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Abstract

We model a typical Bell-test experimental situation by considering that Alice and Bob perform
incompatible measurements in a sequential way, with mixed orders of execution. After emphasizing
that order effects will generally produce a violation of the marginal laws, we derive an upper limit for
the observed correlations. More precisely, when Alice’s and Bob’s measurements are compatible, the
marginal laws are obeyed and Tsirelson’s bound limits the quantum correlations in the Bell-CHSH
inequality to 2

√
2. On the other hand, when Alice and Bob perform incompatible mixed sequential

measurements, the marginal laws are typically violated and the upper limit for the correlations is
pushed up to 2

√
3. Considering that significant violations of the marginal laws (also called no-

signaling conditions) have been observed in the data of numerous Bell-test experiments, the present
analysis provides a possible mechanism for their appearance, when the protocols are such that Alice’s
and Bob’s measurements can be assumed to be performed in a mixed sequential way. We however
emphasize that this does not imply that a communication with superluminal effective speed would
be possible.

1 Introduction

In a typical two-channel Bell-test experiment, a bipartite entity in a pre-measurement state |ψ〉 ∈ H ≃
H1⊗H2 is submitted to four different joint measurements, described by the tensor product observables:

A⊗B, A′ ⊗B, A⊗B′, A′ ⊗B′, (1)

where A and A′ are self-adjoint operators acting on the state space H1 of the first sub-entity (say, that
measured by Alice’s apparatuses), whereas B and B′ are self-adjoint operators acting on the state space
H2 of the second sub-entity (say, that measured by Bob’s apparatuses). The paradigmatic situation is
when the entity in question is formed by two spin-1

2
sub-entities, hence H1 = H2 = C2, and the four

one-entity operators A, A′, B and B′ are spin observables corresponding to different spatial directions
(i.e., different orientations of the Stern-Gerlach apparatuses) and the pre-measurement spin state is for
instance the rotationally invariant singlet state:

|ψ〉 = 1√
2
(|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉). (2)
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The presence of entanglement can be tested via the violation of the Bell-CHSH inequality [1]. For
this, one considers that the four one-entity operators A, A′, B, B′ are normalized in such a way that
their eigenvalues are ±1 (this is the case for Pauli’s matrices). Hence, one can write the spectral
decompositions (with obvious notation):

A = PA+
− PA−

= I− 2PA−
, A′ = PA′

+
− PA′

−

= I− 2PA′

−

B = PB+
− PB−

= I− 2PB−
, B′ = PB′

+
− PB′

−

= I− 2PB′

−

(3)

Then, the Bell-CHSH inequality affirms that if only classical correlations are observable by the coinci-
dence measurements, then the absolute value of the average 〈ψ|C|ψ〉, of the observable:

C = A⊗B −A⊗B′ +A′ ⊗B′ +A′ ⊗B, (4)

or of similar observables obtained by interchanging the roles of A and A′ and/or B and B′, will
be less or equal than 2, i.e., |〈ψ|C|ψ〉| ≤ 2. On the other hand, if the inequality is violated, then
the observed correlations are said to be non-classical, or quantum. To use Aerts’ terminology [3],
correlations violating the Bell-CHSH inequality are not ‘of the first kind’, i.e, are not correlations of
the kind that are already present before the measurements are executed (like in the famous example of
Bertlmann’s socks [2]), but ‘correlations of the second kind’, which are literally created by and during
the measurements.

Now, because of the tensor product structure, we can observe that:

A⊗B = (A⊗ I)(I ⊗B) = (I⊗B)(A⊗ I). (5)

This means that A ⊗ B is the product of two compatible observables, and the same is obviously true
also for the other observables forming the operator C. Consequently, a measurement of A ⊗ B can
be equivalently interpreted as a joint (pure coincidence) measurement, or as a sequential measurement
where, say, A⊗I is executed first and is then followed by the execution of I⊗B, or the other way around.
Indeed, in view of the commutation relation (5), there cannot be order effects and the fact that Alice’s
and Bob’s measurements are performed in sequence, in whatever order, or in perfect simultaneity, the
obtained statistics of outcomes will not be affected by that (see [13] for a critical discussion of the
quantum postulate of simultaneous measurement of compatible observables).

