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On the consistency and asymptotic normality of discrete-time
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Abstract

Even-though data concatenation is a well-known technique for identifying Linear Time-Invariant models from multiple records,
the study of the asymptotic properties of the estimator continues to be limited. Therefore, we investigated consistency and
asymptotic normality as the number or records tend to in�nity, with focus on the identi�cation of discrete-time parametric
models for single-input single-output systems operating in open loop. This paper presents the results of a consistency and
asymptotic normality study based on the analysis of the prediction error cost function and Monte Carlo simulations. We show
that for persistently exciting input signals (�ltered white noise), model structures such as Output-Error, AR and ARX are
consistently estimated, and the estimated parameters are asymptotically normally distributed. On the other hand, ARMA,
ARMAX and Box-Jenkins present a bias on the estimated parameters. However, this bias asymptotically disappears for longer
records
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1 Introduction

For many industrial applications, data for system
identi�cation is available in the form of multiple records
or has long stretches of missing data. This happens for
several reasons like sensor or data transmission failure,
multiple experiments, or data selection (e.g. selection
of operating condition or selection of informative data).
Examples of such applications include: the linear-
modeling of helicopter �ight-mechanics from multiple
short �ight data [1]; the identi�cation of linear-models
for Lithium-Ion batteries and tokamaks with data from
multiple experiments [2,3]; and the modeling of Linear
Parameter-Varying systems from a local approach
where, after operating condition selection, multiple
records are available to identify a local Linear Time-
Invariant (LTI) model [4].

Applying algorithms for the identi�cation of LTI models
on individual data records can lead to poor quality
models because these records might not be long enough.

? This paper was not presented at any IFAC meeting.
Corresponding author Sandra Vásquez.

Email address: sandra.vasquez@vub.be (Sandra
Vásquez).

Therefore, one needs to exploit all the available data for
the identi�cation in order to improve the model quality.

For this, a �rst approach consists in treating missing
data as unknown parameters to be estimated (together
with the model parameters) during the identi�cation
procedure [5,6,7,8]. This becomes, however, unfeasible
for applications where the amount of lost data is large
or for multiple records with large or undetermined
time gaps between them. Then, the best option is the
identi�cation from multiple records. The techniques
mentioned in the literature are [1]: the superposition of
records (i.e. averaging), the concatenation of records,
or a multiple-cost function that combines costs dealing
with the individual records (the de�nition is given in
Section 2).

Clearly, the superposition of records does not handle
di�erent record lengths and it is not suitable for arbitrary
excitation signals because unless the experiments
are synchronized averaging leads to information
loss. Data concatenation and multiple-cost function
techniques do not have this limitation. Moreover, these
techniques avoid modeling errors due to transient e�ects
by introducing additional parameters that account for
the system's initial/�nal conditions among records. A
fundamental di�erence between these approaches is
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that, for data concatenation, there is the underlying
assumption of records belonging to a system subject
to the same operating conditions (otherwise modeling
errors occur). We show later in this paper that the
multiple-cost approach boils down to data concatenation
when the operating conditions of all records are the
same.

Even though system identi�cationmethods based on one
record have been widely studied and well documented
[7,8,9], few papers address the identi�cation from
multiple records and the analysis of the asymptotic
properties of the estimates. [10] proposes a non-
parametric estimation of the Frequency Response
Function from concatenated data (with transients
suppression), and provides an analysis of asymptotic
properties such as bias and variance.

On the other hand, for parametric models the analysis
of asymptotic properties is quite limited. For instance,
[1,7] propose the multiple-cost function approach,
and the well known System Identi�cation Toolbox
of MATLAB implements it [11]. Also, [8] presents a
frequency-domain estimator for parametric models
using concatenated data. However, none of these sources
provides a discussion on asymptotic properties such as
consistency and asymptotic normality when the number
of concatenated records tends to in�nity. An exception
is [12], which presents a consistency analysis for system
identi�cation in the errors-in-variables setting departing
from multiple-cost functions. This analysis is applicable
to the Output Error (OE)model structure. Nevertheless,
the analysis lacks from an important step in the proof
of convergence of the estimator, which we include in
this paper for OE (Lemma 2 in Section 3). Besides [12],
consistency analysis for other model structures have not
been carried out.

Therefore, we investigate the consistency and asymptotic
normality for the identi�cation of discrete-time parametric
models with focus on single-input single-output systems
and the data concatenation technique. Likewise the case
of a single record, it is veri�ed under ideal conditions
(LTI system with known dynamic order) whether or not
the true dynamics can be recovered by adding more data
(concatenating more records). If so, then it makes sense
to apply the concatenation technique to real life systems
that do not perfectly match the ideal conditions. We
consider the more general model structure Box-Jenkins
(BJ), and analyze the speci�c conditions that lead
to other model structures such as ARMAX and OE.
We study the consistency and asymptotic normality
by analyzing the frequency-domain counterpart of the
prediction error cost function. Later, we illustrate the
results through Monte Carlo simulations. Note that the
results of this work are applicable to both time-domain
and frequency-domain estimators.

This paper presents the main results as follows. Section

2 provides the problem statement and the de�nition of
the estimator cost function to be analyzed. Next, the
analysis of the consistency and the asymptotic normality
is presented in Sections 3 and 4. The results are then
illustrated by Monte Carlo simulations in Section 5.
Finally, Section 6 presents the main conclusions.

2 Problem statement

This section �rst presents the de�nition of data
concatenation. Next, the system to be identi�ed is
described. Finally, the prediction error cost function
for concatenated records and its equivalent in the
frequency-domain are presented.

2.1 Data concatenation

A signal xc (t), result of the concatenation of M data
records xm (t) of length Nm, is de�ned as

xc (t) =


x0 (t−K0) t = K0, . . . ,K1 − 1

x1 (t−K1) t = K1, . . . ,K2 − 1
...

...

xM−1 (t−KM−1) t = KM−1, . . . , N − 1

where N =
∑M−1
m=0 Nm is the length of xc (t), Km =∑m−1

i=0 Ni for m ≥ 1 quanti�es the di�erence in samples
between the beginning of records xm (t) and x0 (t) in the
concatenated data xc (t), and K0 = 0.

2.2 System description

Fig. 1. Plant and noise model.

The system to be identi�ed is represented in Fig. 1, with
the input signal u (t) and noise source e (t) satisfying

Assumption 1. The input u (t) is a persistently
exciting signal (wide-sense stationary random process)
that has the form of �ltered white noise with �nite
fourth order moments.

Assumption 2. The signal e (t) is zero mean white
Gaussian noise with variance σ2

e .

The output signal y (t) is described by

y (t) = G (q, θ)u (t) +H (q, θ) e (t) (1)
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G (q, θ) = B (q, θ) /A (q, θ) andH (q, θ) = C (q, θ) /D (q, θ)
are the plant and noise rational transfer function models
respectively. The polynomial A is de�ned as

A (q, θ) =

nA∑
r=0

arq
r (2)

with q the backward shift operator [qrx (t) = x (t− r)],
ar the rth coe�cient and nA the order. Same de�nition
applies for polynomials B, C and D, with br, cr, dr the
rth coe�cients and nB , nC , nD the orders. Here, θ is
the vector of the model parameters (i.e. all unknown
polynomials coe�cients), and θ0 denotes its true value.
True transfer functions and polynomials are denoted as
A0 (q).

Depending on the parametrization of G (q, θ) and
H (q, θ), one can de�ne the di�erent model structures
of Table 1.

Table 1
De�nition of the considered model structures (Str).

Str. De�nition Str. De�nition

BJ A 6=D ARMAX A=D

OE C=D=1 ARMA A=D, B=0

FIR A=C=D=1 ARX A=D, C=1

AR A=D, B=0, C=1

BJ: Box-Jenkins, OE: output error, FIR: �nite impulse
response, AR: auto-regressive, MA: moving average, X:
exogenous input

The following assumptions are made.

Assumption 3. G (q, θ) and H (q, θ) have no zero/pole
cancellation.With the plant/noise polynomial coe�cients
as de�ned in (2), a0 = 1 for G (q, θ), and H (q, θ) is in a
monic representation (c0 = d0 = 1). Thus, θ is uniquely
identi�able. G (q, θ), H (q, θ) and H−1 (q, θ) are stable.

Assumption 4. The true model belongs to the
considered model set: the right model structure and the
appropriate model order are chosen.

Note that Assumptions 1 to 4 (with a more relaxed
condition for e (t), which is discussed later in Subsection
3.2) make part of the consistency analysis of the one
record case in [7,8].

2.3 Prediction Error cost function

The prediction error cost function for one record is given
by [7]

VN (θ, ψ, zt) =
1

N

N−1∑
t=0

ε2 (t, θ, zt)

ε (t, θ, zt) = H−1 (q, θ) [y (t)−G (q, θ)u (t)]

with zt =
[
yT , uT

]T
the measurement vector in the

time-domain (y, u ∈ RN×1), N the number of samples,
and ε (t, θ, zt) the prediction error. The quadratic norm
is a standard choice that is considered for the consistency
analysis in [7,8]. The transient parameters ψ (past values
of u (t) and y (t)) are hidden in the �lter operations.

There areM records of input/output signals um (t) and
ym (t) with a record length Nm (m ∈ [0,M − 1]). The
following assumptions, speci�c for data concatenation,
are made

Assumption 5. All M records of the input/output
signals are independent and are described by (1),
with u (t) and e (t) satisfying Assumptions 1 and 2
(this implies a system subject to the same operating
conditions). Besides, the system is operating in open
loop, so that e (t) and u (t) are independent.

Assumption 6. For all M records, the record length
Nm satis�es Nm > nψr, with nψr the number of
transient parameters ψ associated to each record

nψr =

{
max (nA, nB) + max (nC , nD) for A 6= D

max (nB , nC , nD) for A = D
(3)

This guaranties that each record will add information
for the identi�cation of the model parameters θ (ifNm =
nψr, then only the transient parameters associated to
the mth record can be estimated).

Under Assumptions 2 and 5, the Conditional Maximum
Likelihood solution consists in combining the data
records via the sum of cost functions

VN (θ, ψ, zt) =
1

N

M−1∑
m=0

Nm−1∑
t=0

ε2
m (t, θ, zt) (4)

εm (t, θ, zt) = H−1 (q, θ) [ym (t)−G (q, θ)um (t)] (5)

Theorem1. UnderAssumptions 2 and 5, the Conditional
Maximum Likelihood solution (4) boils down to the
concatenated data solution given by

VN (θ, ψ, zt)=
1

N

N−1∑
t=0

{
H−1(q, θ) [yc(t)−G(q, θ)uc(t)]

}2

(6)

Proof. εc =
[
εT0 , · · · , εTM−1

]T
with εm ∈ RNm×1 and

εm (t) given by (5). Then, εTc εc =
∑M−1
m=0 ε

T
mεm.

Note that Assumption 6 allows the concatenation of
very short records. This is an important advantage in
comparison with the non-parametric modeling proposed
in [10], which is better suited for longer records (due to
interpolation issues of the Local Polynomial Method).
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The frequency-domain equivalent of the cost function in
(6) is presented in the following subsection.

2.4 Frequency-Domain cost function

The Discrete Fourier Transform (DFT) of a signal xc (t)
is given by

Xc (k) =
1√
N

N−1∑
t=0

xc (t) z−tk

with k ∈ [0, N − 1] the frequency bin, and zk = ej2πk/N .

