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Abstract 1 

We report on the performance of three classes of evolutionary algorithms (genetic algorithms (GA), 2 

evolution strategies (ES) and covariance matrix adaptation evolution strategy (CMA-ES)) as a means 3 

to enhance searches in the method development spaces of 1D- and 2D-chromatography. After 4 

optimisation of the design parameters of the different algorithms, they were benchmarked against 5 

the performance of a plain grid search. It was found that all three classes significantly outperform the 6 

plain grid search, especially in terms of the number of search runs needed to achieve a given 7 

separation quality. As soon as more than 100 search runs are needed, the ES algorithm clearly 8 

outperforms the GA and CMA-ES algorithms, with the latter performing very well for short searches 9 

(<50 search runs) but being susceptible to convergence to local optima for longer searches. It was also 10 

found that the performance of the ES and GA algorithms, as well as the grid search, follow a hyperbolic 11 

law in the large search run number limit, such that the convergence rate parameter of this hyperbolic 12 

function can be used to quantify the difference in required number of search runs for these algorithms. 13 

In agreement with one’s physical expectations, it was also found that the general advantage of the GA 14 

and ES algorithms over the grid search, as well as their mutual performance differences, grow with 15 

increasing difficulty of the separation problem. 16 

 17 

Keywords: evolutionary algorithms; gradient elution; liquid chromatography; method development; 18 

multi-dimensional chromatography 19 

 20 

1. Introduction 21 

The evolution in column technology and instrumentation in liquid chromatography is such that ever 22 

more complex samples can be resolved, to meet the ever increasing demands in biomarker discovery, 23 

environmental and food analysis, pharmaceutical research and other life science applications. To 24 

resolve these samples, analysts have a vast toolbox at their disposal: the choice of the most selective 25 

mobile and stationary phase, the use of mobile phase additives, the optimisation of pH, temperature 26 

and gradient parameters, et cetera. Furthermore, instrumentation for multi-dimensional 27 

chromatography has become commercially available in recent years [1-2], thus allowing to exploit the 28 

fact that the peak capacity in multi-LC is, save effects of undersampling and non-orthogonailty, equal 29 

to the product of the peak capacities of the individual dimensions [3]. 30 

Because of this wealth of possibilities, the analyst is faced with a daunting optimisation problem during 31 

method development. To alleviate this workload, several software packages have been developed [4-32 

5]. However, these are typically applicable to optimisation problems with a small number of 33 

parameters, whereas in some cases, the number of parameters can be ten or more, with the case of 34 

multi-dimensional chromatography [6-9] being a notable example. 35 

In the present contribution, we report on our study of the applicability of optimisation methods 36 

developed in the field of artificial intelligence – evolutionary algorithms, to be specific – to enhance 37 

method development. An evolutionary algorithm is an optimisation method which mimics biological 38 

evolution by iteratively applying selection and reproduction to a population of candidate solutions, 39 
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referred to as ‘individuals’ [10-11]. In the selection step, the fitness of the individuals is evaluated 40 

based on an objective function, allowing to separate the better from the worse. In the reproduction 41 

step, the properties of the fittest individuals are recombined and mutated, thus bringing forth new 42 

individuals. After a number of iterations, referred to as ‘generations’, the population of candidate 43 

solutions converges to an optimum of the objective function. 44 

A major advantage of evolutionary algorithms is that they are better at coping with large numbers of 45 

parameters than most classical optimisation methods are [10-11]. Furthermore, they do not require 46 

any assumptions on the behaviour of the objective function (such as continuity, differentiability, et 47 

cetera) and their populous nature limits their sensitivity to local optima, which are a considerable issue 48 

in multi-parameter optimisation. These advantages have sparked interest in their applicability in the 49 

field of chromatography. They were introduced to the field in 1993 by Lopes Marques et al. [12-13] to 50 

fit a nine-parameter retention model to experimental data. Indeed, because of the complexity of 51 

fitting nine parameters, they found evolutionary algorithms to be more reliable than classical 52 

methods. In the early 2000’s, their range of application was extended from retention modelling to 53 

method development by Nikitas et al. [14-16]. They also compared the performance of several 54 

evolutionary algorithms with so-called Gaussian mutation (see Sections 2.6-2.7), which they 55 

considered to be an improvement upon other mutation methods. Since then, the number of 56 

applications of evolutionary algorithms to both retention modelling and method development has 57 

been increasing [17-24]. Within the broader scope of chemometrics, applications of evolutionary 58 

algorithms include molecular design, molecular modelling and analysis of spectroscopic data [25]. For 59 

example, in the latter case, they were found to be useful in feature selection in infrared spectra, 60 

reducing them to the most relevant subset of wavelengths. 61 

In the context of method development, a chromatographic response function (CRF), evaluating the 62 

separation quality and separation time, can serve as the objective function of the optimisation 63 

problem. Numerous definitions of such a criterion can be found in literature, both for 1D and 2D 64 

chromatography [26-27]. 65 

In the present study, three classes of evolutionary algorithms, differing from one another in terms of 66 

recombination and mutation methodology (see Sections 2.5-2.7), were implemented and evaluated: 67 

genetic algorithms (GA), non-adaptive evolution strategies (ES) and a covariance matrix adaptation 68 

evolution strategy (CMA-ES). Firstly, they were applied to the optimisation of gradient parameters in 69 

1D chromatography, with a single linear gradient (see Section 3.1). Secondly, this application was 70 

extended to 2D chromatography, with a linear gradient in both the first and second dimension (see 71 

Section 3.2). Logically, the application to 1D chromatography cannot fully reveal the advantages of the 72 

evolutionary algorithms, as only two parameters are optimised (i.e., gradient offset and gradient 73 

slope). Nevertheless, this case is extensively discussed, since it allows to provide visual insight into the 74 

performance of the evolutionary algorithms, via heatmaps of the CRF as a function of the two 75 

parameters. 76 

All experiments were performed in silico, based on simulated chromatographic separations of samples 77 

with randomly generated components. This allowed to repeat the experiments for a statistically 78 

relevant number of samples within a reasonable time frame, and to determine the optimal solution 79 
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for a sample by a brute force grid search (i.e., by running the simulation for numerous sets of gradient 80 

parameters, applying a high-resolution grid to the optimisation space). Thus, this methodology 81 

facilitated a quantitative evaluation of the evolutionary algorithms’ performance. The chroma-82 

tography parameters were kept as simple as possible (Gaussian peaks, equal initial concentration of 83 

analytes, perfect orthogonality between 1D and 2D separation) in order to have the cleanest possible 84 

view on the possibilities of the different tested algorithms, devoid of any effects originating from the 85 

assumptions made on the non-ideal chromatographic behaviour. The performance of the algorithms 86 

was compared to the performance of a simplistic grid search subjected to the same quantitative 87 

evaluation as the evolutionary algorithms.  88 

Concerning their applicability, it should be noted the evolutionary algorithms could be applied to 89 

either guide experimental, search-based method development as well as to speed up computational, 90 

model-based method development. The former is limited to simple separation problems, where 91 

suitable separation conditions can be found within a reasonable number of search runs (e.g. 100) and 92 

where an experimental search is preferred because, for example, retention modelling of the individual 93 

components is deemed too time consuming or too error-prone. The latter relies on accurate retention 94 

modelling of the individual components [28], after which search runs are performed in silico such that 95 

the affordable number of search runs can run in the millions or billions, as is needed to solve complex 96 

separation problems. 97 

 98 

2. Computational methodology 99 

The performance of evolutionary algorithms in the context of gradient optimisation was evaluated by 100 

meta-experiments, consisting of a large number (#𝑆) of sub-experiments (#𝑆 = 10,000 in the case of 101 