Another consequence of the tensor product structure of the four observables (1), is that the outcome
probabilities of their measurements will automatically obey the ‘marginal laws’ (also called ‘marginal
selectivity’ or ‘no-signaling conditions’), stating that the probabilities obtained by Alice do not depend
on the measurements performed by Bob, and vice versa. More precisely, denoting Pψ(Ai, Bj) = 〈ψ|PAi

⊗
PBj

|ψ〉 the probability of the outcome (Ai, Bj) in measurement A⊗B, for the pre-measurement state
|ψ〉, and denoting Pψ(Ai, B′

j) = 〈ψ|PAi
⊗PB′

j
|ψ〉 the probability of the outcome (Ai, B

′
j) in measurement

A⊗B′, i, j = ±, we have:

∑

j=±

Pψ(Ai, Bj) = 〈ψ|PAi
⊗ (PB+

+ PB−
)|ψ〉 = 〈ψ|PAi

⊗ I|ψ〉, (6)

∑

j=±

Pψ(Ai, B′
j) = 〈ψ|PAi

⊗ (PB′

+
+ PB′

−

)|ψ〉 = 〈ψ|PAi
⊗ I|ψ〉, (7)

hence (6) is equal to (7). Reasoning in the same way with the other joint probabilities, we thus obtain
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the four equalities:
∑

j=±

Pψ(Ai, Bj) =
∑

j=±

Pψ(Ai, B′
j),

∑

j=±

Pψ(A′
i, Bj) =

∑

j=±

Pψ(A′
i, B

′
j),

∑

i=±

Pψ(Ai, Bj) =
∑

i=±

Pψ(A′
i, Bj),

∑

i=±

Pψ(Ai, B′
j) =

∑

i=±

Pψ(A′
i, B

′
j), (8)

which constitute the marginal laws, or no-signaling conditions, automatically obeyed by the four product
observables (1). However, tests conducted to date in different laboratories highlight significant violations
of these conditions; see for instance [4, 5, 6, 7, 8, 9]. The origins of these violations is still the object
of debate: they might just be experimental artefacts, or instead they might reveal that the observed
processes of creation of correlations cannot be properly modeled by assuming the measurements to be
of the product kind. Note however that despite their name, a violation of the no-signaling conditions
does not necessarily imply that relativity would be violated, as we will explain in the final section
of the present article, the purpose of which is twofold. To begin with, in Section 2, we show that
incompatible mixed sequential measurements can possibly explain the observed violations of the no-
signaling conditions. Then, in Section 3, we show that for such kind of measurements Tsirelson’s
bound does not hold anymore and has to be replaced by a different upper limit, which is however not
the maximum algebraic limit. Finally, in Section 4, we discuss our findings and add some final remarks.

2 Mixed sequential measurements

We consider the situation where Alice’s (respectively, Bob) sub-measurements are not of the product
form A⊗I and A′⊗I (respectively, I⊗B and I⊗B′). This means that Alice and Bob measurements are
not assumed to be necessarily compatible, so that the order of their execution will have an effect on the
statistics of outcomes. In other words, we drop the assumption that Alice’s and Bob’s actions, performed
at arbitrarily large spatial distances from each other, would only have local effects, and assume instead
that they would be able to operate at the level of the overall composite entity, because of its non-spatial
nature (hence without their overall actions to be understood as “spooky” – superluminal – influences
at a distance, propagating through space).

