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Abstract

Even-though data concatenation is a well-known technique for identifying Linear Time-Invariant models from multiple records,
the study of the asymptotic properties of the estimator continues to be limited. Therefore, we investigated consistency and
asymptotic normality as the number or records tend to infinity, with focus on the identification of discrete-time parametric
models for single-input single-output systems operating in open loop. This paper presents the results of a consistency and
asymptotic normality study based on the analysis of the prediction error cost function and Monte Carlo simulations. We show
that for persistently exciting input signals (filtered white noise), model structures such as Output-Error, AR and ARX are
consistently estimated, and the estimated parameters are asymptotically normally distributed. On the other hand, ARMA,
ARMAX and Box-Jenkins present a bias on the estimated parameters. However, this bias asymptotically disappears for longer

records
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1 Introduction

For many industrial applications, data for system
identification is available in the form of multiple records
or has long stretches of missing data. This happens for
several reasons like sensor or data transmission failure,
multiple experiments, or data selection (e.g. selection
of operating condition or selection of informative data).
Examples of such applications include: the linear-
modeling of helicopter flight-mechanics from multiple
short flight data [1]; the identification of linear-models
for Lithium-Ion batteries and tokamaks with data from
multiple experiments [2,3]; and the modeling of Linear
Parameter-Varying systems from a local approach
where, after operating condition selection, multiple
records are available to identify a local Linear Time-
Invariant (LTT) model [4].

Applying algorithms for the identification of LTI models
on individual data records can lead to poor quality
models because these records might not be long enough.
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Therefore, one needs to exploit all the available data for
the identification in order to improve the model quality.

For this, a first approach consists in treating missing
data as unknown parameters to be estimated (together
with the model parameters) during the identification
procedure [5,6,7,8]. This becomes, however, unfeasible
for applications where the amount of lost data is large
or for multiple records with large or undetermined
time gaps between them. Then, the best option is the
identification from multiple records. The techniques
mentioned in the literature are [1]: the superposition of
records (i.e. averaging), the concatenation of records,
or a multiple-cost function that combines costs dealing
with the individual records (the definition is given in
Section 2).

Clearly, the superposition of records does not handle
different record lengths and it is not suitable for arbitrary
excitation signals because — unless the experiments
are synchronized — averaging leads to information
loss. Data concatenation and multiple-cost function
techniques do not have this limitation. Moreover, these
techniques avoid modeling errors due to transient effects
by introducing additional parameters that account for
the system’s initial /final conditions among records. A
fundamental difference between these approaches is



that, for data concatenation, there is the underlying
assumption of records belonging to a system subject
to the same operating conditions (otherwise modeling
errors occur). We show later in this paper that the
multiple-cost approach boils down to data concatenation
when the operating conditions of all records are the
same.

Even though system identification methods based on one
record have been widely studied and well documented
[7,8,9], few papers address the identification from
multiple records and the analysis of the asymptotic
properties of the estimates. [10] proposes a non-
parametric estimation of the Frequency Response
Function from concatenated data (with transients
suppression), and provides an analysis of asymptotic
properties such as bias and variance.

On the other hand, for parametric models the analysis
of asymptotic properties is quite limited. For instance,
[1,7] propose the multiple-cost function approach,
and the well known System Identification Toolbox
of MATLAB implements it [11]. Also, [8] presents a
frequency-domain estimator for parametric models
using concatenated data. However, none of these sources
provides a discussion on asymptotic properties such as
consistency and asymptotic normality when the number
of concatenated records tends to infinity. An exception
is [12], which presents a consistency analysis for system
identification in the errors-in-variables setting departing
from multiple-cost functions. This analysis is applicable
to the Output Error (OE) model structure. Nevertheless,
the analysis lacks from an important step in the proof
of convergence of the estimator, which we include in
this paper for OE (Lemma 2 in Section 3). Besides [12],
consistency analysis for other model structures have not
been carried out.

Therefore, we investigate the consistency and asymptotic

normality for the identification of discrete-time parametric

models with focus on single-input single-output systems
and the data concatenation technique. Likewise the case
of a single record, it is verified under ideal conditions
(LTT system with known dynamic order) whether or not
the true dynamics can be recovered by adding more data
(concatenating more records). If so, then it makes sense
to apply the concatenation technique to real life systems
that do not perfectly match the ideal conditions. We
consider the more general model structure Box-Jenkins
(BJ), and analyze the specific conditions that lead
to other model structures such as ARMAX and OE.
We study the consistency and asymptotic normality
by analyzing the frequency-domain counterpart of the
prediction error cost function. Later, we illustrate the
results through Monte Carlo simulations. Note that the
results of this work are applicable to both time-domain
and frequency-domain estimators.

This paper presents the main results as follows. Section

2 provides the problem statement and the definition of
the estimator cost function to be analyzed. Next, the
analysis of the consistency and the asymptotic normality
is presented in Sections 3 and 4. The results are then
illustrated by Monte Carlo simulations in Section 5.
Finally, Section 6 presents the main conclusions.

2 Problem statement

This section first presents the definition of data
concatenation. Next, the system to be identified is
described. Finally, the prediction error cost function
for concatenated records and its equivalent in the
frequency-domain are presented.

2.1 Data concatenation

A signal z. (), result of the concatenation of M data
records ., (t) of length N,,, is defined as

J}o(t—KQ) t:Ko,...,Kl—l
xl(t*Kl) t:Kl,...,Kgfl
wc(t = . .
:L'Mfl(t—KMfl) t:KMfl,...,N—].
where N = "M N, is the length of z, (t), K, =

Z?igl N, for m > 1 quantifies the difference in samples
between the beginning of records ., (t) and x¢ (¢) in the
concatenated data z. (t), and Ky = 0.

2.2 System description

u(t) G(q) | Yo :_'_: Yy

Fig. 1. Plant and noise model.

The system to be identified is represented in Fig. 1, with
the input signal u (¢) and noise source e (t) satisfying

Assumption 1. The input wu(¢) is a persistently
exciting signal (wide-sense stationary random process)
that has the form of filtered white noise with finite
fourth order moments.

Assumption 2. The signal e(t) is zero mean white
Gaussian noise with variance o2

e

The output signal y (t) is described by
y(t) =G(q,0)u(t) +H(q0)e(t) (1)



G (q,0) = B(q,0) /A(q,0)and H (¢,0) = C (q,0) /D (q,0)

are the plant and noise rational transfer function models
respectively. The polynomial A is defined as

na
A(g,0) = arq" (2)

r=0
with ¢ the backward shift operator [¢"z (t) = z (t — )],
a, the rth coefficient and n 4 the order. Same definition
applies for polynomials B, C' and D, with b,, ¢,, d, the
rth coefficients and npg, nc, np the orders. Here, 0 is
the vector of the model parameters (i.e. all unknown
polynomials coefficients), and 6y denotes its true value.
True transfer functions and polynomials are denoted as

Ao (q)-

Depending on the parametrization of G (g,0) and
H (q,0), one can define the different model structures
of Table 1.

Table 1
Definition of the considered model structures (Str).

Str.  Definition Str. Definition
BJ A#D ARMAX A=D
OE C=D=1 ARMA A=D, B=0
FIR A=C=D=1 ARX A=D,C=1
AR A=D, B=0,C=1

BJ: Box-Jenkins, OE: output error, FIR: finite impulse
response, AR: auto-regressive, MA: moving average, X:
exogenous input

The following assumptions are made.

Assumption 3. G (q,0) and H (g, ) have no zero/pole
cancellation. With the plant /noise polynomial coefficients
as defined in (2), ap = 1 for G (¢,0), and H (¢, 0) is in a
monic representation (co = dy = 1). Thus, 6 is uniquely
identifiable. G (q,6), H (¢,0) and H~' (q,0) are stable.

Assumption 4. The true model belongs to the
considered model set: the right model structure and the
appropriate model order are chosen.

Note that Assumptions 1 to 4 (with a more relaxed
condition for e (¢), which is discussed later in Subsection
3.2) make part of the consistency analysis of the one
record case in [7,8].

2.3 Prediction Error cost function

The prediction error cost function for one record is given
by [7]

with z, = [yT, uT] r the measurement vector in the
time-domain (y, u € RN¥*1), N the number of samples,
and ¢ (¢, 0, z) the prediction error. The quadratic norm
is a standard choice that is considered for the consistency
analysis in [7,8]. The transient parameters ) (past values

of u (t) and y (t)) are hidden in the filter operations.

There are M records of input/output signals u,, () and
Ym (t) with a record length N, (m € [0, M — 1]). The
following assumptions, specific for data concatenation,
are made

Assumption 5. All M records of the input/output
signals are independent and are described by (1),
with u (t) and e (¢) satisfying Assumptions 1 and 2
(this implies a system subject to the same operating
conditions). Besides, the system is operating in open
loop, so that e (¢) and wu (t) are independent.