1D chromatography, #𝑆 = 1,000 in the case of 2D chromatography). In each sub-experiment, an 102 

algorithm was applied to optimise the gradient parameters for a sample with randomly generated 103 

composition. To do so, the algorithm was allowed to perform a given number of search runs (each 104 

being a simulated chromatographic separation), after which it had to propose a final solution, which 105 

was evaluated by a chromatographic response function (CRF). After performing all sub-experiments, 106 

each meta-experiment was concluded by calculating the average of the achieved CRF values, a 107 

measure of the algorithms’ performance which is referred to further on as its ‘efficacy’: 108 

𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦 =
1

#𝑆
∑ 𝐶𝑅𝐹𝑖

#𝑆
𝑖=1   (1) 109 

Additionally, the standard errors on these efficacy values – originating from the variance between 110 

samples – were calculated based on the square root law. 111 

Each part of the sub-experiments was executed by a MATLAB® script or function: the random 112 

generation of components, the simulated chromatographic separations, the CRF evaluation and the 113 

algorithms themselves. The corresponding MATLAB® code was developed in-house, and its 114 

functionality is described part-by-part in the following sections. 115 

 116 

2.1 Sample composition and retention properties 117 
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Artificial samples, consisting of a given number of components (𝑠) with randomly generated retention 118 

properties, were generated in silico. These retention properties were based on the Neue-Kuß model, 119 

in which components are characterised by three retention parameters (𝑘𝑊, 𝑆1, 𝑆2) and their retention 120 

factor (𝑘) is expressed as a function of the volume fraction of organic modifier, commonly referred to 121 

as the mobile phase composition (𝜑) [29]: 122 

𝑘(𝜑) =  𝑘𝑊 ∙ (1 + 𝑆2𝜑)2 ∙ exp (−
𝑆1𝜑

1+𝑆2𝜑
)  (2) 123 

For realistic ranges of the retention parameters, we adapted data from [29], where the Neue-Kuß 124 

model was used to fit retention time data for a number of small organic molecules. Although a 125 

straightforward approach would be to pick the retention parameters of a component independently 126 

from uniform distributions of 𝑘𝑊, 𝑆1 and 𝑆2, this was only done for the latter. Instead, 𝑘𝑊 was picked 127 

from a log-uniform distribution, because of its tendency to vary over multiple orders of magnitude. 128 

Furthermore, some calculations revealed that picking 𝑆1 independently from the other two could 129 

result in components with unrealistic retention properties. Therefore, the extrapolated retention 130 

factor in pure organic modifier (𝑘𝑀) was picked from a log-uniform distribution, after which 𝑆1 was 131 

inferred from its relation to the other retention parameters. For this purpose, the following relation 132 

can be derived from Eq. 2 by setting the mobile phase composition equal to one, and subsequently 133 

isolating 𝑆1: 134 

𝑆1 = (1 + 𝑆2) ∙ ln (
𝑘𝑊

𝑘𝑀
∙ (1 + 𝑆2)2)  (3) 135 

Thus, we arrived at realistic ranges for ln 𝑘𝑊 (from 3.27 to 11.79) ,ln 𝑘𝑀 (from -2.38 to -1.03) and 𝑆2 136 

(from -0.24 to 2.51). In the case of 2D chromatography, components were characterised by six 137 

retention parameters, three for each dimension. For the sake of simplicity, the two subsets of 138 

retention parameters were picked independently from one another. This implies that the two 139 

dimensions were assumed to be completely orthogonal. Although this limits the practical relevance 140 

of the results, we believe this approach provides the best starting point to gain a general insight in the 141 

possibilities of the tested algorithms, devoid of any interferences arising from the selected mechanism 142 

coupling the retention in the two dimensions. 143 

 144 

2.2 Simulation of chromatographic separations 145 

For each sample, a number of reversed-phase chromatographic separations with gradient elution was 146 

simulated by calculating the retention time (𝑡𝑅) and peak spreading (𝜎𝑡) for each component. In the 147 

case of 1D chromatography, a linear gradient was employed, characterised by an offset (𝜑0) and a 148 

slope (𝛽) [30]: 149 

𝜑(𝑡) = 𝜑0 + 𝛽𝑡  (4) 150 

In the case of 2D chromatography, a linear gradient was employed in both the first and second 151 

dimension, characterised by a set of four gradient parameters (𝜑0,1, 𝛽1, 𝜑0,2, 𝛽2). Within one 152 

chromatographic separation, the second dimension gradient was, for the sake of simplicity, repeated 153 

identically for each fraction, thus following the full-in-fraction method [31-32]. 154 
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The retention times were calculated by substituting Eqs. (2) and (4) in the fundamental equation of 155 

gradient elution, taking into account the void time (𝑡0) [30]: 156 

𝑡0 = ∫
𝑑𝑡

𝑘(𝜑(𝑡))

𝑡𝑅−𝑡0

0
  (5) 157 

The calculation of peak spreading was based on the established models of peak broadening and peak 158 

compression, taking into account the column efficiency (𝑁) [33]: 159 

𝜎𝑡 =
√1+𝑝+

𝑝2

3

1+𝑝

(1+𝑘(𝑡=𝑡𝑅))𝑡0

√𝑁
  (6) 160 

𝑤ℎ𝑒𝑟𝑒 𝑝 = 𝛽𝑡0𝑆1
𝑘(𝑡=0)

1+𝑘(𝑡=0)
   161 

Again for the sake of simplicity, peaks were assumed to be Gaussian and of equal height, thus 162 

neglecting the complications of asymmetry and shoulders. Examples of the idealised chromatograms 163 

are shown in Fig. 1. In the case of 2D chromatography, the same equations were applied in both the 164 

first and second dimension, thus calculating the four descriptors of each peak (𝑡𝑅,1, 𝜎𝑡,1, 𝑡𝑅,2, 𝜎𝑡,2). The 165 

modulation time was assumed to be sufficiently small to not disturb the shape of the peaks. 166 