Of course, also when measurements are of the product form, Alice’s and Bob’s actions are strictu

sensu affecting both sub-entities, because of the presence of entanglement described at the level of the
state (2). Here, however, we assume that the change of state produced by Alice’s and Bob’s individual
measurements is such that it cannot be modeled by using the same tensor product structure for all
four joint measurements (1), and of course that Alice’s and Bob’s outcomes are actualized in a genuine
(uniformly mixed) sequential way.1

So, not only we have [A,A′] 6= 0 and [B,B′] 6= 0, as is usually assumed in Bell-test experiments,
but also that [A,B] 6= 0, [A,B′] 6= 0, [A′, B] 6= 0 and [A′, B′] 6= 0, i.e., Alice’s measurements are not
necessarily compatible with Bob’s measurements. The spectral decompositions (3) is still valid, with
the difference that the projections belonging to Alice’s and Bob’s spectral families will not anymore
mutually commute.

We start by considering the probability Pψ(Ai→Bj) of obtaining outcome (Ai, Bj), i, j = ±, when
performing first measurement A, then immediately after measurement B. It is given by:

Pψ(Ai→Bj) = 〈ψ|PAi
PBj

PAi
|ψ〉. (9)

1Another assumption would however be possible: that Alice’s and Bob’s measurements would be part of bigger joint
measurements that cannot be decomposed into sequential sub-measurements [10, 11, 12].
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Indeed, according to the Born rule, the probability of obtaining Ai, following Alice’s measurement A, is
Pψ(Ai) = 〈ψ|PAi

|ψ〉. Also, according to the projection postulate, the measurement will then produce
the state transition:

|ψ〉 → |ψAi
〉 = PAi

|ψ〉
〈ψ|PAi

|ψ〉 1

2

. (10)

So, following the A-measurement (assumed here to be non-destructive), the state will be |ψAi
〉, hence,

using once more the Born rule, the probability of obtaining Bj , when measurement B is performed
immediately after measurement A, conditional to the fact that the outcome Ai was obtained, is:

Pψ(Bj |Ai) = 〈ψAi
|PBj

|ψAi
〉 =

〈ψ|PAi
PBj

PAi
|ψ〉

〈ψ|PAi
|ψ〉 . (11)

From (11), the probabilistic interpretation of (9) follows, as is clear that we have:

Pψ(Ai→Bj) = Pψ(Bj |Ai)Pψ(Ai). (12)

Reasoning in the same way for the sequence where measurement B is performed before measurement
A, we also find:

Pψ(Bj→Ai) = 〈ψ|PBj
PAi

PBj
|ψ〉, (13)

and assuming that the exact order of the sequence, at each run of the experiment, cannot be controlled
by Alice and Bob, we can define the joint probability Pψ(Ai, Bj), of obtaining outcome (Ai, Bj), by
considering the uniform average:

Pψ(Ai, Bj) =
1

2
[Pψ(Ai→Bj) + Pψ(Bj→Ai)]

=
1

2
〈ψ|(PAi

PBj
PAi

+ PBj
PAi

PBj
)|ψ〉. (14)

Summing over j, we thus find:

∑

j=±

Pψ(Ai, Bj) =
1

2
Pψ(Ai) +

1

2

∑

j=±

Pψ(Bj→Ai), (15)

so that the difference of the marginal probabilities is:

∑

j=±

Pψ(Ai, Bj)−
∑

j=±

Pψ(Ai, B′
j) =

1

2

∑

j=±

〈ψ|PBj
PAi

PBj
|ψ〉 − 1

2

∑

j=±

〈ψ|PB′

j
PAi

PB′

j
|ψ〉 (16)

and similar expressions can be derived for the other combinations of Alice’s and Bob’s measurements.
It is clear from the above that there can be a violation of the marginal laws (i.e., the r.h.s. of (16) will
be in general different from zero) if Alice’s measurements are not compatible with Bob’s measurements.

