In Liquidation) 728 (High

Court of New Zealand) in which the hack of an online cryptocurrency exchange led to unauthorised transfers

of around NZD 30m worth of cryptocurrency. One can perhaps detect an element of surprise in Gendall J’s

judgment when he states at [13] that “It seems this transfer is irreversible”. Thanks to Tom Barraclough for

notifying me of this case.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

27

3. Achieving legitimacy in code

In the previous section I hinted at various elements that a blockchain application would require to have

in order to be deemed legitimate. Ļis section begins to ŀll out those requirements as they ought to

apply to regulative code more generally, setting out what it is that they seek to emulate in those a-legal

normative orders, and how that might be achieved.

3.1 The aspiration of legality

We saw above in the discussion of computational legalism how code can come to impose a kind of rule-

bound heteronomy on those subject to its normative force. In the legal realm, it is sometimes noted that

the ruleishness of legalism is one end of a spectrum, at the other end of which can be found the

aspirational concept of legality. Legality seeks to maintain a connection between law as a system of

behaviour-governing norms on the one hand and the principles that legitimate the sovereign’s creation

of those norms on the other. Legality is considered to be of fundamental importance in constitutional

democracies; Bańkowski goes so far as to say it is ‘something worth living for; something worth dying

for.’100 For Hildebrandt it rełects not just a commitment to legal certainty, justice, and purposiveness,

but also the rule of law and the binding of the sovereign to constitutional rules constraining its legislative

power.101 For Brownsword, legality is about dignity and the creation and maintenance of conditions

that ‘make moral community possible’, those conditions requiring formal as well as substantive

legitimacy.102

In Fuller’s inłuential discussion of legality, he sets out eight principles that together make up

formal requirements that he argues should be rełected in the creation of all good positive laws,

regardless of any reasonable controversy there might be about their substantive content (their ‘external

100 Bańkowski, supra n. 61, p. 45.

101 Hildebrandt, supra n. 25, pp. 157–158, echoing Radbruch’s antinomian understanding law as the tension

between legal certainty, justice, and purposiveness. See G. Radbruch, ‘II. Legal Philosophy’ in K Wilk (ed.),

The Legal Philosophies of Lask, Radbruch, and Dabin (Cambridge, MA and London, England: Harvard

University Press, 1950).

102 Brownsword, supra n. 21, p. 1324f.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

28

morality’).103 Ļe eight principles require that rules (i) have general rather than arbitrary application, (ii)

are made available for scrutiny by those subject to them, (iii) are not retroactive, (iv) are articulated

clearly, avoiding obscurity or incoherence, (v) are not contradictory, (vi) do not require the impossible,

(vii) are reasonably constant through time, and (viii) are congruent between their terms and how they

are implemented through official action.104 One can appreciate that several of these suggest design

constraints for legal norms, regardless of their positive content. Fuller uses the language of design on

various occasions, referring to law-making as a ‘craft’105 and to the eight principles as ‘those laws

respected by a carpenter who wants the house he builds to remain standing and serve the purpose of

those living in it.’106 Ļe idea of a rule’s legitimacy being in part contingent on formal aspects of its

design rełects the temporal aspect of norm-creation, and the notion of ‘input’ and ‘output’ reasons for

particular rules and decisions.107 As we shall see, this idea of ex ante legitimation is one that has

particular salience in the code context and the goal of digisprudence of ensuring that the ŀxity of code

is as legitimate as it can be from the outset.

Wintgens’ principles of legisprudence are concerned to an even greater degree with the

legitimation of prospective legal norms through the imposition of formal limits.108 For him, respect for

individuals’ subjective notions of freedom ought to be a guiding principle of both politics and law, and

any limitation on those notions by legislative rules can only be legitimate if it is justiŀed according to

the four legisprudential principles.109 Ļe principles are concerned with whether a rule is desirable at all

(principle of alternativity), whether the proposed rule is proportionate to the issue the legislator seeks

to address (principle of normative density), whether its design enables an ongoing assessment of its

efficacy (principle of temporality), and ŀnally whether it is coherent at the semantic, temporal, intra-

103 Fuller, supra n. 14, ch. 2.

104 Ibid., pp. 46–81.

105 Ibid., pp. 43, 156.

106 Ibid., p. 96.

107 See Goldoni, supra n. 5, p. 127, citing J. Waldron, ‘The Core of the Case against Judicial Review’ (2006) 115

Yale Law Journal 1346.

