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Abstract—This paper presents a solution to a predict then
optimise problem which goal is to reduce the electricity cost
of a university campus. The proposed methodology combines
a multi-dimensional time series forecast and a novel approach
to large-scale optimization. Gradient-boosting method is applied
to forecast both generation and consumption time-series of the
Monash university campus for the month of November 2020.
For the consumption forecasts we employ log transformation to
model trend and stabilize variance. Additional seasonality and
trend features are added to the model inputs when applicable.
The forecasts obtained are used as the base load for the schedule
optimisation of university activities and battery usage. The goal
of the optimisation is to minimize the electricity cost consisting of
the price of electricity and the peak electricity tariff both altered
by the load from class activities and battery use as well as the
penalty of not scheduling some optional activities. The schedule of
the class activities is obtained through evolutionary optimisation
using the covariance matrix adaptation evolution strategy and
the genetic algorithm. This schedule is then improved through
local search by testing possible times for each activity one-
by-one. The battery schedule is formulated as a mixed-integer
programming problem and solved by the Gurobi solver. This
method obtains the second lowest cost when evaluated against 6
other methods presented at an IEEE competition that all used
mixed-integer programming and the Gurobi solver to schedule
both the activities and the battery use. The code and data used
for the paper are publicly available1.

Index Terms—evolutionary scheduling, load forecasting, co-
variance matrix adaptation evolution strategy (CMA-ES), genetic
algorithm, mixed-integer programming, evolutionary algorithms,
demand response

I. INTRODUCTION

Whilst the renewable energy source uptake is increasing
globally, more flexibility will be needed in electricity sector.

This research was partly funded by VLAIO project MAMUET (grant
number HBC.2018.0529).

1https://github.com/EVERGi/predict-then-schedule-university-activities.

Demand response is a source of flexibility projected to play a
key role in meeting rising flexibility requirements in the world
[1].

Dynamic scheduling of flexible electric load is a method to
utilize existing flexibility in the system. The method enables
participating in demand response program, while keeping track
of an electricity price market and extra spending in peak load
tariff. Real-world dynamic problems entail solving an opti-
mization problem bearing partially defined parameters. The
missing specifications are recovered using a prediction model.
The approach followed at the energy optimization scheduling
problem follows the predict-then-optimize paradigm.

An array of methods have been proposed for load schedul-
ing, particularly in energy systems with large flexible loads.
Gao et al. [2] conducts a review on energy-efficient scheduling
algorithms in production systems. According to the review,
swarm intelligence and evolutionary algorithms are found most
applicable to solve energy-efficiency scheduling problems for
the large-scale instances. The survey highlights future research
directions in use of local-search operators, modelling energy
consumption-related constraints and research on applications
in specific fields.

Different works have already used evolutionary scheduling
on top of forecasted data and obtained good performances in
the process. Tušar et al. [3] compared evolutionary scheduling,
a randomized greedy search method and a hybrid between the
two to schedule flexible offers for a supply and demand prob-
lem based on forecasted electricity loads. The evolutionary
scheduling outperformed the two other methods. Ohta et al. [4]
used an improved multi-objective particle swarm optimization
algorithm to schedule air-conditioning temperature based on
air-temperature forecast. The method used was shown to
be robust to the uncertainty on the air-temperature forecast.
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Trivedi et al. [5] used multi-objective evolutionary scheduling
to solve a realistic day-ahead thermal generation scheduling
problem based on forecasted loads and where unit outage
may occur. The authors compares this method with the more
commonly used method by system operators to solve the prob-
lem as a constrained single-objective optimization problem in
deterministic environment. They show that the evolutionary
scheduling method obtains better costs and presents a trade-off
with emission cost or/and reliability. Mandi et al. [6] views an
energy-cost aware scheduling problem as a learning to rank
(LTR) problem. The proposed solution uses surrogate loss
functions to cache feasible solutions.

This paper proposes a solution to a real-world problem
in energy-cost aware activities scheduling. The problem is
first stated within the ”IEEE-CIS Technical challenge on
Predict+Optimize for renewable energy scheduling” [7] and
tackles electricity-cost problems of the Monash university.
Part of the consumption in the university campus is driven
by activities’ schedule, which creates potential flexibility in
electric demand. The problem is challenging as the solution
should combine a multi-dimensional time series forecasting
and a large-scale optimization. Therefore, a solution requires
expertise in both fields and their interaction.