The measurement vector in the frequency-domain is

zf =
[
Y Tc , U

T
c

]T
, with Yc and Uc the DFT of yc (t) and

uc (t) (Yc, Uc ∈ CN×1). By the Parseval's theorem, the
cost function (6) has the following frequency-domain
equivalent [8]

VN (θ, ψ, zf) =
1

N

N−1∑
k=0

|εk (θ, ψ, zf)|2 (7)

εk(θ, ψ, zf)=H−1
(
z−1
k , θ

){
Yc (k)−G

(
z−1
k , θ

)
Uc (k)

−
M−1∑
m=0

z−Kmk

[
TGm

(
z−1
k , θ, ψ

)
+ THm

(
z−1
k , θ, ψ

)]}
(8)

with TGm
(
z−1, θ, ψ

)
and THm

(
z−1, θ, ψ

)
the plant

and noise transient terms associated to the mth record
and z−Km their corresponding delay term (with Km as
de�ned in Subsection 2.1). The transient terms share the
dynamics of the plant/noise model, and are de�ned as

TGm
(
z−1, θ, ψ

)
= Im

(
z−1, ψ

)
/A
(
z−1, θ

)
THm

(
z−1, θ, ψ

)
= Jm

(
z−1, ψ

)
/D
(
z−1, θ

)
with Im

(
z−1, ψ

)
and Jm

(
z−1, ψ

)
polynomials of order

nI and nJ given by

nI = max (nA, nB)− 1; nJ = max (nC , nD)− 1

Here, ψ ∈ Rnψ×1 is the vector of coe�cients of the
polynomials Im and Jm for m ∈ [0,M − 1]. Note that
for D = A, the coe�cients of Im and Jm cannot be
identi�ed separately, so that nψ = M nψr, with nψr as
de�ned in (3).

The noise variance σ2
e can be estimated from (7) by

replacing the model and transient parameters with their

estimates θ̂ and ψ̂, and accounting for the degrees of
freedom as follows

σ̂2
e =

1

N

N−1∑
k=0

∣∣∣εk (θ̂, ψ̂, zf)∣∣∣2 N

N − nθ − nψ
(9)

The cost function (7) is analyzed in the following section.

3 Consistency

This section presents the consistency analysis of the
frequency-domain cost function for concatenated data.
The analysis is performed as follows:

• First, the cost function VN (θ, ψ, zf) is expressed in
terms of the model parameters θ only [VN (θ, zf)]. To
this end, the values of the transient parameters ψ that
minimize VN (θ, ψ, zf) are substituted in (7). Then,
the expected value of this cost function is computed
[VN (θ) = E {VN (θ, zf)}]. See Subsection 3.1.
• Next, one needs to prove the uniform convergence
(w.r.t. θ) of VN (θ, zf) to its expected value VN (θ),
and of VN (θ) to the asymptotic cost function
V∗ (θ) = limN→∞ VN (θ). Then, the convergence of
the global minimizers of VN (θ, zf), VN (θ) and V∗ (θ)
is established from the uniform convergence of these
cost functions. See Subsection 3.2.
• Finally, to establish the consistency, one needs
to verify that the asymptotic cost function V∗ (θ)
is minimal in the true model parameters θ0. See
Subsection 3.3.

This methodology is inspired in [8] (Chapter 17), with
the results presented in this section (and its Appendices)
original from this paper.

The analysis is carried out for the model structures of
Table 1. Note that two cases lead to N → ∞: �nite
number of records M with record lengths Nm → ∞, or
�nite Nm with M → ∞. According to (4), for Nm →
∞, VN (θ, ψ, zt) is a sum of cost functions that yield
consistent estimates. Therefore, the case of �nite Nm
with M →∞ is the focus of this paper.

3.1 De�nition of cost functions VN (θ, zf) and VN (θ)

This subsection provides the de�nitions of VN (θ, zf) and
VN (θ) for the more general model structure BJ. These
de�nitions apply to all model structures of Table 1, with
appropriate modi�cations for ARMAX and its special
cases AR and ARX.

The cost function (7) and the error vector ε (θ, ψ, zf)
∈ CN×1 [with the kth element given by (8)] can be
expressed as

VN (θ, ψ, zf) =
1

N
εH (θ, ψ, zf) ε (θ, ψ, zf) (10)

ε (θ, ψ, zf) = W (θ) zf − LP (θ)ψ (11)

with the superscript H denoting the Hermitian

transpose, zf =
[
Y Tc , U

T
c

]T ∈ C2N×1 and ψ ∈ Rnψ×1.

W ∈ CN×2N andLP ∈ CN×nψ are matrices that depend
on θ. They are de�ned in Appendices A.1 and A.4 for,
respectively, the BJ and ARMAX model structures.

The value of ψ that minimizes (10) is obtained by solving
∂VN (θ, ψ, zf) /∂ψ = 0. Substitution of the solution ψ =
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(
LHP LP

)−1
LHPWzf in (10) results in the cost function

VN (θ, zf) =
1

N
zf
HWN (θ) zf ≥ 0 (12)

WN (θ) = W (θ)
H
P (θ)W (θ) (13)

with WN ∈ C2N×2N a weighting matrix function of θ,
and P ∈ CN×N a projection matrix de�ned as

P (θ) = IN − LP (θ)
(
LHP (θ)LP (θ)

)−1
LHP (θ) (14)

The expected value of (12) is given by

VN (θ) =
1

N
tr
[
E
{
W (θ) zfzf

HW (θ)
H
}
P (θ)

]
(15)

with tr [ ] the trace operator. ComputingE
{
Wzfzf

HWH
}

requires expressing the output Yc in terms of the
input Uc, the noise source Ec, and the true model
and transient parameters θ0 and ψ0, resulting in the
following expectations

SUU=E
{
UcU

H
c

}
; SEE=E

{
EcE

H
c

}
; Sψψ=E

{
ψ0ψ

H
0

}
SEU=E

{
EcU

H
c

}
; SψU=E

{
ψ0U

H
c

}
; SψE=E

{
ψ0E

H
c

}
(16)

The contribution of these terms to the cost function (15)
can be expressed as (see Appendix A.2)

VN (θ) = VUU (θ) + VEE (θ) + Vψψ (θ)

+ VEU (θ) + VψU (θ) + VψE (θ)
(17)

The derivative of VN (θ) with respect to the model
parameters θ and the expected values SEE , SEU
and SψE are computed in Appendices A.3 and B.
Appendix C presents preliminary Lemmas required for
the consistency analysis of the following subsections.

3.2 Convergence of cost functions and minimizers

The convergence analysis in this subsection refers to
the cost function VN (θ, zf) in (12), its expected value
VN (θ) =E {VN (θ, zf)} in (17), and the asymptotic cost
function V∗ (θ) = limN→∞ VN (θ).

To prove the stochastic convergence of VN (θ, zf) to
VN (θ), we make the following assumption regarding the
record lengthsNm. Later on, we will relax this condition.

Assumption 7. AllM records have the same lengthNr
(Nm = Nr,m ∈ [0,M − 1]) that satis�es Assumption 6.

Lemma 2. The weighting matrix WN in (12) is a
positive de�nite Hermitianmatrix that under Assumption
7 satis�es ‖WN‖1 < c < ∞ for N > N∗, ∞ included,
where c is an N -independent constant.

Proof. See Appendix D.

Lemma 3. Under Assumptions 1, 2, 3, 5 and 6,
VN (θ, zf) is a continuous function of θ in a compact (i.e.
closed and bounded) set of parameters Θ, with θ0 ∈ Θ.

Proof. Under Assumptions 1, 2, 5 and 6, the projection
matrix P is of full rank. Under Assumption 3, W and
LP are continuous functions of θ, and so is (LHP LP ), its
inverse (LHP LP )−1 and P . Therefore,WN is a continuous
function of θ and so is VN (θ, zf). The compactness
of the parameter space should only be satis�ed in the
neighborhood of θ0. The construction of Θ is discussed
in Chapter 17 of [8].

Lemma 4. Under the Assumptions of Lemmas 2 and 3,
VN (θ, zf) converges uniformly w.r.t. θ (in probability) to
VN (θ) in the compact set Θ.

Proof. Under Assumptions 1, 2, 3, 5, 6 and 7, the
conditions of Lemma 17.3 in Chapter 17 of [8] are
ful�lled (see Lemmas 2 and 3, and Appendix N).

Remark 5. Relaxing Assumption 2 to e (t) being
white noise with �nite fourth order moments requires
another proof of convergence, since the conditions of
Lemma 17.3 in Chapter 17 of [8] are not ful�lled for
non-Gaussian e (t). Though, simulations not included
in this paper indicate there is convergence. Besides, the
analysis of VN (θ) carried out in the following subsection
holds [because (B.1) remains true].

Lemma 6. VN (θ) converges uniformly w.r.t. θ to V∗ (θ)
in the compact set Θ.

Proof. This is the result of the convergence of the
Riemann sum to the corresponding Riemann integral

[with
∑N−1
k=0 VN (θ, k) =

∑N/2
k=−N/2+1 VN (θ, k), and fs

the sampling frequency]

lim
N→∞

1

N

N/2∑
k=−N/2+1

VN (θ, k) =
1

fs

∫ fs/2

−fs/2
VN (θ, f) df (18)

In the presence of modeling errors, it may happen that
VN (θ, zf), VN (θ) and V∗ (θ) do not have a unique global
minimum [7]. Hence, we de�ne the following sets of
minimizing values in the compact set Θ

ΘN zf = arg min
θ∈Θ

VN (θ, zf) ; ΘN = arg min
θ∈Θ

VN (θ)

Θ∗ = arg min
θ∈Θ

V∗ (θ)

Theorem 7. Under the Assumptions of Lemma 4, ΘN

converges to Θ∗ and ΘN zf converges in probability to Θ∗:

lim
N→∞

ΘN = Θ∗ and plimN→∞ΘN zf = Θ∗

Besides, without modeling errors, the set Θ∗ contains the
unique minimizer θ∗ = θ0.

Proof. Under Assumptions 1, 2, 3, 5, 6 and 7, the
conditions of Theorem 17.8 in Chapter 17 of [8] are
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ful�lled (see Lemmas 4 and 6). The proof for Theorem
17.8 is based on [13]. It su�ces to replace strong by
weak convergence (i.e. in probability).

The uniqueness of θ∗ follows directly from Assumptions
1 and 3 and the non-existence of modeling errors.

Corollary 8. Theorem 7 can be generalized to the case
of arbitrary record lengths Nm satisfying Assumption 6.

Proof. See Appendix E.

This concludes the convergence proof for the cost
functions and minimizers. The cost function analysis is
presented in the following subsection.

3.3 Cost function analysis

This subsection presents the analysis of the cost
function VN (θ) in (17) and the asymptotic value
V∗ (θ) = limN→∞ VN (θ), for �nite Nm with M →∞.

The �rst necessary condition for consistency is presented
in Assumption 4. Note that for the consistency analysis,
the model structure and order match exactly the true
model. The second condition for consistency is V∗ (θ)
being minimal in the true model parameters θ0. For this,
the following condition must be satis�ed for each model
parameter θr

∂V∗ (θ)

∂θr

∣∣∣∣
θ0

= lim
M→∞

∂VN (θ)

∂θr

∣∣∣∣
θ0

= 0 (19)

with θr meaning the rth coe�cient of the plant (A, B)
or noise (C,D) polynomials [i.e. ar, br, cr or dr, see (2)].

