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Small Weight Codewords of Projective Geometric Codes

Sam Adriaensen
Vrije Universiteit Brussel

Lins Denaux
Ghent University

Abstract

We investigate small weight codewords of the p-ary linear code Cj,k(n, q) generated by
the incidence matrix of k-spaces and j-spaces of PG(n, q) and its dual, with q a prime
power and 0 6 j < k < n. Firstly, we prove that all codewords of Cj,k(n, q) up to weight(

3−O
(

1
q

)) [
k+1
j+1

]
q

are linear combinations of at most two k-spaces (i.e. two rows of the

incidence matrix). As for the dual code Cj,k(n, q)⊥, we manage to reduce both problems of
determining its minimum weight (1) and characterising its minimum weight codewords (2)
to the case C0,1(n, q)⊥. This implies the solution to both problem (1) and (2) if q is prime
and the solution to problem (1) if q is even.

Keywords: Linear codes, Projective spaces, Small weight codewords.
Mathematics Subject Classification: 05B25, 94B05.

1 Introduction

To keep things clear and compact, we will postpone introducing the necessary preliminaries; see
Section 3 for an overview of all notations and known results used throughout this article.
A main research topic in coding theory is finding the minimum weight of certain linear codes
and characterising its minimum weight codewords (or, more generally, codewords of a relatively
small weight). This article investigates small weight codewords of Cj,k(n, q) and Cj,k(n, q)⊥,
which are the p-ary linear codes generated by the incidence matrix of k-spaces and j-spaces of
PG(n, q) and its dual, respectively.

Some important characterisations are already known. Szőnyi and Weiner [SW18] characterised
all codewords of C0,1(2, q) up to a certain weight if q is sufficiently large. If q = ph, with p prime,
then they characterised codewords up to weight approximately q

√
q in case h > 2, up to weight

approximately 1
2q
√
q if h = 2, and up to weight 4q − 22 if h = 1.

Using these results, all codewords of C0,k(k + 1, q) up to weight (3−O(1q ))qk have been charac-
terised as linear combinations of at most two k-spaces (Result 3.3). In the general case, only the
minimum weight codewords of Cj,k(n, q) have been characterised as scalar multiples the k-spaces
(Result 3.1).

Less is known about the dual code Cj,k(n, q)⊥. In general, the minimum weight of Cj,k(n, q)⊥ is
not known. However, this minimum weight is at most 2qn−k; if q is prime, the minimum weight
of Cj,j+1(n, q)

⊥ is equal to this value and its minimum weight codewords are characterised as
being scalar multiples of so-called standard words (Definition 3.5, Result 3.6). If q is even, the
minimum weight of C0,k(n, q)⊥ equals (q + 2)qn−k−1 (Result 3.7).

A further overview of results on these codes can be found in [LSVdV10] and [ADSW20].
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2 Outline and main results

As mentioned before, all preliminaries needed to guide you through this article can be found in
Section 3.
In Section 4, we study the relation between Cj,k(n, q), Cj,n−k+j(n, q)⊥, their intersection (i.e.
the hull Hj,k(n, q) of Cj,k(n, q)) and their span. We bundle several properties that were already
known for specific values of j, k, n and q, and present them in a general context.
In Section 5 and Section 6, we investigate the small weight codewords of C0,k(n, q) and Cj,k(n, q),
respectively. In Section 5, we use the known results concerning small weight codewords of
C0,k(k+ 1, q) to characterise all codewords of C0,k(n, q) up to weight W (k, q). The exact value of
the latter bound (as well as the meaning of the sets Qi) can be found in Definition 3.2, but for
the sake of simplicity, one can view this bound to be roughly equal to (3 − 3/q)qk if q is large
enough.

Theorem 5.9. If c is a codeword of Ck(n, q), with wt(c) 6W (k, q), then c is a linear combina-
tion of at most two k-spaces. Moreover, if q ∈ Q3 ∪Q4 ∪Q5, then this bound is tight.

In particular, the minimum weight codewords of the hull H0,k(n, q) are characterised as well.

Corollary 5.10. If c is a codeword of H0,k(n, q), with wt(c) 6 W (k, q), then c is a scalar
multiple of the difference of two k-spaces. In particular, the minimum weight of H0,k(n, q) is
2qk, and the minimum weight codewords are scalar multiples of the difference of two k-spaces
through a common (k − 1)-subspace.

These results, in turn, are used in Section 6 as base cases to characterise all codewords of
Cj,k(n, q) and Hj,k(n, q) up to weight W (j, k, q). Again, the exact value of the latter bound can

be found in Definition 3.4, but it is at least (3− 7/q)
[
k+1
j+1

]
q

if q is large enough.

Theorem 6.7. (1) If c is a codeword of Cj,k(n, q), with wt(c) 6 W (j, k, q), then c is a linear
combination of at most two k-spaces.

(2) If c is a codeword of Hj,k(n, q), with wt(c) 6 W (j, k, q), then c is a scalar multiple of the
difference of two k-spaces. In particular, if q /∈ Q1, then the minimum weight of Hj,k(n, q)
is 2qk−j

[
k
j

]
q
, and the minimum weight codewords are scalar multiples of the difference of

two k-spaces through a common (k − 1)-space.

The following, somewhat weaker result is valid for any prime power q.

Theorem 6.8. If c is a codeword of Cj,k(n, q), with

wt(c) 6
2qk

θj

[
k

j

]
q

,

then c is a scalar multiple of a k-space. As a consequence, the minimum weight of Hj,k(n, q) is

larger than 2qk
[
k
j

]
q
/θj.

As a final note to this section, we investigate the cyclicity of Cj,k(n, q).

Theorem 6.10. The code Cj,k(n, q) is equivalent to a cyclic code if and only if j = 0.

In Section 7, we shift our focus to the dual code Cj,k(n, q)⊥ and manage to reduce both problems
of determining its minimum weight and characterising its minimum weight codewords to the
codes C0,1(n, q)⊥. This is done using the construction of a pull-back (Construction 7.1). Pull-
backs are codewords of Cj,k(n, q)⊥ constructed from codewords of C0,k−j(n− j, q)⊥.

Theorem 7.8. If j > 0, then all minimum weight codewords of Cj,k(n, q)⊥ are pull-backs.
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As a consequence, known results concerning the minimum weight problem of Cj,k(n, q)⊥ (e.g.
Result 3.6 and 3.7) are found to be valid for general j and k.

Corollary 7.10. (1) d
(
Cj,k(n, q)⊥

)
= d

(
C0,1(n− k + 1, q)⊥

)
.

(2) If p is prime, then the minimum weight codewords of Cj,k(n, p)⊥ are scalar multiples of the
standard words, and thus have weight 2pn−k.

(3) If q is even, then d
(
Cj,k(n, q)⊥

)
= (q + 2)qn−k−1.

In Section 8 we summarise in short what is known about the dimension of these codes. We
conclude this article with Section 9 by briefly discussing some open problems concerning this
topic.

3 Preliminaries

3.1 Basic notation

Throughout this entire article, we will assume p to be a prime number and q := ph, with h ∈ N∗.
Moreover, we consider natural numbers j, k and n, with the general assumption that

0 6 j < k < n.

Hence, keep in mind that k > 1 and n > 2.
We will denote the Galois field GF(q) of order q by Fq and the Desarguesian projective space of
(projective) dimension n over Fq by PG(n, q). For any number m ∈ N, the number of j-spaces
in PG(m, q) is given by the Gaussian coefficient[

m+ 1

j + 1

]
q

:=
(qm+1 − 1)(qm − 1) · · · (qm−j+1 − 1)

(qj+1 − 1)(qj − 1) · · · (q − 1)
.

By convention, we define
[
m+1
0

]
q

to be 1 and we denote θm :=
[
m+1
1

]
q
, with the extension that

θm := 0 for values m ∈ Z \ N.
Denote the set of all j-subspaces of a projective space π by Gj(π). We denote the latter by
Gj(n, q) if π is the ambient space PG(n, q). If π or n and q are clear from context, we will
denote this simply by Gj . Let V (j, π) denote the p-ary vector space of functions from Gj(π)

to Fp, i.e. V (j, π) := FGj(π)
p . Similarly, V (j, n, q) := FGj(n,q)

p . We will denote the functions that
map everything to one, respectively zero, by 1, respectively 0. Moreover, for any v ∈ V (j, n, q)
and any λ ∈ Gj(n, q), the value v(λ) will often be described as the value of λ w.r.t. v.
We can identify a k-space κ of PG(n, q) with the function κ(j) ∈ V (j, n, q) such that

κ(j)(λ) =

{
1 if λ ⊆ κ,
0 otherwise.

If j is clear from context, we will denote κ(j) as κ. There should be no confusion. Let Cj,k(n, q)
denote the subspace of V (j, n, q) generated by Gk(n, q)

(j) :=
{
κ(j) : κ ∈ Gk(n, q)

}
. We will also

denote C0,k(n, q) as Ck(n, q).
Alternatively, one could define the code Cj,k(n, q) as follows. Consider the p-ary incidence matrix
A of k-spaces and j-spaces, i.e. the rows of the matrix correspond to the k-spaces of PG(n, q)
and the columns to the j-spaces. Put a one in the matrix if the j-space corresponding to the
column is contained in the k-space corresponding to the row, and zero otherwise. Symbolically,

A ∈ FGk×Gj
p and Aκ,λ =

{
1 if λ ⊆ κ,
0 otherwise.
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In this way, Cj,k(n, q) is the row span of the matrix A. However, we prefer the definition of
Cj,k(n, q) as a vector subspace of V (j, n, q), as this is more convenient for notation.
If v ∈ V (j, n, q), define the support of v as supp(v) := {λ ∈ Gj : v(λ) 6= 0} and the weight of
v as wt(v) := |supp(v)|. For a vector subspace W of V (j, n, q), let d(W ) denote the minimum
weight of W , i.e. d(W ) := min {wt(c) : c ∈W \ {0}}. For 0 6 i < j, we will also make use of
the set suppi(c) := {ι ∈ Gi : (∃λ ∈ supp(c))(ι ⊂ λ)} =

⋃
λ∈supp(c)Gi(λ).

Define the scalar product of two functions v, w ∈ V (j, n, q) as

v · w :=
∑
λ∈Gj

v(λ)w(λ).

Define the dual code of Cj,k(n, q) as its orthogonal complement with respect to the above scalar
product. This means that the dual code is

Cj,k(n, q)⊥ := {v ∈ V (j, n, q) : (∀c ∈ Cj,k(n, q))(c · v = 0)} .

Define the hull Hj,k(n, q) of Cj,k(n, q) as

Hj,k(n, q) := Cj,k(n, q) ∩ Cj,n−k+j(n, q)⊥.

3.2 Known results and the bounds W (k, q) and W (j, k, q)

Some important characterisations are already known.

Result 3.1 ([BI02, Theorem 1]). The minimum weight of Cj,k(n, q) is
[
k+1
j+1

]
q
, and minimum

weight codewords are scalar multiples of k-spaces, i.e. scalar multiples of the elements of Gk(n, q)
(j).

If j = 0, stronger characterisations are known.