Time-series forecasting competitions have long been a
principal approach to empirically evaluate several forecasting
methods and identify the superior in terms of accuracy per-
formance. Majority of competitive events, however, are largely
focused on forecasting and optimization problems in isolation.
Previously, there has been only one similar challenge, the
’ICON Challenge on Forecasting and Scheduling’ hosted in
2016. The challenge tackled scheduling multiple server jobs
while optimizing the energy cost. The challenge was leaned
heavily on the optimization part, with only one variable of
electricity price subject to forecasting. The winning solution
implements ”a constructive heuristics responsible for gener-
ating an initial solution and a late acceptance hill climbing
algorithm responsible for improving this initial solution” [8].

The paper is structured as follows. In Section II, we for-
mulate the scope of the problem, method of evaluation, as
well as given conditions and data. The strategy followed while
solving the problem is presented in Section III. We provide
details on the particular workflow, including the methodology
in preprocessing, forecasting and scheduling optimization.
Section IV presents an analysis of the results achieved for a
prediction accuracy and energy costs optimized via scheduling.
Finally, we make the final remarks and present conclusions in
Section V.

II. PROBLEM STATEMENT

The data available from the Monash university in Melbourne
includes historical data for energy demand and solar PV
production [7]. There is electricity consumption data recorded
every 15 minutes from 6 buildings on the Monash Clayton
campus, until September 2020. Solar generation data, again
with 15 minutes of granularity, sources from 6 rooftop photo-
voltaic (PV) installations from the Clayton campus, also until

September 2020. It also includes energy spot prices for the
state of Victoria from the Australian Energy Market Operator
[9] as well as weather data from the Australian Bureau
of Meteorology [10]. Furthermore, ERA5 weather data was
supplemented by the competition organizers. The electricity
price and weather data are available for the out-of-sample
period. Therefore, the final solution is proposed given an
assumption of having perfect weather and price forecasts. The
problem consists in predicting the energy demand and solar
production for the month of November 2020 and schedule the
class activities and the battery use for that month in order to
minimise the electricity cost.

The schedule cost amounts to energy cost, peak load penalty
and subtracts the profit receivable from organizing optional
once-off activities. The full formulation of the schedule cost
O is shown in (1) where T is the length of the month in 15
minute times steps, lt is the total power consumption, et is
the price of electricity, A is the number of once-off activities,
sa is 0 when the once-off activity a is not scheduled and 1
when it is scheduled, va is the reward for scheduling once-
off activity a, oa is 0 when once-off activity a is scheduled
within working hours and 1 otherwise and pa is the penalty
of scheduling once-off activity a outside of working hours.

O =

T∑
t=1

0.25ltet
1000

+
(maxt lt)

2

200
−

A∑
a=1

sa (va − oapa) (1)

The scheduled activities have two types: recurrent and once-
off activities. The scheduling of activities needs to follow a set
of constraints. The recurrent activities need to be scheduled
within working days (Monday-Friday) and working hours
(9am-17pm) starting on from the first Monday of the month
and occurring at the same day of the week and time for 4
consecutive weeks. The once-off activities can be scheduled
outside working hours but get a reduced reward in such case.
Recurrent and once-off activities have a set of precedence
constraints which are the list of all activities that need to occur
at least one day before itself. The activities are defined by its
power draw, duration and number of rooms needed to organise
the activity. Each building has a number of rooms. Activities
need to be scheduled in order that at any time-step the number
of rooms occupied by activities does not exceed the number
of rooms of all buildings.