The following Lemmas refer to (19) considering VN (θ)
as the sum of terms in (17).

Lemma 9. For any model structure of Table 1, each
of the terms VUU (θ), Vψψ (θ), and VψU (θ) satis�es
condition (19) for all model parameters. Moreover, given
Assumption 5, so does VEU (θ).

Proof. See Appendix F.

Lemma 10. For the BJ model structure, VEE (θ)
satis�es condition (19) for ar and br, but not for cr
and dr when Nm is �nite and M → ∞. However, as
Nm →∞, VEE (θ) satis�es condition (19) for cr and dr.

Proof. See Appendix G.

Lemma 11. For the BJ model structure, VψE (θ)
satis�es condition (19) for ar, br and cr for �nite Nm
and M → ∞. As Nm → ∞, VψE (θ) satis�es condition
(19) for dr.

Proof. See Appendix H.

Lemma 12. For the BJ model structure, for VN (θ)
to satisfy condition (19) for ar, it is necessary that
H
(
z−1, θ

)
= H0

(
z−1
)
. This implies that a bias on the

noise model parameters (cr or dr) introduces a bias on
the plant model parameters (ar and br).

Proof. See Appendix I.

Lemma 13. The results of Lemmas 10 and 11 for
parameters br, cr and dr can be extended to the ARMAX
model structure, and the results for cr and dr to the
ARMA model structure (since D = A, what is stated for
dr applies to ar).

Proof. The proof follows the same procedure as for
Lemmas 10 and 11, with the modi�cations provided in
Appendix A.4.

Theorem 14. Under Assumptions 1 to 6, for the BJ,
ARMAX and ARMA model structures the estimate of

the model parameters θ̂ (zf) ∈ ΘN zf is not consistent

for �nite Nm and M → ∞. θ̂ (zf) presents a bias that
vanishes for increasing record lengths Nm.

Proof. It follows directly from Corollary 8 and Lemmas
9 to 13.

Lemma 15. For the ARX, AR, OE and FIR model
structures, VEE (θ) and VψE (θ) satisfy condition (19)
for all model parameters for �nite Nm and M →∞.

Proof. Because OE is a special case of BJ (with nC =
nD = 0), the results of Lemmas 10 and 11 for parameters
ar and br apply to OE, and so do for FIR, which is a
special case of OE (with nA = 0). For ARX see the
proof in Appendix J. The proof for AR follows the same
procedure as for ARX.

Theorem 16. Under Assumptions 1 to 6, for the ARX,
AR, OE and FIR model structures the estimate of the

model parameters θ̂ (zf) ∈ ΘN zf is consistent for �nite

Nm and M →∞: plimN→∞θ̂ (zf) = θ0

Proof. It follows directly from Corollary 8 and Lemmas
9 and 15.

Corollary 17. Under Assumptions 1 to 6, for the
ARX, AR, OE and FIR model structures the estimate
of the noise variance σ̂2

e in (9) is consistent for �nite
Nm and M → ∞. For BJ, ARMAX and ARMA, σ̂2

e is
not consistent, and it presents a bias that vanishes for
increasing record lengths Nm.

6



Proof. It follows from Theorems 14 and 16 and the proof
in Appendix K.

This concludes the consistency analysis. In the following
section, the asymptotic normality is studied.

4 Asymptotic normality

This section presents the study of the asymptotic
normality of the consistently estimated model structures
(Theorem 16). To prove the asymptotic normality of

θ̂ (zf), we �rst make use of Assumption 7. Later on, we
will relax this condition.

Lemma 18. For the ARX, AR, OE and FIR model
structures, the weighting matrix WN in (12) has
continuous �rst- second- and third-order derivatives
w.r.t. θ, that under Assumption 7, have bounded 1-norm.

Proof. See Appendix L.

Theorem 19. Under Assumptions 1 to 7, for the ARX,
AR, OE and FIR model structures the estimate of the

model parameters θ̂ (zf) ∈ ΘN zf converges in law at the
rateO(N−1/2), for �niteNm andM →∞, to a Gaussian
random variable with zero mean and covariance

Cov
(
θ̂
)

= V
′′−1
N (θ0)E

{
V
′T
N (θ0, zf)V

′

N (θ0, zf)
}
V
′′−1
N (θ0)

(20)

Proof. See Appendix M.

Corollary 20. Theorem 19 can be generalized to the case
of arbitrary record lengths Nm satisfying Assumption 6.

Proof. The same reasoning as for the proof for Corollary
8 can be followed.

This concludes the study of the asymptotic properties
of the estimator. In the following section, the results are
illustrated by Monte Carlo simulations.

5 Monte Carlo simulation

To illustrate the results of the previous sections for the
BJ and AR model structures, Monte Carlo simulations
(1000 runs) were performed to evaluate the mean
value and the mean squared error (MSE) of the
estimated plant/noise models for increasing M . Note
that the con�dence bounds presented in this section are
constructed based on these Monte Carlo experiments.
The following cases are compared: the concatenation of
records of the same length for minimal [Nr1 = nψr + 1,
with nψr given by (3)] and longer (Nr2 > Nr1) records,

and one full record (N) as reference case. To compare
the MSE, the total number of samples for all cases is
the same (Nr1M1 = Nr2M2 = N).

The following true models are considered

GBJ 0

(
z−1
)

=1/
(
1−0.15z−1

)
HBJ 0

(
z−1
)

=
(
1+0.5z−1

)
/
(
1−1.13z−1+0.64z−2

)
HAR 0

(
z−1
)

=1/
(
1−0.15z−1

)
with transients polynomials ImBJ , JmBJ of order nI =
0, nJ = 1, and JmAR of order nJ = 0. The excitation
and noise signals [u(t), e(t)] are independent, zero mean,
normally distributed random variables with variances
σ2
u = 1 and σ2

e = 0.3 for BJ, and σ2
e = 1 for AR.

Figure 2 presents the MSE of the estimated transfer

functionsGBJ
(
z−1
k , θ̂

)
, σ̂eHBJ

(
z−1
k , θ̂

)
and σ̂eHAR

(
z−1
k , θ̂

)
for N doubled each time (N ∈ {96, . . . , 6144} for BJ,
N ∈ {48, . . . , 3072} for AR). The Cramér�Rao Lower
Bound (CRLB) of the full record case is included to
provide a lower limit for the MSE of all cases. The 95%
con�dence interval of the MSE is provided to facilitate
the comparison of the MSE with the CRLB.

From Fig. 2a, 2b and 2c, it can be seen that for the
full record case the MSE quickly reaches the CRLB
for increasing values of N . In contrast, for the data
concatenation cases the MSE approaches the CRLB
but does not reach it. The di�erence between the MSE
and the CRLB re�ects the information loss for the data
concatenation cases, since nψ out of N samples serve
to estimate the transient parameters, with nψ ∝ M .
Hence, for longer record lengths Nr the MSE becomes
closer to the CRLB.

For a consistent estimation from concatenated data, the
MSE should decrease with N at the same rate as the
full record case (

√
MSE ∝ 1/

√
N). This seems to be

the case for GBJ
(
z−1
k , θ̂

)
and σ̂eHAR

(
z−1
k , θ̂

)
(Fig. 2a

and 2c): doubling N leads to a decrease of
√

MSE by

3dB [3dB ≈ dB(
√

2)]. In contrast, σ̂eHBJ

(
z−1
k , θ̂

)
(Fig.

2b) clearly presents a bias: for increasing values of N
the MSE �rst decreases but eventually reaches a lower
limit. However, this bias diminishes for longer record
lengths Nr. Indeed, considering the time constant τ of
HBJ 0 (with τ = −1/Re {ln(zp)}[samples], and zp the
dominant pole), a record length Nr = 48 (∼ 10.7τ)

makes the bias negligible (
√

MSE keeps decreasing by
3dB).

Figure 3 presents, for the minimal records case
and increasing N , the mean value of the estimated

parameters â1 (for BJ) and d̂1 (for AR) and the noise
variance σ̂2

e (for AR), with the 95% con�dence intervals
of the mean values. Because the true parameter a1 is
not contained in the con�dence intervals (for N → ∞),

it is clear that a bias is present for GBJ
(
z−1
k , θ̂

)
(this

7
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(b) BJ Noise model σ̂eHBJ
(
z−1
k , θ̂

)
.
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.

Fig. 2. Monte Carlo simulation (1000 runs) for BJ and AR
model structures. Cases: minimal record length (left), longer
records (middle), and one full record (right). N is doubled
each time (from light to dark). Magnitudes presented in dB:√
MSE of estimated model (thick solid line) and its 95%

con�dence interval (solid line), Cramér�Rao Lower Bound
of the full record case (dashed line).
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Fig. 3. Monte Carlo simulation (1000 runs) of the minimal
record length case. Mean of estimated model parameters â1
and d̂1 (for BJ and AR respectively) and noise variance σ̂2

e

(for AR), with the 95% con�dence intervals of the mean
values (black line), true parameters (gray line). N is doubled
each time.

is explained by Lemma 12). This bias is however small
for this example, so that it could not be easily detected
in Fig. 2a. On the other hand, d1 and σ2

e are contained
in their respective con�dence intervals, which indicates

a consistent estimation of σ̂eHAR

(
z−1
k , θ̂

)
. Besides,

simulation results con�rmed the asymptotic normality

for d̂1.

The results of these Monte Carlo simulations are in
accordance with Theorems 14, 16 and 19, and Corollary
17.

6 Conclusions

In this paper we studied the estimator's asymptotic
properties (i.e. consistency and asymptotic normality)
for the identi�cation of single-input single-output
systems from concatenated data. We showed that the
multiple-cost solution for data records belonging to a
system subject to the same operating conditions boils
down to the data concatenation solution expressed in
the time and frequency domain by (6) and (7).

Moreover, under Assumptions 1 to 6, the concatenation
of multiple records of �nite length leads asymptotically,
for increasing number of records, to a consistent
parameter estimation of discrete-time LTI models for
the structures AR, ARX, OE, FIR. In contrast, the
parameter estimation for BJ, ARMAX and ARMA is
not consistent. Besides, for the consistently estimated
model structures, the estimator is asymptotically
normally distributed.

Therefore, the data concatenation technique is a
suitable solution for the identi�cation from multiple
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records because of the improved model quality and
increased frequency resolution, as compared with a
model estimated from a single record. The downside
with regard to an estimation departing from a full long
record is the increased uncertainty, and a bias in the case
of BJ, ARMAX and ARMA model structures. However,
this bias asymptotically disappears for longer records.
Simulation results suggest that record lengths of at least
some few times (e.g. 10) the dominant time constant of
the plant and noise models result in a negligibly small
bias.

Further research includes: the development of a
convergence proof for a relaxed assumption regarding
the normality of the noise source e(t) (see Remark 5);
the study of consistency for data concatenation in the
case of multiple-input multiple-output systems; and
the consistency analysis for the estimation of the Best
Linear Approximation with concatenated data.
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Appendix A De�nitions for the cost functions
in Subsection 3.1

First, the de�nitions are provided for BJ. Next,
modi�cations for ARMAX are presented in Appendix
A.4.