Assumption 6. For all M records, the record length
N, satisfies N, > ny,, with ny, the number of
transient parameters ¢ associated to each record

- max (na,np) + max (nc,np) for A# D
wr max (ng,nc,np) for A=D
(3)
This guaranties that each record will add information
for the identification of the model parameters 0 (if N,,, =
Ny, then only the transient parameters associated to
the mth record can be estimated).

Under Assumptions 2 and 5, the Conditional Maximum
Likelihood solution consists in combining the data

records via the sum of cost functions
M—1Np—1

Vi (0.0,20) = 1 D D h(t6,2) (4)

m=0 t=0

em (t,0,22) = H™" (¢,0) [ym (t) = G (q,0) um ()] (5)

Theorem 1. Under Assumptions 2 and 5, the Conditional
Mazximum Likelihood solution (4) boils down to the
concatenated data solution given by

N—-1

V(0,920 =1 (' (0,0) elt) — Gla, 0)uel0)]}
t=0

(©

Proof. e. = [eF,-- &7, ] with e, € RN»*! and
em (t) given by (5). Then, eTe, = M FeT e, O

Note that Assumption 6 allows the concatenation of
very short records. This is an important advantage in
comparison with the non-parametric modeling proposed
in [10], which is better suited for longer records (due to
interpolation issues of the Local Polynomial Method).



The frequency-domain equivalent of the cost function in
(6) is presented in the following subsection.

2.4 Frequency-Domain cost function

The Discrete Fourier Transform (DFT) of a signal .. (¢)
is given by

1 N-1
Xe (k) = ﬁ Z xc(t)zkt
t=0

with k& € [0, N — 1] the frequency bin, and 2z, = eI2mk/N

The measurement vector in the frequency-domain is

— [v7, UT]", with Y, and U, the DFT of y (t) and
ue (t) (Y, U. € CNV*1). By the Parseval’s theorem, the
cost function (6) has the following frequency-domain
equivalent [8]

1 N-1
( przf |5k ¢7Zf (7)
N =
er(0,0,20) = H (=, 0){ Yo () - G (5,6) Ue (K)
M—1
- sz "[Tem (2k1797¢) +Thm (Zk 0, ¢)]}
m=0
(8)
with TGm(z*I,H,w) and THm(zfl,Q,w) the plant

and noise transient terms associated to the mth record
and z~%m their corresponding delay term (with K, as
defined in Subsection 2.1). The transient terms share the
dynamics of the plant/noise model, and are defined as

TGm (2*1797#)) = Im (271711)) /A (27179)
Trm (274,0,0) = Jn (271, 9) /D (271,0)
with I,,, (271, and Jp, (271, 4) polynomials of order

ny and ny given by

ny =max (na,ng) —1; ny =max(nc,np) —1

Here, ¢ € R™*! is the vector of coefficients of the
polynomials I, and J,, for m € [0, M — 1]. Note that
for D = A, the coefficients of I,,, and J,, cannot be
identified separately, so that ny = M ny,, with ny, as
defined in (3).

The noise variance o2 can be estimated from (7) by

replacing the model and transient parameters with their
estimates # and v, and accounting for the degrees of
freedom as follows
N-—
1 A n 2 N
— er 0,9,z ) L
N;‘k(w f N*Tlgfn,/,

9)

The cost function (7) is analyzed in the following section.

3 Consistency

This section presents the consistency analysis of the
frequency-domain cost function for concatenated data.
The analysis is performed as follows:

e First, the cost function Vy (6,1, 2¢) is expressed in
terms of the model parameters 6 only [V (6,z¢)]. To
this end, the values of the transient parameters v that
minimize Vi (6,1, z¢) are substituted in (7). Then,
the expected value of this cost function is computed
[V (8) = E{Vn (0,2¢)}]. See Subsection 3.1.

e Next, one needs to prove the uniform convergence
(w.r.t. 0) of Vi (6,2¢) to its expected value Vi (6),
and of Vi (0) to the asymptotic cost function
Vi (0) = limy_y00 Viv (0). Then, the convergence of
the global minimizers of Vi (0, 2¢), Vv (6) and V. (6)
is established from the uniform convergence of these
cost functions. See Subsection 3.2.

e Finally, to establish the consistency, one needs
to verify that the asymptotic cost function V, (0)
is minimal in the true model parameters 6y. See
Subsection 3.3.

This methodology is inspired in [8] (Chapter 17), with
the results presented in this section (and its Appendices)
original from this paper.

The analysis is carried out for the model structures of
Table 1. Note that two cases lead to N — oo: finite
number of records M with record lengths N,, — oo, or
finite N,;, with M — oo. According to (4), for N,,, —
00, VN (0,1,2) is a sum of cost functions that yield
consistent estimates. Therefore, the case of finite N,
with M — oo is the focus of this paper.

3.1 Definition of cost functions Viy (6,z¢) and Vy (6)

This subsection provides the definitions of Viy (6, z¢) and
Vi (0) for the more general model structure BJ. These
definitions apply to all model structures of Table 1, with
appropriate modifications for ARMAX and its special
cases AR and ARX.

The cost function (7) and the error vector ¢ (6,1, z¢)
€ CN*! [with the kth element given by (8)] can be
expressed as

Ve (0,0, 2¢) = —cH (0,1, 2¢) 2 (0, ,2¢) (10

N
e(0,,2¢) =W (0)ze — Lp (0) 9 (11)

with the superscript H denoting the Hermitian
transpose, z¢ = (Y., UCT]T € C?NX1 and ¢ € R *1,
W € CN*2N and Lp € CV*"™ are matrices that depend
on . They are defined in Appendices A.1 and A .4 for,
respectively, the BJ and ARMAX model structures.

The value of ¥ that minimizes (10) is obtained by solving
OV (0,1, 2z¢) /0¢ = 0. Substitution of the solution ) =



(LELp) ! LEWz; in (10) results in the cost function
1
VN (97Zf) = NZfHWN (9) Zs 2 0 (12)

W (6) = W (6)" P (6) W (6) (13)
with Wy € C2N*2N 3 weighting matrix function of 6,
and P € CV*N a projection matrix defined as

P(6)=In—Lp(6) (LEO) Lp(0) LE®) (14)

The expected value of (12) is given by
_ 1 H H
Vi (6) = - tr [E {W () zsz: TW (8) } P(@)} (15)

with tr [] the trace operator. Computing E {Wzez:# W}
requires expressing the output Y. in terms of the
input U,., the noise source E., and the true model
and transient parameters 6y and 1)y, resulting in the
following expectations

Suu=B{U.U"}; Spr=E{E.E"}; Syy=Efpor{'}

Spu=E{B.U"}; Syu=E{poUl}; Syp=E{o B}
(16)

The contribution of these terms to the cost function (15)
can be expressed as (see Appendix A.2)

Vi (0) = Vuu (0) + VeE (0) + Vyy (0) (17)
+ Veu (0) + Vipu (0) + Vi (0)
The derivative of Vy (0) with respect to the model
parameters 6 and the expected values Sgg, Sgu
and Syg are computed in Appendices A.3 and B.
Appendix C presents preliminary Lemmas required for
the consistency analysis of the following subsections.

3.2 Convergence of cost functions and minimizers

The convergence analysis in this subsection refers to
the cost function Vi (6,z¢) in (12), its expected value
Vi (0) =E{Vn (6,2¢)} in (17), and the asymptotic cost
function V, (0) = limy 00 Vi (6).

To prove the stochastic convergence of Vi (0,z5) to
VN (0), we make the following assumption regarding the
record lengths N,,,. Later on, we will relax this condition.

Assumption 7. All M records have the same length V,.
(N = N, m € [0, M — 1]) that satisfies Assumption 6.

Lemma 2. The weighting matriz Wy in (12) is a
positive definite Hermitian matriz that under Assumption
7 satisfies |Wy|l; < ¢ < oo for N > N,, oo included,
where c s an N -independent constant.

Proof. See Appendix D. O

Lemma 3. Under Assumptions 1, 2, 8, 5§ and 6,
VN (0,2¢) is a continuous function of @ in a compact (i.e.
closed and bounded) set of parameters ©, with 0 € O.

Proof. Under Assumptions 1, 2, 5 and 6, the projection
matrix P is of full rank. Under Assumption 3, W and
Lp are continuous functions of 8, and so is (L¥ Lp), its
inverse (L2 Lp)~! and P. Therefore, Wy is a continuous
function of 6 and so is Vi (6,z¢). The compactness
of the parameter space should only be satisfied in the
neighborhood of 4. The construction of © is discussed
in Chapter 17 of [8]. O

Lemma 4. Under the Assumptions of Lemmas 2 and 3,
VN (0, z¢) converges uniformly w.r.t. 0 (in probability) to
Vn (0) in the compact set ©.