Furthermore, the university has access to two batteries
which should be given a schedule that specifies at each time-
step if the batteries charge, discharge or do nothing. The effect
of the battery schedule on the total power consumption lt
is described in (2) where blt is the power consumption of
the buildings, solar panels and scheduled activities, B is the
total number of batteries, mb is the maximum charge and
discharge power of battery b, yb, t is 0 when the battery does
not discharge and 1 when it discharges, xb, t is 0 when the
battery does not charge and 1 when the battery charges and
effb is the efficiency of battery b.



lt = blt +

B∑
b=1

mb

(
yb,t
√
effb −

xb,t√
effb

)
∀ t ∈ T (2)

The battery can not charge and discharge at the same time
t as described in (3).

xb,t + yb,t ≤ 1 ∀ b ∈ B, t ∈ T (3)

The energy stored in the battery cb,t varies based on the
charge and discharge variables xb, t and yb, t of the battery as
described in (4) and is bounded between 0 and the maximum
capacity capb of battery b (see (5)).

cb,t+1 = cb,t + 0.25mb (xb,t − yb,t) ∀ b ∈ B, t ∈ T (4)

0 ≤ cb,t ≤ capb ∀ b ∈ B, t ∈ T (5)

The given conditions are set as the problem instances.
The problem is composed of 5 small instances and 5 large
instances. Small instances have 50 recurrent and 20 once-off
activities to schedule and large instances 200 recurrent and 100
once-off activities to schedule. An instance codifies a number
and parameter description of buildings, batteries and activities
to be scheduled.

III. METHODS

Due to inherent complexity of both tasks, we address the
tasks within two separate workflows. The approach to forecast-
ing and optimization are illustrated in the data flow diagram in
Fig. 1. The forecasting method is highlighted in green and the
scheduling is in blue. The initial intuition for the forecasting
was to use the gradient boosting methods. Large gaps in data
and a long forecasting horizon lead to rejecting the idea of
using recurrent neural networks and training global models.
Furthermore, solutions that employ LightGBM, a popular
gradient boosting framework, have dominated in forecasting
competitions, particularly the M5 competition [11]. The main
challenge with forecasting is identified at preprocessing the
data correctly with an outlook for non-stationarities in data.
Efforts were also made to tune the model and select the best
features. Concerning scheduling optimization we identified
two trajectories for finding solution: a heuristic approach and
a constraint programming approach. However, the formulation
of the scheduling problem has a high level of complexity,
which may not be feasible unless broken down into smaller
sub-problems. For the activity scheduling, a base schedule is
obtained through evolutionary optimisation. This base sched-
ule is then improved by testing possible times for each activity
one-by-one. The battery schedule is formulated as a mixed-
integer programming (MIP) problem and solved with the
Gurobi solver [12].

A. Forecasting

1) Data pre-processing and feature engineering: The sub-
ject time series record electric consumption in 6 buildings
and solar generation in 6 rooftop installation on the Monash
Clayton campus. Two of series (Building 0 and Building 3)
trace the five-year long period from 2016 up to November
2020, the rest of the series are shorter in length, showing only
values for about a year up to November 2020.

The input data for solar PV generation shows some anoma-
lies, i.e. long patches of zero measurements and changes in
trend, particularly at the start of recording. For training the
models, the early weeks are discarded from the solar series

Calendar features are generated to aid the learning proce-
dure of seasonal patterns for energy consumption in buildings.
The features are time of day, weekday and time of year. The
weekday feature is encoded as a categorical feature. Others
are encoded with sin and cos functions in order to capture the
cyclicity with their scale. A working day feature is created.
Some information is provided on the used capacity during
periods of the academic calendar and restrictions in response
to COVID-19 pandemic. We incorporate occupancy fractions
in buildings as a separate feature. The occupancy in earlier
dates is estimated as monthly consumption values re-scaled to
a [0, 1] range with a min-max normalization.

Both for the generation and consumption data, the input
time series were split into training and validation sets. The
validation set is similar duration to the test, to be long enough
to ensure robustness to weekly seasonalities. A validation
partition is used to tune hyper-parameters, select features
and compare the methods’ performance. The validation set
is selected to start at fixed origin, as the test set is released at
once. The last observed values for the month-long period, prior
to the forecasted month, are selected to be the validation set for
all time series except for Building 5. A significant data drift,
i.e. change in data distribution, is observed for consumption
in October in the building 5 time-series. A prior month is set
for validation.

We calculate the trend and seasonality components for all
points of the consumption. The values for these components
are also projected into the forecasted period. This is done
using the prophet forecasting library [13]. The underlying
mode performs a multi-seasonal additive decomposition. Back-
testing it showed that using the additional features improves
final prediction in all buildings but 5 and 6. Feature selection
is handled while tuning the model. Pairwise correlation is
calculated using the Pearson correlation method. Features that
exceed the correlation coefficient threshold, which is subject
to hyperparameter optimization, are discarded. In most cases,
feature selection shows to be insignificant to the final accuracy
on the validation data.