A.1 De�nitions for VN (θ, ψ, zf) and VN (θ, zf)

To express the error vector ε (θ, ψ, zf) as (11), the
summations of transient polynomials in (8) are rewritten
as
M−1∑
m=0

z−Kmk Im
(
z−1
k , ψ

)
=LIkψI ;

M−1∑
m=0

z−Kmk Jm
(
z−1
k , ψ

)
=LJkψJ

(A.1)
where ψI ∈ RM(nI+1)×1 and ψJ ∈ RM(nJ+1)×1

are vectors grouping the plant and noise transient
parameters

ψI =
[
ψTI 0, · · · , ψTI M−1

]T
; ψJ =

[
ψTJ 0, · · · , ψTJ M−1

]T
with ψI m and ψJ m corresponding to the polynomials
Im and Jm. LIk ∈ C1×M(nI+1) and LJk ∈ C1×M(nJ+1)

are vectors of powers of z−1
k that include the delay terms

z−Kmk

LIk =
[
ηIk z

−K0

k , · · · , ηIk z
−KM−1

k

]
(A.2)

LJk =
[
ηJk z

−K0

k , · · · , ηJk z
−KM−1

k

]
(A.3)

ηIk =
[
1, z−1

k , · · · , z−nIk

]
; ηJk =

[
1, z−1

k , · · · , z−nJk

]
(A.4)

Hence, in (11), ψ ∈ Rnψ×1, LP ∈ CN×nψ , and W ∈
CN×2N are de�ned as

ψ =
[
ψTI , ψ

T
J

]T
(A.5)

LP = [DPILI , DPJLJ ] (A.6)

W = [DWY , DWU ] (A.7)

with LI ∈ CN×M(nI+1), LJ ∈ CN×M(nJ+1), and DPI ,
DPJ , DWY and DWU diagonal matrices belonging to
CN×N given by

LI =
[
LTI0 , · · · , L

T
IN−1

]T
; LJ =

[
LTJ0 , · · · , L

T
JN−1

]T
(A.8)

DPI = diag

(
· · · ,

D
(
z−1
k , θ

)
C
(
z−1
k , θ

) 1

A
(
z−1
k , θ

) , · · ·) (A.9)

DPJ = diag

(
· · · , 1

C
(
z−1
k , θ

) , · · ·) (A.10)

DWY = diag

(
· · · ,

D
(
z−1
k , θ

)
C
(
z−1
k , θ

) , · · ·) (A.11)

DWU = diag

(
· · · ,−

D
(
z−1
k , θ

)
C
(
z−1
k , θ

) B (z−1
k , θ

)
A
(
z−1
k , θ

) , · · ·) (A.12)

A.2 De�nitions for VN (θ)

In (11), expressing Yc in terms of Uc, Ec and the true
model and transient parameters θ0 andψ0 results inWzf
given by

Wzf = DUUc +DEEc + Lψψ0

with ψ0 ∈ Rnψ×1, Lψ ∈ CN×nψ , and DU , DE , DψI and
DψJ diagonal matrices belonging to CN×N de�ned as

ψ0 =
[
ψT0I , ψ

T
0J

]T
; Lψ = [DψILI , DψJLJ ] (A.13)

DU = diag

(
· · · ,

D
(
z−1
k , θ

)
C
(
z−1
k , θ

) [B0

(
z−1
k

)
A0

(
z−1
k

) − B
(
z−1
k , θ

)
A
(
z−1
k , θ

) ] , · · ·)
(A.14)

DE = diag

(
· · · ,

D
(
z−1
k , θ

)
C
(
z−1
k , θ

) C0

(
z−1
k

)
D0

(
z−1
k

) , · · ·) (A.15)

DψI = diag

(
· · · ,

D
(
z−1
k , θ

)
C
(
z−1
k , θ

) 1

A0

(
z−1
k

) , · · ·) (A.16)

DψJ = diag

(
· · · ,

D
(
z−1
k , θ

)
C
(
z−1
k , θ

) 1

D0

(
z−1
k

) , · · ·) (A.17)

Computing E
{
Wzfzf

HWH
}

in (15), given the
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de�nitions of (16), results in the cost function (17), with

VUU (θ) =
1

N
tr
[
DUSUUD

H
U P

]
VEE (θ) =

1

N
tr
[
DESEED

H
E P

]
Vψψ (θ) =

1

N
tr
[
LψSψψL

H
ψ P

]
VEU (θ) =

1

N
tr
[
2 herm

{
DESEUD

H
U

}
P
]

VψU (θ) =
1

N
tr
[
2 herm

{
LψSψUD

H
U

}
P
]

VψE (θ) =
1

N
tr
[
2 herm

{
LψSψED

H
E

}
P
]

where herm {X} =
(
X +XH

)
/2 (A.18)

A.3 Computation of ∂VN (θ) /∂θr

The following equations present the derivative of each
term of (17) with respect to the rth model parameter
θr, with herm{} de�ned by (A.18)

∂VUU
∂θr

=
1

N
tr

(
2 herm

{
∂DU
∂θr

SUUD
H
U

}
P +DUSUUD

H
U
∂P

∂θr

)
(A.19)

∂VEE
∂θr

=
1

N
tr

(
2 herm

{
∂DE
∂θr

SEED
H
E

}
P +DESEED

H
E
∂P

∂θr

)
(A.20)

∂Vψψ
∂θr

=
1

N
tr

(
2 herm

{
∂Lψ
∂θr

SψψL
H
ψ

}
P + LψSψψL

H
ψ
∂P

∂θr

)
(A.21)

∂VEU
∂θr

=
1

N
tr

(
2 herm

{
∂DE
∂θr

SEUD
H
U +DESEU

∂DH
U

∂θr

}
P

+2herm
{
DESEUD

H
U

} ∂P

∂θr

)
(A.22)

∂VψU
∂θr

=
1

N
tr

(
2 herm

{
∂Lψ
∂θr

SψUD
H
U + LψSψU

∂DH
U

∂θr

}
P

+2herm
{
LψSψUD

H
U

} ∂P

∂θr

)
(A.23)

∂VψE
∂θr

=
1

N
tr

(
2 herm

{
∂Lψ
∂θr

SψED
H
E + LψSψE

∂DH
E

∂θr

}
P

+2herm
{
LψSψED

H
E

} ∂P

∂θr

)
(A.24)

with
∂P

∂θr
= −2 herm

{
P
∂LP
∂θr

(
LHP LP

)−1

LHP

}
(A.25)

A.4 Modi�cations for ARMAX

Because D = A for ARMAX, (A.1) is replaced by
M−1∑
m=0

z−Kmk

{
Im
(
z−1
k , ψ

)
+Jm

(
z−1
k , ψ

)}
=LIJkψIJ

(A.26)

with ψIJ =
[
ψTIJ 0, · · · , ψTIJ M−1

]T
LIJk =

[
ηIJk z

−K0

k , · · · , ηIJk z
−KM−1

k

]
(A.27)

ηIJk =
[
1, z−1

k , · · · , z−nIJk

]
; nIJ = max (nI , nJ)

Hence, the de�nitions of ψ, LP , ψ0 and Lψ in (A.5),
(A.6) and (A.13) become

ψ = ψIJ ; ψ0 = ψ0IJ

LP = DPJLIJ ; Lψ = DψJLIJ

with LIJ =
[
LTIJ0 , · · · , L

T
IJN−1

]T
(A.28)

Appendix B Expected values in Subsection 3.1

Given the de�nitions in (16), the expectations SEE , SEU
and SψE are computed.

B.1 Computation of SEE and SEU

Under Assumptions 2 and 5

SEE = σ2
eIN (B.1)

SEU = 0N (B.2)

B.2 Computation of SψE

Given (A.13), for the BJmodel structure the expectation
SψE is structured as

SψE =

[
SψEI

SψEJ

]
(B.3)

with SψEI = E
{
ψ0IE

H
}

; SψEJ = E
{
ψ0JE

H
}
(B.4)

Under Assumption 5, ψ0I is function of u (t) and y0 (t)
(true output), so that

SψEI = 0M(nI+1)×N (B.5)

In contrast, ψ0J is function of e (t) and v (t) (�ltered
noise). Thus, �rst the de�nition of ψ0J is presented.
Next, SψEJ is computed.

B.2.1 De�nition of ψ0J

For a single data record, the de�nition of the true
transient polynomial Jm 0

(
z−1
)
is provided in Appendix

6.B of [8]. Extending it for M records gives

Jm 0

(
z−1
k

)
=

{
nC∑
i=1

i∑
t=1

ci [em (−t)− em−1 (Nm−1 − t)] zt−ik

−
nD∑
ĩ=1

ĩ∑
t̃=1

dĩ
[
vm
(
−t̃
)
− vm−1

(
Nm−1 − t̃

)]
z t̃−ĩk

}
1√
N
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with ci and dĩ the ith and ĩth coe�cients ofC0

(
z−1
)
and

D0

(
z−1
)
, em(−t) and vm(−t) the initial conditions of

recordmth, and em−1 (Nm−1 − t) and vm−1 (Nm−1 − t)
the �nal conditions of record (m− 1)th. To obtain ψ0J

explicitly, the previous equation is rewritten as [r = i−t;
r̃ = ĩ− t̃; xm−1 (Nm−1 − t) = xc (Km − t)]

Jm 0

(
z−1
k

)
=

{
nC−1∑
r=0

z−rk

nC−r∑
t=1

cr+t [em (−t)− ec (Km − t)]

−
nD−1∑
r̃=0

z−r̃k

nD−r̃∑
t̃=1

dr̃+t̃ [vm (−t̃)− vc (Km − t̃)]

}
1√
N

Hence, Jm 0

(
z−1
k

)
can be expressed as

Jm 0

(
z−1
k

)
= ηJk

(
1√
N
Teχem −

1√
N
Tvχvm

)
(B.6)

with ηJk given by (A.4), χem and χvm ∈ R(nJ+1)×1

vectors of the initial/�nal conditions of ec (t) and
vc (t). Te and Tv ∈ R(nJ+1)×(nJ+1) are upper-triangular
matrices with coe�cients of C0

(
z−1
)
and D0

(
z−1
)

respectively. χem and Te are presented below (χvm and
Tv have the same structure)

χem =


em (− (nJ + 1))− ec (Km − (nJ + 1))

...

em (−1)− ec (Km − 1)

 (B.7)

Te =


cnJ+1 cnJ · · · c1

0 cnJ+1 · · · c2
...

...
. . .

...

0 0 · · · cnJ+1

 (B.8)

Finally, ψ0J can be expressed as

ψ0J =
1√
N
{Qeχe −Qvχv} (B.9)

with χe and χv ∈ RM(nJ+1)×1 vectors that group
χem and χvm for all M records. Qe and Qv ∈
RM(nJ+1)×M(nJ+1) are block diagonal matrices of Te
and Tv respectively. χe and Qe are presented below (χv
and Qv have the same structure)

Qe = IM ⊗ Te; χe =
[
χTe 0, · · · , χTeM−1

]T
(B.10)

B.2.2 Computation of SψEJ

Given (B.9) and (B.10), SψEJ has two components

SψEJ = QeE
{
χe√
N
EHc

}
−QvE

{
χv√
N
EHc

}
(B.11)

First, we compute the expectation of Ec (k) with the
elements of χem and χvm renamed as ec̃ (Km − t) and

vc̃ (Km − t) to highlight the fact that ec̃ (t) = ec (t) only
for the samples corresponding to the record (m − 1)th
[see (B.7)].