3 An upper bound for the CHSH inequality

Having observed that uniformly mixed sequential measurements, if incompatible, allows for a violation
of the marginal laws (the no-signaling conditions), we want now to derive a bound corresponding to
the maximal violation of the Bell-CHSH inequality in this case. Such bound will play the same role
as Tiserlon’s bound, which only applies in the situation where Alice’s and Bob’s measurements are
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compatible, which is always the case if their joint measurements are described by the tensor products
observables (1). Here we relax this requirement, considering the hypothesis that what happens in the
laboratory can be conveniently described in terms of a uniform mixture of sequential incompatible
measurements performed in different orders. Our starting point is the CHSH quantity:

CHSHψ = Eψ(A,B)− Eψ(A,B
′) + Eψ(A

′, B′) + Eψ(A
′, B), (17)

where we have defined the four averages (also called ‘correlation functions’):

Eψ(A,B) =
∑

i,j=±

ij Pψ(Ai, Bj), Eψ(A,B
′) =

∑

i,j=±

ij Pψ(Ai, B′
j),

Eψ(A
′, B) =

∑

i,j=±

ij Pψ(A′
i, Bj), Eψ(A

′, B′) =
∑

i,j=±

ij Pψ(A′
i, B

′
j). (18)

We explicitly calculate only Eψ(A,B), the calculation for the other averages in (17) being similar. Since
we are here considering mixed sequential measurements, we have to use the probabilities (14). This
gives:

Eψ(A,B) = Pψ(A+, B+)− Pψ(A+, B−) + Pψ(A−, B−)− Pψ(A−, B+) (19)

=
1

2
〈ψ|(PA+

PB+
PA+

+ PB+
PA+

PB+
)|ψ〉 − 1

2
〈ψ|(PA+

PB−
PA+

+ PB−
PA+

PB−
)|ψ〉

+
1

2
〈ψ|(PA−

PB−
PA−

+ PB−
PA−

PB−
)|ψ〉 − 1

2
〈ψ|(PA−

PB+
PA−

+ PB+
PA−

PB+
)|ψ〉

=
1

2
〈ψ|(PA+

BPA+
+ PB+

APB+
− PB−

APB−
− PA−

BPA−
)|ψ〉,

where for the last equality we have used (3). Further replacing A and B by I − 2PA−
and I − 2PB−

,
respectively, we find for the above term in brackets:

( · · · ) = PA+
(I− 2PB−

)PA+
+ PB+

(I− 2PA−
)PB+

− PB−
(I− 2PA−

)PB−
− PA−

(I− 2PB−
)PA−

= PA+
− 2PA+

PB−
PA+

+ PB+
− 2PB+

PA−
PB+

− PB−
+ 2PB−

PA−
PB−

− PA−
+ 2PA−

PB−
PA−

= (A+B) + 2PA−
PB−

PA−
− 2PA+

PB−
PA+

+ 2PB−
PA−

PB−
− 2PB+

PA−
PB+

. (20)

We can also observe that:

PA−
PB−

PA−
− PA+

PB−
PA+

= (I− PA+
)PB−

(I− PA+
)− PA+

PB−
PA+

= PB−
− PA+

PB−
− PB−

PA+
= (I− PA+

)PB−
− PB−

PA+
= PA−

PB−
− PB−

PA+
. (21)

Similarly, we have:

PB−
PA−

PB−
− PB+

PA−
PB+

= (I− PB+
)PA−

(I− PB+
)− PB+

PA−
PB+

= PA−
− PB+

PA−
− PA−

PB+
= (I− PB+

)PA−
− PA−

PB+
= PB−

PA−
− PA−

PB+
. (22)

Inserting (21) and (22) into (20), gives:

( · · · ) = A+B + 2PA−
PB−

− 2PB−
PA+

+ 2PB−
PA−

− 2PA−
PB+

= A+B − 2PB−
A− 2PA−

B = (I− 2PB−
)A+ (I− 2PA−

)B

= BA+AB. (23)
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We thus find:
Eψ(A,B) = 〈ψ|ÂB|ψ〉, (24)

where we have defined the symmetrized self-adjoint operator

ÂB ≡ 1

2
[AB + (AB)†] =

1

2
(AB +BA), (25)

i.e., we find that the correlation function relative to the uniform mixing of the A and B measurements,
performed in a sequential way, is given by the quantum average of the operator (25), which of course
reduces to the standard product A⊗ B in the special case where Alice and Bob observables commute
and are of the form A⊗ I and I⊗B, respectively. Similar expressions can be obtained in the same way
for the other mixed sequential measurements, so that (17) can be written as:

CHSHψ = 〈ψ|Ĉ |ψ〉, Ĉ ≡ 1

2
(C + C†), Ĉ† = Ĉ, (26)

C = AB −AB′ +A′B′ +A′B, Ĉ = ÂB − ÂB′ + Â′B′ + Â′B.