Proof. Under Assumptions 1, 2, 3, 5, 6 and 7, the
conditions of Lemma 17.3 in Chapter 17 of [8] are
fulfilled (see Lemmas 2 and 3, and Appendix N). O

Remark 5. Relaxing Assumption 2 to e(t) being
white noise with finite fourth order moments requires
another proof of convergence, since the conditions of
Lemma 17.3 in Chapter 17 of [8] are not fulfilled for
non-Gaussian e (t). Though, simulations not included
in this paper indicate there is convergence. Besides, the
analysis of Vv (6) carried out in the following subsection
holds [because (B.1) remains true].

Lemma 6. Vy (0) converges uniformly w.r.t. 0 to V, ()
in the compact set ©.

Proof. This is the result of the convergence of the
Riemann sum to the corresponding Riemann integral

[with Y0200 Vi (0,8) = S0/% oy Viv (6,k), and f,
the sampling frequency]
1 N/2 1 fs/2
lim — 0, k)= — 0,/ df (1
J Y Ve 7 wena ay

O

In the presence of modeling errors, it may happen that
VN (6,2¢), Vv (0) and Vi (#) do not have a unique global
minimum [7]. Hence, we define the following sets of
minimizing values in the compact set ©
Onz =argminVy (0,2z;); Oy = argmin Vi (0)
6co 6co

O, = argmin V, ()
€O

Theorem 7. Under the Assumptions of Lemma 4, O n
converges to ©, and Oy ,, converges in probability to ©,.:

lim Oy =0, and plimy_, On, = O.
N—o00

Besides, without modeling errors, the set ©, contains the
unique minimizer 6, = 0g.

Proof. Under Assumptions 1, 2, 3, 5, 6 and 7, the
conditions of Theorem 17.8 in Chapter 17 of [8] are



fulfilled (see Lemmas 4 and 6). The proof for Theorem
17.8 is based on [13]. It suffices to replace strong by
weak convergence (i.e. in probability).

The uniqueness of 6, follows directly from Assumptions
1 and 3 and the non-existence of modeling errors. O

Corollary 8. Theorem 7 can be generalized to the case
of arbitrary record lengths N, satisfying Assumption 6.

Proof. See Appendix E. O

This concludes the convergence proof for the cost
functions and minimizers. The cost function analysis is
presented in the following subsection.

3.8 Cost function analysis

This subsection presents the analysis of the cost
function Vy (¢) in (17) and the asymptotic value
Vi (0) = limpy 00 Vv (0), for finite N, with M — oo.

The first necessary condition for consistency is presented
in Assumption 4. Note that for the consistency analysis,
the model structure and order match exactly the true
model. The second condition for consistency is Vi ()
being minimal in the true model parameters 6. For this,
the following condition must be satisfied for each model
parameter 6,
oV, (0) ~ lim OV (0)
89r 0o M —o0 89,« 0o

with 0, meaning the rth coefficient of the plant (A, B)
or noise (C, D) polynomials [i.e. a;, by, ¢, or d,., see (2)].

=0 (19)

The following Lemmas refer to (19) considering Vi (9)
as the sum of terms in (17).

Lemma 9. For any model structure of Table 1, each
of the terms Vyy (8), Viy (8), and Viyy (0) satisfies
condition (19) for all model parameters. Moreover, given
Assumption 5, so does Vgy (0).

Proof. See Appendix F. O

Lemma 10. For the BJ model structure, Vgg ()
satisfies condition (19) for a, and b, but not for c,
and d, when N,, is finite and M — oo. However, as
Ny, — 00, Vig (0) satisfies condition (19) for ¢, and d,..

Proof. See Appendix G. O

Lemma 11. For the BJ model structure, Vyg (6)
satisfies condition (19) for a,, b, and ¢, for finite N,
and M — co. As Ny, — 00, Vg (0) satisfies condition
(19) for d,.

Proof. See Appendix H. O

Lemma 12. For the BJ model structure, for Vi (0)
to satisfy condition (19) for a,., it is necessary that
H (z‘l,ﬁ) = Hy (z‘l). This implies that a bias on the
noise model parameters (c, or d,) introduces a bias on
the plant model parameters (a, andb,.).

Proof. See Appendix 1. O

Lemma 13. The results of Lemmas 10 and 11 for
parameters b, ¢, and d, can be extended to the ARMAX
model structure, and the results for ¢, and d,. to the
ARMA model structure (since D = A, what is stated for
d, applies to a,).

Proof. The proof follows the same procedure as for
Lemmas 10 and 11, with the modifications provided in
Appendix A.4. O

Theorem 14. Under Assumptions 1 to 6, for the BJ,
ARMAX and ARMA model structures the estimate of

the model parameters 0 (z:) € Oy, is not consistent

for finite N,,, and M — oo. é(zf) presents a bias that
vanishes for increasing record lengths N, .

Proof. Tt follows directly from Corollary 8 and Lemmas
9 to 13. O

Lemma 15. For the ARX, AR, OF and FIR model
structures, Veg (0) and Vyg () satisfy condition (19)
for all model parameters for finite N, and M — oo.

Proof. Because OE is a special case of BJ (with ng =
np = 0), the results of Lemmas 10 and 11 for parameters
a, and b, apply to OE, and so do for FIR, which is a
special case of OE (with ng = 0). For ARX see the
proof in Appendix J. The proof for AR follows the same
procedure as for ARX. O

Theorem 16. Under Assumptions I to 6, for the ARX,
AR, OF and FIR model structures the estimate of the

model parameters 0 (z:) € O, is consistent for finite

Ny, and M — oo: plimp_, 0 (z¢) = 0o

Proof. Tt follows directly from Corollary 8 and Lemmas
9 and 15. O

Corollary 17. Under Assumptions 1 to 6, for the
ARX, AR, OF and FIR model structures the estimate
of the noise variance 62 in (9) is consistent for finite
Ny, and M — oo. For BJ, ARMAX and ARMA, 62 is
not consistent, and it presents a bias that vanishes for

increasing record lengths N,,.



Proof. Tt follows from Theorems 14 and 16 and the proof
in Appendix K. O

This concludes the consistency analysis. In the following
section, the asymptotic normality is studied.

4 Asymptotic normality

This section presents the study of the asymptotic
normality of the consistently estimated model structures
(Theorem 16). To prove the asymptotic normality of

0 (z¢), we first make use of Assumption 7. Later on, we
will relax this condition.

Lemma 18. For the ARX, AR, OF and FIR model
structures, the weighting matrix Wy in (12) has
continuous first- second- and third-order derivatives
w.r.t. 0, that under Assumption 7, have bounded 1-norm.

Proof. See Appendix L. O

Theorem 19. Under Assumptions 1 to 7, for the ARX,
AR, OF and FIR model structures the estimate of the
model parameters 0 (zs) € O ,, converges in law at the

rate O(N—1/2), for finite N,,, and M — oo, to a Gaussian
random variable with zero mean and covariance

Cov(0) = Vi~ (90) B{VAT (60, 2¢) Vi (60, z0)} Viy ™ (60)
(20)

Proof. See Appendix M. O

Corollary 20. Theorem 19 can be generalized to the case
of arbitrary record lengths N, satisfying Assumption 6.

Proof. The same reasoning as for the proof for Corollary
8 can be followed. O

This concludes the study of the asymptotic properties
of the estimator. In the following section, the results are
illustrated by Monte Carlo simulations.

5 Monte Carlo simulation

To illustrate the results of the previous sections for the
BJ and AR model structures, Monte Carlo simulations
(1000 runs) were performed to evaluate the mean
value and the mean squared error (MSE) of the
estimated plant/noise models for increasing M. Note
that the confidence bounds presented in this section are
constructed based on these Monte Carlo experiments.
The following cases are compared: the concatenation of
records of the same length for minimal [N,q = ny, + 1,
with n,, given by (3)] and longer (N2 > N,1) records,

and one full record (N) as reference case. To compare
the MSE, the total number of samples for all cases is
the same (N,; M; = N,oMs = N).

The following true models are considered
Gpro(27')=1/(1-0.152"")
Hpyo(z7')=(14052"")/(1-1.1327 "' +0.6427?)
Haro(27')=1/(1-0.152"")

with transients polynomials I,,, s, J,, s of order n; =

0, ny = 1, and J,, ar of order ny; = 0. The excitation

and noise signals [u(t), e(t)] are independent, zero mean,

normally distributed random variables with variances
02 =1and 02 = 0.3 for BJ, and 02 = 1 for AR.

Figure 2 presents the MSE of the estimated transfer
functions G (zk_l, é),a'eHBJ(Zk_l, é) and 6’6HAR(Z]€_1, é)
for N doubled each time (N € {96,...,6144} for BJ,
N e {48,...,3072} for AR). The Cramér—Rao Lower
Bound (CRLB) of the full record case is included to
provide a lower limit for the MSE of all cases. The 95%
confidence interval of the MSE is provided to facilitate
the comparison of the MSE with the CRLB.