Since vc̃ (t) = 1√
N

∑t
τ̃=−∞ h (t− τ̃) ec̃ (τ̃) with h (t) the

impulse response ofH0

(
z−1
)
,Ec (k) = 1√

N

∑N−1
τ=0 ec (τ) zτk ,

andE {ec̃ (τ̃) ec (τ)} = σ2
eδ (τ̃ − τ) for τ ∈ [Km−1,Km − 1]

E
{
ec̃ (Km − t)Ec (k)√

N

}
=
σ2
e

N
zKm−tk

E
{
vc̃ (Km − t)Ec (k)√

N

}
=
σ2
e

N

Km−t∑
τ̃=Km−1

zτ̃k h (Km − t− τ̃)

=
σ2
e

N
zKmk Σhm (t)

with Σhm (t) = z−tk

Nm−1−t∑
T=0

z−Tk h (T ) (B.12)

Finally, the expectation of Ec (k) with χem and χvm is
[with ηJk given by (A.4)]

E
{
χem√
N
Ec (k)

}
=−σ

2
e

N
zKmk z

−(nJ+1)
k ηHJk (B.13)

E
{
χvm√
N
Ec (k)

}
=−σ

2
e

N
zKmk


Σhm (nJ + 1)

...

Σhm (1)

 (B.14)

B.3 Remark for ARMAX

By de�nition LIJψ0IJ = LIψ0I + LJψ0J [see (A.1) and
(A.26)]. Hence,

LIJSψE = LISψEI + LJSψEJ
with SψEI and SψEJ as de�ned in (B.4). Thus, the
equations of Appendices B.2.1 and B.2.2 apply to the
ARMAX model structure.

Appendix C Preliminary Lemmas

Here, Ha

(
z−1
)

and Hb

(
z−1
)

are rational transfer
functions with impulse responses ha (t) and hb (t).

Lemma 21. Given that zk = ej2πk/N

N−1∑
k=0

zαk =

{
0 for α 6= nN

N for α = nN
with n εZ

Proof. If α = nN , zαk = 1. If α 6= nN , zαk = zkα and∑N−1
k=0 zkα =

(
1− zNα

)
/ (1− zα) = 0

11



Lemma 22. For Ha

(
z−1
)
stable, α ∈ Z, |α| < N − 1,

and N →∞
1

N

N−1∑
k=0

Ha

(
z−1
k

)
zαk = O

(
|λ|Nϕ+α

)
with λ the pole of Ha

(
z−1
)
that is the closest to the unit

circle (|λ| < 1) and ϕ =
⌈−α
N

⌉
.

Proof. Ha

(
z−1
k

)
=
∑∞
i=0 ha (i) z−ik . By Lemma 21

1

N

∞∑
i=0

ha (i)

N−1∑
k=0

zα−ik =

∞∑
n=ϕ

ha (nN + α)

with ϕ =
⌈−α
N

⌉
. If Ha

(
z−1
)
is stable, its impulse

response ha (t) can be bounded by cλ |λ|t (with
cλ ∈ R+

0 ). Applying the result of geometric series and
N →∞∣∣∣∣∣
∞∑
n=ϕ

ha (nN + α)

∣∣∣∣∣ ≤ cλ
∞∑
n=ϕ

|λ|nN+α
= O

(
|λ|Nϕ+α

)

Lemma 23. For Ha

(
z−1
)
and Hb

(
z−1
)
stable, α ∈ Z,

|α| < N − 1, and N →∞
1

N

N−1∑
k=0

Ha

(
z−1
k

)
Hb (zk) zαk = O

(
|λ|N−|α| + |λ||α|

)
with λ the pole of Ha

(
z−1
)
and Hb

(
z−1
)
that is the

closest to the unit circle (|λ| < 1).

Proof. Ha

(
z−1
k

)
=
∑∞
i=0 ha (i) z−ik ,Hb (zk) =

∑∞
l=0 hb (l) zlk.

By Lemma 21

1

N

∞∑
i=0

∞∑
l=0

ha (i)hb (l)

N−1∑
k=0

z−i+l+αk =

∞∑
i=0

∞∑
n=dα−iN e

ha (i)hb (nN + i− α)

If Ha

(
z−1
)
and Hb

(
z−1
)
are stable, their impulse

responses ha (t) and hb (t) can be bounded by cλ |λ|t

(with cλ ∈ R+
0 ).∣∣∣∣∣∣∣

∞∑
i=0

∞∑
n=dα−iN e

ha (i)hb (nN+i−α)

∣∣∣∣∣∣∣≤c2λ
∞∑
i=0

∞∑
n=dα−iN e

|λ|nN+2i−α

First, we split the summation over i as: i ∈ [0, N + α− 1]
and i ∈ [N + α,∞]. Next, for i ∈ [N + α,∞], we change
variables as: i = sN + q (with s ∈ [1,∞] and q ∈
[α,N + α− 1], so that

⌈
α−i
N

⌉
= −s)

c2λ

N+α−1∑
i=0

∞∑
n=dα−iN e

|λ|nN+2i−α
+

∞∑
s=1

N+α−1∑
q=α

∞∑
n=−s
|λ|nN+2sN+2q−α



After applying the result of geometric series and N →
∞, we obtain the following results (with ϕ =

⌈
α
N

⌉
)

c2λ

[(
|λ|Nϕ−α − |λ|Nϕ+α

+ |λ|α

1− |λ|2

)
+

(
|λ|N+α

1− |λ|2

)]

Lemma 24. For Ha

(
z−1
)
and Hb

(
z−1
)
stable, ha (t)

the impulse response of Ha

(
z−1
)
, 0 < ca < N , −N <

α ≤ −1, and N →∞
1

N

ca∑
T=0

ha (T )

N−1∑
k=0

Hb

(
z−1
k

)
zα−Tk = O

(
(ca + 1) |λ|N+α

)
with λ the pole of Ha

(
z−1
)
and Hb

(
z−1
)
that is the

closest to the unit circle (|λ| < 1) .

Proof. Hb

(
z−1
k

)
=
∑∞
i=0 hb (i) z−ik . By Lemma 21

1

N

ca∑
T=0

ha (T )

∞∑
i=0

hb (i)

N−1∑
k=0

z−i−T+α
k =

ca∑
T=0

ha (T )

∞∑
n=dT−αN e

hb (nN − T + α)

If Ha

(
z−1
)
and Hb

(
z−1
)
are stable, their impulse

responses ha (t) and hb (t) can be bounded by cλ |λ|t

(with cλ ∈ R+
0 ). Besides, if −N < α ≤ −1 and

0 < ca < N , 1 =
⌈−α
N

⌉
≤
⌈
T−α
N

⌉
, so that∣∣∣∣∣

ca∑
T=0

∞∑
n=dT−αN e

ha (T )hb (nN − T + α)

∣∣∣∣∣ ≤
c2λ

ca∑
T=0

∞∑
n=dT−αN e

|λ|nN+α ≤ c2λ
ca∑
T=0

∞∑
n=1

|λ|nN+α

Applying the result of geometric series and N →∞

c2λ

ca∑
T=0

∞∑
n=1

|λ|nN+α
=c2λ

ca∑
T=0

|λ|N+α

1−|λ|N
=O

(
c2λ(ca+1)|λ|N+α

)

Lemma 25. For Ha

(
z−1
)
stable and ha (t) its the

impulse response, 0 < ca < N , |α| < N−1, andN →∞
1

N

ca∑
T=0

ha (T )

N−1∑
k=0

zα−Tk =

{
O
(
|λ|ϕN+α)

if 0≤ϕN+α≤ca
0 otherwise

with λ the pole of Ha

(
z−1
)
that is the closest to the unit

circle (|λ| < 1) and ϕ =
⌈−α
N

⌉
.

Proof. By Lemma 21, and given |α|<N−1 and 0<ca<
N

1

N

ca∑
T=0

ha (T )

N−1∑
k=0

zα−Tk =

ca∑
T=0

ha (T ) δ (ϕN − T + α)
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with ϕ =
⌈−α
N

⌉
. If Ha

(
z−1
)
is stable, its impulse

response ha (t) can be bounded by cλ |λ|t (with cλ ∈
R+

0 ). If 0 ≤ ϕN + α ≤ ca (otherwise δ (ϕN − T + α) =
0)∣∣∣∣∣

ca∑
T=0

ha (T )δ (nN − T + α)

∣∣∣∣∣ ≤
cλ

ca∑
T=0

|λ|T δ (ϕN − T + α) = O(|λ|ϕN+α
)

Lemma 26. For DHa = diag
(
· · · , Ha

(
z−1
k

)
, · · ·

)
and

DHb = diag
(
· · · , Hb

(
z−1
k

)
, · · ·

)
, with Ha

(
z−1
)
and

Hb

(
z−1
)
stable

1

N
LHXD

H
HaDHbLY

with LX and LY equal to LI or LJ as de�ned by (A.8), is
a block diagonal matrix (M×M blocks) for record lengths

Nm → ∞. The diagonal blocks are of order O
(
|λ||α|

)
with α ≈ 0 and λ the pole of Ha

(
z−1
)
and Hb

(
z−1
)
that

is the closest to the unit circle (|λ| < 1).

Proof. The
〈
p, q
〉
block of 1

NL
H
I D

H
Ha
DHbLJ (p, q ∈

[0,M − 1]) is [see (A.2) to (A.4)]( 1

N
LHI D

H
HaDHbLJ

)〈
p,q
〉

=
1

N

N−1∑
k=0

Ha (zk)Hb

(
z−1
k

)
z
Kp−Kq
k ηHIkηJk

(C.1)

By Lemma 23, (C.1) is an O
(
|λ|N−|α| + |λ||α|

)
, with

α ≈ Kp −Kq. For p = q, α ≈ 0. For p 6= q, Nm ≤
∣∣α∣∣ ≤

N − Nm. Thus,
1
NL

H
I D

H
Ha
DHbLJ is a block diagonal

matrix for Nm →∞.

Lemma 27. With LP de�ned by (A.6),

R =

(
1

N
LHP LP

)−1

=

[
RA RB

RHB RC

]

For record lengths Nm → ∞, RA, RB and RC are block
diagonal matrices with diagonal blocks RAm, RBm and
RCm (m ∈ [0,M − 1]) of order O

(
N0
)
.

Proof.

Q =
1

N
LHP LP =

[
QA QB

QHB QC

]

By Lemma 26, QA, QB and QC are block diagonal
matrices with diagonal blocks QAm, QBm and QCm of

order O
(
N0
)
forNm →∞. Q can be inverted blockwise

as

RA = Q−1
A +Q−1

A QB
(
QC −QHBQ−1

A QB
)−1

QHBQ
−1
A

RB = −Q−1
A QB

(
QC −QHBQ−1

A QB
)−1

RC =
(
QC −QHBQ−1

A QB
)−1

resulting in RA, RB and RC as block diagonal matrices
with diagonal blocks of order O

(
N0
)
for Nm →∞.

Lemma 28. For the OE model structure, and all M
records of equal length Nr (N = MNr), Q = 1

NL
H
P LP ,

with LP de�ned by (A.6), is a Hermitian block Toeplitz
matrix. Hence, R = Q−1 is given by [14]

R = TM4−1
M THM − THL 4−1

L TL

with TM =


MM−1 MM−2 · · · M0

0 MM−1 · · · M1

...
...