To obtain a bound on CHSHψ, defined as per above, it is instructive to first study the operator C.
Following Khalfin and Tsirelson’s algebraic method [14], one proceeds by analyzing the different terms
appearing when taking the square of C. One finds:

C2 = C1 + C2 +∆1 +∆2 +∆3 +∆4, (27)

where we have defined:

C1 = (AB)2 + (AB′)2 + (A′B′)2 + (A′B)2,

C2 = ABA′B′ −AB′A′B +A′B′AB −A′BAB′,

∆1 = ABA′B −AB′A′B′ = A[B,A′]B −A[B′, A′]B′,

∆2 = A′B′A′B −AB′AB = A′[B′, A′]B −A[B′, A]B,

∆3 = A′BAB −A′B′AB′ = A′[B,A]B −A′[B′, A]B′,

∆4 = A′BA′B′ −ABAB′ = A′[B,A′]B′ −A[B,A]B′. (28)

We can observe that if Alice’s and Bob’s measurements are compatible, then the above commutators
are zero and ∆1 = ∆2 = ∆3 = ∆4 = 0. And since A2 = B2 = A′2 + B′2 = I (all these operators have
±1 eigenvalues), we also have C1 = 4I. If Alice’s observables A and A′ are in addition also mutually
compatible, and same for Bob’s observables B and B′, then C2 = 0, so that in this case C2 = 4I, from
which the classical bound of the CHSH inequality can be deduced. Let us do all the steps. By definition
of the norm, we have:

‖C‖2 = sup
‖φ‖=1

‖Cφ‖2 = sup
‖φ‖=1

〈Cφ|Cφ〉 = sup
‖φ‖=1

〈φ|C†C|φ〉 ≤ ‖C†C‖. (29)

If C† = C, which is the case here under our assumptions, one finds that ‖C‖2 ≤ ‖C2‖. But since we also
have ‖C2‖ ≤ ‖C‖2, we can conclude that ‖C2‖ = ‖C‖2. Finally, since 〈ψ|C|ψ〉2 ≤ ‖C‖2 = ‖C2‖ = 4,
we obtain that −2 ≤ 〈ψ|C|ψ〉 ≤ 2, which is the CHSH inequality. In the quantum case, when the
observables are of the tensor product form, Alice’s and Bob’s measurements are still compatible, but
this time [A,A′] 6= 0 and [B,B′] 6= 0, hence C2 6= 0. The best one can then do is to observe that
‖C2‖ ≤ 4‖A‖‖A′‖‖B‖‖B′‖ = 4, so that ‖C2‖ = ‖4I + C2‖ ≤ 8, hence this time the bound is: −

√
8 ≤

〈ψ|C|ψ〉 ≤
√
8, which is Tsirelson’s bound for the quantum correlations.
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The situation we want now to analyze is such that all observables are in principle incompatible, but
measurements are performed in a uniformly mixed way. Instead of C, we thus have to use the more

general operator: Ĉ = ÂB − ÂB′ + Â′B′ + Â′B. We have:

(Ĉ)2 = G1 +G2 +D1 +D2 +D3 +D4,

G1 = (ÂB)2 + (ÂB′)2 + (Â′B′)2 + (Â′B)2,

G2 = ÂBÂ′B′ − ÂB′Â′B + Â′B′ÂB − Â′BÂB′,

D1 = ÂBÂ′B − ÂB′Â′B′,

D2 = Â′B′Â′B − ÂB′ÂB,

D3 = Â′BÂB − Â′B′ÂB′,

D4 = Â′BÂ′B′ − ÂBÂB′. (30)