Definition 3.2. Define W (k, q) as

W (k, q) :=



2qk if q ∈ Q1 := {q : q 6 9} ∪ {16, 25, 27, 49} ,
2θk if q ∈ Q2 := {q : 9 < q 6 23, q 6= 16} ∪ {29, 31, 32, 121} ,
3qk − 3qk−1 − 1 if q ∈ Q3 := {q : q > 32, q prime} ,
3qk − 3qk−1 + θk−2 − 1 if q ∈ Q4 := {q : q > 32, q even} ,
3qk − 2qk−1 + θk−2 − 1 if q ∈ Q5, the complement of

⋃4
i=1Qi.

We will use the following weakened version of known characterisations.

Result 3.3 ([ADSW20, Corollary 2.2.13] [PZ18, Theorem 1.4]). If c is a codeword of Ck(k+1, q),
with wt(c) 6 W (k, q), then c is a linear combination of at most two k-spaces. Moreover, this
bound is tight if q ∈ Q3 ∪Q4 ∪Q5.

In Section 5 we prove that this holds for all codes Ck(n, q).

Definition 3.4. Define W (j, k, q) as

W (j, k, q) :=



2qk

θj

[
k
j

]
q

if q ∈ Q1,

2
[
k+1
j+1

]
q

if q ∈ Q2,(
3− 7

q

) [
k+1
j+1

]
q

if q ∈ Q3 ∪Q4,(
3− 6

q

) [
k+1
j+1

]
q

if q ∈ Q5.

Remark that W (0, k, q) 6 W (k, q). The focus of Section 6 are Theorems 6.7 and 6.8, where we
prove that codewords of Cj,k(n, q) up to weight W (j, k, q) are linear combinations of at most two
k-spaces.
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Definition 3.5. Let ι be a (j − 1)-space, and let π and ρ be two (n− k+ j)-spaces through an
(n− k + j − 1)-space containing ι. Define v ∈ V (j, n, q) as

v :=
∑

λ∈Gj(π)
ι⊂λ

λ(j) −
∑

λ′∈Gj(ρ)
ι⊂λ′

λ′(j).

Codewords of this form are called standard words of Cj,k(n, q)⊥.

Result 3.6 ([BI02, Theorem 3, Proposition 2]). Standard words of Cj,k(n, q)⊥ are codewords
of Cj,k(n, q)⊥ of weight 2qn−k. Therefore, the minimum weight of Cj,k(n, q)⊥ is at most 2qn−k.
Moreover, if p is prime, then the minimum weight codewords of Cj,j+1(n, p)

⊥ are the scalar
multiples of the standard words.

Result 3.7 ([CKdR99, Theorem 1]). If q is even, then d
(
Ck(n, q)⊥

)
= (q + 2)qn−k−1.

4 A brief note on the relation with the dual code

As a generalisation of [AK92, Chapter 6] and [LSVdV08, Lemma 2], we have the following.

Lemma 4.1. (1) If c ∈ Cj,k(n, q), then c · π is equal for all subspaces π in PG(n, q) with
dim(π) > n− k + j.

(2) Hj,k(n, q) = {c ∈ Cj,k(n, q) : c · 1 = 0} = 〈κ− κ′ : κ ∈ Gk〉 for any κ′ ∈ Gk.

(3) dim
(
Hj,k(n, q)

)
= dim

(
Cj,k(n, q)

)
− 1.

Proof. (1) Take a k-space κ and a subspace π with dim(π) > n − k + j. It is easy to see
that κ(j) · π(j) equals the number of j-spaces in κ ∩ π modulo p. By Grassmann’s identity,
dim(κ ∩ π) > dim(κ) + dim(π) − n > j. Therefore, the number of j-spaces in κ ∩ π equals[
dim(κ∩π)+1

j+1

]
q
≡ 1 (mod p). Now take a codeword c ∈ Cj,k(n, q). Then c is a linear combination

of k-spaces, so c =
∑

i αiκi for some αi ∈ Fp and κi ∈ Gk. Since the scalar product is bilinear,
we have that

c · π =
(∑

i

αiκi

)
· π =

∑
i

αi(κi · π) =
∑
i

αi,

hence c · π is equal for all π.

(2, 3) Take a codeword c ∈ Cj,k(n, q). Then c ∈ Cj,n−k+j(n, q)⊥ if and only if c is orthogonal to all
codewords of Cj,n−k+j(n, q). Since the scalar product is bilinear, is suffices that c is orthogonal
to the generators of Cj,n−k+j(n, q). By (1), this only requires that the scalar product of c with a
specific subspace of dimension at least n− k + j is zero, e.g. the whole space. This means that
c · 1 is zero. Hence, Hj,k(n, q) = {c ∈ Cj,k(n, q) : c · 1 = 0}.
Since c · 1 = 0 is a linear equation, we know that {c ∈ Cj,k(n, q) : c · 1 = 0} is a vector subspace
of Cj,k(n, q) of codimension 0 or 1. Since we have proven in (1) that, for any k-space κ, κ ·1 = 1,
this vector subspace must be a proper subspace, hence it has codimension 1, proving (3).
Now take two k-spaces κ and κ′. It is clear that κ − κ′ ∈ Cj,k(n, q). If π ∈ Gn−k+j , then we
know that κ · π = κ′ · π = 1 by (1). Hence, π · (κ − κ′) = 0. Therefore, κ − κ′ is orthogonal to
all generators of Cj,n−k+j(n, q), which means that κ− κ′ ∈ Cj,n−k+j(n, q)⊥. As a result, if we fix
κ′ ∈ Gk, K := 〈κ− κ′ : κ ∈ Gk〉 6 Hj,k(n, q). Since K ⊕ 〈κ′〉 = Cj,k(n, q), the codimension of
K in Cj,k(n, q) is at most one. Thus, dim(K) > dim

(
Hj,k(n, q)

)
. This is only possible if those

spaces coincide.

We can also say something about the code Sj,k(n, q) :=
〈
Cj,k(n, q), Cj,n−k+j(n, q)⊥

〉
.

Lemma 4.2. (1) dim
(
Sj,k(n, q)

)
= dim

(
Cj,n−k+j(n, q)⊥

)
+ 1.
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(2) Sj,k(n, q) = Hj,n−k+j(n, q)⊥ = {v ∈ V (j, n, q) : (∃α ∈ Fp)(∀κ ∈ Gn−k+j)(v · κ = α)}.

(3) The minimum weight codewords of S0,k(n, q) are scalar multiples of k-spaces.

(4) If j > 1, then the minimum weight codewords of Sj,k(n, q) lie in Cj,n−k+j(n, q)⊥.

Proof. (1) By Grassmann’s identity and Lemma 4.1 (3), we have

dim
(
Sj,k(n, q)

)
= dim

(
Cj,k(n, q)

)
+ dim

(
Cj,n−k+j(n, q)⊥

)
− dim

(
Cj,k(n, q) ∩ Cj,n−k+j(n, q)⊥

)
= dim

(
Cj,n−k+j(n, q)⊥

)
+ 1.

(2) Since 〈A,B〉⊥ = A⊥∩B⊥, we have that Sj,k(n, q)⊥ = Cj,k(n, q)⊥∩Cj,n−k+j(n, q) = Hj,n−k+j(n, q).
By Lemma 4.1 (2), this means that Sj,k(n, q)⊥ = 〈κ− κ′ : κ, κ′ ∈ Gn−k+j〉⊥. Hence, v ∈
Sj,k(n, q) ⇔ (∀κ, κ′ ∈ Gn−k+j)(v · (κ − κ′) = 0). This means that v ∈ Sj,k(n, q) if and only
if v · κ is equal for all (n− k + j)-spaces κ.

(3) The arguments used in the literature to prove this exact same statement about Ck(n, q) are
also valid for the bigger code S0,k(n, q); for instance, see [BI02, Proposition 1], where the authors
make the exact same observation at the very end of their work.

(4) Assume that j > 1 and take a codeword c ∈ Sj,k(n, q), with c 6∈ Cj,n−k+j(n, q)⊥. Then
we know that there exists some α ∈ F∗p, with c · κ = α, for all κ ∈ Gn−k+j . In particular,
this means that every (n − k + j)-space κ contains an element of supp(c). Consider the set
V = {(λ, κ) : λ ∈ supp(c), λ ⊂ κ ∈ Gn−k+j}. Since for every κ, there exists a λ with (λ, κ) ∈ V ,
we get

wt(c)

[
n− j
k − j

]
q

= wt(c)

[
n− j

(n− k + j)− j

]
q

= |V | >
[

n+ 1

(n− k + j) + 1

]
q

=

[
n+ 1

k − j

]
q

.

Here we used the fact that
[
n
k

]
q

=
[
n

n−k
]
q
. Manipulating this inequality yields

wt(c) >

[
n+1
k−j
]
q[

n−j
k−j
]
q

=

(qn+1−1)(qn−1)···(qn+2−k+j−1)
(qk−j−1)(qk−j−1−1)···(q−1)

(qn−j−1)(qn−j−1−1)···(qn−k+1−1)
(qk−j−1)(qk−j−1−1)···(q−1)

=
qn+1 − 1

qn−j − 1

qn − 1

qn−j−1 − 1
. . .

qn+2−k+j − 1

qn−k+1 − 1

> (qj+1)k−j > 2qk−j .

However, by Result 3.6, the minimum weight of Cj,n−k+j(n, q)⊥ is at most 2qk−j . Hence, the
minimum weight codewords of Sj,k(n, q) must be contained in Cj,n−k+j(n, q)⊥.

Also note that, given a space π with dim(π) > k, π(j) =
∑

κ∈Gk(π)
κ(j). This way, we see that if

k > k′, then Cj,k(n, q) 6 Cj,k′(n, q) and Cj,k(n, q)⊥ > Cj,k′(n, q)⊥.

5 Codes of points and k-spaces

The tool to guide us towards a characterisation of small weight codewords of Ck(n, q), is the
following linear map. It is essentially due to Lavrauw, Storme & Van de Voorde [LSVdV08,
Lemma 11], but they only use it for a result regarding Ck(n, q)⊥ (see Result 7.9). We define it
in a more general form, for all values of j.

Definition 5.1. Take a point R in PG(n, q) and a hyperplane π not through R. Take an integer

j 6 n− 2 and a function v ∈ V (j, n, q). Then we define the function proj
(j)
R,π(v) in V (j, π) by

proj
(j)
R,π(v) : λ 7→

∑
λ′∈Gj(〈R,λ〉)

v(λ′).
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This means that the value of a j-space λ ⊂ π w.r.t. proj
(j)
R,π(v) is the sum of the values w.r.t. c

of all j-spaces λ′ in the (j + 1)-space 〈R, λ〉. We could also write this as

proj
(j)
R,π(v)(λ) = v · 〈R, λ〉(j) .

We view proj
(j)
R,π : v 7→ proj

(j)
R,π(v) as a mapping from V (j, n, q) to V (j, π). If j = 0, we will

denote proj
(0)
R,π by projR,π.

We now present the most important properties of this map.

Lemma 5.2. Assume that R is a point of PG(n, q) and that π is a hyperplane not through R.
Then the following holds:

(1) The map proj
(j)
R,π is linear.

(2) If k < n− 1, then proj
(j)
R,π(Cj,k(n, q)) = Cj,k(n− 1, q).

(3) If k > j + 1, then proj
(j)
R,π(Cj,k(n, q)⊥) = Cj,k−1(n− 1, q)⊥.