. . .
...

0 0 · · · MM−1

 (C.2)

TL =


L0 0 · · · 0

L1 L0 · · · 0

...
...

. . . 0

LM−1 LM−2 · · · L0

 (C.3)

4M = diag (4M r · · ·4M r) ; 4L = diag (4L r · · ·4L r)
(C.4)

For M →∞, TM and TL are sparse matrices: blocks Mp

and Lp are only non-zero for p belonging to

[0, · · · ,F− 1,M − F, · · · ,M − 1] (C.5)

with F �nite and determined by the slowest pole of
G0

(
z−1
)
.

Proof. For OE, LP = DPILI [see (A.9), (A.8), (A.2)
and (A.4)]. The

〈
p, q
〉
block of Q (p, q ∈ [0,M − 1]) is

given by

Q〈
p,q
〉 =

1

N

N−1∑
k=0

HPI (zk)HPI

(
z−1
k

)
z
Kp−Kq
k ηHIkηIk

with HPI

(
z−1
k

)
the kth diagonal element of DPI . For

equal record lengths Kp −Kq = Nr(p− q). Hence, Q is
structured as

Q〈
p,q
〉 = Qi ∈ C

(
nI+1

)
×
(
nI+1

)
with i = p − q, Q−i = QHi and Qi Toeplitz. By Lemma

23, Qi = O
(
|λ|N−|α| + |λ||α|

)
with α ≈ Kp − Kq and

λ the pole of HPI

(
z−1
k

)
that is the closest to the unit
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circle (|λ| < 1). Thus, Q is sparse for M →∞{
Qi 6= 0 for i =

[
0, · · · , F̃,M − F̃, · · · ,M − 1

]
Qi = 0 otherwise

(C.6)

with F̃ �nite and determined by |λ|. The structure of
TM and TL re�ects the sparse nature of Q as follows.
Being Q̃ the leading principal submatrix of Q of order
(M − 1)

(
nI + 1

)
× (M − 1)

(
nI + 1

)
, the blocks Mp and

Lp on (C.2) and (C.3) are de�ned by [14]

−
[
MH

0 MH
1 · · · MH

M−2

]
Q̃l = QM−1−l (C.7)

− [LM−1 · · · L2 L1] Q̃l = QHl+1 (C.8)

with Q̃l =
[
Q̃T〈

0,l
〉 · · · Q̃T〈

M−2,l
〉]T , l ∈ [0,M − 2],

MM−1 = I and L0 = 0.

By (C.6) and for l ∈
[
3F̃,M − 2 − 3F̃

]
, (C.7) results in

the following set of equations[
MH

X · · · MH
X+2F̃

] [
QT−F̃ · · · Q

T
F̃

]T
= QM−F̃−X−1

with X ∈
[
2F̃,M − 4F̃ − 2

]
, so that QM−F̃−X−1 = 0.

Because Q−F̃ to QF̃ are of full rank, and MH
X to MH

X+2F̃
only appear in this set of equations, we can conclude that
Mp = 0 for p ∈

[
2F̃,M−2F̃−2

]
. So we choose F = 2F̃+1

for (C.5). A similar proof can be derived for Lp.

Appendix D Proof of Lemma 2

Given (13), ‖WN‖ 1 can be bounded by

‖WN‖ 1 ≤
∥∥WH

∥∥
1

∥∥W∥∥1

∥∥P∥∥1

with
∥∥WH

∥∥
1 and

∥∥W∥∥1 of O
(
N0
)
according to (A.7),

(A.11) and (A.12). From (14) and the de�nition of the
1-norm

‖P‖ 1≤1+

∥∥∥∥LPRLHPN

∥∥∥∥ 1; withR=

(
1

N
LHP LP

)−1

(D.1)∥∥∥∥LPRLHPN

∥∥∥∥ 1 = max
l=0,··· ,N−1

N−1∑
k=0

∣∣∣∣∣
[
LPRL

H
P

N

]
k,l

∣∣∣∣∣ (D.2)

The proof that (D.2) is O
(
N0
)
will be shown below for

BJ and OE. For ARMAX the proof is similar than for
OE because LP = DPILI for OE and LP = DPJLIJ
for ARMAX [see (A.6) and Appendix A.4]. According to
Theorem 14, BJ is consistent only for Nm →∞. Hence,
for BJ it is su�cient to prove the case of long records.

D.1 ‖WN‖ 1 for Box-Jenkins

For the BJ model structure, LP is a block matrix de�ned
by (A.6), (A.8), (A.9) and (A.10). Hence, R in (D.1) is
a block matrix structured as

R =

[
RA RB

RHB RC

]

so that

∥∥∥∥LPRLHPN

∥∥∥∥
1

≤
∥∥∥∥DPILIRALHI DH

PI

N

∥∥∥∥
1

+

∥∥∥∥DPJLJRCLHJ DH
PJ

N

∥∥∥∥
1

+

∥∥∥∥DPJLJRHBLHI DH
PI

N

∥∥∥∥
1

+

∥∥∥∥DPILIRBLHJ DH
PJ

N

∥∥∥∥
1

(D.3)

By Lemma 27 (in Appendix C), for su�ciently large
record lengths Nm, RA, RB , RC are block diagonal
matrices with diagonal blocks RAm, RBm and RCm of
order O

(
N0
)
(m ∈ [0,M − 1]). Assuming M records

of equal length Nr (N = MNr, and RAm = RAr,
RBm = RB r, RCm = RC r for all m), the �rst term of
(D.3) gives

N−1∑
k=0

∣∣∣∣∣
[
DPILIRAL

H
I D

H
PI

N

]
k,l

∣∣∣∣∣ = |HPI (zl)| ·

N−1∑
k=0

∣∣∣∣∣ 1

N
HPI

(
z−1
k

)
ηIkRArη

H
Il

M−1∑
m=0

zKml−k

∣∣∣∣∣
whereHPI

(
z−1
k

)
is the kth diagonal element ofDPI and

M−1∑
m=0

zKml−k =

M−1∑
m=0

ej2πmNr(l−k)/N = M δ ({k − l} − nM)

(D.4)
with n ∈ [0, Nr − 1]. Hence,
N−1∑
k=0

∣∣∣∣∣
[
DPILIRAL

H
I D

H
PI

N

]
k,l

∣∣∣∣∣ =
MNr
N

O
(
N0
)

= O
(
N0
)

and the same result can be derived for the other terms
of (D.3).

D.2 ‖WN‖ 1 for OE

For the OE model structure, LP = DPILI [see (A.8)
and (A.9)]. Assuming M records of equal length Nr
(N = MNr), Lemma 28 (in Appendix C) applies for R
in (D.1), so that∥∥∥∥LPRLHPN

∥∥∥∥
1

≤
∥∥∥∥LPTM4−1

M THM L
H
P

N

∥∥∥∥
1

+

∥∥∥∥LPTHL 4−1
L TLL

H
P

N

∥∥∥∥
1

(D.5)
with TM, TL, 4M and 4L, given by (C.2) to (C.4).
Moreover, for M → ∞, TM and TL are sparse matrices
(blocks Mp, Lp are only non-zero for p belonging to
(C.5), where F is �nite).

We analyze the �rst term of (D.5), for which[
1
NLPTM4

−1
M THM L

H
P

]
k,l

= 1
NLP kTM4

−1
M THM (LP l)

H

(D.6)
with LP k and LP l the kth and lth row of LP .

Being TM4−1
M THM a product of block matrices, one

can expand (D.6) and regroup the terms that have in
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common Mp4−1
M rM

H
q . Thus, (D.6) can be expressed as

the sum of 4F2 terms that have this form

1
NHPI(zl)HPI

(
z−1
k

)
ηIkMp4−1

M rM
H
q η

H
Il

(
z
−Kp̃
k z

Kq̃
l

mf∑
m=0

zKml−k

)
(D.7)

with p, q, p̃, q̃ and mf belonging to (C.5). The

contribution of (D.7) to
∥∥ 1
NLPTM4

−1
M THM L

H
P

∥∥
1
can be

bounded above by∣∣∣∣HPI (zl)

∣∣∣∣N−1∑
k=0

∣∣∣∣ 1
NHPI

(
z−1
k

)
ηIkMp4−1

M rM
H
q η

H
Il

∣∣∣∣∣∣∣∣ mf∑
m=0

zKml−k

∣∣∣∣
where∣∣∣∣∣
mf∑
m=0

zKml−k

∣∣∣∣∣ =

∣∣∣∣∣
mf∑
m=0

ej2πmNr(l−k)/N

∣∣∣∣∣ ≤
{
F for l − k 6= nM

M for l − k = nM

with n ∈ [0, · · · , Nr − 1]. Hence,∥∥∥∥LPTM4−1
M THM L

H
P

N

∥∥∥∥
1

=4F2O

(
MNr
N

+
F(N −Nr)

N

)
=O
(
N0
)

and the same result can be derived for
∥∥LPTHL 4−1

L TLL
H
P

∥∥
1
.

Appendix E Proof of Corollary 8

From the M records of arbitrary but �nite length Nm,
one can form a �nite number of sets S that group records
of the same length. Then, VN (θ, ψ, zt) is expressed as a
weighted sum of cost functions dealing with each set of
records.

VN (θ, ψ, zt) =

S∑
s=1

Ns
N
VNs (θ, ψ, zt) (E.1)

withNs the number of samples in each set. BecauseM →
∞, for at least one set Ns → ∞. From (E.1) its clear
that only sets where Ns →∞ contribute asymptotically
to VN (θ, ψ, zt) [S is �nite and VNs (θ, zt) is �nite for
θ ∈ Θ]. Because the convergence applies to VNs (θ, zt)
for all sets where Ns → ∞ (by Theorem 7), so does for
VN (θ, zt).

Appendix F Proof of Lemma 9

Given (A.19), (A.21) to (A.23), and the de�nition of P
and ∂P

∂θr
in (14) and (A.25)

∂VUU
∂θr

∣∣∣∣
θ0

= 0;
∂Vψψ
∂θr

∣∣∣∣
θ0

= 0;
∂VEU
∂θr

∣∣∣∣
θ0

= 0;
∂VψU
∂θr

∣∣∣∣
θ0

= 0

by the properties of the trace, (B.2), and the fact that
DU

∣∣
θ0

= 0N [see (A.14)] and Lψ
∣∣
θ0

= LP
∣∣
θ0

[see (A.6)

and (A.13)] so that

LHψ P
∣∣
θ0

= PLψ
∣∣
θ0

= 0N ; LHψ
∂P

∂θr
Lψ
∣∣
θ0

= 0N (F.1)

Appendix G Proof of Lemma 10

Equation (A.20) can be simpli�ed to

∂VEE
∂θr

∣∣∣∣
θ0

=
σ2
e

N
tr

(
2 herm

{
∂DE

∂θr
P

})∣∣∣∣
θ0

(G.1)

because of (B.1), DE |θ0 = IN [see (A.15)], and

tr
(
∂P
∂θr

)
= 0 [see (A.25)]. This expression is evaluated

below for the di�erent model parameters

G.1 ∂VEE/∂ar and ∂VEE/∂br

From (A.15), we get for parameters ar and br

∂DE

∂θr
= 0N → ∂VEE

∂θr

∣∣∣∣
θ0

= 0 (G.2)

G.2 ∂VEE/∂cr and ∂VEE/∂dr

From (A.15), we get for parameters cr and dr (1 ≤ r ≤
nD or 1 ≤ r ≤ nC )

∂DE

∂cr

∣∣∣∣
θ0

= DrDEc;
∂DE

∂dr

∣∣∣∣
θ0

= DrDEd

with DEc = diag
(
· · · ,−1/C0

(
z−1
k

)
, · · ·

)
DEd = diag

(
· · · , 1/D0

(
z−1
k

)
, · · ·

)
(G.3)

Dr = diag
(
· · · , z−rk , · · ·

)
(G.4)

We evaluate (G.1) for dr. Given the de�nition of the
trace and (14)

tr

(
σ2
e

N
DrDEdP

)∣∣∣∣
θ0

= B̄ − σ2
e

N
tr
(
RQ̄

)
(G.5)

with B̄ =
σ2
e

N

N−1∑
k=0

HEd

(
z−1
k

)
z−rk

R =
(

1
NL

H
P LP

)−1

∣∣∣∣∣
θ0

; Q̄ = 1
NL

H
P DrDEdLP

∣∣∣∣∣
θ0

;

where HEd

(
z−1
k

)
is the kth diagonal element of DEd.