From Fig. 2a, 2b and 2c, it can be seen that for the
full record case the MSE quickly reaches the CRLB
for increasing values of N. In contrast, for the data
concatenation cases the MSE approaches the CRLB
but does not reach it. The difference between the MSE
and the CRLB reflects the information loss for the data
concatenation cases, since n, out of N samples serve
to estimate the transient parameters, with n, oc M.
Hence, for longer record lengths N, the MSE becomes
closer to the CRLB.

For a consistent estimation from concatenated data, the
MSE should decrease with NV at the same rate as the
full record case (VMSE o 1/4/N). This seems to be
the case for GB](lel,é) and &EHAR(zk*l,HA) (Fig. 2a
and 2c¢): doubling N leads to a decrease of vVMSE by
3dB [3dB ~ dB(v2)]. In contrast, 6. Hp(z; ', é) (Fig.
2b) clearly presents a bias: for increasing values of N
the MSE first decreases but eventually reaches a lower
limit. However, this bias diminishes for longer record
lengths N,.. Indeed, considering the time constant 7 of
Hpyo (with 7 = —1/Re {In(2,) }[samples]|, and z, the
dominant pole), a record length N, = 48 (~ 10.77)
makes the bias negligible (vVMSE keeps decreasing by
3dB).

Figure 3 presents, for the minimal records case
and increasing N, the mean value of the estimated
parameters a; (for BJ) and d; (for AR) and the noise
variance 62 (for AR), with the 95% confidence intervals
of the mean values. Because the true parameter a; is
not contained in the confidence intervals (for N — c0),

it is clear that a bias is present for GBJ(Zk_l,é) (this
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Fig. 2. Monte Carlo simulation (1000 runs) for BJ and AR
model structures. Cases: minimal record length (left), longer
records (middle), and one full record (right). N is doubled
each time (from light to dark). Magnitudes presented in dB:
VMSE of estimated model (thick solid line) and its 95%
confidence interval (solid line), Cramér—Rao Lower Bound
of the full record case (dashed line).

BI(N,=4) AR (N, =2) AR (N, =2)
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Fig. 3. Monte Carlo simulation (1000 runs) of the minimal
record length case. Mean of estimated model parameters a;

and d; (for BJ and AR respectively) and noise variance 62
(for AR), with the 95% confidence intervals of the mean
values (black line), true parameters (gray line). NV is doubled
each time.

is explained by Lemma 12). This bias is however small
for this example, so that it could not be easily detected
in Fig. 2a. On the other hand, d; and o2 are contained
in their respective confidence intervals, which indicates
a consistent estimation of &.Hap(z; ", é) Besides,
simulation results confirmed the asymptotic normality
for d;.

The results of these Monte Carlo simulations are in
accordance with Theorems 14, 16 and 19, and Corollary
17.

6 Conclusions

In this paper we studied the estimator’s asymptotic
properties (i.e. consistency and asymptotic normality)
for the identification of single-input single-output
systems from concatenated data. We showed that the
multiple-cost solution for data records belonging to a
system subject to the same operating conditions boils
down to the data concatenation solution expressed in
the time and frequency domain by (6) and (7).

Moreover, under Assumptions 1 to 6, the concatenation
of multiple records of finite length leads asymptotically,
for increasing number of records, to a consistent
parameter estimation of discrete-time LTI models for
the structures AR, ARX, OE, FIR. In contrast, the
parameter estimation for BJ;, ARMAX and ARMA is
not consistent. Besides, for the consistently estimated
model structures, the estimator is asymptotically
normally distributed.

Therefore, the data concatenation technique is a
suitable solution for the identification from multiple



records because of the improved model quality and
increased frequency resolution, as compared with a
model estimated from a single record. The downside
with regard to an estimation departing from a full long
record is the increased uncertainty, and a bias in the case
of BJ, ARMAX and ARMA model structures. However,
this bias asymptotically disappears for longer records.
Simulation results suggest that record lengths of at least
some few times (e.g. 10) the dominant time constant of
the plant and noise models result in a negligibly small
bias.

Further research includes: the development of a
convergence proof for a relaxed assumption regarding
the normality of the noise source e(t) (see Remark 5);
the study of consistency for data concatenation in the
case of multiple-input multiple-output systems; and
the consistency analysis for the estimation of the Best
Linear Approximation with concatenated data.
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Appendix A Definitions for the cost functions
in Subsection 3.1

First, the definitions are provided for BJ. Next,
modifications for ARMAX are presented in Appendix
A4

A.1  Definitions for Vi (0,v,zs) and Vy (0, z¢)

To express the error vector € (0,v,z¢) as (11), the
summations of transient polynomials in (8) are rewritten
as

M—1 M-1
ZZIC_KM Im(zlz% w) :LIk 1/11; ZZIC_Km Jm(Z]:I, w) :LJI“ ¢J
m=0

m=0
(A1)
where ; € RMu+DxL and o; € RMs+h)x1
are vectors grouping the plant and noise transient
parameters

Yy = W?o,w- ﬂPITM—l ;o Yy = W?ow- 71/)§M—1
with ¥, and 1, corresponding to the polynomials
I, and J,,. L;, € C>*M0u+) and [, € C1x*Mns+1)

are vectors of powers of z, ! that include the delay terms
Km

I I

2
le = |:7ch Z}f_K[)? NI, ZI;KM_l} (A2)
LJk- = |:T]Jk zl:KOv /P Zk_KM_l] (A?’)
=Lz ] e =[1og e 5]
(A.4)

Hence, in (11), v € R™*! Lp € CN*" and W €

CN*2N are defined as
T
v = [o],¢7] (A.5)
Lp =[DprLy, DpyLy] (A.6)
W = [Dwy, Dwu] (A.7)

with L; € CN>*M(utl) 1. e CN*M(ns+1) “and Dpy,
Dpj, Dwy and Dy diagonal matrices belonging to
CN*N given by

IN71 JNfl

T T
L= {L};,---,LT };LJ: [L§07~-~,LT }

SIS

Dpy = diag ( g (zgl,e) - > (A.10)

Dwy = diag ( . g((:_ig ) (A.11)
o o

o =g (- g R )

A.2  Definitions for Vi (0)

In (11), expressing Y, in terms of U., E. and the true
model and transient parameters 6y and g results in Wz
given by

Wzs = DyU.+ DgE. + L,(/ﬂ/)o
with Py € Rn'¢X1, L¢, € (CNXTW’, and Dy, Dg, Dw[ and
D,,; diagonal matrices belonging to CV*V defined as

Yo = WOTIWEJ]T; Ly =[DyrL1,Dy,Ly]  (A.13)

- G5 [ - 4R )
(A.14)
Dg = diag ( . [C)((Zizi gz Ezig ) (A.15)
Dyr = diag ( , gg:ig; T (lz,;l) .- ) (A.16)
Dyy = diag ( , g((::_iz; B (12121) .- ) (A.17)

Computing E{WzezefWH} in (15), given the



definitions of (16), results in the cost function (17), with

Vuu (0) = %tr [DuSuuD{} P

Ve (0 % [DpSpeDE P)

Vi (0 %tf [LySyy Ly P

Vi (0) = < tr [2herm{ DS DY} P
Vyu (0 %tr [2herm{ Ly SyuD{f } P]
Ve (0) = % [2herm{ Ly SysDy } P]

where herm {X} = (X + X*) /2 (A.18)

A.8  Computation of OVy (0) /00,
The following equations present the derivative of each

term of (17) with respect to the rth model parameter
0,, with herm{} defined by (A.18)

oV, 1 oD u OP
&;’TU =yt (2 herm { 0. Y Syu D } P+ DySyuDH =— 50 )
(A.19)
Vi 1 oD apP
(A.20)
OWVyy 1 OLy opP
90, :N tI‘(2 herm {Tersd,d,l/g P+LwS¢wL5 a0,
(A.21)
OVeu it 2herm{ —ZSpyDH + DgS oDy P
90, = vy EOEU 90,
+2herm {DESEUD{?} ) (A.22)
Vv, 1 oL 8D#
ag;U =—tr ( m{ 89.1:) SwUDU —‘y—LwaU 893 }P
+2herm {stwUDU} ) (A.23)
v, oL oD%
ag)TE <2h rm{ aaip SwEDE +L1/JS’¢2E aGTE }P
+2herm {stwpg } ) (A.24)
. or OLp (, i “toH
with 7o = 2herm{ i (LPLP) Lp} (A.25)

A.J Modifications for ARMAX

Because D = A for ARMAX, (A.1) is replaced by
M-1

—K
sz

m=0

I (21 ®) +Jm (21 ¥) }=Lrsrs

(A.26)

10

71/}}—:]M71:|T

—Kn—1
s NITy 2 }

with 1y =[]0,

_K
Ly, = [nle 2y 0

771Jk = [1a Zk_la"'

(A.27)

, 2, "] g = max (ng,ny)

Hence, the definitions of ¢, Lp, ¢9 and L, in (A.5),
(A.6) and (A.13) become

=115 Yo =1vors
Lp=DpjLrj; Ly =DysL;;
T
with Ly = [L,TJO,.-. ,L,TJN_J (A.28)

Appendix B Expected values in Subsection 3.1

Given the definitions in (16), the expectations Sgg, Sgu
and Sy g are computed.