Logically, the difficulty of method development is influenced by the sample complexity and the column 167 

efficiency. Therefore, several degrees of difficulty were considered throughout the meta-experiments, 168 

as given in Table 1. Since the void time does not influence the difficulty of method development, this 169 

can be considered as a dummy variable within the meta-experiments. 170 

 171 

2.3 Chromatographic response function (CRF) 172 

There are two classes of criteria which are typically incorporated in the definition of a CRF: criteria 173 

regarding the separation quality (resolution, peak-to-valley-ratio, et cetera) and criteria regarding the 174 

separation time [26-27]. Incorporating both, the CRF was defined as the sum of peak purities (𝑃) – 175 

which is defined as the fraction of a peak that does not overlap with other peaks – counting only the 176 

peaks which eluted within a given time window (∆𝑡): 177 

𝐶𝑅𝐹1𝐷 = ∑ (𝟙𝑡𝑅
𝑖 <𝑡0+∆𝑡 ∙ 𝑃𝑖)𝑠

𝑖=1   (7) 178 

where ∆𝑡 = 20𝑡0 in all considered cases  179 

In the case of 2D chromatography, the CRF was defined analogously, with a given time window in both 180 

the first and second dimension: 181 

𝐶𝑅𝐹2𝐷 = ∑ (𝟙𝑡𝑅,1
𝑖 <𝑡0,1+∆𝑡1

∙ 𝟙𝑡𝑅,2
𝑖 <𝑡0,2+∆𝑡2

∙ 𝑃𝑖)𝑠
𝑖=1   (8) 182 

𝑤ℎ𝑒𝑟𝑒 ∆𝑡1 = 20𝑡0,1 𝑎𝑛𝑑 ∆𝑡2 = 20𝑡0,2   183 

As the peak purity is a value between zero and one, the CRF value is always smaller than or equal to 184 

the number of components. For example, the chromatogram shown in Fig. 1a has a CRF value of 18.1 185 

out of 20.0, due to the minor overlap between peaks three and four and the major overlap between 186 

peaks five and six, and the chromatogram shown in Fig. 1b has a CRF value of 140.0 out of 150.0, due 187 

to various peak overlaps and co-elutions. 188 

 189 
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2.4 Evolutionary algorithms 190 

The overall approach to method development followed by evolutionary algorithms is summarised in 191 

Fig. 2. Firstly, the population is initialised via a number of search runs with randomly chosen gradient 192 

parameters. Subsequently, the evolutionary algorithm cycles through selection and reproduction, 193 

performing additional search runs in each generation. Lastly, after having performed a given number 194 

of search runs, the evolutionary algorithm proposes the set of gradient parameters which achieved 195 

the highest CRF value as a solution to the optimisation problem. 196 

In the selection step, the fitness of the individuals is evaluated based on the CRF. Several selection 197 

methods were implemented and evaluated: ‘elitist’, ‘probabilistic’ and ‘weighted’ [34-35]. In the elitist 198 

method, a limited number of individuals are chosen for reproduction, discarding individuals with low 199 

CRF values. Alternatively, in the probabilistic and weighted methods, each individual is given either 200 

some probability to reproduce or some weight in the reproduction method. The given probability or 201 

weight is proportional to the difference between its CRF value and the lowest CRF value within the 202 

population (this subtraction is done to avoid being too ‘indulgent’ towards individuals with low CRF 203 

values.) 204 

In the reproduction step, new individuals are generated via recombination and mutation. These 205 

processes vary from one class of evolutionary algorithms to another, as described in Sections 2.5-2.7. 206 

A reoccurring design choice, however, is whether the old individuals should either be completely 207 

replaced by their offspring, or whether a selection of them should be conserved while adding their 208 

offspring to the population. Both methods, respectively referred to as ‘comma’ and ‘plus’ [34-35], 209 

were implemented and evaluated. 210 

Another reoccurring design choice is which values should be allowed for the gradient parameters. As 211 

method development is typically a constrained optimisation problem, lower and upper bounds were 212 

chosen. Whereas the constraints on the gradient offset are straightforward (i.e., from 0 to 1), the 213 

constraints on the gradient slope are given on a logarithmic scale (i.e., from 10-3 to 100), such that the 214 

search runs of both the evolutionary algorithms and grid search can be more evenly spread over 215 

multiple orders of magnitude (see logarithmic 𝛽𝑡0-axis of Fig. 3). In the case of 2D chromatography, 216 

the same constraints were applied in both the first and second dimension. 217 

 218 

2.5 Genetic algorithms 219 

In the implemented genetic algorithms (GA), sets of gradient parameters are encoded as genomes of 220 

binary numbers, with one gene per gradient parameter. More specifically, each gene is a binary 221 

number of eight bits (allowing an encoding accuracy of 1/256). Within each generation, reproduction 222 

occurs via crossover of, and point mutations within, genomes of selected individuals [35]. 223 

Firstly, for each individual to be generated, two parents are selected from the population via either 224 

the elitist or the probabilistic method. Secondly, crossover takes places at a random point along the 225 

parental genomes, with the child inheriting some bits from one and some bits from the other. Thirdly, 226 

randomised point mutations take place in the nascent genome, inverting zeroes to ones and vice 227 

versa.  228 
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Lastly, once a given number of individuals has been generated, the population is updated via either 229 

the comma or the plus method. 230 

By combining the described design choices, four GA designs were implemented: comma-elitist, 231 

comma-probabilistic, plus-elitist and plus-probabilistic. Each of them has two design parameters to be 232 

optimised: the mutation rate (the probability of a given bit to be inverted) and the generation size (the 233 

number of individuals per generation). In addition, a so-called (1+1)-GA was implemented, a plus-234 

elitist design with only one individual per generation. Although, in this case, the generation size during 235 

the evolution cycle was fixed, the initial population size was optimised instead. 236 

 237 

2.6 Non-adaptive evolution strategies 238 

In the implemented evolution strategies (ES), sets of gradient parameters are encoded as vectors of 239 

real numbers, with one component per gradient parameter. Within each generation, reproduction 240 

occurs via a random draw from a Gaussian distribution rather than pseudo-genetic operations [34]. 241 

The mean of the distribution represents the parent (�̅�), selected from the current generation. This can 242 

be the fittest individual or a fitness-weighted average of individuals, according to either the elitist or 243 

the weighted method. The standard deviation of the distribution represents the mutation strength 244 

(𝜎), a design parameter in ESs analogous to the mutation rate in GAs. A number of children (𝑐̅), which 245 

take their place in the next generation according to either the comma or the plus method, are sampled 246 

from the thusly defined mutation distribution: 247 

𝑐�̅�+1~𝒩(�̅�𝑔, 𝜎2𝐼)̿  (9) 248 

Analogous to the four GA designs, four ES designs were implemented: comma-elitist, comma-249 

weighted, plus-elitist and plus-weighted. Each of them has two design parameters to be optimised: 250 

the mutation strength and the generation size. In addition, and analogous to the previously described 251 

(1+1)-GA, a (1+1)-ES was implemented as well. 252 

 253 

2.7 Covariance matrix adaptation evolution strategy 254 

The ESs described above are referred to as ‘non-adaptive’, since their mutation strength – and with it 255 

the covariance matrix of their mutation distribution – is kept constant throughout the evolution cycle. 256 