108 Wintgens, ‘Legisprudence as a New Theory of Legislation’, supra n. 68. For an explanation and history of the

term ‘legisprudence’, see Wintgens, Legisprudence, supra n. 1, pp. 231–235.

109 Wintgens, Legisprudence, supra n. 1, p. 220.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

29

systemic, and extra-systemic levels (principle of coherence).110 Ļe following of rules thus remains a

necessary part of the legal order, but ŀdelity to them is now via a ‘weak’ instead of a strong legalism.

Rules that respect the four principles cannot (inter alia) be arbitrary exercises of sovereign power, and

they are thus, according to Wintgens, justiŀed incursions on individual freedom, and ought therefore

to be followed.

Ļese theories provide an important lens for ex ante assessments of other, a-legal forms of

normative rule-making, such as we have been discussing.111 Ļe principled frameworks discussed above

foster sensitivity to numerous factors in the creation of legislation that are absent in the private ordering

of code. Ļe goal of digisprudence is to adapt and import them into the design context, so that the

creation of normative order by and through code can be made (more) legitimate from the outset, in turn

mitigating the negative effects of computational legalism.

3.2 The need for an ex ante focus on code’s production

If the above theories are concerned with the production of legal rules that are legitimate, the question

is how to import those ex ante design constraints into the design process to ensure code rules are

legitimate. I have already mentioned the importance of widening our focus to include the production

of code, in addition to the usual ex post assessment of its operation. Ļis relates to the deŀnitions of

legality and legitimacy just set out – we saw the relevance of the design of a rule to the question of

whether it meets those standards. To combat computational legalism demands a focus on production,

because once the code is ‘out there’ it can be very difficult or impossible to remedy its illegitimacy.112

Moreover, unlike a law that can in principle be ignored by those subject to it, the code will continue to

impose itself without regard to any such illegitimacy (recall the idea of the hermeneutic gap between

text and action being collapsed). Ļe elements of computational legalism – code’s ruleishness, opacity,

immediacy, immutability, and pervasiveness – mean that whatever code is promulgated by the designer

110 Chapter 4 sets out the principles in greater detail in section 2.3 (Wintgens’ legisprudence).

111 Fuller appreciated this point, applying his principles to the rules governing a college dormitory. See Fuller,

supra n. 14, p. 125 et seq.

112 On this point in relation to DAO blockchain applications, see Chohan, supra n. 98.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

30

must be legitimated from the outset. Designers limit individual and collective freedom in ways that have

not been ratiŀed by the democratic polity, via mechanisms that are technically and socially opaque, and

which are not straightforwardly susceptible to public contest, redress, and (judicial) review. Ļey are

therefore potentially illegitimate exercises of power, and their negative effects are difficult to arrest or to

ameliorate when diffused across potentially millions of devices, often with little or no technical means

of applying retrospective ŀxes. Ļrough the ex ante guidance of designers’ production of technological

normativity, we can help ensure that the illegitimate effects toward which computational legalism tends

are minimised as far as possible.

3.3 Synthesising digisprudence: the affordance of legitimacy in code

As Koops suggests, ‘a good place to start looking for criteria for acceptability of normative technology

is to study criteria for law.’113 We have seen above how Fuller’s and Wintgens’ models are concerned

with providing criteria for good law-making. Undoubtedly these theories do not map directly onto the

digital context, and so digisprudence translates their goals into a framework of normative affordances

that ought to be present for code to be deemed legitimate. Table 1 below distils Fuller’s and Wintgens’

principles into a ŀrst set of these digisprudential affordances, mapping the characteristics of

computational legalism ŀrst onto those principles and second onto the affordances that can ameliorate

them. If a code artefact with regulative effect exhibits these affordances – i.e. its design relates to its user

in these ways – then it can be argued that it meets a certain minimal threshold of formal legitimacy.