(4) If v ∈ V (j, n, q) and R 6∈ supp0(v), then wt(proj
(j)
R,π(v)) 6 wt(v), with equality if and only

if no (j + 1)-space through R contains more than one j-space of supp(v).

(5) If v ∈ V (j, n, q), then v · 1 = proj
(j)
R,π(v) · 1.

Proof. (1) To prove that proj
(j)
R,π is linear, we take α, β ∈ Fp, and v, w ∈ V (j, n, q). We need to

prove that proj
(j)
R,π(αv + βw) = αproj

(j)
R,π(v) + βproj

(j)
R,π(w). Take a j-space λ ⊂ π. Then

proj
(j)
R,π(αv + βw)(λ) = (αv + βw) · 〈R, λ〉 = αv · 〈R, λ〉+ βw · 〈R, λ〉

= αproj
(j)
R,π(v)(λ) + βproj

(j)
R,π(w)(λ).

Since this holds for every j-space λ ⊂ π, this means that proj
(j)
R,π(αv + βw) = αproj

(j)
R,π(v) +

βproj
(j)
R,π(w).

(2) Let κ be a k-space of PG(n, q). First, assume that R 6∈ κ. It is easy to see that proj
(j)
R,π(κ)

is the k-space 〈R, κ〉 ∩ π. So assume that R ∈ κ. Take a j-space λ ⊂ π. Then proj
(j)
R,π(κ)(λ)

equals the number of j-spaces in 〈R, λ〉 ∩ κ. Note that dim
(
〈R, λ〉 ∩ κ

)
= dim(λ ∩ κ) + 1. This

implies that

proj
(j)
R,π(κ)(λ) =

{
1 if dim(λ ∩ κ) > j − 1,

0 otherwise.

The number of k-spaces κ′ in π through a j-space λ, containing the (k − 1)-space κ ∩ π equals

0 if dim(λ∩ κ) < j − 1, equals 1 if dim(λ∩ κ) = j − 1, and equals
[(n−1)−(k−1)

k−(k−1)
]
q
≡ 1 (mod p) if

dim(λ ∩ κ) = j. Thus,

proj
(j)
R,π(κ) =

∑
κ′∈Gk(π)
κ∩π⊂κ′

κ′ ∈ Cj,k(n− 1, q).

Therefore the map proj
(j)
R,π maps the set Gk(n, q)

(j), which generates the code Cj,k(n, q), to a

subset of Cj,k(n − 1, q), containing its generating set Gk(π)(j). Since this map is linear, this

proves that proj
(j)
R,π(Cj,k(n, q)) = Cj,k(n− 1, q).
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(3) Take c ∈ Cj,k(n, q)⊥. To prove that proj
(j)
R,π(c) ∈ Cj,k−1(n − 1, q)⊥, we need to prove that

proj
(j)
R,π(c) · κ = 0 for every (k − 1)-space κ ⊂ π.

proj
(j)
R,π(c) · κ =

∑
λ∈Gj(π)

proj
(j)
R,π(c)(λ) · κ(λ) =

∑
λ∈Gj(π)
λ⊂κ

∑
λ′∈Gj(〈R,λ〉)

c(λ′)

=
∑

λ′∈Gj(〈R,κ〉)

c(λ′)
∑

λ∈Gj(κ)
λ′⊂〈R,λ〉

1.

For a fixed j-space λ′ in 〈R, κ〉, we have

∑
λ∈Gj(κ)
λ′⊂〈R,λ〉

1 =

{
1 if R 6∈ λ′,
θk−j−1 otherwise

≡ 1 (mod p).

Therefore,

proj
(j)
R,π(c) · κ =

∑
λ′∈Gj(〈R,κ〉)

c(λ′) = c · 〈R, κ〉 = 0,

because 〈R, κ〉 is a k-space and c ∈ Cj,k(n, q)⊥. Hence, proj
(j)
R,π(Cj,k(n, q)⊥) 6 Cj,k−1(n−1, q)⊥. To

prove that equality holds, we can embed a codeword c′ of Cj,k−1(n−1, q)⊥ in π (see Construction

7.6). The image of this embedded codeword under proj
(j)
R,π will again be c′.

(4) It holds that if λ ∈ supp(proj
(j)
R,π(v)), then the (j+ 1)-space 〈R, λ〉 must contain a j-space of

supp(v). Hence, if R 6∈ supp0(v), every j-space in supp(c) lies in a unique (j + 1)-space through
R, which implies that the number of (j+1)-spaces through R that contain an element of supp(v)

is at most wt(v). Thus, wt(proj
(j)
R,π(v)) 6 wt(v). It is easy to see that equality holds if and only

if no (j + 1)-space through R contains more than one element of supp(v).

(5)

proj
(j)
R,π(v) · 1 =

∑
λ∈Gj(π)

projR,π(v)(λ) · 1 =
∑

λ∈Gj(π)

∑
λ′∈Gj(〈R,λ〉)

v(λ′) =
∑

λ′∈Gj(n,q)

v(λ′)
∑

λ∈Gj(π)
λ′⊂〈R,λ〉

1

=
∑

λ′∈Gj(n,q)
R 6∈λ′

v(λ′) +

[
(n− 1)− (j − 1)

j − (j − 1)

]
q

∑
λ′∈Gj(n,q)

R∈λ′

v(λ′)

≡
∑

λ′∈Gj(n,q)
R 6∈λ′

v(λ′) +
∑

λ′∈Gj(n,q)
R∈λ′

v(λ′) = v · 1 (mod p).

Remark 5.3. When constructing projR,π(c), what we are actually doing is projecting from the
point R onto a hyperplane π. One could also view this as working in the quotient geometry of
PG(n, q) through R. This way we see that the choice of π is not really relevant. In other words,
for any two choices of hyperplanes π1, π2 63 R in PG(n, q), the nature of the codewords projR,π1(c)
and projR,π2(c) will essentially stay the same. More rigorously, there exists a collineation β from

π1 to π2 such that projR,π1(c)(λ) = projR,π2(c)(λβ), for every λ ∈ Gj(π1). This collineation
β maps a subspace λ of π1 to 〈R, λ〉 ∩ π2. The reason that we emphasize which hyperplane is
considered is solely to obtain a natural embedding of supp(projR,π(c)) in PG(n− 1, q).
Therefore, when considering projR,π(c), we can, at any time and w.l.o.g., choose π to be any
other hyperplane not containing R.
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Eventually, we will use this map to characterise small weight codewords of Ck(n, q). However,
we first need a few important lemmas, some of which are tedious to prove.

Lemma 5.4. Let c ∈ Ck(n, q) be a linear combination of three k-spaces, which can’t be written
as a linear combination of at most two k-spaces. Then wt(c) > W (k, q).

Proof. Let us denote these three distinct k-spaces by κi (i = 1, 2, 3). We write σ :=
⋂3
i=1 κi,

K := 〈κ1, κ2, κ3〉, and s := dim(σ). A simple but tedious argument to prove this result is
finding a lower bound on wt(c) that exceeds W (k, q). This is done by counting points that lie
in precisely one of the three k-spaces κi, as these points are necessarily contained in supp(c).
As the proof involves a case-by-case analysis of the geometric nature of these k-spaces, we will
omit most details of the easier cases.
If s = k − 1, one can prove rather easily that wt(c) ∈

{
3qk, 3qk + θk−1

}
.

If s = k − 2, there are two cases to consider. In the first case, we assume that two k-spaces
intersect in σ. Hence, each of these two k-spaces contains at least θk − θk−1 points not lying in
any other of the three spaces. As the third space adds at least θk − θk−1 − (θk−1 − θk−2) points
of supp(c) we haven’t considered before, we obtain wt(c) > 3qk − qk−1. In the second case, we
assume that each two k-spaces intersect in a (k− 1)-space. As a consequence, either these three
k-spaces pairwise intersect in σ, or K is a (k + 1)-space. As s < k − 1, we conclude that the
latter holds. Hence, we can consider the restriction of the codeword c to K and rely on Result
3.3.
Finally, assume that s 6 k − 3. Denote σ2 = κ1 ∩ κ2 and σ3 = κ1 ∩ κ3. We know that
dim(σ2 ∩ σ3) = dim(σ) = s, and that dim (〈σ2, σ3〉) 6 dim(κ1) = k. Grassmann’s identity
implies that dim(σ2) + dim(σ3) 6 k + s. We also know that the dimension of σ2 and σ3 are at
most k − 1. Note that if a > b, then θa + θb < θa+1 + θb−1. Keeping this in mind, together
with dim(σ2) + dim(σ3) 6 k + s, we know that σ2 ∪ σ3 contains at most θk−1 + θs+1 − θs =
θk−1 + qs+1 6 θk−1 + qk−2 points. Hence, κ1 contains at least θk − θk−1 − qk−2 = qk − qk−2
points outside of κ2∪κ3. Repeating this argument for each of the two other k-spaces, we obtain
wt(c) > 3(qk − qk−2).

Definition 5.5. Let S be a point set in PG(n, q). If a line l of PG(n, q) intersects S in at most
2 points, we will call l a short secant to S. If l intersects S in at least q points, we will call l a
long secant to S.

The next lemmata make the mild assumption that q is at least 4 or 5. When characterising
small weight codewords of Ck(n, q), the small values of q will be dealt with separately.

Lemma 5.6. Let c be a codeword of Ck(n, q) with q > 5 and wt(c) 6W (k, q).

(1) All lines in PG(n, q) are either short or long secants to supp(c).

(2) c · s =

{
c · 1 if s is a 2-secant to supp(c),

0 if s is a q-secant to supp(c).

Proof. We will prove this by induction on n. If n = k + 1, then we know, by Result 3.3, that
c is a linear combination of at most two k-spaces. In particular, this implies that supp(c) is
either equal to the empty set, a k space, or the union or symmetric difference of two k-spaces,
proving the first statement of the lemma. If s is a 2-secant to supp(c), then c must be a linear
combination of precisely two k-spaces. Then both c · s and c ·1 equal the sum of the coefficients
arising from this linear combination. If s is a q-secant to supp(c), then c must be a scalar
multiple of the difference of two distinct k-spaces. A q-secant can only exist in this setting if c
takes the same non-zero value at all but one point of s. Hence, c · s = 0, proving the second
statement.
Therefore, let us assume that n > k+2 and that the lemma is true for all codewords in Ck(n−1, q)
with weight at most W (k, q). Note that, by Lemma 5.2 (4), the induction hypothesis implies
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that both statements of this lemma hold for the codeword projR,π(c), for any point R /∈ supp(c)
and any hyperplane π 63 R.
Suppose that s is an m-secant to supp(c) and suppose that every plane through s intersects
supp(c) in at least m + 3 points. Then wt(c) > 3θn−2 + m > 3θk > W (k, q), a contradiction.
Hence, there exists a plane σ such that |σ∩supp(c)| 6 m+2. Let π be a hyperplane intersecting
σ in s.

(1) Let 3 6 m 6 q − 1. To find a contradiction and prove the first part of the lemma, we
distinguish three cases depending on the value of |σ ∩ supp(c)| ∈ {m,m+ 1,m+ 2}. For each of
these cases, one can find a point R ∈ σ \ s such that s contains precisely m or m+ 1 points (if
m 6= q−1), or m or m−1 points (if m 6= 3) of supp(projR,π(c)). Hence, each of these cases results
in the existence of a secant to supp(projR,π(c)) that is neither short nor long, contradicting the
induction hypothesis. We leave the rather tedious details of this case-by-case proof to the reader.