More complex ESs can increase or decrease their mutation strength from one generation to the next, 257 

depending on whether the entire optimisation space is to be explored or a given area is to be 258 

exploited. This scaling of the mutation distribution is controlled by a so-called self-adaptation method 259 

[34]. 260 

Adding another layer of complexity, a covariance matrix adaptation evolution strategy (CMA-ES), first 261 

described in [36], can also stretch and rotate the mutation distribution. To do so efficiently, the 262 

mutation strength and the normalised covariance matrix (𝐶̿) are adapted independently from one 263 

another. Each generation, reproduction occurs via the adapted analogue of Eq. 9: 264 

𝑐�̅�+1~𝒩(�̅�𝑔, 𝜎𝑔
2𝐶�̿�)  (10) 265 
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Adaptation of the normalised covariance matrix strives to increase the probability of successful 266 

mutation steps (i.e., mutation steps which increase fitness) towards future generations, by favouring 267 

the direction of successful mutation steps from past generations. In parallel, adaptation of the 268 

mutation strength strives to optimise the length of future mutation steps based on past mutation 269 

steps. A cumulative and derandomised method to do both, by integrating information on successful 270 

mutation steps via deterministic formulas, is described in [37]. 271 

However, based on the results discussed in Subsections 3.1.1-3.1.2, we chose to implement a (1+1)-272 

CMA-ES, first described in [38], analogous to the (1+1)-GA and (1+1)-ES. In this design, mutation 273 

strength adaptation is based on the so-called ‘one-fifth success rule’, which states that a (1+1) 274 

evolutionary algorithm should strive to have about one ‘success’ (i.e., an increase in fitness) per five 275 

generations [34]. When the success rate becomes either too low or too high, the mutation strength 276 

should be increased or decreased, respectively. Two recent improvements on the state-of-the-art 277 

(1+1)-CMA-ES were included: active covariance matrix adaptation [39], which allows it to learn from 278 

its failures as well as its successes, and constraint handling [40], which adapts the mutation 279 

distribution when it approaches the boundaries of the optimisation space. 280 

The reader is referred to [40] for a detailed description of the implemented (1+1)-CMA-ES, including 281 

the advised values of the design parameters of its self-adaptation method (given in Table 1 of [40]). 282 

Two design parameters were optimised in this study: the initial population size and the initial mutation 283 

strength. 284 

 285 

2.8 Grid search 286 

In parallel to the evolutionary algorithms, a plain grid search algorithm implemented to serve as a 287 

benchmark. This simplistic algorithm projects an orthogonal grid onto the optimisation space and 288 

performs a search run at the centre of each grid cell. Thus, the number of search runs increases with 289 

the second power (in the case of 1D chromatography) or the fourth power (in the case of 2D 290 

chromatography) of the demanded grid resolution. 291 

 292 

3. Results and discussion 293 

The following sections, discussing the cases of 1D and 2D chromatography, each consist of four 294 

subsections. In the first three, the three implemented classes of evolutionary algorithms (GA, ES and 295 

CMA-ES) are studied one by one, after having optimised their design parameters. The last subsection 296 

is a comparative study between the evolutionary algorithms and the grid search, including a study on 297 

the influence of sample complexity and column efficiency. 298 

Firstly, however, we introduce two plots which are used throughout this discussion: chromatographic 299 

response function (CRF) landscapes (Fig. 3) and efficacy curves (Fig. 4). 300 

In a CRF landscape, the CRF value of a chromatographic separation is plotted for each possible set of 301 

gradient parameters, as determined by a brute force grid search (i.e., using a 200x200 grid). In the 302 

case of 1D chromatography, the two-dimensional (𝜑0, 𝛽)-space can be adequately visualised by a 303 
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heatmap, as shown in Fig. 3. On the contrary, the four-dimensional (𝜑0,1, 𝛽1, 𝜑0,2, 𝛽2)-space in the 304 

case of 2D chromatography cannot be adequately visualised. 305 

As a side note, the optimal range for the gradient steepness (𝑆1𝛽𝑡0/2.3) which becomes apparent 306 

when examining a sufficiently large number of samples can be compared with the optimal gradient 307 

steepness values found in practice. In our simulations, based on the Neue-Kuß model, the average 𝑆1-308 

value is 23 and the optimal 𝛽𝑡0-value lies between 0.01 and 0.05 for the majority of samples. Thus, 309 

the gradient steepness lies typically between 0.1 and 0.5, a range not so different from what is 310 

reported for the linear solvent strength model in literature, namely from 0.2 to 0.4 [30]. 311 

In a so-called efficacy curve, the sample-averaged CRF-value (cf. Eq. 1) achieved by a given algorithm 312 

is plotted as a function of the number of search runs (𝑛) it performs. Logically, the longer an algorithm 313 

searches, the better the solutions it finds. Eventually, however, the algorithm runs into the limitations 314 

of the chromatographic separations, as the given column efficiency does not necessarily suffice to 315 

completely separate each of the samples in a meta-experiment. For example, in the case shown in Fig. 316 

4, with a sample complexity of 20 and a column efficiency of 20,000, the efficacy limit is 19.16, as 317 

determined by a brute force grid search. Hence, the best a search algorithm can do is achieve this 318 

19.16 efficacy limit, as an efficacy of 20 is impossible to achieve with the given column efficiency. 319 

An interesting finding is that the efficacy curve of the grid search, shown in Fig. 4a, can be accurately 320 

fitted (R² > 0.99) with a hyperbolic trendline: 321 

𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦 = 𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦𝑚𝑎𝑥 −
1

𝑎∙𝑛+𝑏
  (11) 322 

Moreover, it was found that this holds for the GA and ES as well, though not for the CMA-ES. This is 323 

shown in Fig. 4b, where the efficacy curves are transformed such that the hyperbolic trendline 324 

becomes linear, allowing to emphasise the quality of the fit: 325 

1/(𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦𝑚𝑎𝑥 − 𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦) = 𝑎 ∙ 𝑛 + 𝑏  (12) 326 

 327 

3.1 Gradient optimisation in 1D chromatography 328 

To evaluate the evolutionary algorithms, each of the studied designs is applied to a reference case: 329 

chromatographic separations with a sample complexity of 20 and a column efficiency of 20,000. 330 

Firstly, their design parameters are optimised based on a series of meta-experiments, focussing on 331 

their efficacy value after 50 search runs. This suffices to provide a good indication of their 332 

performance, since the differences between efficacy curves tend to decrease beyond this point 333 

anyhow (see Subsection 3.1.4 and Fig. 6). Secondly, the most suitable design from each class is 334 

subjected to further study, by means of CRF landscapes and efficacy curves. 335 

Nota bene, the optimisation of the design parameters of the evolutionary algorithms typically involves 336 

comparing efficacy values which differ marginally. Some of these marginal differences – resulting from 337 

slightly nudging the design parameters – are in the same order as the standard errors on the efficacy 338 

values: 0.01 in the case of 1D chromatography and 0.1 in the case of 2D chromatography.Although 339 

these differences correspond to hundreds of samples where a given peak is or isn’t resolved, the 340 

optimised design parameter values proposed here should be considered as indicative values, rather 341 

than constants ‘set in stone’. 342 
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 343 