By Lemma 22 in Appendix C (with α < 0, N + α ≈
N), and with λEd the dominant pole of HEd

(
z−1
)
and

|λEd| < 1

B̄ = O
(
σ2
e |λEd|

N
)

Because LP is a block matrix de�ned by (A.6), R and Q̄
are block matrices structured as

R =

[
RA RB

RHB RC

]
; Q̄ =

[
Q̄A Q̄B
Q̄C Q̄D

]
;

so that

tr
(
RQ̄

)
= tr

(
RAQ̄A +RBQ̄C +RHB Q̄B +RCQ̄D

)
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By Lemmas 26 and 27 (in Appendix C), for su�ciently
large record lengths Nm, RA, ..., RC , Q̄A, ..., Q̄D are
block diagonal matrices with their mth diagonal blocks
of order O

(
N0
)
. Thus, tr

(
RQ̄

)
reduces to

M−1∑
m=0

tr
(
RAmQ̄Am+RBmQ̄Cm+RHBmQ̄Bm+RCmQ̄Dm

)

Hence,

σ2
e

N
tr
(
RQ̄

)
= O

(
σ2
e

nψ
N

)
with nψ = M (nI + nJ + 2). Because N =

∑M−1
m=0 Nm,

nψ/N converges to zero only when Nm → ∞. Thus,
for �nite Nm and M → ∞, ∂VEE/∂dr|θ0 converges to
constant di�erent than zero. A similar result can be
derived for ∂VEE/∂cr|θ0 .

Appendix H Proof of Lemma 11

Substituting (A.25) in (A.24) results in the simpli�ed
equation

∂VψE
∂θr

∣∣∣∣
θ0

=
1

N
tr

(
2 herm

{[
∂Lψ
∂θr

− ∂LP
∂θr

]
SψEP

})∣∣∣∣
θ0

because of (F.1),
(
LHP LP

)−1
LHP Lψ

∣∣
θ0

= IN (given

Lψ
∣∣
θ0

= LP
∣∣
θ0
), and DE |θ0 = IN [see (A.15)]. Given

the de�nition of LP , Lψ and SψE [see (A.6), (A.13),
(B.3) and (B.5)]

∂VψE
∂θr

∣∣∣∣
θ0

=
1

N
tr

(
2 herm

{[
∂DψJ

∂θr
− ∂DPJ

∂θr

]
LJSψEJP

})∣∣∣∣
θ0

(H.1)

This expression is evaluated below for the model
parameters ar, br, cr and dr.

H.1 ∂VψE/∂ar, ∂VψE/∂br and ∂VψE/∂cr

From (A.10) and (A.17), we get for parameters ar, br
and cr(

∂DψJ

∂θr
− ∂DPJ

∂θr

)∣∣∣∣
θ0

= 0N → ∂VψE
∂θr

∣∣∣∣
θ0

= 0

(H.2)

H.2 ∂VψE/∂dr

The proof that ∂VψE/∂dr = 0 for Nm → ∞ can be
derived following a similar procedure as in Appendix J.3.
Also, this result can be derived as follows. According to
(4), forNm →∞, VN (θ, ψ, zt) is a sum of cost functions
that yield consistent estimates. This implies that VN (θ)
satis�es condition (19) for all θr whenNm →∞. Because
all terms in (17), apart from VψE (θ), have been proved
to satisfy (19) for dr when Nm →∞, so does VψE (θ).

Appendix I Proof of Lemma 12

If H
(
z−1, θ

)
6= H0

(
z−1
)
, some of the terms of (17)

do not satisfy condition (19) for ar. For instance,
simplifying (A.20) gives

∂VEE
∂ar

∣∣∣∣
A0(z−1),B0(z−1)

=
σ2
e

N
tr

(
DED

H
E

∂P

∂ar

)∣∣∣∣
A0(z−1),B0(z−1)

Since DE |A0(z−1),B0(z−1) 6= IN [see (A.15)], this term

does not converge to zero for N →∞. This is illustrated
with a Monte Carlo simulation in Section 5.

Moreover, for VN (θ) to satisfy condition (19) for br, it is
necessary that G

(
z−1, θ

)
= G0

(
z−1
)
. This implies that

a bias on parameters ar introduces a bias on br.

Appendix J Proof of Lemma 15

The modi�cations provided in Appendix A.4 and
the remark in Appendix B.3 apply to the ARX
model structure. Besides, DPJ = IN and LHIJLIJ =∑N−1
k=0 LHIJkLIJk = N Inψ [see (A.10) and (A.28)], so

that (14) results in

P = IN −
1

N
LIJL

H
IJ (J.1)

The analysis of Appendices G and H applies to ARX,
with the modi�cations presented below. Equations (G.1)
and (H.1) are evaluated for br and for dr to keep the
notation (since D = A).

J.1 ∂VEE/∂br and ∂VψE/∂br

Given (A.10), (A.15) and (A.17), for the parameter br,
(G.2) and (H.2) apply.

J.2 ∂VEE/∂dr ≡ ∂VEE/∂ar

Given (J.1), for parameter dr (1 ≤ r ≤ nD), (G.5)
becomes

tr

(
σ2
e

N
DrDEdP

)∣∣∣∣
θ0

= B̃

with B̃ =
σ2
e

N

N−1∑
k=0

HEd

(
z−1
k

)
z−rk

(
1− 1

N
LIJkL

H
IJk

)

By Lemma 22 in Appendix C (with α < 0, N +α ≈ N),

and LIJkL
H
IJk

=
∑nψ−1
l=0 LIJk (l)LIJk (l) = nψ

B̃ =
(

1− nψ
N

)
O
(
σ2
e |λEd|

N
)

with λEd the dominant pole ofHEd

(
z−1
)
and |λEd| < 1.

Thus, ∂VEE/∂dr|θ0 converges to zero for �nite Nm and
M →∞.
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J.3 ∂VψE/∂dr ≡ ∂VψE/∂ar

From (A.10) and (A.17), we get for parameter dr (with
1 ≤ r ≤ nD)

(
∂DψJ

∂dr
− ∂DPJ

∂dr

)∣∣∣∣
θ0

= DrDψd

with Dψd = diag
(
· · · , 1/D0

(
z−1
k

)
, · · ·

)
Dr = diag

(
· · · , z−rk , · · ·

)
We evaluate (H.1). Given the de�nition of the trace and
(J.1)

1

N
tr (DrDψdLJSψEJP )

∣∣∣∣
θ0

= B̃ − tr

(
1

N
Q̃F̃

)

B̃=
1

N

N−1∑
k=0

Hψd

(
z−1
k

)
z−rk LJkSψEJk

∣∣∣∣∣
θ0

Q̃=
1

N

N−1∑
k=0

LHIJkHψd

(
z−1
k

)
z−rk LJk

∣∣∣∣∣
θ0

; F̃ =

N−1∑
k=0

SψEJkLIJk

∣∣∣∣∣
θ0

with SψEJk the kth column of SψEJ , LJk and LIJk the
kth rows of LJ and LIJ [see (B.11), (A.3) and (A.27)],
and Hψd

(
z−1
k

)
the kth diagonal element of Dψd.

First, we compute B̃. Given (B.10) to (B.14), B̃ has two

components (B̃=B̃e+B̃v) de�ned by

B̃e=
1

N

N−1∑
k=0

Hψd

(
z−1
k

)
z−rk

M−1∑
m=0

z−Kmk ηJkTeE
{
χem√
N
Ec (k)

}

= − σ
2
e

N2

M−1∑
m=0

N−1∑
k=0

Hψd

(
z−1
k

)
z−1−r
k pe(z

−1
k )

B̃v=− 1

N

N−1∑
k=0

Hψd

(
z−1
k

)
z−rk

M−1∑
m=0

z−Kmk ηJkTvE
{
χvm√
N
Ec (k)

}

=
σ2
e

N2

M−1∑
m=0

nJ∑
ρ=0

Nm−1−ρ−1∑
T=0

h(T )

N−1∑
k=0

Hψd

(
z−1
k

)
z−1−r−T
k pvρ

(
z−1
k

)
with pe(z

−1
k ) and pvρ(z

−1
k ) polynomials on z−1

k of order
nJ . By Lemma 22 (with α < 0, N+α ≈ N) and Lemma
24 (with α < 0, N + α ≈ N , Nm−1 − ρ ≈ Nm−1) in C

B̃e = O
(
σ2
e

M

N
|λBe|N

)
; B̃v = O

(
σ2
e |λBv|

N
)

with λBe the dominant pole of Hψd

(
z−1
)
, and λBv the

dominant pole of Hψd

(
z−1
)
and H0

(
z−1
)
.

Next, we compute tr
(

1
N Q̃F̃

)
. Because Q̃ and F̃ are

block matrices (M ×M blocks)

tr

(
1

N
Q̃F̃

)
=

M−1∑
m=0

tr
( 1

N

M−1∑
i=0

Q̃(m,i)F̃(i,m)

)

with F̃(i,m) = F̃e (i,m) + F̃v (i,m) and Q̃(m,i) given by

F̃e (i,m) =

N−1∑
k=0

TeE
{
χe i√
N
Ec (k)

}
z−Kmk ηIJk

= −σ
2
e

N
Te

N−1∑
k=0

ηHJkηIJkz
−(nJ+1)
k zKi−Kmk

F̃v (i,m) = −
N−1∑
k=0

TvE
{
χv i√
N
Ec (k)

}
z−Kmk ηIJk

=
σ2
e

N
Tv

N−1∑
k=0

[Σh i (nJ + 1) . . . Σh i (1)]
T
ηIJkz

Ki−Km
k

Q̃(m,i) =
1

N

N−1∑
k=0

Hψd

(
z−1
k

)
ηHIJkηJkz

−r
k zKm−Kik

By Lemmas 21 and 25 in Appendix C, F̃e (i,m) and

F̃v (i,m) are O
(
σ2
e

)
when i = m + 1 (or i = 0 with

m = M − 1) and 0(nJ+1)×(nIJ+1) elsewhere. By Lemma

22 (with α < 0, N + α ≈ N) Q̃(m,m+1) and Q̃(M−1,0)

are O
(
|λBe|N

)
. Hence,

tr

(
1

N
Q̃F̃

)
= O

(
σ2
e

M

N
|λBe|N

)
Thus, ∂VψE/∂dr|θ0 converges to zero for �nite Nm and
M →∞.