We observe that ‖ÂB‖ = 1

2
‖AB +BA‖ ≤ 1

2
(‖AB‖ + ‖BA‖) ≤ 1, so that ‖(ÂB)2‖ ≤ ‖ÂB‖2 ≤ 1, and

‖G1‖ ≤ 4. Similarly, we have ‖G2‖ ≤ 4. Expanding the D1 term, we find:

D1 = ÂBÂ′B − ÂB′Â′B′

=
1

4
[(AB +BA)(A′B +BA′)− (AB′ +B′A)(A′B′ +B′A′)]

=
1

4
[(ABA′B +BABA′ +AA′ +BAA′B)− (AB′A′B′ +AA′ +B′AA′B′ +B′AB′A′)]

=
1

4
[(ABA′B +BABA′ +BAA′B)− (AB′A′B′ +B′AA′B′ +B′AB′A′)]. (31)

This means that: ‖D1‖ ≤ 6

4
. Similar calculations show that

D2 =
1

4
[(A′B′A′B +A′B′BA′ +B′A′BA′)− (AB′AB +AB′BA+B′ABA)],

D3 =
1

4
[(A′BAB +BA′AB +BA′BA)− (A′B′AB′ +B′A′AB′ +B′A′B′A)],

D4 =
1

4
[(A′BA′B′ +A′BB′A′ +BA′B′A′)− (ABAB′ +ABB′A+BAB′A)]. (32)

Hence, we also have ‖D2‖, ‖D3‖, ‖D4‖ ≤ 6

4
. Combining the above contributions, we thus conclude that

‖(Ĉ)2‖ ≤ 8 + 46

4
= 12. Therefore, considering that Ĉ is self-adjoint, we also have (reasoning as above)

‖Ĉ‖2 = ‖(Ĉ)2‖, from which we deduce the bound:

−2
√
3 ≤ 〈ψ|Ĉ|ψ〉 ≤ 2

√
3. (33)

The above constitutes the quantum upper limit for the correlations that can be generated by uni-
formly mixing incompatible sequential measurements. Note that 2

√
3 ≈ 3.46 < 4, with 4 being the

algebraic maximum value attainable by the CHSH quantity (17). Hence, mixed sequential measure-
ments do not fill the entire gap between 2 and 4, but are limited by the value 2

√
3, which generalizes

Tsirelson’s bound of 2
√
2, the latter being only valid when Alice’s and Bob’s measurements are all

compatible and therefore the marginal laws are necessarily obeyed.
Note that in the limit situation where A′, B′ → I, i.e, where the primed measurements are trivial

measurements, then Ĉ → 1

2
(AB + BA) + I + B − A, and it is again a matter of some simple algebra

to check that ‖(Ĉ)2‖ ≤ 8, i.e., Tsirelson’s bound holds in this limit situation. Note also that in the
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limit where, say, A′ → A, i.e., where Alice always perform the same measurement, one can easily check
that: ‖(Ĉ)2‖ ≤ 4, i.e., the classical bound holds. On the other hand, it remains an open question that
of determining if the 2

√
3 bound is tight for the general situation, or if it can be further optimized.

4 Discussion

We observed that a uniform mixing of sequential measurements performed by Alice and Bob corresponds
to considering the four effective observables:

ÂB, Â′B, ÂB′, Â′B′, (34)

which replace the usual product observables (1). In other words, by uniformly mixing two sequential
measurement, say the A and B′ measurements, everything happens as if Alice and Bob would jointly
perform a single whole measurement, executed “at once,” corresponding to an observable of the form
ÂB′ = 1

2
(AB′ + B′A). It is the specific symmetrized form of this and the others effective observables

that explains why the violation of the CHSH inequality can be bounded by the 2
√
3 limit value.