B.1  Computation of Spg and Sgy
Under Assumptions 2 and 5
SEE = O'SIN
Sev = 0N (B.2)

B.2  Computation of Syr

Given (A.13), for the BJ model structure the expectation
Sy is structured as

S
Syr = WI] (B.3)
SyEJ
with  Sypr = E{gorET}; Sppy = E {go, BT}
(B.4)

Under Assumption 5, tos is function of w (t) and yo (%)
(true output), so that

SyEr = 0M(n+1)x N (B.5)

In contrast, 9oy is function of e(¢) and v (t) (filtered
noise). Thus, first the definition of ¥y, is presented.
Next, Sy g is computed.

B.2.1 Definition of 1o

For a single data record, the definition of the true
transient polynomial J,, o (zil) is provided in Appendix
6.B of [8]. Extending it for M records gives

Imol {zzcz n (-

=1 t=1

_ nzD: zi:d; [’Um (—E) — Upm—1 (Nm

i=1t=1

—€em—1 (Nm,1 — t)] szi

—)- }

2)—‘



with ¢; and d; the ith and 1th coefficients of C (2_1) and
Do (27'), em(—t) and vy, (—t) the initial conditions of
record mth, and e,, 1 (Np—1 —t) and vy —1 (Nypp—1 — 1)
the final conditions of record (m — 1)th. To obtain g
explicitly, the previous equation is rewritten as [r = i —t;

FT=1—t Tm1(Npm_1 —1) =z (K, —1)]
nc—1 nc—r
Jmo(z; ! { Z z " Z Crit [€m (—t) — ec (K — t)]
np—1 1
— d; ) —wv. (K —1)] p——
;) Z +t ( )]}\/N

-1
Hence, J,, 0 (zk ) can be expressed as

_ 1 1
Jmo (Zk 1) = NJk <\/NTeXem - \/NTUXUm> (B6)

with 77, given by (A.4), Xem and Xy, € ROFDX1
vectors of the initial/final conditions of e.(t) and
v, (t). Tp and T, € R +Dx(ms+1) are upper-triangular
matrices with coefficients of Cjy (zfl) and Dy (z’l)

respectively. Xe ., and T, are presented below (X, and
T, have the same structure)

em (= (ny 4+ 1)) = ec (Km — (ns +1))

Xem = (B7)

em (—1) —ec (Km — 1)

CnJ+1 CTLJ e C1

0 Cnyp1 -
T. = (B.8)

0 0 © Cng+1
Finally, ¥ can be expressed as
1

= = eXe — Yo Xv B.9
Yo JN {Qex QuXv} (B.9)

with y. and x, € RM®+DX1 yectors that group
Xem and X, for all M records. Q. and Q,
RM(ns+1)xM(ns+1) are block diagonal matrices of T,
and T, respectively. x. and Q. are presented below (x,
and @, have the same structure)

Qe =In ®T¢; (B.10)

T T T
Xe = [Xeof" aXeM—l]
B.2.2 Computation of Syrg

Given (B.9) and (B.10), Sy g has two components

SwEJQeIE{X EH}Q]E{\)/(N } (B.11)

€

VN
First, we compute the expectation of E. (k) with the
elements of .., and X, ., renamed as ez (K,, —t) and

11

v (K — t) to highlight the fact that ez (t) = e.. () only

for the samples corresponding to the record (m — 1)th
[see (B.7)].
Since vz (t) = \/% S h(t—T)es (7 ) with h( ) the
impulse response of Hy (271), E. (k) = \F ZT o Yeo (T T) 2],
and E {e; (7) ec (1)} = 020 (7 — 7)for 7 € [Kpn_1, K — 1]
€z (Km - t)E(k) ‘73 K,,—t
E :;Zk m
VN N
- Kop—t
vc(Km—t)Ec(k)} o I~
E{ =-2 Zzgh(K —t—7)
VN N F=Kopm1
2
g
=% A T 0
Npp—1—t
with Sy () =25 Y 2 h(T) (B.12)
T=0

Finally, the expectation of E, (k) with X, and X, is
[with n;, given by (A.4)]

2

E{%E}(k}}:—?\;zfm z;(n"Jrl)ni (B.13)

Ehm (nJ + 1)
Xvm 3 0’2 K
E \/NEC (k) == (B.14)
Xhm (1)

B.3 Remark for ARMAX
By definition L;jtors = Litbor + Loy [see (A.1) and

(A.26)]. Hence,
LijSyr = LiSyrr + LjSyrs
with Syrpr and Sygps as defined in (B.4). Thus, the

equations of Appendices B.2.1 and B.2.2 apply to the
ARMAX model structure.

Appendix C Preliminary Lemmas

Here, H, (z‘l) and H, (2_1) are rational transfer
functions with impulse responses h, (t) and hy, (t).
Lemma 21. Given that z, = e/2™5/N
N-1
0 fora#nN .
a
kz_o z, = {N fora = nN withn eZ

Proof. If & = nN, zj
N-1 k;
k=0 “a

= 1. If @ # nN, 22 = zF and
=(1-2)/(1-2)=0 O



Lemma 22. For H, (z
and N — oo

| V-1

v 2 Ha (a7
with \ the pole ofH ( )
circle (I1\| < 1) and ¢ = [52].

~1) stable, « € Z, |o| < N —1,

(l/\‘thJra)

hat is the closest to the unit

Proof. H, (2;,") = Y720 ha (i) 2. By Lemma 21

1 ] N—-1
NZhG (i)Y =

=0 k=0
with ¢ = [F&]. If H, (2 1) is stable, its impulse

response hg (t) can be bounded by ¢y A" (with
e\ € Rar ). Applying the result of geometric series and

oo

=2t

(nN + «)

N — >
S ha(aN + )| <o ST =0 (|A|N*"+“)
n=¢ n=¢
O
Lemma 23. For H, (z_l) and H, (2_1) stable, a € Z,

|a|<N—1 and N — oo

N—1
N Z Hq (2") Hy (k) 21 = (WN_W + |>\|‘a|>

with )\ the pole of Ha( )and H, (z
closest to the unit circle (|A\] < 1).

*1) that is the

Proof. Hy (2, ') = Y020 ha (1) 2", Hy (21) = Y120 hw (1) 24,
By Lemma 21
1 oo o0 N-1 )
N Z Z hb (l) Zk—z-i-l-i-oz —
i=0 1 k=0

Mgn

ha (i) hy (NN +1i — «)
4]

N
Il
<

=[x

If H, (z_l) and H, (z
responses hq () and hy () can be bounded by ¢y [A|"
(with ¢y € RY).

_1) are stable, their impulse

3
8
3

00
nN+2i—a

First, we split the summation overias: i € [0, N + o — 1]
and i € [N 4 «, 00]. Next, for i € [N + a, o0, we change
variables as: i = sN + ¢ (with s € [1,00] and g €
[, N + a — 1], so that [2F] = —s)

N+aloo oo N+a—1 oo

Z Z|)\|n1\7+21 a+z Z Z|)\‘nN+25N+2q «

|—N—| s=1 g=a n=-s
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After applying the result of geometric series and N —
o0, we obtain the following results (with ¢ = [£])

N

Ny—a N « @ N+

o | (AT = AT 4 AT
Cx 2 + 2
1= Al 1= Al

O

Lemma 24. For H, (z‘l) and H, (z_l) stable, hq (t)
the impulse response of H, (z‘l), 0<e¢, <N,—-N<
a<—1,and N — oo

Cq N-—1
% > ha ()Y Hy () 237" =0 ((ca +
T=0

with \ the pole of H, (z_l) and H, (z_l) that is the
closest to the unit circle (|\| <1) .