3.1.1 Genetic algorithms 344 

For each of the GA designs, optimised design parameters and their resulting efficacy values are given 345 

in Table S1. The most notable differences are those between the elitist and probabilistic designs, with 346 

the former outperforming the latter. Surprisingly, optimisation of the plus-probabilistic design led to 347 

a generation size of one. This implies that two individuals are compared in each generation: a child, 348 

which has just been generated, and its parent, which was conserved by the plus method. Since the 349 

probabilistic method implemented here avoids selecting the least fit individual, it becomes a de facto 350 

elitist method, consistently selecting the most fit individual. This somewhat counterintuitive result led 351 

us to include the so-called (1+1) evolutionary algorithms, on which extensive literature exists [41]. 352 

However, the (1+1) evolutionary algorithms might not be as effective at exploring the entire 353 

optimisation space as they are at exploiting a given area. To compensate for this risk, their initial 354 

population size was considered as a design parameter instead of the generation size. 355 

The resulting (1+1)-GA outperforms each of the other GA designs, albeit slightly. Hence, we chose to 356 

subject the (1+1)-GA to further study, especially considering it combines the four properties listed 357 

below: 358 

(a) The plus method avoids discarding a suitable set of gradient parameters from one generation to 359 

the next. 360 

(b) The elitist method avoids wasting search runs on ‘descendants’ of unsuitable sets of gradient 361 

parameters. 362 

(c) Performing one search run per generation reduces the number of search runs that have to be 363 

performed throughout method development. 364 

(d) Performing a number of search runs to initialise the population reduces the risk of beginning the 365 

evolution cycle in a non-promising area of the optimisation space. 366 

To provide visual insight in the performance of the (1+1)-GA in the context of gradient optimisation, 367 

it was applied to the chromatographic separation which corresponds to the CRF landscape shown in 368 

Fig. 3. Plotting the coordinates of the search runs performed during this optimisation on this CRF 369 

landscape (Fig. 5a-b) visualises how the (1+1)-GA assigns its search runs ‘intelligently’ (i.e., gradually 370 

evolving towards an optimum), allowing it to outperform the grid search, which assigns its search runs 371 

‘arbitrarily’ (i.e., following a grid which is fixed a priori). 372 

During the first 50 search runs (Fig. 5a), the optimisation space is mainly explored via a series of 373 

scattered search runs. During the next 50 runs (Fig. 5b), the most promising area is exploited more 374 

thoroughly as the search runs become more clustered near the optima of the CRF landscape. 375 

Nonetheless, many search runs are still wasted in non-promising areas, as can be explained based on 376 

the employed mutation methodology. Due the pseudo-genetic operations implemented here, some 377 

large mutation steps (e.g., from 0.25 to 0.75) are more likely to occur than some small mutation steps 378 

(e.g., from 0.49 to 0.51). Furthermore, due to the probability of mutating one gradient parameter 379 

while not – or barely – mutating the other, many search runs are arbitrarily clustered on – or near – 380 
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horizontal or vertical lines. These properties indicate that GAs might not be the most suitable class of 381 

evolutionary algorithms in the context of gradient optimisation. 382 

 383 

3.1.2 Non-adaptive evolution strategies 384 

The ES designs were optimised analogously to the GA designs, and the resulting efficacy values are 385 

given in Table S2. Since the standard errors on the efficacy values are in the order of 0.01, the 386 

differences between those in Table S2 are of borderline significance. Because it is analogous to the 387 

(1+1)-GA and combines the four properties listed above, we chose to subject the (1+1)-ES to further 388 

study. 389 

An illustrative example (Fig. 5c-d) visualises the performance of the (1+1)-ES. As before, an initial 390 

exploration stage (Fig. 5c) and a subsequent exploitation stage (Fig. 5d) can be distinguished. However, 391 

compared to the (1+1)-GA, the (1+1)-ES appears to assign its search runs more intelligently. The 392 

Gaussian distribution implemented here favours small mutation steps (< 2σ) over large ones (> 2σ) 393 

and is isotropic, resulting in a coherent cluster of search runs. These properties, along with the efficacy 394 

values given in Tables S1 and S2, indicate that ESs might be more suitable than GAs in the context of 395 

gradient optimisation. 396 

 397 

3.1.3 Covariance matrix adaptation evolution strategy 398 

Continuing our study on (1+1) evolutionary algorithms, we chose to subject the (1+1)-CMA-ES to the 399 

same design optimisation and further study as was done for the GA and ES designs. With an initial 400 

mutation rate of 0.33 and an initial population size of 9, this state-of-the-art evolutionary algorithm 401 

achieves an efficacy value of 18.49 at 50 search runs, higher than both the (1+1)-GA (18.19) and (1+1)-402 

ES (18.40). Since the (1+1)-CMA-ES can initially explore the optimisation space with a high mutation 403 

strength and subsequently exploit a given area with a low mutation strength, optimising its initial 404 

population size might not be as necessary as it is for the (1+1)-GA and (1+1)-ES. Nonetheless, the 405 

efficacy is slightly improved as compared to the (1+1)-CMA-ES with an initial population size of 1, 406 

which achieves an efficacy value of 18.44 at 50 search runs. 407 

Analogous to the (1+1)-GA and (1+1)-ES, the performance of the (1+1)-CMA-ES was visualised (Fig. 5e-408 

f). Because of the implemented self-adaptation method, the difference between the initial exploration 409 

stage (Fig. 5e) and the subsequent exploitation stage (Fig. 5f) is striking. Adaptation of the mutation 410 

strength – i.e., scaling the mutation distribution – results in a concentrated cluster of search runs, 411 

while adaptation of the normalised covariance matrix – i.e., stretching and rotating the mutation 412 

distribution – shapes this cluster into a diagonally oriented ellipsoid. Thus, in this particular example, 413 

the (1+1)-CMA-ES converges to the global optimum of the CRF landscape. 414 

However, for other samples, the (1+1)-CMA-ES was found to converge to a local optimum instead of 415 

to the global optimum. Since their limited sensitivity to local optima is one of the reasons why 416 

evolutionary algorithms could be useful to solve method development problems, the risk of 417 

premature convergence of the (1+1)-CMA-ES should be considered a major drawback. 418 

 419 
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3.1.4 Comparative study 420 