113 Koops, supra n. 8, p. 162.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

31

Characteristic of

computational legalism

Fullerian principle Legisprudential principle Digisprudential

affordance(s)

Ruleishness Contradictory (v) or

impossible (vi) rules

Alternativity;

Normative density

Transparency

(provenance &

purpose);

Choice

Opacity Promulgation (ii);

Intelligibility (iv)

Alternativity;

Normative density;

Coherence

Transparency

(provenance &

purpose);

Transparency

(operation)

Immediacy Contradictory (v) or

impossible (vi) rules;

Frequency of change

(vii)

Normative density;

Temporality

Delay;

Choice

Immutability [in]Frequency of change

(vii)

Temporality;

Coherence

Oversight;

Choice

Pervasiveness - Normative density -

All of the above - - Contestability

Table 1. Mapping legal legitimacy onto code legitimacy

Ļe affordances are simultaneously general and to an extent concrete: they provide a design goal that

should be rełected in all user-facing code, regardless of the type of technology, its substantive

functionality, or the underlying business model.

An important corollary of this is that certain designs or business models will be a priori

illegitimate if the affordances are not or cannot be included to a sufficient degree. Ļis does not ignore

the fact, however, that there will inevitably be cases where the affordances are less easy to envisage or to

implement. Just like the Fullerian and legisprudential foundations upon which it builds, digisprudence

is aspirational: the affordances are intended to encourage better (if not perfect) design. As Fuller

suggests, perfect legality is ‘utopian’;114 Wintgens for his part notes that respect for the legisprudential

114 Fuller, supra n. 14, p. 41. See also p. 43.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

32

principles is about ‘the aspiration to do the job as well as possible’.115 Ļe same can be said of what is

proposed here.

3.3.1 Contestability: an affordance both for citizens and institutions

It is crucial also to bear in mind the importance of affording contestability as an overarching concern.

Ļis central criterion of legality means it must be possible to question the code, and ŀle a suit against

its creator, in a court. Ļe ability to ‘return’ from the normative order of code to the institutions of law,

and especially the courts, is an important part of retaining the role and the rule of law, even within the

a-legal normative order of code. If the nature and extent of the code’s problematic effects cannot be

observed, however, traditional mechanisms of legal redress cannot be meaningfully invoked. As

discussed above, we fall into a trap if we assume that positive law is capable of operating in its usual way

where code is the subject of its regulation.116 Computational legalism militates against contestability:

users must be in a position to understand the normativities they are being subject to in order to mount

any kind of legal challenge to them. For citizens, resistance and transparency are concerned with the

ability of the user to ‘see’ and question the code-based norms to which she is subjected, following which

she can contest them legally. But for contestability fully and properly to be embodied in code, legal

institutions must be afforded proper evidential scrutiny. If the citizen seeks to contest the code legally

it is axiomatic to say that she must be capable of leading evidence of her complaint, and that evidence

must be intelligible to the trier of fact. Here we maintain the connection between the realm of code and

the rule of law, ensuring that whatever happens in the code-based normative order the judicial process

can still perform its proper democratic function as the ultimate arbiter of any dispute. Ļe affordance of

contestability, then, is necessary not just to enable the citizen to understand code’s normativities

sufficiently well that she can choose to contest them, but is necessary also to enable legal institutions to

grapple with the code from an evidential perspective.

Ļis raises further questions of due process vis-à-vis evidential quality and propriety, and how

these interact with the design process. From an evidential perspective, certain standards must be met in

115 Wintgens, Legisprudence, supra n. 1, p. 280.

116 Hildebrandt and Koops, supra n. 16, p. 440.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

33

order for an action to proceed and succeed; from a design perspective this means that the affordance of

those standards must be considered ex ante during the design process if both aspects of contestability

are to be facilitated. If designers do not account for the affordance of contestability at the stage of

production, it will be that much more difficult (and in some cases impossible) at the stage of operation.

Contestability thus operates as an overarching concern, suffusing digisprudence as an ultimate

backstop that maintains a connection with the rule of law and institutional legal processes. No matter

the merits or demerits of the design from a digisprudential perspective, it must in the end always be

possible for the user to resort to a court action to determine illegality of whatever substantive form. Ļis

ensures the continuing role of the rule of law, notwithstanding code’s existence as a separate a-legal

normative order.