(2) Let m ∈ {2, q}. The proof of the second statement can easily be obtained if we know that
σ ∩ supp(c) ⊆ s. Indeed, if this holds, then s is an m-secant to supp(projR,π(c)) for any choice
of R ∈ σ \ s. Moreover, as all lines through R in σ contain at most one point of supp(c), we
know that c · s = projR,π(c) · s. By the induction hypothesis and Lemma 5.2 (5), we know that

projR,π(c) · s =

{
projR,π(c) · 1 = c · 1 if s is a 2-secant to supp(c),

0 if s is a q-secant to supp(c).

So let us assume, on the contrary, that |σ ∩ supp(c)| ∈ {m+ 1,m+ 2}.
If m = 2, we can find a point R ∈ σ\(s∪supp(c)) such that s contains precisely |σ∩supp(c)| < q
points of supp(projR,π(c)), contradicting the assumptions.
Let m = q and let O be the unique point in s\supp(c). Let t be a line of σ through O containing
a point of (σ ∩ supp(c)) \ s. Then all points of (σ ∩ supp(c)) \ s have to lie on t, as else we can
find a 3-secant to supp(c) in σ, contradicting (1). In this way, if we choose Q ∈ t∩ supp(c), QP
is a 2-secant to supp(c) for every choice of P ∈ s \ {O}. As we already proved the statement of
the lemma concerning 2-secants, we know that all values c · QP are the same, for every choice
of P ∈ s \ {O}. As c ·QP = c(Q) + c(P ), this means that c takes the same value at every point
of s \ {O}, resulting in c · s = 0.

Lemma 5.7. Assume that S is a point set in PG(n, q), q > 4, with the property that every line
intersects S in 0, 1, q or q + 1 points. Then there exists a hyperplane H in PG(n, q) such that
either S ⊆ H or Sc ⊆ H, where Sc denotes the complement of S in PG(n, q).

Proof. We prove this by induction on n. Note that it is trivial for n = 1. Now assume that it
holds in PG(n− 1, q), we will prove that it holds in PG(n, q). The induction hypothesis implies
that for every hyperplane π of PG(n, q), either S ∩π or Sc∩π is contained in an (n−2)-space of
π. If S spans PG(n, q), then we can take a hyperplane π spanned by n points of S and a point
P ∈ S \π. By the induction hypothesis, Sc ∩π is contained in an (n− 2)-space in π. Therefore,
there are at least qn−1 lines through P intersecting π in a point of S. These lines contain at least
q points of S, yielding that |S| > qn−1(q − 1) + 1. Note that this lemma is self-complementary
in the sense that if we replace S by Sc, the lemma stays the same. Thus, if Sc spans PG(n, q),
then |Sc| > qn−1(q − 1) + 1. Hence, if both S and Sc span PG(n, q), then

θn = |S|+ |Sc| > 2(qn−1(q − 1) + 1),

a contradiction if q > 4. Therefore, either S or Sc is contained in a hyperplane.
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Figure 1: A visualisation of supp(c) in case there exists a point R and a hyperplane π such that
projR,π(c) = α1κ1+α2κ2 for distinct k-subspaces κi ⊆ π and non-zero values αi ∈ F∗p. We define
λi := 〈R, κi〉, τ := λ1 ∩ λ2 and σ := κ1 ∩ κ2.

Lemma 5.8. Let c be a codeword of Ck(n, q) with q > 5 and wt(c) 6W (k, q), and assume that
all codewords of Ck(n− 1, q) with weight at most W (k, q) are linear combinations of at most two
k-spaces. Consider a point R /∈ supp(c) and a hyperplane π 63 R; let κ1, κ2 ∈ Gk(π), κ1 6= κ2,
and let α1, α2 ∈ F∗p. Define λi := 〈R, κi〉 and τ := λ1 ∩ λ2. Assume that precisely one of the
following holds:

(1) q is even and projR,π(c) = κ1, or

(2) projR,π(c) = α1κ1 + α2κ2.

Then there exists a k-space H such that more than 1
2θk points of H have the same non-zero

value w.r.t. c.

Proof. Remark that, by Lemma 5.2 (2) and (4), the assumptions imply that projR′,π′(c) is a
linear combination of at most two k-subspaces of π′, for every point R′ /∈ supp(c) and every
hyperplane π′ 63 R.
First, assume that (2) holds.

Observation 1. Every line in λ1 \ τ through R is tangent to supp(c).

Indeed, take such a line l. We know that α1 = projR,π(c)(l ∩ π) = c · l. By Lemma 5.6, l is
either a short or a long secant to supp(c). By the same lemma, l cannot be a 0- or a q-secant,
as else α1 = 0. Finally, l cannot be a 2-secant either, as else, by Lemma 5.6 and Lemma 5.2,
α1 = c · l = c · 1 = projR,π(c) · 1 = α1 + α2, which would imply that α2 = 0.

Observation 2. All 2-secants to supp(c) in λ1 are contained in τ .

Let s be a 2-secant to supp(c) in λ1 that is not contained in τ . Take a point S ∈ s \ τ . By
Remark 5.3, we can choose π to be a hyperplane not through R, intersecting s in S. Note that
this also means that s intersects κ1 in S. As q > 2, we can choose a point R1 ∈ s\ (supp(c)∪ τ).
By Observation 1, as R1 ∈ λ1 \ τ , RR1 is tangent to supp(c) and hence the unique point of
supp(c) on RR1 must have value α1. Denote T = RR1 ∩ κ1.
In this way, we can see that

• projR1,π(c)(S) = α1 + α2, by Lemma 5.6 and Lemma 5.2 (5), and

• projR1,π(c)(T ) = α1, implying in particular that projR1,π(c) 6= 0.
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Therefore, projR1,π(c) must also be a linear combination of exactly two distinct k-spaces, as else
projR1,π(c) = α1κ for a certain k-space κ ⊆ π, implying that α1 = projR1,π(c) · 1 = c · 1 =
projR,π(c) · 1 = α1 + α2 by Lemma 5.2 (5), a contradiction.
Furthermore, it’s clear that projR1,π(c) and projR,π(c) cannot share the same k-subspaces of
π, as else the points S, T ∈ κ1 \ τ must have the same value w.r.t. projR1,π(c), resulting in
α1 = α1 + α2, a contradiction yet again. Hence, we can find a k-space κ3 /∈ {κ1, κ2} in
π containing, by Observation 1, at least qk points in a k-dimensional affine subspace, each
connected to R1 by a tangent line to supp(c).
This means that there are at least qk−2qk−1 + θk−2 points of supp(c) outside of λ1∪λ2. Hence,
we get the following contradiction: wt(c) > |(λ1 ∪ λ2) ∩ supp(c)| + |λ3 \ (λ1 ∪ λ2) ∩ supp(c)| >
2qk + qk − 2qk−1 + θk−2 = 3qk − 2qk−1 + θk−2 > W (k, q). As a result, Observation 2 is found to
be true.

Define S := (λ1 \ τ) ∩ supp(c). By Lemma 5.6, Observation 2 and Lemma 5.7, there exists
a k-space H in λ1 such that either S ⊆ H or

(
λ1 \ S

)
⊆ H. The latter would imply that

wt(c) > |λ1 \ (H ∪ τ)| > qk+1 − qk > W (k, q) as q > 5, a contradiction. Thus, S ⊆ H must be
valid. By Observation 1, all qk > 1

2θk points in S have non-zero value α1 w.r.t. c, proving the
lemma.

Now assume that (1) holds. The proof stays mainly the same, except for the proof of Observation
4; we will indicate what arguments need to be changed or added in order to keep all proofs valid.
In general, every instance of α1 and α2 can be replaced by 1, as q is even, and every instance of
κ2 and τ need to be replaced by ∅. Therefore, Observation 1 becomes the following statement:

Observation 3. Every line in λ1 through R is tangent to supp(c).

This can be proven using exactly the same arguments as before: such a line l can only be a
tangent line or a 2-secant, and if l is a 2-secant, we would obtain 1 = α1 = c · l = 1 + 1 = 0, as
q is even, a contradiction.
Observation 2 changes to the following:

Observation 4. There are no 2-secants to supp(c) contained in λ1.

We can repeat all notations and arguments used to prove Observation 2 (keeping in mind that
τ is replaced by ∅) and prove that there exists a k-space κ3 6= κ1 in π in which, by Observation
3, each point is connected to R1 by a tangent line to supp(c).
Remark that, as q is even, projR1,π(c)(S) = 0, implying that S /∈ κ3 as projR1,π(c)(Q) = 1 for

every Q ∈ κ3. Therefore, for each point P of the at least θk − θk−1 = qk points of supp(c)
in λ3 := 〈R1, κ3〉 not contained in λ1, the plane σP := 〈s, P 〉 intersects λ1 in the 2-secant s
and λ3 in the tangent line R1P (Observation 3). If |σP ∩ supp(c)| 6 4, then a clever choice
of a point R2 ∈ σP \ supp(c) (and a hyperplane π2 63 R2) will result in the existence of a
|σP ∩ supp(c)|-secant to supp(projR2,π2(c)), contradicting Lemma 5.6 as q > 5.
In conclusion, for every such point P , we find at least 2 points of supp(c) outside of λ1 ∪ λ3 by
considering the plane σP . As R1P is tangent to supp(c), each choice of such a P will result 2
extra points we haven’t considered before. Hence, wt(c) > |λ1∩supp(c)|+3|(λ3\λ1)∩supp(c)| >
θk + 3qk = 4qk + 3θk−1 > W (k, q), a contradiction.

Given Observation 3 and 4, we can repeat the same arguments as before to conclude the proof.

Theorem 5.9. If c is a codeword of Ck(n, q), with wt(c) 6W (k, q), then c is a linear combina-
tion of at most two k-spaces. Moreover, if q ∈ Q3 ∪Q4 ∪Q5, then this bound is tight.

Proof. The proof will be done by induction on n. The case n = k + 1 is Result 3.3. So assume
that n > k + 2 and that the theorem holds for the code Ck(n − 1, q). Assume to the contrary
that there exist codewords of Ck(n, q), with weight at most W (k, q), which can’t be written as
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a linear combination of at most two k-spaces. Let c be such a codeword of smallest possible
weight. We will derive a contradiction by making use of the following observation.

Observation 1. There cannot exist a k-space κ such that more than 1
2θk points of κ have

the same non-zero value α w.r.t. c.

This follows from the fact that if such a k-space κ would exist, then wt(c − ακ) < wt(c).
Since c − ακ ∈ Ck(n, q), this would mean that c − ακ is a linear combination of at most two
k-spaces. This is only possible if c is a linear combination of precisely three k-spaces. But then
wt(c) > W (k, q), by Lemma 5.4, a contradiction.

Given a hyperplane π and a point R 6∈ π ∪ supp(c), there are three possibilities for projR,π(c):

(P0) projR,π(c) = 0,

(P1) projR,π(c) = ακ, with α ∈ F∗p and κ a k-space of π, or

(P2) projR,π(c) = α1κ1 + α2κ2, with αi ∈ F∗p, and κi distinct k-spaces of π.