DN

Proof. Hy (z;") = Y020 he (i) 2, " By Lemma 21
c N—
1 - —i—T4a
LS SN SUTCP I T
T=0 i=0 k=0
hq (T) Z hy (nN — T + @)
= T

If H,(z7') and H, (2
responses hq (t) and hy () can be bounded by cy [A|"
(with ¢y € R{). Besides, if —N < a < —1 and
0<cq <N,1=[752] <[L52], so that

z;a

D IDY

=0 Zge]

~1) are stable, their impulse

he (T)hy (RN =T + )| <

Cq 0O

T=0n=1

Applying the result of geometric series and N — oo

2 - o nN+a __ |/\‘N+a _ 2 N+a
SOBDIL =0(Alcat)AN)

T=0n=1 Z |)‘|
O

Lemma 25. For H, (z~!) stable and h, (t) its the
impulse response, 0 < ¢, < N, |a] < N—1, and N — oo

Zh Nzl T_ O(|)\|“0N+a) if 0<pN+a<c,
N P 0 otherwise

wzth /\ the pole of H, ( 1) that is the closest to the unit
circle (|1A] < 1) and ¢ = [52].

Proof. By Lemma 21, and given |a| < N—1and 0<¢, <
N

Ca N-1 Ca
—Zh T)> T =3 ha (1)
k=0 T=0

oN —T + a)



[‘Wa] If H, (2_1) is stable, its impulse
response hy (t) can be bounded by ¢y |A|* (with ¢y €
R{). If 0 < N + a < ¢, (otherwise 6 (N — T + ) =
0)

with ¢ =

ihu (T)6 (nN — T + a)| <
T=0

ex D INTO (N =T+ a) = O(IA[PY9)
T=0
O

Lemma 26. For Dy, = diag ( -+, H, (z,;l) ,) and
Dy, = diag ( -, Hy (z,;l) S ), with H, (z’l) and
H, (zil) stable

%L)’?DII}IQDHZ)LY
with Lx and Ly equal to Ly or Ly as defined by (A.8), is
a block diagonal matriz (M x M blocks) for record lengths
N,, — oo. The diagonal blocks are of order O(|)\|‘a|)

with a = 0 and A the pole of H, (z_l) and Hy, (z_l) that
is the closest to the unit circle (|A\] < 1).

Proof. The (p,q) block of %L?D{_IIGDHbLJ (p,q €
[0, M —1]) is [see (A.2) to (A.4)]

1
(—L?DguDHbLJ)<pq>

N
1 N—1 (C.l)
1\ _Kp—K,
= Z H, (zx) Hyp (zk 1) 2y nIHkan
k=0

By Lemma 23, (C.1) is an O(|)\|N7‘a| + |)\|‘a|), with
a~ K, - K, Forp=gq,a=0.Forp#gq, Ny < |a‘ <
N — Ny,. Thus, LD Dy, L, is a block diagonal
matrix for N, — oc. O

Lemma 27. With Lp defined by (A.6),

1 ' | Ra Rp
R:(NLgLP> =

RE Rc
For record lengths N,, — o0, R4, Rp and Rc are block
diagonal matrices with diagonal blocks Ra ., Rpm and
Rem (m € [0,M —1]) of order O (N°).

Proof.

1
Q=—LPLp= l

Qa QB
N

QE Qc

By Lemma 26, Q4, @p and Q¢ are block diagonal
matrices with diagonal blocks Q 4 m,, @B m and Q¢ ., of

13

order O (NO) for N,, = o00. @ can be inverted blockwise
as

Ra=0Q3' +Q:'Qs (Qc — Q2Q:'Q5) ' QLQ,!
Rp = —Q3'Q5 (Qc - QEQ5'Qp) "
Re = (Qc — QnglQB)_l

resulting in R4, Rp and R as block diagonal matrices
with diagonal blocks of order O (N?) for N,, — co. [

Lemma 28. For the OF model structure, and all M
records of equal length N, (N = MN,.), Q = %Lng,
with Lp defined by (A.6), is a Hermitian block Toeplitz
matriz. Hence, R = Q™! is given by [1/]

R=TuAy'TY —TH AT

May—1 Mar—2 - Mg
0 Mpy—1 -+ M
with Ty = _ (C.2)
0 0 - My
Lo 0 --- 0
L, Lo --- 0
T = (C3)
-0
Lar—1 Ly—2 -+ Lo

AM = diag (AMT' e AMT‘) ; AL = diag (ALr cee ALr)
(C.4)

For M — oo, Ty and 1} are sparse matrices: blocks M,
and L, are only non-zero for p belonging to

0,--- ,F—1,M —F,--- M —1] (C.5)
with F finite and determined by the slowest pole of
Go (271).

Proof. For OE, Lp = DprL; [see (A.9), (A.8), (A.2)
and (A.4)]. The <p, q> block of @ (p,q € [0, M —1]) is
given by

N-1

1 — J—
Cha =W ,; Hpr (a) Hpr (1) 2" nf,

with Hpy (2, ') the kth diagonal element of Dp;. For
equal record lengths K, — K; = N,(p — ¢). Hence, Q is
structured as

o)
withi = p — ¢, Q_; = Q and Q; Toeplitz. By Lemma
23, Q; = O(IAN 71 4 |A""!) with o ~ K, — K, and
A the pole of Hpy (zk_l) that is the closest to the unit

_ g, e clmr)x ()



circle (|A] < 1). Thus, @ is sparse for M — co
{Qﬁéo fori = [0, ,F,M—F oo M

Q; =0 otherwise

_1}

(C.6)
with F finite and determined by |A|. The structure of
Twm and T reflects the sparse nature of () as follows.
Being @ the leading principal submatrix of @) of order
(M —1)(n;+1) x (M —1)(n; + 1), the blocks M,, and
L, on (C.2) and (C.3) are defined by [14]

— [MEMTT - M ] Q= Qi (C.7)
—[Lar—1-- Lo Li] Q= Q4 (C.8)

- . T
with @ [ Z)’ )’ zM ) l>} , 1€ [0,M—2],

MMfl =TI and L():O

By (C.6) and for | € [3l~:,M -2 3|~:], (C.7) results in
the following set of equations

T
[Mf(l" X+2F} {QT Qﬂ = QuFx1
with X € [2F,M — 4F — 2], so that Q,, ¢

Because Q_g to Qg are of full rank, and MH to Mf+2F

only appear in this set of equations, we can conclude that
M, =0forp e [QF, M72F72]. So we choose F = 2F+1
for (C.5). A similar proof can be derived for L,. O

Xl_O‘

Appendix D Proof of Lemma 2

Given (13), |[Wx|| 1 can be bounded by

IWarll < [[W ] [[W ]| Pl

with |[W#||; and |[W||1 of O(N") according to (A.7),

(A.11) and (A.12). From (14) and the definition of the
1-norm

H —1

||P||1<1+”LPRLP 1;withR:<;Lng> (D.1)

LpRLE| Nil LpRLY D2

N t= lzofy-a,}zirq prt N Kl (D-2)

The proof that (D.2) is O (N°) will be shown below for
BJ and OE. For ARMAX the proof is similar than for
OE because Lp = DP[L[ for OE and Lp = DPJL[J
for ARMAX [see (A.6) and Appendix A.4]. According to
Theorem 14, BJ is consistent only for N,,, — co. Hence,
for BJ it is sufficient to prove the case of long records.

D.1 ||Wxl|1 for Boz-Jenkins

For the BJ model structure, Lp is a block matrix defined
by (A.6), (A.8), (A.9) and (A.10). Hence, R in (D.1) is
a block matrix structured as

Ry Rp
RE R¢

14

so that
LpRLE < DprLiRALYDE,; DpsL;RcLEDE,
N 1_ N 1 N 1
N DpsL;RELEIDE, DprLiRpLE DE,
N 1 N 1
(D.3)

By Lemma 27 (in Appendix C), for sufficiently large
record lengths N,,, R4, Rp, Rc are block diagonal
matrices with diagonal blocks R4, R, and Reo,y, of
order O (NY) (m € [0, M — 1]). Assuming M records
of equal length N, (N = MN,, and Ra,, = Ray,
Rgm = Rpr, Rom = Rc, for all m), the first term of
(D.3) gives

N—-1

Z [DP]L[RAL?DgI} = |HPI (Zl)| :

] N k,l
N-1 1 -
Z NHPI Zk nIkRATnIl Z 1=k
k=0 m=o

where Hpy (z;,") is the kth diagonal element of Dp; and
1

- M-
Z zlli"‘k = Z eI2mmNe(=Rk)/N — pr§ ({k -1} —nM)
m=0 m=0
(D.4)

with n € [0, N, — 1]. Hence,
N-1

DprLiRALY DY, MN, 4 .

= N*)=0O(N

> || P N0 () = 0 ()

and the same result can be derived for the other terms

of (D.3).

D.2 ||Wyl] 1 for OF

For the OE model structure, Lp = DprL; [see (A.8)

and (A.9)]. Assuming M records of equal length N,

(N = MN,), Lemma 28 (in Appendix C) applies for R

n (D.1), so that

LpRLE LpTuly'THLE
N N

LpTHN'TLLE
N

1

1 1

D.5)
with Ty, 1L, Am and A, given by (C.2) to (C.4).
Moreover, for M — oo, Ty and T are sparse matrices
(blocks M,, L, are only non-zero for p belonging to
(C.5), where F is finite).