2) Model implementation: We utilize LightGBM [14], a
gradient boosting method for solving non-linear regression
and classification problems, to forecast the time-series for the
month ahead. The objective function is set to minimize mean
absolute error (MAE). MAE is proportionate to Mean Absolute



Fig. 1. Data flow of forecasting (in green) and schedule optimisation (in blue).

Scaled Error (MASE). We tune the model for hyperparameters
and feature selection on the validation set.

The ranges for hyperparameters are based off default values
provided in package’s documentation, adjusted for the size of
the series. The values are provided in Table I.

TABLE I
INITIAL HYPERPARAMETER RANGES

method [’gbdt’, ’dart’, ’goss’]
learning rate 0.01 - 0.3
number of leaves 20-3 000
maximum depth [-1, 5, 10, 15, 20, 25]
minimum data in leaf 20-100
lambda l1 0-100
lambda l2 0-100
correlation value 0.6 - 1

Building 4 time series stands out due to a strictly discrete
distribution of consumption values and a high number of
missing values. We approach forecasting this series as the
multi-class classification problem with an unbalanced dataset.
The model is set to ’balanced’ mode, where weights are
adjusted inversely proportional to class frequencies in the
training data

B. Schedule optimisation

Before the start of the optimisation, a precedence level
is calculated for each activity. The precedence level of an
activity is the minimum number of days necessary before the
activity to be able to satisfy the precedence constraints of all
the activities. A level after value is also calculated for each
activity. This value is the minimum number of days needed
after the activity to be able to satisfy the precedence constraints
of all the activities.

1) Base schedule: The base activity schedule is obtained
through the optimisation of an evolutionary algorithm. Two

different evolutionary algorithms were tested, the Covariance
matrix adaptation evolution strategy (CMA-ES) [15] and the
genetic algorithm [16]. The evolution process starts by creating
a population of possible schedules. Each individual has two
components for each recurrent activity and one component
for each once-off activity. The components for the recurrent
activities are the day and the time of the day at which the
activity should be scheduled. For each activity the days which
can be selected depend on how many activity levels are below
and above it in the precedence directed graph. The days which
can be selected are the five days of the week from which the
first x days and the y last days are removed, where x is the
precedence level of the activity and y is the levels after
value of the activity. By doing this we discard the days for
which it is impossible to schedule the recurrent activity due
to the precedence constraints. The time of the day for the
recurrent activities is selected from the start of the working
day to the end of the working day minus the duration of the
activity. The time for the once-off activities is selected from
the first time of the month to the last time of the month minus
the duration of the activity (Alg. 1 line 2).

To satisfy the precedence constraints for the recurrent and
once-off activities, the days of the activities are changed grad-
ually starting from the activities with the lowest precedence
level. If an activity has a precedence scheduled for the same or
a later day, the activity is rescheduled to the day after the latest
day of its precedence activities. The time of the day stays the
same for the rescheduled recurrent and once-off activities. If
due to this process a once-off activity is scheduled after the
last day of the month, this activity is discarded (Alg. 1 line
4).

When the precedence constraint has been satisfied, the room
constraints need to be enforced. Rooms are assigned first for
the recurrent activities and second for the once-off activities



using the same process. Activities for which the product of the
duration and the number of rooms occupied by the activity is
the highest are the first to be assigned to a room. An activity
is assigned to rooms available with the lowest ids first. If
there are not sufficient rooms available to fit the activity, the
activity is scheduled at a different time of the day and during
working hours for the recurrent activities. This process tests
times gradually from closest to furthest to original given time.
If no rooms are available in the selected day, the solution is
discarded by giving it a high score of $200 000 (Alg. 1 line
5).