This follows from the fact that wt(projR,π(c)) 6 wt(c) 6 W (k, q) (Lemma 5.2 (4)), hence due
to the induction hypothesis, projR,π(c) is characterised as a linear combination of at most two
k-spaces.

Case 1: Possibility (P2) never occurs.
Take a point P ∈ supp(c), then there exists a tangent line l to supp(c) through P . Otherwise,
each of the θn−1 lines through P contains another point of supp(c), implying that wt(c) > θn−1 >
W (k, q), since n > k + 2, a contradiction. Now take a point R ∈ l \ {P} and a hyperplane π
with π ∩ l = {P}. Then projR,π(c)(P ) =

∑
Q∈PR c(Q) = c(P ). Hence, projR,π(c) can’t be 0,

which means (P1) is the only possibility that can arise. So projR,π(c) = ακ for some α ∈ F∗p
and some k-space κ. It now follows that α = c(P ) and projR,π(c) · 1 = α, so by Lemma 5.2 (5),
c(P ) = c · 1. Since this holds for all points of supp(c), they all have the same non-zero value
α := c · 1 w.r.t. c. Note that this also means that projR,π(c) · 1 can never be zero, which means
that possibility (P0) doesn’t occur, for any choice of hyperplane π and point R 6∈ π ∪ supp(c).
Remark that, if q > 5 and q is even, Lemma 5.8 can be used to obtain a contradiction to
Observation 1. Therefore, we can assume that q is 2, 4 or odd.
Taking an arbitrary hyperplane π and a point R 6∈ π∪supp(c), we conclude that projR,π(c) = ακ,
for some k-space κ in π. Define λ := 〈R, κ〉. For every point P ∈ κ, the line PR intersects
supp(c). Therefore, the (k + 1)-space λ intersects supp(c) in at least θk points.

Since k 6 n − 2, there exists a hyperplane π′ through λ. Take a point R′ 6∈ π′ ∪ supp(c), then
projR′,π′(c) = ακ′ for some k-space κ′ in π′. We define the following numbers:

x1 = |supp(c) ∩ π′| > θk, x2 = |(supp(c) ∩ π′) \ κ′|, x3 = |κ′ \ supp(c)|.

If P ∈ (supp(c) ∩ π′) \ κ′, then

0 = projR′,π′(c)(P ) =
∑

Q∈PR′
c(Q) ≡ α · |supp(c) ∩ PR′| (mod p).

Hence, PR′ contains 0 (mod p) points of supp(c), which means PR′ contains at least p − 1
points of supp(c) \ π′. Remark that, if q is odd and q 6= 3, then p > 2 and we can apply Lemma
5.6 to state that PR′ contains at least q− 1 points of supp(c) \π′. If P ∈ κ′ \ supp(c), then PR′

contains at least one point of supp(c) \ π′. This yields{
(p− 1)x2 + x3 6 |supp(c) \ π′| = wt(c)− x1 6 2θk − θk = θk if q 6 4,

(q − 1)x2 + x3 6 |supp(c) \ π′| = wt(c)− x1 6W (k, q)− θk if q > 4 is odd.
(1)
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Also note that |κ′ ∩ supp(c)| = x1 − x2 and x3 = |κ′| − |κ′ ∩ supp(c)| = θk − x1 + x2. Hence the
system of equations (1) becomes{

(p− 1)x2 + θk − x1 + x2 6 θk if q 6 4,

(q − 1)x2 + θk − x1 + x2 6 3qk − 2qk−1 + θk−2 − 1− θk if q > 4 is odd,

which implies

x2 6

{
x1
p if q 6 4,
x1
q + qk−1 if q > 4 is odd,

Thus, if q 6 4, we get

|supp(c) ∩ κ′| = x1 − x2 >
p− 1

p
x1 >

p− 1

p
θk. (2)

If p = 2, then θk is odd, hence |supp(c) ∩ κ′| > 1
2θk since the left-hand side must be an integer.

Otherwise, q = p = 3 and p−1
p = 2

3 , which also implies |supp(c) ∩ κ′| > 1
2θk. This yields a

contradiction to Observation 1, since all points of supp(c) have the same value w.r.t. c.
If q > 4 is odd, we get the following variant of equation (2).

|supp(c) ∩ κ′| = x1 − x2 >
q − 1

q
θk − qk−1 >

1

2
θk.

The last inequality holds as q > 4. This results yet again in a contradiction to Observation 1.

Case 2: Possibility (P2) does occur.
If q > 5, Lemma 5.8 implies a contradiction to Observation 1. Therefore, we can assume that
q 6 4, which implies that W (k, q) = 2qk.
Take a hyperplane π and a point R 6∈ π ∪ supp(c) such that projR,π(c) = α1κ1 + α2κ2 for some
αi ∈ F∗p and distinct k-spaces κi of π. Define the following notation (see Figure 1 accompanying
Lemma 5.8):

σ := κ1 ∩ κ2, s := dim(σ), τ := 〈R, σ〉, λi := 〈R, κi〉.

First, remark that supp(c) ⊆ λ1∪λ2. Indeed, as wt(c) 6 2qk and s 6 k−1, we know that λ1∪λ2
contains at least 2(θk − θk−1) = 2qk points of supp(c). This is only possible if wt(c) = 2qk and
thus supp(c) ⊆ λ1 ∪ λ2. Note that this means that projR,π(c) = α1(κ1 − κ2), and s = k − 1.
Now take a point Q ∈ λ1 \ (λ2 ∪ supp(c)). We can assume, w.l.o.g., that Q 6∈ π (otherwise, by
Remark 5.3, we choose another hyperplane π). Then Q projects every point of λ1 onto a point
of κ1 ⊆ π, and for every point P of λ2 \ τ , QP either intersects supp(c) in P or doesn’t intersect
supp(c) at all. Hence, the points of (λ2 \ τ) ∩ supp(c) are projected by Q onto points with
non-zero value w.r.t. projQ,π(c). In particular, projQ,π(c) 6= 0. By Lemma 5.2 (5), this implies

that projQ,π(c) is a linear combination of precisely two k-spaces. Furthermore, as wt(c) = 2qk,
we know that projQ,π(c) is the difference of two distinct k-spaces through a (k − 1)-space.

The fact that wt(projQ,π(c)) = 2qk is only possible if no line through Q contains more than
one point of supp(c). In this way, we see that all points of κ1 \ σ must have value α1 w.r.t.
projQ,π(c). Thus, projQ,π(c) = α1(κ1 − ρ) for some k-space ρ in π.1 This means that all points
of supp(c)∩ (λ2 \ τ) have value −α1 and lie in the space µ := λ2 ∩ 〈Q, ρ〉. Note that dim(µ) 6 k
and µ contains qk > 1

2θk points of supp(c) with value −α1 w.r.t. c. Observation 1 yields the
desired contradiction.

1Beware that if q = 2 and c = κ1 + κ2, with κ1 and κ2 k-spaces through a (k − 1)-space, these spaces κ1 and
κ2 are not uniquely determined by c. This is because, if K = 〈κ1, κ2〉, then K \ supp(c) is a k-space κ3. If κ′1 and
κ′2 are distinct k-spaces in K, intersecting κ3 in the same (k − 1)-space, then also c = κ′1 + κ′2.
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If q ∈ Q3∪Q4∪Q5, then the bound is tight because it is tight for Ck(k+1, q) (see Result 3.3) and

we can interpret Ck(k+ 1, q) as a subcode of Ck(n, q) by restricting the generating set G
(0)
k (n, q)

of Ck(n, q) to G
(0)
k (Π) for some (k+ 1)-space Π in PG(n, q). This way we see that Ck(n, q) must

also contain codewords of weight W (k, q) + 1. Note that W (k, q) + 1 exceeds 2θk, which is an
upper bound on the weight of a linear combination of two k-spaces.

Corollary 5.10. If c is a codeword of H0,k(n, q), with wt(c) 6 W (k, q), then c is a scalar
multiple of the difference of two k-spaces. In particular, the minimum weight of H0,k(n, q) is
2qk, and the minimum weight codewords are scalar multiples of the difference of two k-spaces
through a common (k − 1)-subspace.

Proof. The arguments are the same as in Step 3 of the proof of Theorem 6.7.

Remark 5.11. It is not difficult to write down the weight spectrum of Ck(n, q) explicitly for
weights up to W (k, q). For all q, the minimum weight codewords have weight θk and are the
scalar multiples of k-spaces. The next weight is 2qk and is attained only by the scalar multiples
of the difference of two k-spaces intersecting in a (k − 1)-space. In general, if α1, α2 ∈ F∗p and
κ1, κ2 ∈ Gk with κ1 6= κ2, then wt(α1κ1 + α2κ2) = 2θk − (1 + ε)θdim(κ1∩κ2), with ε = 1 if
α1 = −α2, and ε = 0 otherwise.
In particular, we know that [2θk − θ2k−n + 1,W (k, q)] is a gap in the weight spectrum. This
interval in non-empty if q /∈ Q1 and if either q /∈ Q2 or 2k > n.

6 Codes of j- and k-spaces

The main goal of this section is generalising Theorem 5.9 to all codes Cj,k(n, q). The following
map, which is essentially due to Bagchi & Inamdar [BI02], will prove to be very helpful.2

Definition 6.1. Looking at V (j, n, q), the elements of G
(j)
j form the standard basis. Given an

i-space ι of PG(n, q), with −1 6 i < j, we take an (n − i − 1)-space π of PG(n, q), skew to ι.

Consider the unique linear map pι : V (j, n, q)→ V (j − i− 1, π) satisfying, for all λ ∈ G(j)
j ,

pι(λ) =

{
λ ∩ π if ι ⊂ λ,
0 otherwise.

This means that, given v ∈ V (j, n, q) and a (j− i−1)-space µ ⊂ π, we have pι(v)(µ) = v(〈µ, ι〉).

Note that pι is closely related to taking the quotient of PG(n, q) through the space ι. The choice
of π doesn’t make a (qualitative) difference for the definition of pι.

Lemma 6.2 ([BI02, Theorem 1]). Assume that c ∈ Cj,k(n, q), with j > 1, and let ι be an i-space
of PG(n, q), with −1 6 i < j. Then pι(c) ∈ Cj−i−1,k−i−1(n− i− 1, q).

Proof. Take a κ ∈ G(j)
k . It is easy to see that

pι(κ) =

{
κ ∩ π if ι ⊂ κ,
0 otherwise,

which implies that the image of Gk(n, q)
(j) under pι is Gk−i−1(π)(j) ∪ {0}. These sets generate

Cj,k(n, q) and Cj−i−1,k−i−1(n − i − 1, q), respectively. Hence, it follows that pι
(
Cj,k(n, q)

)
=

Cj−i−1,k−i−1(n− i− 1, q).

2In this section, we will denote two distinct projections with Devanagari symbols. These can be imported in
LATEX using the package devanagari. In Definition 6.1, we introduce the symbol p (pronounced ‘pa’ with corre-
sponding command {\dn p}), while, in Definition 6.3, we use the symbol l (pronounced ‘la’ with corresponding
command {\dn l}).
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Another map that will serve as a useful tool is the following.

Definition 6.3. Take an integer i, with 0 6 i < j. For each v ∈ V (j, n, q) we define li(v) ∈
V (i, n, q) as

li(v) : ι 7→
∑
λ∈Gj

ι⊂λ

v(λ).