We analyze the first term of (D.5), for which
(% LPTuAG T LE], = % Lo Tu S T (Lpn)”
(D.6)
with Lpy and Lp; the kth and [th row of Lp.

Being TmA,'T{{ a product of block matrices, one
can expand (D.6) and regroup the terms that have in



common I\/IPAQITI\/I(?. Thus, (D.6) can be expressed as
the sum of 4F2 terms that have this form
my
Kg Km
Zl qzzlk>

m=0
(D.7)
with p, ¢, p, ¢ and m; belonging to (C.5). The
contribution of (D.7) to || #LpTmAy' T LE ||, can be
bounded above by

%HPI(ZI)HPI@'/C ) 1M, AMqu Iz

N-—-1 my
0| 32 | Her () My i || 3 <0
k=0 m=0
where
Xf: K Z j2mmN, (I—k) /N Fforl—k#nM
Tk M forl —k=nM
with n € [0, , NT 1]. Hence,
LpTMA,\’,llT,{,ng o (MN, F(N—N,) 0
N ; N TN (V)

and the same result can be derived for ||LpTLHAL_1T|_L§ || 1

Appendix E Proof of Corollary 8

From the M records of arbitrary but finite length N,,,
one can form a finite number of sets S that group records
of the same length. Then, Viy (0,1, z;) is expressed as a
weighted sum of cost functions dealing with each set of

records.
DI

with Ny the number of samples in each set. Because M —
oo, for at least one set Ny — oo. From (E.1) its clear
that only sets where Ny — oo contribute asymptotically
to Vv (0,v,2) [S is finite and Vi, (0, z:) is finite for
0 € ©]. Because the convergence applies to Vi, (0, zy)
for all sets where Ny — oo (by Theorem 7), so does for
VN (97 Zt)'

1p7zt Q/J,Zt) (E].)

Appendix F Proof of Lemma 9

Given (A.19), (A.21) to (A.23), and the definition of P

d 5% in (14) and (A.25)
6VUU —0: 8V¢¢ —0: 8VEU Y 8VwU —0
9, |, 00 |, 0 00 |, 96 |,

by the properties of the trace, (B.2), and the fact that
DU|90 = Oy [see (A.14)] and L¢|90 = Lp|90 [see (A.6)
and (A.13)] so that

opr

H _ _ . H —
Ly Pl, = PLy|, =0n; L a—eerbo =0y (F.1)
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Appendix G Proof of Lemma 10

Equation (A.20) can be simplified to

8VEE B 0‘3 8DE
20, ” =N tr { 2herm a0, "
because of (B.1), Dgl, = In [see (A.15)], and

tr (%) = 0 [see (A.25)]. This expression is evaluated

(G.1)

below for the different model parameters
G.1 8VEE/8ar and BVEE/abT

From (A.15), we get for parameters a, and b,

oDy
20,

OVeE
00,

0 (G2)
0o

=0p

G.2 8VEE/8CT and 8VEE/8dr

From (A.15), we get for parameters ¢, and d, (1 < r <
nporl<r<mng)

oDg| ~ 9Dg|
aCT - Dr DEca 8dr o - Dr DEd
with D, = diag (---,—1/Co (') )
Dpq =diag (---,1/Do (2;,"),---)  (G.3)
D, =diag (- ,2;",-") (G4

We evaluate (G.1) for d,.
trace and (14)

Given the definition of the

o2 52 B
tr (| =£D, DgqP —e .
r (N Ed > " B N (RQ) (G 5)
with B = Z HEd zk z
R=(%LELp)"'| © Q= LLED, Dpalp|
90 90

where Hgy (z,;l) is the kth diagonal element of Dgy.

By Lemma 22 in Appendix C (with a < 0, N + o =
N), and with Agg the dominant pole of Hgq (27!) and
‘)\Edl <1

B= 0(03 |)\Ed\N>

Because Lp is a block matrix defined by (A.6), R and Q
are block matrices structured as

Ra Rp
R Re

Qs QB
Qc 9p

so that
tr (RQ) = tr (RaQa + RpQc + REQp + RcQp)



By Lemmas 26 and 27 (in Appendix C), for sufficiently
large record lengths V,,, R4, ..., Rc, Qa, ..., Qp are
block diagonal matrices with their mth diagonal blocks
of order O (NO). Thus, tr (RQ) reduces to

M-1

Z tr (RA m QA m+RB m QC m+Rgm QB m+RC m QD m)

m=0

Hence,
2
% (RQ) =0 (02F)
with ny = M (ny + ny + 2). Because N = Y MV N,,,,
ny /N converges to zero only when N,,, — oo. Thus,
for finite NV,,, and M — oo, GVEE/&M@O converges to

constant different than zero. A similar result can be
derived for 0Vgg/0c,| 00"

Appendix H Proof of Lemma 11

Substituting (A.25) in (A.24) results in the simplified

equation
1 0Ly, OLp
w N (2 herm { { o9, ~ 06, ] SyeF }> 90

GVwE

00,
because of (F.1), (Lng)_l LgL“eo = Iy (given
L,/,|90 = Lp’eo), and Dgl, = Iy [see (A.15)]. Given
the definition of Lp, Ly and Syg [see (A.6), (A.13),

(B.3) and (B.5)]
WVyp| _1 tr(2 herm{[aDw‘] agopJ}LJSwEJP})
(H.1)

90, |9, N 90, %

This expression is evaluated below for the model
parameters a,, b, ¢, and d,.

H.1 8V¢E/(9ar, 8V¢,E/8br and an,E/aCT
From (A.10) and (A.17), we get for parameters a,, b,

and ¢,

dDy;  9Dp;
90, 00,

ON — =
9 90, |,

H2 0Vyg/od,

The proof that 0Vyg/0d, = 0 for N, — oo can be
derived following a similar procedure as in Appendix J.3.
Also, this result can be derived as follows. According to
(4), for N,,, = o0, Viy (0,1, z¢) is a sum of cost functions
that yield consistent estimates. This implies that Vi (6)
satisfies condition (19) for all 6, when N,,, — oo. Because
all terms in (17), apart from Vg (0), have been proved
to satisfy (19) for d, when N,,, — oo, so does Vg ().
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Appendix I Proof of Lemma 12

If H(z7',0) # Ho(z7'), some of the terms of (17)
do not satisfy condition (19) for a,. For instance,
simplifying (A.20) gives

da,

2

N

Since Dgl4,,-1) py(s-1) # IN [see (A.15)], this term
does not converge to zero for N — oco. This is illustrated
with a Monte Carlo simulation in Section 5.

Ao(271),Bo(271)

Ao(z71),Bo(z71)

Moreover, for Vy (6) to satisty condition (19) for b,, it is
necessary that G (271,6) = Go (27'). This implies that
a bias on parameters a, introduces a bias on b,..

Appendix J Proof of Lemma 15

The modifications provided in Appendix A.4 and
the remark in Appendix B.3 apply to the ARX
model structure. Besides, Dp; = Iy and L¥,L;; =

noo L Lyj, = NI, [see (A.10) and (A.28)], so
that (14) results in

1
P=1Iy— —L;LY

~ (J.1)

The analysis of Appendices G and H applies to ARX,
with the modifications presented below. Equations (G.1)
and (H.1) are evaluated for b, and for d, to keep the
notation (since D = A).

J. 1 8VEE/8bT and 8V¢E/8b,,

Given (A.10), (A.15) and (A.17), for the parameter b,,
(G.2) and (H.2) apply.

J.2 GVEE/ﬁdT = GVEE/&LT

Given (J.1), for parameter d,. (1 < r < np), (G.5)

becomes
o? ~
tr (EDT DEdP) =B
N 9
g2 Nl X 1 .
with B = Fe kZ_O Hgq (zk )zkr (1 — NLIJkLIJk>

By Lemma 22 in Appendix C (with o < 0, N+ a = N),

and Ly, L, = Y0 Ly, () Irs, (1) = ny

o~ (- oot
B= (1 ) 002 sl )
with Agg the dominant pole of Hgy (z‘l) and [Agq| < 1.

Thus, OVgg/dd,|,, converges to zero for finite NV, and
M — oo.



J.3 6VwE/adr = 8V¢E/8a,«

From (A.10) and (A.17), we get for parameter d, (with
1<r<mnp)

3D¢J 8DPJ _
( 8dr — 8dr ) " = Derd
with  Dyg = diag (---,1/Do (1) ,--+)

DT:diag(...’Zk_T’...)