Clearly, for measurements that would be jointly performed by Alice and Bob, not in a consecutive
way, described by generic non-product observables, the CHSH inequality can in principle be violated
up to its maximum algebraic value. In fact, our analysis precisely tells us that if the violation is
beyond 2

√
3, and measurements can be conveniently modeled within the Hilbertian formalism, then

they certainly are not describable as mixed sequential measurements. An example of this are the
measurements described in Aerts’ connected vessels of water model [15], a macroscopic entity on which
measurements can be defined that are able to maximally violate the Bell-CHSH inequality, i.e., with
value 4, modelizable in Hilbert space by introducing general non-product observables [10, 11, 12], not
of the symmetrized form (34).

Note however that if we relax the hypothesis that measurements can be modeled within the standard
formalism of quantum mechanics, i.e., by means of bona fide self-adjoint operators, then we can also
have situations of uniformly mixed sequential measurements that can violate the CHSH inequality
beyond the 2

√
3 limit, an example being the ‘generalized rigid rod model’ analyzed in [16].

We can observe that if experiments are performed in such a way that Alice’s and Bob’s detection
instruments are placed at different distances from the source of the bipartite entity, they will not
click in coincidence but with a given time-delay, proportional to the difference in flight times. In
this way, by considering a sufficiently large time-delay, one can make sure that the measurements will
be genuinely sequential. By comparing the statistics of outcomes obtained by mixing the orders of
sequential detection, with that obtained when Alice’s and Bob’s apparatuses are at exactly the same
distance from the source (hence their outcomes can be actualized within a very narrow coincidence time
interval), one can in principle check if these two descriptions – mixed sequential and simultaneous –
are equivalent or not (see [17] for an experiment where the detectors move, so that in a given reference
frame they do not meet the measured entity at the same moment). In particular, it would be also
interesting to see if there can be differences in the way the marginal laws are possibly violated in these
two distinct experimental situations.

As regards the violations of the or marginal laws, or no-signaling conditions, as we said they have
been observed in several experiments performed to test various Bell-type inequalities [4, 5, 6, 7, 8, 9],
and their origin remains to be clarified. If in the end it will be shown that they are only experimental
errors, they would of course not constitute a violation of the Einsteinian no-signaling principle. The
other possibility would be that in real experiments some additional non-local processes could be at
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play that have not yet been identified, which considering the model we proposed in this article could
be explained as order effects produced by mixed sequential measurements (see also [12], where the
violation of the marginal laws is explained instead in terms of joint measurements that are genuinely
coincident). But even in this case, relativistic causality would not be necessarily at stake. Indeed, what
is usually not taken into consideration in the standard analysis of the situation (see for instance [18])
is that for superluminal signaling to be possible in practice, it is not sufficient to have the collapse
of entangled states to be instantaneous and independent of the distance separating Alice’s and Bob’s
locations, as this is not the only process involved in a communication. To define the effective time of
the latter, one needs to consider how much time is needed, say for Alice, to initiate the emission of
the required entangled state (in fact, of an entire statistical ensemble of them), by sending a signal
to the source, then the additional time needed for the emitted entangled entity to reach Alice’s and
Bob’s laboratories. When considering all these processes, Alice’s effective messaging speed will probably
slow down in such a way that signaling faster than light will be excluded. Last but not least, there
is also the issue that in quantum measurements one cannot control the actualization in time of an
outcome. Certainly, this would require a more specific analysis, which is however beyond the scope of
the present paper (see however the rather detailed related discussion presented in [12]). All we wanted
to emphasize here is that a possible violation of the no-signaling conditions does not automatically lead
to the possibility of a supraluminal communication: each experimental situation needs to be examined
in a very careful way, so as to determine how much time actually elapses between the beginning and
the end of a communication, and how these start and end times are to be defined at a fundamental
level.