This means that the value of an i-space ι w.r.t. li(v) is the sum of the values w.r.t. v of all
j-spaces λ through ι. We can view li : v 7→ li(v) as a mapping from V (j, n, q) to V (i, n, q).
We will denote l0 by l.

Lemma 6.4. The map li is linear and li
(
Cj,k(n, q)

)
= Ci,k(n, q).

Proof. Take α, β ∈ Fp and v, w ∈ V (j, n, q). Let ι be an i-space of PG(n, q). Then

li(αv + βw)(ι) =
∑
λ∈Gj

ι⊂λ

(αv + βw)(λ) =
∑
λ∈Gj

ι⊂λ

(αv(λ) + βw(λ))

= α
∑
λ∈Gj

ι⊂λ

v(λ) + β
∑
λ∈Gj

ι⊂λ

w(λ)) = αli(v)(ι) + βli(w)(ι).

Since this holds for every i-space ι, li(αv + βw) = αli(v) + βli(w).
Now take a k-space κ and an i-space ι.

li(κ
(j))(ι) =

∑
λ∈Gj

ι⊂λ

κ(j)(λ) =
∑
λ∈Gj

ι⊂λ⊂κ

1 =

{[
k−i
j−i
]
q
≡ 1 (mod p) if ι ⊂ κ,

0 otherwise,
= κ(i)(ι).

This means that li(κ(j)) = κ(i). Hence, the generators of Cj,k(n, q) are mapped to the generators
of Ci,k(n, q). Since li is linear, this proves that li

(
Cj,k(n, q)

)
= Ci,k(n, q).

Lemma 6.5. Assume that v ∈ V (j, n, q) and 0 6 i < j. Then l
(
li(v)

)
= l(v).

Proof. Take an arbitrary point P in PG(n, q). We need to prove that l
(
li(v)

)
(P ) = l(v)(P ).

l
(
li(v)

)
(P ) =

∑
ι∈Gi
P∈ ι

li(v)(ι) =
∑
ι∈Gi
P∈ ι

∑
λ∈Gj

ι⊂λ

v(λ) =
∑
λ∈Gj

P∈λ

v(λ)
( ∑

ι∈Gi
P∈ι⊂λ

1
)

=
∑
λ∈Gj

P∈λ

v(λ)

[
j

i

]
q

≡
∑
λ∈Gj

P∈λ

v(λ) = l(v)(P ) (mod p).

The following lemma shows the interaction between p and l.

Lemma 6.6. Assume that c ∈ Cj,k(n, q), and let ι be an i-space, with 0 6 i < j. Then
li(c)(ι) = pι(c) · 1. Hence, li(c)(ι) = 0 if and only if pι(c) ∈ Hj−i−1,k−i−1(n− i− 1, q).

Proof. It is easy to see that both li(c)(ι) and pι(c) · 1 equal the sum of the values w.r.t. c of
all j-spaces through ι. We know that pι(c) ∈ Cj−i−1,k−i−1(n− i− 1, q). By Lemma 4.1 (2), this
means that pι(c) ∈ Hj−i−1,k−i−1(n− i− 1, q) if and only if pι(c) · 1 = 0.

We can now characterise all codewords of Cj,k(n, q) up to weight W (j, k, q). If q is large enough,

then this bound exceeds 2
[
k+1
j+1

]
q
, which is at least the maximum weight of a linear combination

of two k-spaces (with equality if and only if n > 2k − j).
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Theorem 6.7. (1) If c is a codeword of Cj,k(n, q), with wt(c) 6 W (j, k, q), then c is a linear
combination of at most two k-spaces.

(2) If c is a codeword of Hj,k(n, q), with wt(c) 6 W (j, k, q), then c is a scalar multiple of the
difference of two k-spaces. In particular, if q /∈ Q1, then the minimum weight of Hj,k(n, q)
is 2qk−j

[
k
j

]
q
, and the minimum weight codewords are scalar multiples of the difference of

two k-spaces through a common (k − 1)-space.

Proof. We refer to Theorem 6.8 for the case q ∈ Q1. Hence, throughout the proof, we will
assume that q /∈ Q1.
We will prove this by induction on j. If j = 0, this follows from Theorem 5.9 and Corollary
5.10, as W (0, k, q) 6 W (k, q). So assume that j > 1 and that the theorem holds for all codes
Cj′,k′(n′, q), with j′ < j, and j′ < k′ < n′.

Step 1: Attain a lower bound on the minimum weight of ker(lj−1) ∩ Cj,k(n, q).
Let c be a non-zero codeword of Cj,k(n, q), with lj−1(c) = 0. We will find a lower bound on
wt(c) by performing a double count on the set

S := {(P, λ) : P ∈ supp0(c), P ∈ λ ∈ supp(c)} .

We know that c 6= 0 means that supp(c) 6= ∅, hence suppj−1(c) 6= ∅. Take a subspace ι ∈
suppj−1(c). It follows from Lemma 6.6 that pι(c) ∈ H0,k−j(n − j, q). Recall that wt(pι(c))
equals the number of j-spaces of supp(c) through ι. Since ι ∈ suppj−1(c), this number is not
zero. Therefore, pι(c) is a non-zero codeword of H0,k−j(n − j, q). Thus, by Corollary 5.10, we
have that wt(pι(c)) > 2qk−j . Hence, supp(c) contains at least 2qk−j j-spaces through ι. This
yields that

|supp0(c)| > θj−1 + 2qk−j(θj − θj−1) > 2qk.

Now take a point P ∈ supp0(c). On the one hand, Lemma 6.5 assures us that l(c)(P ) =
l(lj−1(c))(P ) = l(0)(P ) = 0. Lemma 6.6 then implies that pP (c) ∈ Hj−1,k−1(n − 1, q). On
the other hand, P ∈ supp0(c), so pP (c) 6= 0. Using the induction hypothesis, we get wt(pP (c)) >
2qk−j

[
k−1
j−1
]
q
. Thus, the number of j-spaces of supp(c) through P is at least 2qk−j

[
k−1
j−1
]
q
. This

yields that

wt(c)θj = |S| > |supp0(c)| · 2qk−j
[
k − 1

j − 1

]
q

> 4q2k−j
[
k − 1

j − 1

]
q

.

One can check that

qk

θj
>

(
1− 1

q

)
qk+1 − 1

qj+1 − 1
and qk−j >

(
1− 1

q

)
qk − 1

qj − 1
.

Therefore, if we take into account that q > 11, the above inequalities imply that

wt(c) > 4
qk

θj
qk−j

[
k − 1

j − 1

]
q

> 4

(
1− 1

11

)2 qk+1 − 1

qj+1 − 1

qk − 1

qj − 1

[
k − 1

j − 1

]
q

> 3.3

[
k + 1

j + 1

]
q

Note that, in particular, wt(c) > W (j, k, q).

Step 2: Applying this lower bound to characterise low weight codewords.
Assume that c is a codeword of Cj,k(n, q), with wt(c) 6W (j, k, q). Now, double count the set

S :=
{

(ι, λ) : ι ∈ suppj−1(c), ι ⊂ λ ∈ supp(c)
}
.
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We know that if ι ∈ suppj−1(c), then pι(c) is a non-zero codeword of C0,k−j(n− j, q). Therefore,
wt(pι(c)) > θk−j . Note that wt(pι(c)) equals the number of j-spaces λ ∈ supp(c) through ι.
Also note that supp(lj−1(c)) ⊆ suppj−1(c). This yields

wt(c)θj = |S| =
∑

ι∈suppj−1(c)

wt(pι(c)) > wt(lj−1(c))θk−j .

This means that

wt(lj−1(c)) 6
θj
θk−j

wt(c) 6
θj
θk−j

W (j, k, q) = W (j − 1, k, q).

The last inequality relies on the fact that
θj
θk−j

[
k+1
j+1

]
q

=
[
k+1
j

]
q
.

The induction hypothesis tells us that lj−1(c) is a linear combination of at most two k-spaces.

Thus, lj−1(c) = ακ
(j−1)
1 + βκ

(j−1)
2 , for some α, β ∈ Fp, and κi ∈ Gk. Note that α or β can be

zero.
Now assume that c 6= ακ

(j)
1 + βκ

(j)
2 . If supp(c) ⊆ Gj(κ1) ∪ Gj(κ2), then supp(c − ακ

(j)
1 −

βκ
(j)
2 ) ⊆ Gj(κ1) ∪ Gj(κ2), which would mean that c − ακ1 − βκ2 were a non-zero codeword of

ker(lj−1) ∩ Cj,k(n, q) of weight at most 2
[
k+1
j+1

]
q
, contradicting Step 1.

Therefore, there exists a j-space λ ∈ supp(c), with λ 6⊂ κ1 ∪ κ2. Hence, we can choose a
(j − 1)-space ι ⊂ λ, which is not entirely contained in κ1 ∪ κ2. This means that lj−1(c)(ι) =
ακ1(ι) + βκ2(ι) = 0. Since ι ∈ suppj−1(c), this implies wt(pι(c)) > 2qk−j . Hence, we find

at least 2qk−j j-spaces of supp(c) through ι. Note that all these j-spaces contain at least
θj − 3θj−1 = qj − 2θj−1 points P outside of ι, κ1 and κ2. Every such point P lies in a unique
j-space through ι, hence there at least 2qk−j(qj − 2θj−1) points in supp0(c), outside of κ1 ∪ κ2.
Since these points have value zero w.r.t. l(c), they lie in at least 2qk−j

[
k−1
j−1
]
q
j-spaces of supp(c).

As in Step 1, we obtain

wt(c)θj > 2qk−j (qj − 2θj−1)︸ ︷︷ ︸
>qj q−3

q−1

2qk−j
[
k − 1

j − 1

]
q

> 4q2k−j
q − 3

q − 1

[
k − 1

j − 1

]
q

.

Therefore,

wt(c) > 4

(
1− 1

q

)2 q − 3

q − 1

[
k + 1

j + 1

]
q

>

(
4− 16

q

)[
k + 1

j + 1

]
q

> W (j, k, q),

a contradiction. Hence, c = ακ
(j)
1 + βκ

(j)
2 .

Step 3: The minimum weight of Hj,k(n, q).
The previous characterisation teaches us that the only codewords of Hj,k(n, q) of weight at most

W (j, k, q) > 2
[
k+1
j+1

]
q

are linear combinations of at most two k-spaces. Take such a non-zero

codeword c = ακ1 + βκ2. Then α + β = c · 1 = 0, due to Lemma 4.1 (2). Since α and β can’t
both be zero (then c would be 0), neither of them can be zero. Write s = dim(κ1 ∩ κ2), then
wt(c) = 2

[
k+1
j+1

]
q
− 2
[
s+1
j+1

]
q
. This is minimal if s is maximal. Since κ1 and κ2 can’t coincide (else

c would be 0), the maximal value of s is k − 1. This yields as minimum weight of Hj,k(n, q)

2

[
k + 1

j + 1

]
q

− 2

[
k

j + 1

]
q

= 2qk−j
[
k

j

]
q

,

and as minimum weight codewords the scalar multiples of the difference of two distinct k-spaces
through a (k − 1)-space.
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We now deal with the case q ∈ Q1, but formulate the result more generally. This only requires
a small modification of the previous proof.