Once-off activities which increase the score of the objective
function from the previously obtained feasible schedule are
removed. For each once-off activity, the electricity cost of
running the activity, the value and the penalty of itself and all
the activities necessary to schedule this activity are summed to
give the benefit of scheduling the activity. This benefit defines
the impact of the once-off activities has on the objective
function without taking the electricity consumption peak cost
into account. The more negative this benefit is, the more it will
decrease the objective function. The activity with the largest
negative benefit and all the activities necessary to schedule
this activity are kept for the final solution. The same process
is repeatedly executed with the electricity cost, the activity
value and the penalty of the kept activities set to 0 until the
reward of all remaining activities are positive, in which case
the remaining activities are discarded. This process removes all
once-off activities, which increase the objective function score.
Some kept once-off activities may still increase the objective
function score via the peak cost (Alg. 1 line 6).

The obtained schedule is evaluated through the objective
function and the total cost is given to the evolutionary algo-
rithm (Alg. 1 line 7). Moreover, the evolutionary algorithm
optimises the selected days and times of the recurrent and
once-off activities to minimise the objective function scores
of the obtained schedules (Alg. 1 lines 8 and 2).

Algorithm 1 Obtain base schedule
Input: instance
Output: base schedule
1: while stop criteria is false do
2: Evolutionary algorithm generate population within possible times
3: for individual in new population do
4: Enforce precedence constraints and define day and time of all

activities
5: Define rooms for all activities
6: Remove once-off activities with negative impact on electricity cost

7: Calculate electricity cost
8: Evolve population based on previous individuals and associated elec-

tricity costs
9: return base schedule

2) Improved activity schedule: From the base schedule, an
improved schedule is obtained by modifying the time of the ac-
tivities one by one. This improvement is done in two versions,
one improving the base schedule and a second improving the
base schedule from which the once-off activities are removed
(Alg. 2 line 2). The improvement starts by modifying the times

of the recurrent activities then the once-off activities (Alg. 2
line 4). The time of the activities are modified one by one
keeping the time of the other activities fixed and starting with
the activities with the lowest precedence level (Alg. 2 lines 5
and 6). Once a better time for an activity is found, the better
time is given to that activity and the process continues with this
new improved solution. In a first phase, the activities try all
times within the days that allow all activities to be scheduled
and that respect the precedence constraints of the activities
already in the schedule (Alg. 2 line 8). In a second phase, the
activities try all times that respect the precedence constraints
of the activities already in the schedule (Alg. 2 line 10). This
means that in the second phase the once-off activities can try
times that discard other once-off activities to be scheduled
due to precedence constraints. Overall this process finds better
times for the once-off and recurrent activities and schedules
new once-off activities that were previously not scheduled.

Algorithm 2 Improve base schedule
Input: base schedule
Output: improved schedule
1: if remove once off = true then
2: remove once off activities from base schedule
3: for i := 1 to 2 do
4: for activity in all activities starting with recurrent do
5: for day in days of the month do
6: if activity precedence level = day then
7: if i = 1 then
8: improve time of activity within recommended days
9: else if i = 2 then

10: improve time of activity within all times
11: return improved schedule

3) Battery schedule: The schedule of the batteries is found
with the activity times of the improved schedule. The be-
haviour of the batteries described in (2) to (4) and the objective
function (1) are modelled as a mixed-integer problem. The
Gurobi solver [12] was used to minimise the objective function
with xb, t and yb, t as the variables that describe the battery
schedule. The lbt value in (2) is here the power consumption
of the improved schedule. This process calculates the schedule
of the battery for the given improved schedule with imperfect
forecast of the buildings and solar panels loads.

IV. RESULTS AND DISCUSSION

A. Forecasting

Table II provides the accuracy scores achieved with the final
model configuration. The accuracy is assessed with the MASE,
which is defined in (6).

MASE =

∑M+h
k=M+1 |Fk − Yk|

h
M−S

∑M
k=S+1 |Yk − Yk−S |

(6)

After validating the model using the October data, we proceed
to apply the same model to forecast the subsequent month,
November 2020. The model generally gives predictions with
MASE smaller than 1. Therefore, it succeeds at beating a sea-
sonal persistence of previous 28 days. The LGB model is more
consistent at accurate prediction of photovoltaic generation



sequences. The aggregate error of forecasts in all buildings and
solar installations is visualized in the Fig. 2. The time period
shown in the figure examines the aggregate consumption from
Monday 23 of November 2020 to the end of the scheduling
time for readability reasons. A significant underestimation is
observed at the peak values. Such behaviour is assumed to be
caused by models failing to detect a change in trend occurring
between the months of October and November. The LGB
model are tuned using the October data for validation, thus
overfitting to the patterns observed in that particular period.