Fig. 6 mutually compares the efficacy curves of the different (1+1) evolutionary algorithms studied in 421 

the previous Subsections, using the performance of a plain grid search as a reference. Clearly, each of 422 

the evolutionary algorithms has an advantage over the grid search, though there are also differences 423 

between the evolutionary algorithms themselves. 424 

These differences can be evaluated in two directions: vertically and horizontally. Evaluating them 425 

vertically answers the question ‘which algorithm proposes the solution with the highest CRF value 426 

after a given number of search runs?’, whereas evaluating them horizontally answers the question 427 

‘which algorithm has to perform the least number of search runs before achieving a given CRF value?’. 428 

Since the latter directly addresses the required experimental or computational time, the latter can be 429 

considered a more relevant question than the former. 430 

As most efficacy curves tend to be hyperbolic (i.e., they can be accurately fitted with Eq. 11), their 431 

vertical differences are small and decrease after some number of search runs (ca. 50), as they come 432 

closer to the efficacy limit. On the other hand, their horizontal differences are large and increase 433 

proportionally to the number of search runs, as the convergence rate differs between algorithms. 434 

These differences in convergence rate can be quantified based on the 𝑎- and 𝑏-parameters of Eq. 11, 435 

which were estimated by non-linear least squares regression. In the large 𝑛 limit of Eq. 11, the number 436 

of search runs at which an algorithm achieves a given efficacy value becomes inversely proportional 437 

to the 𝑎-value, as the 𝑏-value becomes negligible (cf. offset and slope of trendline in Fig. 4b, which is 438 

highly accurate for 𝑛 > 100). Thus, the GA (𝑎 = 0.0153) and ES (𝑎 = 0.0237) can be said to 439 

respectively save up to 39% and 60% of search runs as compared to the grid search (𝑎 = 0.0094). 440 

These values support the discussion of the illustrative examples in Sections 3.1.1 and 3.1.2, confirming 441 

the ES assigns its search runs more intelligently than the GA. 442 

As an exception, the efficacy curve of the CMA-ES cannot be accurately fitted with Eq. 11, as it appears 443 

to converge exponentially rather than hyperbolically. Furthermore, it converges to an efficacy value 444 

(18.75) considerably below the efficacy limit (19.16), confirming the risk of premature convergence 445 

discussed in Section 3.1.3. The self-adaptation method causes the CMA-ES to propose suboptimal 446 

solutions for some samples. In practice, especially if the number of components in the sample is not 447 

known a priori, this might result in missing one component of the sample – or more, though the data 448 

indicate this is not as likely. 449 

As a preliminary conclusion, the ES can be considered the most suitable evolutionary algorithm in the 450 

context of gradient optimisation. The GA is slower by a factor of about one-and-a-half and the CMA-451 

ES, although it is intrinsically faster, might be too sensitive to local optima for this application. To verify 452 

whether this preliminary conclusion holds under other conditions, the influence of sample complexity 453 

and column efficiency was studied. 454 

In a first comparison, shown in Fig. 7, the sample complexity was kept constant while the column 455 

efficiency was varied. Logically, this influences the peak capacity of the chromatographic separations. 456 

With a column efficiency of 10,000 (Fig. 7a) and 30,000 (Fig. 7b), the efficacy limit is respectively 457 

decreased to 17.99 and increased to 19.55. In parallel, the convergence rate of both the evolutionary 458 

algorithms and grid search is decreased and increased as well, in line with the difficulty of the method 459 
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development problem. This is related to the corresponding changes in the elevation and ruggedness 460 

of the CRF landscapes. As the column efficiency increases, low and narrow ‘hills’ coalesce into high 461 

and broad ‘plateaus’, corresponding to better separation conditions which are easier to find. This also 462 

reduces the risk of premature convergence of the CMA-ES, which gets slightly closer to the efficacy 463 

limit in the case of Fig. 7b (within 0.34) than it does in the case of Fig. 7a (within 0.45). 464 

Again, the differences in convergence rate as compared to the grid search can be quantified based on 465 

the 𝑎-parameter, obtained by fitting Eq. 11. These show the GA and ES can respectively save up to 466 

39% and 64% of search runs, in the case Fig. 7a, or up to 36% and 57% of search runs, in the case of 467 

Fig. 7b. Although there is but a weak influence of the column efficiency on these percentages, there is 468 

a strong influence on the number of search runs to which they correspond. The lower the column 469 

efficiency, the more difficult it is to find suitable separation conditions, such that saving a given 470 

percentage of search runs corresponds to a larger amount. 471 

In a second comparison, shown in Fig. 8, the sample complexity was varied while the column efficiency 472 

was chosen such that the chromatographic separations are neither trivial nor unfeasible. For a sample 473 

complexity of 15 (Fig. 8a) and 25 (Fig 8b), a column efficiency of respectively 10,000 and 30,000 was 474 

chosen, resulting in efficacy limits of 14.26 and 23.88. Although both cases have a similar feasibility, 475 

there is a stark difference in terms of the difficulty of method development. 476 

As before, this can be explained based on changes in the CRF landscapes. As the number of 477 

components increases, so does the number of ‘features’ (hills, plateaus, valleys, et cetera) in the CRF 478 

landscapes. Suitable separation conditions might be very well present, given an appropriate column 479 

efficiency is applied, but they are more difficult to find because of the increasing number of local 480 

optima. Logically, this also increases the risk of premature convergence of the CMA-ES, which strands 481 

slightly further from the efficacy limit in the case of Fig. 8b (within 0.59) than it does in the case of Fig. 482 

8a (within 0.26). 483 

Again quantifying the differences in convergence rate via the 𝑎-parameter of Eq. 11, the GA and ES 484 

can respectively save up to 28% and 55% of search runs, in the case Fig. 8a, or up to 43% and 65% of 485 

search runs, in the case of Fig. 8b. Not only does the sample complexity influence these percentages, 486 

it also influences the typical number of search runs that have to be performed. Thus, in more 487 

demanding applications in terms of sample complexity, evolutionary algorithms save a larger 488 

percentage of a larger number of search runs. 489 

 490 

3.2 Gradient optimisation in 2D chromatography 491 

Since method development in 2D chromatography is intrinsically more difficult than in 1D 492 

chromatography, it can be hypothesised that the evolutionary algorithms are especially advantageous 493 

in this context. Due to the increase in number of gradient parameters as well as in number of 494 

components, the number of search runs required to find suitable separation conditions is inevitably 495 

larger. To limit the computational workload, we restricted ourselves to the full-in-fraction method, in 496 

which the gradient programme is characterised by four parameters (𝜑0,1, 𝛽1, 𝜑0,2, 𝛽2). 497 
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As a reference case, the studied evolutionary algorithms are applied to chromatographic separations 498 

with a sample complexity of 150 and a column efficiency of 20,000 (in the first dimension) and 1,000 499 

(in the second dimension), focussing on their efficacy value at 100 search runs. Firstly, the 500 

performance of each of the studied designs is evaluated, using the optimised design parameter values 501 

given in Tables S1 and S2. Secondly, the design parameters of the (1+1) evolutionary algorithms are 502 

re-optimised. Finally, the optimised designs are subjected to a comparative study. 503 