3.3.2 Technological constitutionalism and the programmer of the programmer

So where to impose the above ‘constitutional’ requirements in the code-making process? Recall

relationship (e) in Figure 1 above, which exists between the programmer of the programmer117 (‘PoP’)

and the product designer. Ļe PoP designs the tools that the product designer in turn uses to create the

products and services that are ultimately destined for the user. Situated at a ‘constitutional’ level of the

code production process, the decisions made by the PoP fundamentally impact on what the product

designer can and cannot do. In this way, the PoP has a crucial power to deŀne the rules of the production

game before it even begins. Ļis idea of ‘technological constitutionalism’ suggests a potential point

where digisprudential requirements can be implemented. If parliaments are restricted by constitutions

in the ways in which they can make rules, and the formal qualities that those rules can have, then

perhaps the development environment used by the designer to create digital products can similarly

contain that work within constraints that encourage or even ensure the production of legitimate code.

Ļe power that inheres in product designers operates at the meta-level, through the design of

programming languages, integrated development environments (IDEs), and code development

117 Vismann and Krajewski, supra n. 36. For an earlier discussion that alludes to a similar concept see J.

Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation (San Francisco: Freeman,

1976) p. 100 et seq.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

34

processes such as the agile methodology. Ļese are areas ripe in potential for the application of

constitutional requirements to the code production process.

4. Digisprudence: a recap

Coming toward the end of the article, it may at this point be useful brieły to recap its central claims.

First, code can have regulative effects on behaviour that are more pervasive and direct than law

is capable of. Together, these regulative effects form a corpus of norms that are separate from positive

institutional law. Ļe ontological characteristics of code mean that in many cases this separate normative

order will be enforced whether or not it is compatible with positive law. Ļese characteristics, which

collectively I call computational legalism, are its ruleishness, opacity, immediacy, immutability,

pervasiveness, and private production.

Second, in a democratic society, the norms that regulate citizens, of any kind and from any

source, ought to be legitimate. In the legislative context this can be achieved by ensuring certain formal

qualities are present in the design of those norms, as a separate concern from their substantive content.

Examples of frameworks that suggest such qualities include Fuller’s principles of legality and Wintgens’

legisprudence. Ļese legal-theoretical approaches are concerned to an extent with the form of the legal

norm, as distinct from its political content. Ļis formal notion of legitimacy acts as a kind of basic design

constraint, which through the binding of the sovereign to the inclusion of certain characteristics limits

to some extent what the substantive content of a norm can be.

Ļird, given that in the private, commercial contexts where code-based norms are produced

there are no such formal principles constraining their design, the question arises of whether the

mechanisms of producing legitimate normativity in the legal sphere might be transposed into the

computational sphere. Some form of ex ante legitimation is crucial, because the instrumentality of

computational legalism is potentially more problematic than illegitimate legal norms that, because of

the hermeneutic gap between text and action, can be ignored, re-interpreted, or annulled by a competent

court.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

35

Fourth, any such legitimation of a code rule must, by deŀnition, take place at design time. Ļis

is because, unlike positive law, there is little or no scope for reinterpreting the code after-the-fact; code

and (latent) reality are one from the point of distribution onward.

Digisprudence thus adapts and imports the ex ante frameworks of legitimation from the legal

world into the domain of code, using the language of design theory to remain sensitive to how code

actually regulates and how designers produce it. Ļe synthesis of these various theoretical strands is the

framework of digisprudential affordances, set out above.

5. Conclusion and future work

Ļis article is an initial, high-level articulation of digisprudence, a theory concerned with the legitimacy

of the design of digital artefacts that have regulative effect on human behaviour. It builds on the

philosophies of both law and design in a dialectical structure, the synthesis of which is the framework

of digisprudential affordances that it argues should be present in all citizen-facing code. Ļese

affordances must by deŀnition be consciously implemented at production time, which might be

facilitated in part by the design environment to impose ‘constitutional’ constraints on what kind of code

can ultimately be produced.