TABLE II
FORECASTING ACCURACY SCORES FOR OCTOBER AND NOVEMBER

MASE
October November

Building0 0.422 1.201
Building1 0.695 1.134
Building3 0.932 0.640
Building4 1.271 0.810
Building5 0.171 0.949
Building6 0.948 1.018
Solar0 0.895 1.044
Solar1 0.325 0.399
Solar3 0.859 0.525
Solar2 0.424 0.722
Solar5 0.554 0.517
Solar4 0.446 0.729

mean 0.662 0.807

Fig. 2. Comparison of actual aggregated load vs the forecasted values from
Monday 23 of November 2020 to the end of the scheduling time. In red is
the forecasted load of the buildings minus the production of the solar panels.
The blue line indicates the actual load.

B. Schedule optimisation

1) Base schedule analysis: The GA and CMA-ES were
tested with population sizes from 100 to 2 000 (see Fig. 3).
The stopping criteria for CMA-ES is met when the f tolerance
is smaller than 100 or the x tolerance is smaller than 1. The
stopping criteria for the GA is met when no improvement
larger than 1 is found for 500 generations in a row. Both

stopping criteria were tuned to stop the evolution process
when no or very slight improvements were found for multiple
generations. CMA-ES was implemented using the pygmo
library [17] and starts with a σ of 0.5. The GA uses steady-
state selection as selection operator with a selection rate of
10% of the parent population, the crossover operator is single-
point crossover, the mutation operator is random resetting with
a mutation probability of 10%. The selection rate of the parent
population was chosen, all other parameters and operators are
the default ones found in the PyGAD library [18].

For small instances CMA-ES and the GA both get close
or exceed with all populations size the base schedule used for
the competition submission (see Fig. 3). However for the large
instances, CMA-ES outperforms the GA for all population
sizes except 2 000. The base schedule used for the competition
submission had 3 small schedules obtained with the GA and
the 7 others obtained with CMA-ES.

2) Improvement analysis: All improvement methods for
the activity schedule reduce the final cost (see Fig. 4). The
methods where the once-off activities are removed seem to
have a slightly better average but the method where the once-
off activities are kept does yield in some cases better results.
The improved schedule used for the competition submission
had 4 schedules obtained by keeping the once-off activities
and 6 obtained by removing the once-off activities.

Fig. 4 shows that the battery schedule decreases the final
score more than the schedule improvement. For small in-
stances the interquartile range of the boxplot is large while
for large instances the interquartile range is small. A small
interquartile range would indicate that whatever activity sched-
ule is given, the improvement from the battery is always
approximately the same and therefore that separating the
activity and the battery scheduling is reasonable. The results
seem to indicate that this is true for large instances but not
necessarily for small instances.

3) Overall performance: The best schedules found with
this method have a total electricity cost of $253 691.95 when
evaluated with the forecasted loads and a cost of $332 740.74
when using the real data for November 2020. The difference in
cost is caused by the underestimation of forecasted electricity
consumption during working hours as shown in Fig. 2. This is
the second lowest cost when evaluated against 6 other methods
presented at an IEEE competition [7] that all a MIP and the
Gurobi solver to schedule both the activities and the battery
use [19]–[23].

This method is exactly the same that obtained the fourth
best cost at this IEEE competition but for which a bug
preventing the schedule of one of the two provided batteries
was discovered and corrected.

4) Example schedule and forecast: Fig. 5 shows the best
activity schedule found for the small 0 instance. Only the
schedule from Monday 23 of November 2020 to the end of
the scheduling time are shown for readability reasons. The
recurrent activities seem well scheduled to keep a low max
peak power value. The once-off activities are placed only
during working hours and multiple are scheduled in the last



(a) Small instances

(b) Large instances

Fig. 3. Visualisation of the optimisation process to find a base schedule with
the GA and CMA-ES approach for different population sizes. Each solid
line represents the summed best cost obtained for the 5 instances of each
category (small in Fig. 3a and large in Fig. 3b) during consecutive optimisation
processes. Once the evolutionary process reached its stopping criteria, a new
evolutionary process for the same instance is started. The horizontal dashed
lines are the costs of the schedules that obtained the lowest cost for each
instance during all the runs and at the three phases of the scheduling process.