 504 

3.2.1 Genetic algorithms 505 

Efficacy values for each of the GA designs are given in Table S3. Since the standard errors – originating 506 

from the variance between samples – on these efficacy values are in the order of 0.1, it would be 507 

irrelevant to discuss the differences between each of the GA designs in detail. It suffices to state that 508 

there is some similarity between Tables S1 and S3, with elitist designs outperforming probabilistic 509 

designs. Thus, there appears to be no incentive to swap the (1+1)-GA for another when moving from 510 

the case of 1D chromatography to the case of 2D chromatography. 511 

However, there does appear to be an incentive to re-optimise the design parameters, since this 512 

significantly increases the efficacy of the (1+1)-GA (cf. last row in Table S3). Because of the intrinsic 513 

vastness of the optimisation space, which is now four-dimensional instead of two-dimensional, the 514 

optimal number of initial search runs increases (from 12 to 17). Furthermore, a decrease in mutation 515 

rate (from 0.25 to 0.17) somewhat compensates the increase in genome size (i.e., number of gradient 516 

parameters), such that the overall occurrence of mutations does not become excessive. 517 

 518 

3.1.2 Non-adaptive evolution strategies 519 

The results for the ES designs, given in Table S4, are analogous to those of the GA designs. Whereas 520 

Tables S1 and S3 suggest the superiority of elitist over probabilistic designs, Tables S2 and S4 suggest 521 

the superiority of elitist over weighted designs. In both cases, there is no decisive argument to deviate 522 

from the previously established preference for (1+1) evolutionary algorithms. Analogous to the re-523 

optimisation of the (1+1)-GA, re-optimisation of the (1+1)-ES leads to an increase in initial population 524 

size (from 8 to 18) and a decrease in mutation strength (from 0.17 to 0.10).  525 

 526 

3.2.3 Covariance matrix adaptation evolution strategy 527 

Analogous to the GA and ES designs, the performance of the (1+1)-CMA-ES was first evaluated using 528 

the optimised values of the initial mutation strength (0.33) and initial population size (9) from Section 529 

3.1.3. This yields an efficacy value of 143.1 at 100 search runs, higher than the efficacy values in Tables 530 

S3 and S4. However, the risk of premature convergence is expected to turn up eventually. Surprisingly, 531 

re-optimisation of the initial mutation strength and initial population size of the (1+1)-CMA-ES did not 532 

lead to a decrease or increase of these two design parameter values. 533 

 534 

3.2.4 Comparative study 535 
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Fig. 9 shows the efficacy curves of the studied (1+1) evolutionary algorithms for the case of a sample 536 

complexity of 150. These are compared to the efficacy values achieved by 3x3x3x3 and 5x5x5x5 grid 537 

searches, that is, grid searches which evaluates all combinations, either 81 or 625, that arise from 538 

considering either three or five values for each of the four gradient parameters (𝜑0,1, 𝛽1, 𝜑0,2, 𝛽2). 539 

On the one hand, there are some similarities with the results from 1D chromatography, concerning 540 

how the evolutionary algorithms relate to one another in terms of performance. The ES outperforms 541 

the GA, converging faster by a factor of about one-and-a-half, whereas the CMA-ES converges 542 

intrinsically faster, but does so to local as well as global optima. 543 

On the other hand, there are some differences with the results from 1D chromatography, in terms of 544 

the saved number of search runs. Because of the intrinsic vastness of the optimisation space, it takes 545 

more search runs for both the grid search and evolutionary algorithms to find suitable separation 546 

conditions (note the difference in scale between Fig. 6-8 and Fig. 9-10). However, the influence of this 547 

intrinsic difficulty is much stronger for the grid search than it is for the evolutionary algorithms, such 548 

that the latter can achieve with fewer than 100 search runs what the former achieves with 625 search 549 

runs. Whereas in the case of 1D chromatography, evolutionary algorithms could speed up solving 550 

gradient optimisation problems by some moderate percentage (see Subsection 3.1.4), they could do 551 

so by a factor of six or more in the case of 2D chromatography. 552 

These results are supported by the additional efficacy curves shown in Fig. 10, generated for a sample 553 

complexity of 100 (Fig. 10a) and 200 (Fig. 10b). The results are in line with those in Subsection 3.1.4, 554 

as an increase in sample complexity – and thus the difficulty of the method development problem – 555 

leads to a decrease in convergence rate. In both cases, however, the GA surpasses the efficacy value 556 

of the 5x5x5x5 grid search with fewer than 100 search runs, whereas the ES and CMA-ES do so in fewer 557 

than 70 search runs. Apparently, the difficulty arising from the sample complexity is subordinate to 558 

the difficulty arising from the intrinsic vastness of the optimisation space. 559 

 560 

4. Conclusions 561 

After optimisation of their design parameters, evolutionary algorithms such as genetic algorithms 562 

(GA), evolution strategies (ES) and the covariance matrix adaptation evolution strategy (CMA-ES) can 563 

significantly speed up searches in the parameter spaces for method development in 1D- and 2D-LC. 564 

Having found that, at least for 𝑛 > 100, the evolution of the objective function value (CRF) as a 565 

function of the number of search runs (𝑛) follows a simple hyperbolic law in case of the GA and the 566 

ES, as well as for the plain grid search, the convergence rate parameter (𝑎) of this hyperbolic function 567 

can be used to quantify the difference in search performance between these algorithms. The presently 568 

studied CMA-ES does not follow this law, as it converges intrinsically faster, but tends to end up in 569 

local optima. This makes this search method unsuitable in the context of gradient optimisation, except 570 

for cases where only a limited number of searches (𝑛 < 50) is required or permitted, as is the case in 571 

algorithm-guided experimental searches. To solve difficult separation problems (𝑛 > 50), interpre-572 

tation of the convergence rate parameter (𝑎) in Eq. 11 shows that the evolutionary algorithms can 573 

speed up searches by a moderate percentage (ca. 40% for GA and 60% for ES) in the case of 1D-LC, 574 

whereas they can do so by a considerable factor (ca. factor of 6 for GA and factor 9 for ES) in the case 575 
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of 2D-LC. As can be expected, the advantage of the ES over the GA and especially the plain grid search 576 

grows with increasing difficulty of the separation problem. This further allows to infer that the 577 

advantage of the evolutionary algorithms will be considerably larger for search problems involving 578 

more parameters (e.g., including pH, temperature, mobile phase composition, stationary phase type, 579 

or more elaborate gradient programmes) than considered in the present study. 580 

Whereas the present study was conducted by greatly simplifying the chromatographic reality (perfect 581 

orthogonality, equal concentration of analytes in samples, Gaussian peaks) to obtain the purest 582 

possible view on the possibilities of the different search algorithms, it is obvious that a follow-up study 583 

will have to focus on the effect of these non-idealities, using the present results as a yardstick against 584 

which these effects can be measured. 585 

To further improve the algorithms, a significant gain can be expected from a more sophisticated choice 586 

for the initial search runs (which were randomised in the present study). This could be done by 587 

including prior know-how on the most promising area of the method development parameter space, 588 

either available through the analyst’s experience or through crude optimisation methods such as the 589 

predictive elution window stretching and shifting (PEWS²) method [42]. A second modification 590 

concerns the (1+1)-CMA-ES. Although it is somewhat criticised in Sections 3.1 and 3.2 because of its 591 

risk of premature convergence, it is intrinsically the fastest of the studied evolutionary algorithms. 592 