Theorem 6.8. If c is a codeword of Cj,k(n, q), with

wt(c) 6
2qk

θj

[
k

j

]
q

,

then c = ακ, for some α ∈ Fp, and κ ∈ Gk. As a consequence, the minimum weight of Hj,k(n, q)
is larger than 2qk

[
k
j

]
q
/θj.

Proof. The arguments are essentially the same as the ones used in the proof of Theorem 6.7, so

we’ll be brief. Assume that c is a non-zero codeword of Cj,k(n, q) with wt(c) 6 2qk

θj

[
k
j

]
q

and the

theorem holds for all smaller values of j.
Step 1: Assume that pj−1(c) = 0. Double count the set S as in Step 1 above. We obtain

wt(c) > 2qk+θj−1

θj
2qk−1

θj−1

[
k−1
j−1
]
q
> 2qk

θj

[
k
j

]
q
, a contradiction.

Step 2: Here we have, similar to the above proof,

wt(pj−1(c)) 6
θj
θk−j

wt(c) 6
θj
θk−j

2qk

θj

[
k

j

]
q

=
2qk

θk−j

θk−j
θj−1

[
k

j − 1

]
q

=
2qk

θj−1

[
k

j − 1

]
q

.

Therefore, the induction hypothesis implies that lj−1(c) = ακ for some scalar α ∈ F∗p and a
k-space κ. As above, if c 6= ακ, then supp(c) 6⊆ Gj(κ). Thus, there exists a (j − 1)-space
ι ∈ suppj−1(c) with lj−1(ι) = 0. Then pι(c) is a non-zero codeword of Hk−j(n − j, q) and we

know that supp0(c) > 2qk + θj−1. Hence, wt(c)θj > (2qk + θj−1)
[
k
j

]
q
, a contradiction.

Step 3: No scalar multiple of a k-space is a non-zero codeword of Hj,k(n, q).

The minimum weight of Hj,k(n, q) has been an open problem for some time [LSVdV10, Open
Problem 4.18]. We have solved this problem for j = 0 in Theorem 5.9 and for general j and
sufficiently large q in Theorem 6.7.
The authors expect that Theorem 6.7 (2) holds for all values of q. For instance, Theorem 6.7
(1) can be proven to hold for C1,2(n, q), q 6= 2 up to weight 2θ2, which proves (2) for H1,2(n, q),
q 6= 2.

As we have done in Remark 5.11, one can now study the weight spectrum of Cj,k(n, q) up to
weight W (j, k, q) using Theorem 6.7 and 6.8.

The cyclicity of Cj,k(n, q)

A natural question to ask is whether the codes Cj,k(n, q) are cyclic. A code C, where the
codewords are denoted as vectors, is cyclic if for each codeword (c1, . . . , cn) ∈ C, its right shift
(cn, c1, c2, . . . , cn−1) is also a codeword of C.
It has been known for a long time that the codes Ck(n, q) are cyclic, see e.g. [DGM70]. Denote
g :=

[
n+1
j+1

]
q
. Then Cj,k(n, q) is equivalent to a cyclic code if and only if the following holds: there

exists some ordering on the j-spaces of PG(n, q) (write Gj(n, q) = {λ1, λ2, . . . , λg} and let λ0 be
equal to λg) such that if c ∈ Cj,k(n, q), then R(c) ∈ Cj,k(n, q) as well, with R(c)(λi) := c(λi−1).
Given a k-space κ, this would mean that R(κ) is also a codeword of Cj,k(n, q). Furthermore, it’s

easy to see that wt(R(κ)) = wt(κ) =
[
k+1
j+1

]
q
, and that R(κ) only takes the values 0 and 1. By

Result 3.1, this means that R(κ) = κ′ for some k-space κ′.
This means that the map f : Gj → Gj : λi 7→ λi−1 maps the j-spaces in a certain k-space to
the j-spaces of another k-space. But then f can be extended to a collineation on all subspaces
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of PG(n, q). Note that f works cyclically on the j-spaces, meaning that the permutation group
generated by f has a unique orbit when viewed as permutation group of Gj .
Conversely, if such a collineation f exists, we can choose a λ ∈ Gj and write λ1 = λ, and
λi+1 = f(λi). Under this ordering of the j-spaces, Cj,k(n, q) is cyclic. This yields the following
statement:

Observation 1. The code Cj,k(n, q) is equivalent to a cyclic code if and only if there exists
a collineation f of PG(n, q), working cyclically on the j-spaces.

It is folklore under finite geometers that the collineations with largest order are Singer cycles,
which act cyclically on the points and hyperplanes. However, a reference is hard to find. We
will use a similar (but in this context weaker) result that suits our purpose.

Result 6.9 ([Dar05, Corollary 2]). The maximal order of an element of GL(n, q) is qn − 1.

This leads to the following Theorem.

Theorem 6.10. The code Cj,k(n, q) is equivalent to a cyclic code if and only if j = 0.

Proof. In the codes we consider, we have the restriction 0 6 j < k < n. By Observation 1, we
need to prove that some collineations work cyclically on the points, but no collineation works
cyclically on the j-spaces if 0 < j < n − 1. It is known that Singer cycles are collineations
working cyclically on the points and hyperplanes of PG(n, q), and that such collineations exist
for any Desarguesian projective space. Hence, this proves that Ck(n, q) is equivalent to a cyclic
code.
Now assume that 1 6 j 6 n−2. Let f be a collineation on PG(n, q). The Fundamental Theorem
of projective geometry teaches us that f ∈ PΓL(n+1, q). This is a quotient group of ΓL(n+1, q),
which is a subgroup of GL((n + 1)h, p). Therefore, the order of f cannot exceed the maximal
order of an element of GL((n+ 1)h, p), which is p(n+1)h − 1 = qn+1 − 1, by Result 6.9. But if f
would work cyclically on the j-spaces of PG(n, q), then its order would be a multiple of

[
n+1
j+1

]
q
,

which exceeds qn+1 − 1 if n > 3 and 1 6 j 6 n− 2. This contradiction concludes the proof.

7 Minimum weight of the dual code

Throughout [ADSW20] and Section 5 and 6, we characterise small weight codewords of Cj,k(n, q)
by starting from C0,1(2, q) and using induction to generalise the results. Unfortunately, it is not
possible to do something similar for the dual code. The problem of determining the minimum
weight of C0,1(2, q)⊥ and characterising its minimum weight codewords is still open in general.
However, we can work in the opposite direction, and reduce the minimum weight problem of
Cj,k(n, q)⊥ to the codes C0,1(n, q)⊥. A construction by Bagchi & Inamdar is key.

Construction 7.1 ([BI02, Lemma 4]). Consider the code Cj,k(n, q)⊥. Take a (j − 1)-space ι,
and an (n− j)-space π, skew to ι. Let c be a codeword of Ck−j(π)⊥. Define c+ι ∈ V (j, n, q) as

c+ι (λ) :=

{
c(λ ∩ π) if ι ⊂ λ,
0 otherwise.

Then c+ι ∈ Cj,k(n, q)⊥ and wt(c+ι ) = wt(c). Codewords of this form are called pull-backs.

Proof. A j-space λ lies in supp(c+ι ) if and only if λ contains ι, and intersects π in a point of
supp(c). Since every point of π lies in a unique j-space through ι, we get wt(c+ι ) = wt(c). Now
take a k-space κ. If ι 6⊂ κ, then κ contains no j-spaces of supp(c+ι ), hence κ · c+ι = 0. If ι ⊂ κ,
then it easy to see that κ · c+ι = (κ ∩ π) · c = 0. The last equality holds because κ intersects π
in a (k − j)-space, and c ∈ Ck−j(n− j, q)⊥.
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Remark 7.2. A codeword c ∈ Cj,k(n, q) is a pull-back if and only if all j-spaces of supp(c)
go through the same (j − 1)-space ι. If the latter holds, then pι(c) ∈ Ck−j(n − j, q)⊥, and
c = (pι(c))+ι .

The previous remark asserts that the standard words of Cj,k(n, q)⊥ (see Definition 3.5) are pull-
backs if j > 0. In fact, they are pull-backs of standard words of Ck−j(n − j, q)⊥. Bagchi &
Inamdar [BI02, Conjecture] conjectured that the minimum weight codewords of Cj,k(n, p)⊥ are
standard words, for p prime. They proved it for j = k − 1, see Result 3.6, and q = 2 [BI02,
Proposition 3]. They also mention that it can be proven in the case j = 0, using the theory
of [DGM70]. Lavrauw, Storme & Van de Voorde [LSVdV08, Theorem 12] gave a geometric
proof for the case j = 0, using Result 3.6. We give a short, alternative proof. This requires the
following result, which is a slight alteration of the original statement using Lemma 4.1 (2).

Result 7.3 ([AK92, Theorem 5.7.9]). If p is prime, then Ck(n, p)⊥ = Hn−k(n, p).

Corollary 7.4. If p is prime, the minimum weight codewords of Ck(n, p)⊥ are the scalar multi-
ples of the standard words.

Proof. A standard word of Ck(n, p)⊥ is the difference of two (n−k)-spaces through an (n−k−1)-
space. This corollary now follows directly from Corollary 5.10 and Result 7.3.

Putting these considerations together simplifies the conjecture of Bagchi & Inamdar. To finish
the proof of the conjecture, we need to show that minimum weight codewords of Cj,k(n, q)⊥,
j > 0 and q prime, are pull-backs. It will turn out q need not even be prime.

Lemma 7.5. If j > 0, then all codewords c ∈ Cj,j+1(n, q)
⊥, with wt(c) < 2θn−j−1, are pull-backs.

In particular, this applies to the minimum weight codewords.

Proof. Take a non-zero codeword c ∈ Cj,j+1(n, q)
⊥, with wt(c) < 2θn−j−1. Take a (j − 1)-space

ι, define X := {λ ∈ supp(c) : ι ⊂ λ}, and denote x := |X|. Assume that X 6= ∅.
Take a j-space λ1 ∈ X. Then every other element λ2 of X lies is a unique (j+ 1)-space through
λ1. Therefore, there are at least

[ n−j
(j+1)−j

]
q
− (x− 1) = θn−j−1 − x+ 1 (j + 1)-spaces κ through

λ1, not containing another element of X. Each such space κ contains another element λ3 of
supp(c) \ X, otherwise κ · c = c(λ1) 6= 0, contradicting the fact that c ∈ Cj,j+1(n, q)

⊥. Note
that λ3 doesn’t lie in a (j + 1)-space with another element λ2 ∈ X \ {λ1}. Otherwise, λ2
would intersect λ1 in ι and λ3 in another (j − 1)-space (since λ3 6∈ X), which implies that
λ2 ⊂ 〈λ1, λ3〉 = κ. This is in contradiction with the way we chose κ.
Thus, every λ1 ∈ X gives rise to at least θn−j−1 − x+ 1 elements in supp(c) \X, none of which
are counted twice. This yields

2θn−j−1 > wt(c) > x(θn−j−1 − x+ 1 + 1).