Appendix K Proof of Corollary 17

For a consistent estimator, θ0 is the minimum of VN (θ).
Evaluating (17) in θ0 gives

VN (θ0) = VEE (θ0) =
1

N
tr (SEEP )|θ0

because of (F.1), DU

∣∣
θ0

= 0N and DE

∣∣
θ0

= IN [see

(A.14) and (A.15)]. Besides, given (B.1) and tr (P ) =
N − nψ [see (14)]

VN (θ0) = σ2
e

N − nψ
N

Therefore, a consistent θ̂ implies a consistent σ̂2
e with

(9), which accounts for the degrees of freedom.

Appendix L Proof of Lemma 18

Given (13),
∥∥∂WN

∂θr

∥∥
1 can be bounded by∥∥∥∥∂WN

∂θr

∥∥∥∥
1

≤
∥∥∥∥∂WH

∂θr

∥∥∥∥
1

∥∥∥P∥∥∥
1

∥∥∥W∥∥∥
1

+
∥∥∥WH

∥∥∥
1

∥∥∥P∥∥∥
1

∥∥∥∥∂W∂θr
∥∥∥∥

1

+
∥∥∥WH

∥∥∥
1

∥∥∥∥ ∂P∂θr
∥∥∥∥

1

∥∥∥W∥∥∥
1
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where
∥∥∂WH

∂θr

∥∥
1,
∥∥∂W
∂θr

∥∥
1,
∥∥WH

∥∥
1 and

∥∥W∥∥1 are O
(
N0
)

according to (A.7), (A.11) and (A.12). For OE and ARX,∥∥P∥∥1 isO
(
N0
)
according to Appendix D. Because LP =

DPILI for OE, and LP = DPJLIJ for ARX [see (A.6),
(A.8), (A.16), (A.17) and Appendix A.4]

∂LP
∂θr

= D∂θrLP (L.1)

with D∂θr ∈ CN×N a diagonal matrix.

From (A.25) and (L.1),
∥∥ ∂P
∂θr

∥∥
1 can be bounded by∥∥∥∥ ∂P∂θr

∥∥∥∥
1

≤
∥∥∥P∥∥∥

1

∥∥∥D∂θr

∥∥∥
1

∥∥∥LP (LHP LP )−1
LHP

∥∥∥
1

+
∥∥∥LP (LHP LP )−1

LHP

∥∥∥
1

∥∥∥DH
∂θr

∥∥∥
1

∥∥∥P∥∥∥
1

where
∥∥D∂θr

∥∥
1 and

∥∥DH
∂θr

∥∥
1 are O

(
N0
)
. According

to Appendix D,
∥∥LP (LHP LP )−1

LHP
∥∥

1 is O
(
N0
)
for

OE and ARX. Therefore,
∥∥ ∂P
∂θr

∥∥
1 and

∥∥∂WN

∂θr

∥∥
1 are

O
(
N0
)
. The proof that for OE and ARX

∥∥ ∂2WN

∂θr∂θq

∥∥
1 and∥∥ ∂3WN

∂θr∂θq∂θp

∥∥
1 are O

(
N0
)
follows the same lines. Note

that the proof here presented applies for FIR and AR.

Appendix M Proof of Theorem 19

From the �rst order Taylor series expansion of V
′

N (θ, zf)
∈ R1×nθ around θ0, a standard reasoning leads to the
following expression for a consistent estimator [7,8,13]

θ̂ (zf)− θ0 −→
N→∞

−V
′′−1
N (θ0)V

′T
N (θ0, zf) in prob.

leading to (20). Under Assumptions 1 to 7, the conditions
of Theorem 17.29 in Chapter 17 of [8] are ful�lled (see
Lemma 18 and Appendix N).

Appendix N Auxiliary proof for Lemma 4 and
Theorem 19

The contribution of the noise on Yc(k) is

J k +H0

(
z−1
k

)
Ec (k) (N.1)

with J k =

M−1∑
m=0

z−Kmk

Jm 0

(
z−1
k

)
D0

(
z−1
k

)
The aim is to prove that, under Assumption 2, (N.1)
is independent over the frequency. H0

(
z−1
k

)
Ec (k)

is independent over k (see [8]). To prove that J k is
independent over k, it su�ces to show that J k and
J l are uncorrelated for k 6= l, since J k and J l are
jointly normally distributed [as they are function of
ec(t)]. Similarly, to prove that J k and H0

(
z−1
k

)
Ec (k)

are independent over k, we will show that J k and
H0

(
z−1
l

)
Ec (l) are uncorrelated for k 6= l.

N.1 E
{
J kJHl

}
From (B.6)

J k = Je k − Jv k (N.2)

with Jv k =
ηJkTv√

ND0

(
z−1
k

)Xv k; Xv k =

M−1∑
m=0

z−Kmk χvm

(N.3)
and Je k de�ned in a similar way as Jv k, replacing Tv by
Te, and Xv k by Xe k (with Xe k same as Xv k, but χvm is
replaced by χem) [see (B.7), (B.8) and (A.4)].

From the covariance E
{

(Je k − Jv k)
(
JHe l − JHv l

)}
, we

consider the term

E
{
Jv kJHv l

}
=

1

D0

(
z−1
k

)
D0

(
zl
)ηJkTv E{Xv kXHv lN

}
THv η

H
Jl

(N.4)

The elements of Xv k ∈ C(nJ+1)×1 are of the form
M−1∑
m=0

z−Kmk {vm (−t)− vm−1 (Nm−1 − t)} = ηMk
νt

ηMk
=


z0
k

...

z
−KM−1

k


T

; νt=


v0 (−t)− v−1 (N−1 − t)

...

vM−1 (−t)− vM−2 (NM−2 − t)


with t ∈ [1, nJ + 1] (and record index −1 ≡M − 1).

Therefore, under Assumptions 5 and 7, the elements of
E
{

1
NXv kX

H
v l

}
in (N.4) are of the form

ηMk
E
{
νtν

H
t̄

N

}
ηHMl

=
1

N
ηMk



b c 0 · · · a
a b c · · · 0

0 a b · · · 0
...
...
...
. . .

...

c 0 0 · · · b


ηHMl

(N.5)
with b = E

{
vr (−t) vr (−t̄) + vr (Nr − t) vr (Nr − t̄)

}
,

a = E
{
−vr (Nr − t) vr (−t̄)

}
and c = E

{
−vr (−t)

vr (Nr − t̄)
}
, where r denotes that a, b and c do not

depend on the record index m. Then, (N.5) reduces to

(because Km+1 = Km +Nr, and z
−Km
k zKml = zKml−k )

ηMk
E
{
νtν

H
t̄

N

}
ηHMl

=

(
b

N
+

a

N
z−Nrk +

c

N
zNrk

)M−1∑
m=0

zKml−k

(N.6)

Considering (D.4), (N.6) equals zero for k − l 6= nM ,
with n ∈ [0, Nr − 1]. Hence, for a given k, for N − Nr
frequencies l

E
{
Jv kJHv l

}
= 0

For k − l = nM (Nr frequencies l), E
{
Jv kJHv l

}
=
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M
N O(N0). Asymptotically, the contribution of this �nite
number frequencies to the cost function can be neglected.
For the other terms of E

{
J kJHl

}
the result is the same,

with the proof following the same procedure. A similar
proof can be derived for E {J kJ l}.

N.2 E
{
J kH0 (zl)Ec (l)

}
From the covariance E

{
J kH0 (zl)Ec (l)

}
, we consider

the term [see (N.2) and (N.3)]

E
{
Jv kH0(zl)Ec(l)

}
=
H0(zl) ηJkTv

D0

(
z−1
k

) M−1∑
m=0

z−Kmk E
{
χvm√
N
Ec(l)

}

For records of equal length Nr, the term Σhm (t) (with
t ∈ [1, nJ + 1] ) in (B.14) does not depend on the record
index m [see (B.12), where Nm−1 ≡ Nr], and we denote
this by Σh r (t). Therefore,

M−1∑
m=0

z−Kmk E
{
χvm√
N
Ec(l)

}
=−σ

2
e

N


Σh r (nJ + 1)

...

Σh r (1)


M−1∑
m=0

zKml−k

(N.7)

Considering (D.4), (N.6) equals zero for k − l 6= nM ,
with n ∈ [0, Nr − 1]. Hence, for a given k, for N − Nr
frequencies l

E
{
Jv kH0 (zl)Ec (l)

}
= 0

For k−l = nM (Nr frequencies l), E
{
Jv kH0 (zl)Ec (l)

}
= M

N O(N0). Asymptotically, the contribution of this
�nite number frequencies to the cost function can be
neglected. For the other terms of E

{
J kH0 (zl)Ec (l)

}
the result is the same, with the proof following the same
procedure [see (B.13)]. A similar proof can be derived
for E {J kH0 (zl)Ec (l)}.

References

[1] D. Leith, D. Murray-Smith, R. Bradley, Combination of data
sets for system identi�cation, IEE Proceedings D - Control
Theory and Applications 140 (1) (1993) 11�18.

[2] R. Relan, K. Tiels, J. Timmermans, J. Schoukens, A local
polynomial approach to nonparametric estimation of the best
linear approximation of lithium-ion battery from multiple
datasets, IEEE Control Systems Letters 1 (1) (July 2017).

[3] B. Mavkov, E. Witrant, C. Prieur, D. Moreau, Multi-
experiment state-space identi�cation of coupled magnetic and
kinetic parameters in tokamak plasmas, Control Engineering
Practice 60 (March 2017).

[4] Q. Zhang, L. Ljung, LPV system common state basis
estimation from independent local LTI models, IFAC-
PapersOnLine 48 (28) (2015) 190�195.

[5] R. J. A. Little, D. B. Rubin, Statistical analysis with missing
data, 3rd Edition, Wiley, 2019.

[6] A. Isaksson, Identi�cation of models subject to missing data,
IEEE Transactions on Automatic Control 38 (5) (1993) 813
� 819.

[7] L. Ljung, System identi�cation: Theory for the user, 2nd
Edition, 1999.

[8] R. Pintelon, J. Schoukens, System identi�cation: A frequency
domain approach, 2nd Edition, IEEE Press, 2012.

[9] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, G. M. Ljung,
Time series analysis. Forecasting and control, 5th Edition,
Wiley, 2015.

[10] J. Schoukens,
G. Vandersteen, Y. Rolain, R. Pintelon, Frequency response
function measurements using concatenated subrecords with
arbitrary length, IEEE Transactions on Instrumentation and
Measurement (10) (2012) 2682 � 2688.

[11] L. Ljung, System identi�cation toolbox: User's guide.,
MathWorks (2014).

[12] I. Markovsky, R. Pintelon, Identi�cation of linear time-
invariant systems from multiple experiments, IEEE
Transactions on Signal Processing 63 (13) (July 2015).

[13] T. Söderström, Convergence properties of the generalised
least squares identi�cation method, Automatica 10 (1974)
617�626.

[14] M. Tismenetsky, On inversion of hermitian block toeplitz
matrices, Linear and Multilinear Algebra 35 (2) (1993) 165�
171.

19