Ļe discussion above of blockchain applications and the digisprudential affordances can only

hint at the levels of analysis opened up when the domains of design and legal theory are brought together

in this way. Other speciŀc technologies such as machine learning, the Internet of Ļings, and robotics

will raise many questions when analysed through a ‘digisprudential lens’, both in terms of individual

artefacts themselves and the particularities of their production processes. Interesting questions are also

raised by the context of a code’s deployment, for example in automated public administration, the care

sector, or the expanding ‘legal tech’ domain, where computational legalism might have rełexive effects

that require to be considered in advance.118 From a more operational perspective, the idea of

118 For a discussion of some of these issues in the ‘legal tech’ sector, see L. Diver, ‘Normative Shortcuts and the

Hermeneutic Singularity’ (COHUBICOL research blog, 4 June 2019)

<https://www.cohubicol.com/blog/normative-shortcuts-and-the-hermeneutic-singularity/> accessed 19 June

2020.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

36

technological constitutionalism embodied in the framework raises fascinating practical questions

around development methodologies, integrated development environments, and the nature of

programming languages as the means of expressing normative requirements. Ļese are all sites where

the notional programmer of the programmer plays a pivotal role in structuring, from the outset, how

regulative code is produced.

Analysis in the legal literature has so far avoided the material characteristics of design, focusing

instead on the human factors in the decision to use code to implement a norm. Ļis is a signiŀcant gap

that ought to be remedied. Digisprudence simultaneously adopts an internal legal perspective on what

constitutes legitimacy within that discipline whilst also looking outward at the concrete realities of how

the digital artefacts we critique do what they do.119 Ļis cross-disciplinary analysis can be facilitated by

concepts in the philosophy of technology that sensitise us to the relational nature of technologies and

how they shape our experiences. Once those experiences are conceptualised, we can begin to think

seriously about what legal philosophy ought to say about them, avoiding legalistic or positivist

perspectives that might see computer code as something ‘just there’ and textual rules as the only proper

concern of the lawyer and the legal theorist.

Power is shifting away from publicly-accountable legislators onto private actors who have

pervasive control over the digital products and infrastructures that permeate contemporary life.120 Ļe

ability of code to supplant law as the dominant normative enterprise, and the privatised nature of the

environments within which code is produced, raise the question of how to ensure that that new

normativity is legitimate. As Lessig argued, ‘if code is a lawmaker, then it should embrace the values of

a particular kind of lawmaking.’121 We do not have to accept the claim that code is law in order to accept

that it nevertheless has important normative effects, and that that those effects ought to be legitimate.

If the legitimacy of behavioural regulation, broadly conceived, is a concern within constitutional

119 See for example Verbeek, supra n. 57.

120 Brownsword, supra n. 21, p. 1324; M.J. Radin, ‘Regulation by Contract, Regulation by Machine’ (2004) 160

Journal of Institutional and Theoretical Economics (JITE) 142.

121 Lessig, supra n. 49, p. 328.

Accepted for publication in 13(2) Law, Innovation & Technology (forthcoming)

37

democracies, we cannot ignore the very real role played by the materiality of the code that imposes it,

and in turn by the processes through which it is produced.

6. Acknowledgments

I would like to thank Burkhard Schafer for ‘shepherding’ me through the writing of the thesis from

which this article is derived, as well as Roger Brownsword and Claudio Michelon for their productive

interrogations of my arguments. I’d also like to thank colleagues and friends in LSTS (particularly Irina

Baraliuc, Tatiana Duarte, Gianmarco Gori, Mireille Hildebrandt, Emilie van den Hoven, Liisa

Janssens, Paulus Meessen, Manuel Sabin) for their support and our many stimulating discussions on

this and closely related topics. Thanks also to two anonymous reviewers whose inputs on an earlier draft

helped me to hone the final text.

	1. Introduction
	1.1 The need for ‘digisprudence’
	1.1.1 Digisprudence vs. ‘compliance by design’

	2. Code as an a-legal normative order
	2.1 Code is both more and less than law
	2.1.1 Design and the constituting of behaviour
	2.1.2 From strong legalism to computational legalism

	2.2 An example: blockchains
	2.2.1 Blockchain applications
	2.2.2 The computational legalism of blockchains

	3. Achieving legitimacy in code
	3.1 The aspiration of legality
	3.2 The need for an ex ante focus on code’s production
	3.3 Synthesising digisprudence: the affordance of legitimacy in code
	3.3.1 Contestability: an affordance both for citizens and institutions
	3.3.2 Technological constitutionalism and the programmer of the programmer

	4. Digisprudence: a recap
	5. Conclusion and future work
	6. Acknowledgments