We evaluate (H.1). Given the definition of the trace and
(J.1)
— 5 (0
6o N

1
N tr (DerdLJSwEJP)
_ 1 N-1
= i Z Hyq (Zk_l) Zk_TLJkSwEJk
k=0

6o
R oN-
Q:NZLEMHW (=) 2 "L s F:ZSwEJkLIJk
k=0 0o k=0

with Sygg, the kth column of Sygs, Ly, and Ly, the
kth rows of Ly and Lry [see (B.11), (A.3) and (A.27)],
and Hyq (2; ') the kth diagonal element of Dy,.

First, we compNuteNB'. Given (B.10) to (B.14), B has two
components (B=B5.+85,) defined by

0o

N M1 o —
=~ Zde (z) zk_rmzzozk_KmkaeE {\;%EC (k)}

2
O¢

=~z

-Tr

M IN-1
Z de Zk Zk pe(zk_l)
m=0 k=

0

N 1 M-1
2 m Xvm 3
BU:——Zde ) 2 mz:ozk anTE{\/NEC (k)}

Man Np—1—p—1 -

1—r— 1
X 2 AT Zde )z ()
m=0 p=0
with p.(z; ') and Po, (25 1) polynomlals on z; ! of order

ny. By Lemma 22 (with @ < 0, N+« = N) and Lemma
24 (withaa <0, N+a~=N, Ny—1 —p=DN,—1)in C

. M .

B, = o(agW |/\Be|N>; B, = o(ag \/\BU\N>
with Ag. the dominant pole of Hyg (27!), and Ap, the
dominant pole of Hyg (27!) and Ho (271).

Next, we compute tr (% Qﬁ') Because Q and F are
block matrices (M x M blocks)

1. M-1 1 M-1 N

17

with F(i,m) = Fe (6,m) T Fv (4,m) and Q(m,i) given by

N-1
n Xei 3
Fe(i,m) = Z T.E {Ec (k)} z
k=0
2
o n K
=_-°T, E anUIJka( g+ K P Ko

—K,,
k m771Jk

N
XUZ _Km
U(zm) ZTE{ (k)}zk N1,
€ T Kime
FTUZ;) Ehz ngy + . Z]hi (1)] "7IJkZ}C

N—-1
1 r
Qm,i) = N > Hoa (=) ninnez 2™
k=0

By Lemmas 21 and 25 in Appendix C, Fe(i,m) and
FU(Zm) are O( e) when ¢ = m 4+ 1 (or ¢ = 0 with
m =M —1) and 0(m+1)x(n”+1) elsewhere. By Lemma

2 (with @« < 0, N+ a = N) Q(mm+1) and QM 1,0)

are O(|)\Be|N). Hence,
_ o M N
= 0(o? sl V)

r (}VQF)

Thus, 8V¢,E/8dr|90 converges to zero for finite N,,, and
M — oco.

Appendix K Proof of Corollary 17

For a consistent estimator, 6y is the minimum of Vi ().
Evaluating (17) in g gives

1
Viv (6o) = Ve (0o) =  tr (SeEP)l,,

because of (F.1), DU‘eo = Oy and DE‘OO = Iy [see
(A.14) and (A.15)]. Besides, given (B.1) and tr (P) =
N —ny [see (14)]

o N

—n
VN (00) :UeTw

Therefore, a consistent 0 implies a consistent 62 with
(9), which accounts for the degrees of freedom.

Appendix L Proof of Lemma 18

Given (13), 8WN ||1 can be bounded by
H

Es \W 201w, [, 21 7
135 I,




where || 2} 8WH | |WH ||, and ||W||, are O(N?)

accordmg to (A.7), (A 11) and (A.12). For OE and ARX,
HPH 118 O(NV) according to Appendix D. Because Lp =

p[LI for OE and LP = DPJLIJ for ARX [see (A 6)
(A.8), (A.16), (A 17) and Appendix A.4]

OLp
= D TL L.].
20, vor L p (L.1)
with Dgg, € CV*V a diagonal matrix.

From (A.25) and (L.1)
oP
00,

2P|, can be bounded by

< 7] oo

e () 2
1 1 1

+|ze @Bz LB |25 | |7,
where ||D39TH1 and ||D5{97,||1 are O(NO). According
to Appendix D, (L’;,’Lp)_lLHHl is O(N?) for
OE and ARX. Therefore, ‘1 and Hdw’\’Hl are
O(NO) The proof that for OE and ARX H 89769(2 H1 and

HmH1 are O(N?) follows the same lines. Note
that the proof here presented applies for FIR and AR.

Appendix M Proof of Theorem 19

From the first order Taylor series expansion of Vy (6, z¢)
€ R around 6, a standard reasoning leads to the
following expression for a consistent estimator [7,8,13]

0 (z¢) — 6o = —Vy 1 (80) VT (Bo,z5)  in prob.

leading to (20). Under Assumptions 1 to 7, the conditions
of Theorem 17.29 in Chapter 17 of [8] are fulfilled (see
Lemma 18 and Appendix N).

Appendix N Auxiliary proof for Lemma 4 and
Theorem 19

The contribution of the noise on Y. (k) is

Tr+ Ho (") Ec (k) (N.1)
M-—1 -1
. —rn Jmo (21)
with  Jx = Ko IO \Zk )
mzz() g D (Zk 1)

The aim is to prove that, under Assumption 2, (N.1)
is independent over the frequency. Hy (zk_l) E. (k)
is independent over k (see [8]). To prove that Jy is
independent over k, it suffices to show that [J; and
J1 are uncorrelated for k # [, since J; and J; are
jointly normally distributed [as they are function of
ec(t)]. Similarly, to prove that J; and Hy (2; ") E. (k)
are independent over k, we will show that J; and
Hy (2;7") E. (1) are uncorrelated for k # [.
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From (B.6)
T =Tek — Tk (N2)
. anTv
t]h vk — v ) v -
i - s Kan S
(N.3)

and 7, defined in a similar way as 7, x, replacing T, by
T., and X, by X (with X, same as X, g, but xy ., is
replaced by xem) [see (B.7), (B.8) and (A.4)].

From the covariance E {(Jek —Tok) (‘75 jﬁ) }, we
consider the term
1 Xo &,
E{ T, T = nJTE{ l}TH
W= B Do) ™ ;
(N.4)
The elements of X, ;, € C"/tDx1 are of the form
M-1
Zk_Km {vm (=t) =1 (N1 — £)} = g, e
m=0
T
22 Vo (7‘[’.) —vV_1 (N_l — t)
an = a Vg =
Zk_KMfl vapr—1 (—t) —vm—2 (Nar—2 — t)

with t € [1,n; + 1] (and record index —1 = M —1).

Therefore, under Assumptions 5 and 7, the elements of
]E{N ka l} in (N.4) are of the form

bc0~-- a
Y abc---0
Vi Vs 1
anE{ tNt }nﬁZZNUMk Oab--0|ny,
[ c00--- b
(N5)
with b = E{v, (—t) v, (— ’)+vr( P = t)v (N = ©)},

a = E{—v, (N, —t)v, (-t)} and ¢ = IE{ v (—t)

v, (N, — %)}, where r denotes that a, b and ¢ do not
depend on the record index m. Then, (N.5) reduces to
(because Kp,41 = K, + Ny, and z;, ~ Ko le = lek)

VtV{I H b _N7 = Km
anIE N T]]\/Il: N N k +NZ]€ Z Zl s

m=0
(N.6)
Considering (D.4), (N.6) equals zero for k — [ # nM,
with n € [0, N, — 1]. Hence, for a given k, for N — N,.
frequencies [

E{JxJf} =0

For k — 1 = nM (N, frequencies ) E{j,kjvl} =



%O(N 9). Asymptotically, the contribution of this finite
number frequencies to the cost function can be neglected.
For the other terms of E {jkle} the result is the same,
with the proof following the same procedure. A similar
proof can be derived for E {77}

N.2 E{JrHo(z)E: ()}

From the covariance E {JHo () E. (1)

}, we consider
the term [see (N.2) and (N.3)]

E{jkaO(Zl)E(Z)} HO Zl 77Jk Z mE{va.Ec(l)}

VN

m=

For records of equal length N,., the term X}, (t) (with
t € [I,n;+1]) in (B.14) does not depend on the record
index m [see (B.12), where N,,_1; = N,], and we denote
this by Xy, (t). Therefore,

M-1 5 S (g 1)
—KppJXom | _ e :
Sarsfigmol-g (S
Zhr (1)
(N.7)

Considering (D.4), (N.6) equals zero for k — | # nM,
with n € [0, N, — 1]. Hence, for a given k, for N — N,.
frequencies [

]E {\Z)kHO (Zl) EC (l)} = 0

For k—1 = nM (N, frequencies 1), E {7, ,Ho (z1) E. (1) }
= X O(N?). Asymptotically, the contribution of this
finite number frequencies to the cost function can be
neglected. For the other terms of E {7 Ho () E. (1)}
the result is the same, with the proof following the same
procedure [see (B.13)]. A similar proof can be derived

for E{JxHo (z1) Ec (1)}
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