Tempering its self-adaptation method, for example by setting a lower bound to the mutation strength 593 

[43], might solve this convergence problem. In some sense, this approach can be considered as a 594 

compromise between the CMA-ES with and the ES without self-adaptation method. 595 
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Figure captions 

Fig. 1. Examples of the idealised chromatograms of simulated reversed-phase chromatographic 

separations with gradient elution. (a) 1D-LC chromatogram (𝑠 = 20, 𝑁 = 20,000 and 𝜑 = 0.30 +

0.03 ∙ (𝑡/𝑡0)). (b) 2D-LC chromatogram (𝑠 = 150, 𝑁1 = 20,000, 𝑁2 = 1,000, 𝜑1 = 0.30 + 0.03 ∙

(𝑡1/𝑡0,1) and 𝜑2 = 0.30 + 0.03 ∙ (𝑡2/𝑡0,2)). 

Fig. 2. General schematic of an evolutionary algorithm applied in the context of method development 

in liquid chromatography. 

Fig. 3. Example of a CRF landscape (𝑠 = 20 and 𝑁 = 20,000). The black dots represent the search runs 

of a 10x10 grid search. 

Fig. 4. Examples of efficacy curves (𝑠 = 20 and 𝑁 = 20,000). (a) Calculated efficacy data of the grid 

search (dots) fitted with a hyperbolic trendline (solid line). The dashed line represents the efficacy 

limit, i.e., the average of the maximally achievable CRF-values for each of the samples in the meta-

experiment. (b) Transformed efficacy data (cf. Eq. 12) of the grid search (dots), GA (green line) and ES 

(blue line), as well as the best fit for each algorithm (dashed lines), based on non-linear least squares 

regression (cf. Eq. 11). 

Fig. 5. Example of the distribution of search runs 1 to 50 (left) and 51 to 100 (right) performed during 

the optimisation of a chromatographic separation, plotted as black dots on the corresponding CRF 

landscape (𝑠 = 20 and 𝑁 = 20,000). (a-b) Applying the (1+1)-GA. (c-d) Applying the (1+1)-ES. (e-f) 

Applying the (1+1)-CMA-ES. 

Fig. 6. Efficacy curves of the four studied algorithms (𝑠 = 20 and 𝑁 = 20,000): GA (green), ES (blue), 

CMA-ES (red) and grid search (black dots). The dashed line represents the efficacy limit. 

Fig. 7. Efficacy curves of the four studied algorithms: GA (green), ES (blue), CMA-ES (red) and grid 

search (black dots). The dashed line represents the efficacy limit. (a) With 𝑠 = 20 and 𝑁 = 10,000. 

(b) With 𝑠 = 20 and 𝑁 = 30,000. 

Fig. 8. Efficacy curves of the four studied algorithms: GA (green), ES (blue), CMA-ES (red) and grid 

search (black dots). The dashed line represents the efficacy limit. (a) With 𝑠 = 15 and 𝑁 = 10,000. 

(b) With 𝑠 = 25 and 𝑁 = 30,000. 

Fig. 9. Efficacy curves of the four studied algorithms (𝑠 = 150, 𝑁1 = 20,000 and 𝑁2 = 1,000): GA 

(green), ES (blue), CMA-ES (red) and grid search (crosses). The dashed line represents the efficacy limit. 

Fig. 10. Efficacy curves of the four studied algorithms: GA (green), ES (blue), CMA-ES (red) and grid 

search (crosses). The dashed line represents the efficacy limit. (a) With 𝑠 = 100, 𝑁1 = 20,000 and 

𝑁2 = 1,000. (b) With 𝑠 = 200, 𝑁1 = 20,000 and 𝑁2 = 1,000. 
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Table 1. Parameters influencing the difficulty of method development: sample complexity and column 

efficiency. 

 1D chromatography 2D chromatography 

𝑠 15 – 20 – 25 100 – 150 – 200 

𝑁 10,000 - 20,000 - 30,000 20,000 x 1,000 
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Table S1. Optimised design parameters of the GA designs, and their efficacy value at 50 search runs 

(𝑠 = 20 and 𝑁 = 20,000). As a reference, a 7x7 grid search yields an efficacy value of 18.01 and the 

efficacy limit is 19.16. 

design mutation rate generation size efficacy 

comma-elitist 0.20 16 18.14 

comma-probabilistic 0.25 5 17.95 

plus-elitist 0.25 6 18.14 

plus-probabilistic 0.25 1 18.10 

(1+1)-GA 0.25 12a 18.19 

a For the (1+1)-GA, the initial population size was optimised instead of the generation size. 

 

 

Table S2. Optimised design parameters of the ES designs, and their efficacy value at 50 search runs 

(𝑠 = 20 and 𝑁 = 20,000). As a reference, a 7x7 grid search yields an efficacy value of 18.01 and the 

efficacy limit is 19.16. 

design mutation strength generation size efficacy 

comma-elitist 0.14 6 18.42 

comma-weighted 0.14 5 18.36 

plus-elitist 0.17 5 18.37 

plus-weighted 0.20 2 18.37 

(1+1)-ES 0.17 8a 18.40 

a For the (1+1)-ES, the initial population size was optimised instead of the generation size. 
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Table S3. Efficacy values of the GA designs at 100 search runs (𝑠 = 150,  𝑁1 = 20,000 and 𝑁2 =

1,000). As a reference, a 3x3x3x3 grid search yields an efficacy value of 137.1 and the efficacy limit is 

145.8. 

design efficacy 

comma-elitist 140.2 

comma-probabilistic 137.1 

plus-elitist 140.0 

plus-probabilistic 139.7 

(1+1)-GA 140.0 

(1+1)-GAa 141.1 

a With re-optimised design parameters: a mutation rate of 0.17 instead of 0.25 and an initial 

population size of 17 instead of 12. 

 

 

Table S4. Efficacy values of the ES designs at 100 search runs (𝑠 = 150,  𝑁1 = 20,000 and 𝑁2 =

1,000). As a reference, a 3x3x3x3 grid search yields an efficacy value of 137.1 and the efficacy limit is 

145.8. 

design Efficacy 

comma-elitist 141.7 

comma-weighted 141.0 

plus-elitist 141.6 

plus-weighted 141.0 

(1+1)-ES 141.7 

(1+1)-ESa 142.5 

a With re-optimised design parameters: a mutation strength of 0.10 instead of 0.17 and an initial 

population size of 18 instead of 8. 

 

 