two days which have low electricity price and no recurrent
activity. There is nonetheless a visible improvement that can
be made to this schedule, 7 out of the 20 once-off activities
have not yet been scheduled and between time-steps 2 676 and
2 709 the prices are negative. Shifting once-off activities from
the 2nd last day to this time-slot and adding non-scheduled
once-off activities to the last two working days decreases the
cost. By doing this step manually the cost for this instance
was improved from $28 482.20 to $28 335.73. This indicates
that the schedule optimisation has still room for improvement
regarding once-off activities.

Fig. 4. Box-plots of the different methods used to improve the base schedule
and the battery schedule. The box-plots for the improvement methods are
generated on 40 values each, which are the costs of the improvement of the
8 best base solution found for each instance. The box plots for the battery
schedule contain 80 values each, which are the cost obtained by adding the
battery schedule to the 160 improved schedules from the 4 other box-plots.

5) Time evaluation: A complete scheduling process was
executed logging the time of the three scheduling phases. The
whole process was executed on a laptop computer with a 12
thread Intel® Core© i7-9850H CPU and 32 GB DDR4 RAM.

The base schedule phase was executed in parallel on the
10 instances of the problem and stopped after 12 hours. The
algorithm used was CMA-ES and a population of 100 was
selected. During this time an average of 975 100 and 3 914 480
base schedules were created and evaluated for each of the 5
large instances and 5 small instances respectively.

The 10 best base schedules per instance were then improved
in parallel trying both base schedules with once-off activities
removed and kept. The improvement process executed in 4
minutes for schedules from small instances and 14 minutes
from schedules from large instances.

The battery schedule was calculated for the 10 best im-
proved schedules. This process was done sequentially and with
a time limited of 20 minutes for each schedule to avoid the
RAM used to exceed 32 GB. The optimisation took a total
time of 1 hour and 42 minutes with all schedules from large
instances hitting the 20 minute limit and schedules from small
instances being solved each in 22 seconds on average.

The whole process was executed in 13 hours and 56 minutes
and obtained a cost of $335 136.88 when evaluating with the
real data of November 2020. This cost is close to the cost
obtained in section IV-B3 where both the GA and CMA-ES
were used with different population sizes.

6) Other methods presented at the competition: For the
competition [7], the seven best methods including this one
were selected for presentation. For the forecasting top 4 solu-
tions use applications of a gradient forest model or gradient
boosted trees. The approaches mainly differ in data prepro-
cessing steps and feature engineering. This includes using



Fig. 5. Representation of the best found improved schedule for the small 0
instance. In red is the forecasted load of the buildings minus the production
of the solar panels. The load from the recurrent activities are represented in
different colors for each activity. The orange vertical lines represent the start
and the end of the working hours of the problem. The blue line is the price
of electricity.

additional lags for weather, removing outliers and selecting
the size of the training data. Remarkably, the best prediction
used a naive median prediction for two out of 6 buildings.
For the scheduling, all six other methods solved the problem
as a MIP and used the Gurobi solver for both activity and
battery schedule. The method in first place optimised the
schedule over six different forecasts which seems to be the
main advantage over our method [19].

V. CONCLUSION

We solve a ’predict then optimise’ problem within the
premises of a university campus. Energy consumption and
generation of the university buildings and solar panels are
forecasted and used to schedule class activities and the use
of two batteries.

The forecasting problem is approached with a deterministic
method using seasonal and trend decomposition followed by
a gradient boosting model. Generated seasonality and trend
components are used as exogenous inputs. The combination
of time series decomposition and gradient boosting seems to
be effective.

To obtain the base schedule, similar performances are
achieved with CMA-ES and the GA for small instances but
for large instances CMA-ES performs better. The improved
schedules obtained through iterations reduces the cost for elec-
tricity of the campus and schedules more once-off activities.
This improved schedule can still be improved as is shown
by the example in section IV-B4. Ideally the two steps to
obtain the base and the improve schedules could be merged
into one evolutionary scheduling step that includes more once-
off activities. The battery schedule decreases effectively the

cost. Scheduling batteries and activities together instead of
sequentially could yield lower costs.
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