A question we have not addressed in this paper is what kind of “new” physics could be behind
the possibility for Alice’s measurements to affect the marginal probabilities calculated by Bob in his
measurements, and vice versa (assuming here that such possibility would not be a mere experimental
artefact), i.e., the possibility that despite an arbitrarily large spatial separation of their apparatuses,
Alice’s and Bob’s local (in space) measurements would remain mutually incompatible. We don’t have
a simple answer to this question. Let us consider however the following cognitive metaphor. Assume
that you ask a group of persons if they believe Bill Clinton is honest and trustworthy, and immediately
following such question you ask these same persons if they think Al Gore is honest and trustworthy
(see for instance [19]). From all their answers, you can calculate the probabilities for the four possible
outcomes. However, if you ask these two same questions in reverse order, the probabilities of the
outcomes will be different, i.e., order effects will manifest. So, even though one question is only specific
to the ‘Al Gore conceptual entity’, and the other question to the ‘Clinton conceptual entity’, in the mind
of the respondents the process of answering the first question produces an instantaneous change in the
context of the second one, hence affecting the way it will be subsequently processed. So, interpreting
these two questions as the two measurements A and B that Alice and Bob perform on the two distinct
conceptual sub-entities forming the “Bill Clinton-Al Gore” bipartite system, we have here a situation
of incompatible measurements performed in a sequence, on a bipartite entity, which can mimic what
might possibly happen (mutatis mutandis) with physical entities, when the no-signaling conditions
are violated (see [20] for a speculative view where quantum entities are assumed to share with human
concepts a similar conceptual nature, which would explain among other things their non-local behavior).

Based on our classical prejudices, we would tend to dismiss the existence of connections between
measuring apparatuses when they are clearly spatially separated. However, with the discovery of
entanglement, we certainly had to update these prejudices and accept that apparatuses that are spatially
separated are not necessarily for this also experimentally separated. In fact, the observed violations of
the Bell-CHSH inequality were precisely about showing that some kind of non-spatial connection must
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exist that is responsible for the observed correlations that measurements can create [21]. The mechanism
at the origin of these correlations is usually described, in the quantum formalism, as something to be
associated with the state of the measured bipartite system, and not as something to be included in the
description of the observables. However, it is also known that the quantum formalism allows in principle
for the entanglement resource to be totally or partially shifted from the state to the observables [22], so
one cannot exclude that the non-spatial phenomenon of entanglement could jointly manifest, in certain
situations, not only in the states, but also in the accessible interactions, i.e., the measurements, which
might be operated locally in space, but not for this would be local for what concerns their reach, i.e.,
their ability to act at the level of the overall bipartite entity.

This was recently suggested by Aerts and Sozzo in the entanglement scheme they proposed for
modeling the dynamics of concepts and their combinations [10, 11] (see also the more recent analysis
in [12]), showing that the data obtained in psychological measurements, systematically violating the
marginal laws, require the introduction of entanglement not only at the level of the states, but also of
the joint measurements. In other words, similarly to the effective observables (34), which we introduced
by assuming that Alice and Bob perform incompatible measurements, they also consider the necessity
of introducing non-product (entangled) measurements, to properly describe the different joint actions
that are performed by Alice and Bob. However, different from what we did in this paper, they consider
experimental situations where Alice and Bob perform pure joint (simultaneous) measurements, operated
“at once” by the individual minds of the participants. For these experimental situations, which in a
sense are more general than those considered here, the magnitude of the correlations in the Bell-CHSH
inequality can only be limited by the maximum algebraic bound.

To conclude, another question we have not addressed in this paper is how to possibly fundamentally
define non-commuting observables replacing the usual product observables in specific experimental
situations, when the no-signaling conditions are apparently violated. To answer this question would
require a discussion of the mechanisms that could be at the origin of the deviations from the standard
situation of compatibility, i.e., of commutability of Alice’s and Bob’s measurements, when separated by
large spatial distances. Our much more modest intent in this paper was to show that the assumption
of non-commutability, combined with that of a uniform mixing of sequential measurements (assuming
that the experimental situation does actually involve genuine sequential measurements), allows for a
modeling of probabilistic data exhibiting some violation of the no-signaling conditions, and also comes
with an upper limit for the obtainable correlations. Our analysis can certainly be of interest in the
quantum modeling of question order effects in psychological experiments [23, 24]. As for knowing if it
will be relevant also for the modeling of physics’ experiments, in the study of quantum entanglement,
this we will only know to the extent that more experiments will be conducted, and more reliable data
will become available.
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