This leads to a contradiction for x = 2 and x = θn−j−1. Since the above expression is quadratic
in x, we can see that it must lead to a contradiction whenever 2 6 x 6 θn−j−1.
Now take a j-space λ1 ∈ supp(c) and a (j + 1)-space κ through λ1. As argued above, we
know that κ must contain another j-space λ2 ∈ supp(c). Then λ1 ∩ λ2 must be some (j − 1)-
space ι. By the previous arguments, we know that there are at least θn−j−1 + 1 elements of
supp(c) through ι. Assume that λ is an element of supp(c) not through ι. Then there is at
most one (j + 1)-space through λ containing ι. This means that there are at least θn−j−1 − 1
(j + 1)-spaces through λ, all containing another element of supp(c) not through ι. This yields
wt(c) > (θn−j−1 + 1) + 1 + (θn−j−1 − 1) > 2θn−j−1, a contradiction.
Therefore, all elements of supp(c) contain a common (j−1)-space ι. By Remark 7.2, this proves
that c is a pull-back. This applies to the minimum weight codewords, since the minimum weight
of Cj,j+1(n, q) is at most 2qn−j−1, see Result 3.6.
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The previous lemma was an induction base for the main theorem of this section. Its proof
requires the following construction.

Construction 7.6. [LSVdV08, Theorem 10] Take an n-space π in PG(n+m, q) and a codeword
c ∈ Cj,k(π)⊥. Now define c′ ∈ V (j, n+m, q) as

c′(λ) :=

{
c(λ) if λ ⊂ π
0 otherwise

.

Then c′ ∈ Cj,k+m(n+m, q) and wt(c′) = wt(c). We call c′ an embedded codeword or a codeword
embedded in an n-space.

Proof. Take a (k + m)-space ρ in PG(n + m, q). Then ρ intersects π in a space of dimension
at least k. As a consequence, we can write ρ ∩ π (as element of V (j, π)) as the sum of its
k-dimensional subspaces. This yields

ρ · c′ = (ρ ∩ π) · c =

 ∑
κ∈Gk(ρ∩π)

κ

 · c =
∑

κ∈Gk(ρ∩π)

(κ · c) = 0.

Hence, c′ ∈ Cj,k+m(n+m, q)⊥. It is trivial that wt(c′) = wt(c).

Corollary 7.7.

d
(
Cj,k(n, q)⊥

)
> d

(
Cj,k+1(n+ 1, q)⊥

)
.

Proof. Take a minimum weight codeword c ∈ Cj,k(n, q)⊥. Embedding it in some hyperplane of
PG(n+ 1, q), yields a codeword of Cj,k+1(n+ 1, q)⊥ of equal weight.

The proof of the next theorem was inspired by [LSVdV08, Section 4].

Theorem 7.8. If j > 0, then all minimum weight codewords of Cj,k(n, q)⊥ are pull-backs.

Proof. Fix a value j > 0. The theorem will be proved through induction on k. We already
know it holds for k = j + 1. Hence, assume that k > j + 1, and that the theorem holds for
Cj,k−1(n − 1, q)⊥. Take a minimum weight codeword c ∈ Cj,k(n, q)⊥. We know that wt(c) 6
2qn−k. Thus,

|supp0(c)| 6 wt(c)θj 6 2qn−kθj .

Take a j-space λ ∈ supp(c). Assume that every (j + 1)-space ρ through λ contains at least qj

points of supp0(c) \ λ. This yields that

|supp0(c)| >
[

n− j
(j + 1)− j

]
q

qj + θj = θn−j−1q
j + θj = θn−1 + qj .

Putting these inequalities together implies that 2qn−kθj > θn−1 + qj , which leads to a contra-
diction, since k > j + 2.
So take a (j + 1)-space ρ through λ such that ρ contains less than qj points of supp0(c) \ λ. In
particular, this means that ρ 6⊆ supp0(c). Therefore, there exists a point R ∈ ρ \ supp0(c). If
c · ρ = 0, then ρ must contain at least one other j-space of supp(c) than λ, which would also
mean that ρ contains at least qj points of supp0(c) \ λ, a contradiction. Let π be a hyperplane

not through R. We know from Lemma 5.2 (3, 4) that c′ := proj
(j)
R,π(c) ∈ Cj,k−1(n − 1, q)⊥, and

wt(c′) 6 wt(c). We also know that c′(ρ ∩ π) = c · ρ 6= 0, so c′ 6= 0.
Because c is a minimum weight codeword, Corollary 7.7 shows that wt(c′) = wt(c) and that c′

must be a minimum weight codeword as well. Since wt(c′) = wt(c), Lemma 5.2 (5) implies that
no (j + 1)-space through R contains more than one j-space of supp(c).
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By the induction hypothesis, there exists a (j − 1)-space ι ⊂ π contained in all j-spaces of
supp(c′). Now take a j-space λ ∈ supp(c). Then R projects λ onto a j-space through ι (note
that this holds because λ is the only element of supp(c) in 〈R, λ〉, so it gets projected onto an
element of supp(c)). This means that 〈R, λ〉 contains ρ1 := 〈R, ι〉, hence λ intersects ρ1 in a
(j − 1)-space.
Now look at how R was chosen. We took a (j+ 1)-space ρ through some λ ∈ supp(c), such that
ρ contains less than qj points of supp0(c) \ λ. Note that ρ1 intersects ρ in at most a j-space,
hence ρ1 ∪ λ contains at most 2qj + θj−1 points of ρ. Since ρ contains θj+1 > 3qj + θj−1 points,
there exists a point R2 ∈ ρ \ (ρ1 ∪ supp0(c)). Take a hyperplane π2 not through R2. Repeating
the previous arguments yields again a j-space ρ2 = 〈R2, ι2〉, for some (j− 1)-space ι2 ⊂ π2, such
that every j-space of supp(c) intersects ρ2 in (j − 1)-space. Note that R2 6∈ ρ1, so ρ1 6= ρ2.
Now take a j-space λ ∈ supp(c). Then ρ1 and ρ2 both intersect λ in a (j − 1)-space, hence
dim(ρ1∩ρ2) > dim(ρ1∩ρ2∩λ) > j−2. Assume that dim(ρ1∩ρ2) = j−2, then dim 〈ρ1, ρ2〉 = j+2.
Now every j-space λ ∈ supp(c) intersects ρ1 and ρ2 in a different (j−1)-space, thus λ ⊂ 〈ρ1, ρ2〉.
This means that c is the embedding of a codeword c′ ∈ Cj,k′(j+ 2, q)⊥, with (j+ 2)−k′ = n−k.
This is only possible if j < k′ < j + 2, hence k′ = j + 1. Then c′ is a pull-back by Lemma 7.5.
Thus, c is a pull-back as well.
Now assume that dim(ρ1 ∩ ρ2) = j− 1, and therefore dim 〈ρ1, ρ2〉 = j+ 1. Furthermore, assume
that there exists a j-space λ ∈ supp(c) not through ρ1 ∩ ρ2. Then ρ1 and ρ2 intersect λ in
distinct hyperplanes of λ, hence λ ⊂ 〈ρ1, ρ2〉 and there exists a k-space κ that intersects 〈ρ1, ρ2〉
in λ. Since every j-space of supp(c) either contains ρ1∩ρ2 or is contained in 〈ρ1, ρ2〉, this means
that λ is the only element of supp(c) contained κ. But then c · κ = c(λ) 6= 0, contradicting the
fact that c ∈ Cj,k(n, q)⊥. Thus, all j-spaces of supp(c) go through the (j − 1)-space ρ1 ∩ ρ2. By
Remark 7.2, c is a pull-back.

This reduces the minimum weight problem of Cj,k(n, q)⊥ to the case j = 0. The following result
reduces it further to k = 1.

Result 7.9 ([LSVdV08, Theorem 11]). Every minimum weight codeword of Ck(n, q)⊥ is embed-
ded in an (n− k + 1)-space.

Theorem 7.8 can generalise some previous work on the codes Cj,k(n, q)⊥.

Corollary 7.10. (1) d
(
Cj,k(n, q)⊥

)
= d

(
C1(n− k + 1, q)⊥

)
.

(2) If p is prime, then the minimum weight codewords of Cj,k(n, p)⊥ are scalar multiples of the
standard words, and thus have weight 2pn−k.

(3) If q is even, then d
(
Cj,k(n, q)⊥

)
= (q + 2)qn−k−1.

Proof. (1) This follows directly from Theorem 7.8 and Result 7.9.
(2) As noted previously, this follows from Corollary 7.4, Theorem 7.8, and the fact that a
pull-back c+ι is a standard word if and only if c is a standard word.
(3) This follows from Theorem 7.8 and Result 3.7.

If q is odd and not prime, the minimum weight of C1(n, q)⊥ remains an open problem. The best
bounds known to the authors are the following.

Result 7.11 ([BI02, Theorem 3][LSVdV10, Corollary 4.15]). If q is odd, then

2qn−1 − 2
q − p
p

θn−2 6 d
(
C1(n, q)⊥

)
6 2qn−1 − q − p

p− 1
qn−2.

It deserves be noted that the lower bound in the previous result was also obtained for n = 2 in
[KMM09].

There are other interesting constructions. Small weight codewords of C1(n, q)⊥ can be con-
structed from small weight codewords of C1(2, q)⊥.
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Construction 7.12. Let π be a plane in PG(n, q), and take c ∈ C1(π)⊥. Let τ be an (n− 3)-
space, skew to π. Define c−τ ∈ V (0, n, q) as follows:

c−τ (P ) =

{
0 if P ∈ τ,
c(〈P, τ〉 ∩ π) otherwise.

Then c−τ ∈ C1(n, q)⊥ and wt(c−τ ) = wt(c)qn−2.

This construction is also described in [BI02, Lemma 6]. Note that supp(c−τ ) is a truncated cone
with base supp(c) and vertex τ .

In [DB12], subgeometries are used to construct small weight codewords. We can generalise this
construction using field reduction. The idea is as follows (for more details see e.g. [LVdV15]).
Choose an exponent e > 1. The projective space PG(n, qe) can be recognised in PG(N, q) with
N = (n + 1)e − 1. The points of PG(n, qe) correspond to an (e − 1)-spread S of PG(N, q). In
general, each k-space of PG(n, qe) corresponds to a ((k+ 1)e− 1)-space B(κ) of PG(N, q), such
that each element of S is either skew to B(κ) or completely contained in B(κ).

Construction 7.13. Let e ∈ N\{0, 1} and N := (n+1)e−1. Take a codeword c ∈ C2e−1(N, q)⊥.
Define

c′ : G0(n, q
e)→ Fp : P 7→ c · B(P ).

Then c′ ∈ C1(n, qe)⊥ and wt(c′) 6 wt(c).

Proof. Take a line l in PG(n, qe). Then we know that {B(P ) : P ∈ l} is a partition of the points
of B(l). Therefore,

c′ · l =
∑
P∈l

c′(P ) =
∑
P∈l

c · B(P ) =
∑

P ′∈∪P∈lB(P )

c(P ′) = c · B(l) = 0.

The last equality holds because B(l) is a (2e − 1)-space in PG(N, q) and c ∈ C2e−1(n, q)⊥. If
a point P of PG(n, qe) lies in supp(c′), then B(P ) must certainly contain a point of supp(c).
Since the spread S := {B(P ) : P ∈ G0(n, q

e)} partitions the points of PG(N, q), supp(c′) cannot
contain more points than supp(c).

Remark 7.14. If the codeword c in the above definition is a minimum weight codeword of
C2e−1(N, q)⊥, then it is embedded in an ((n − 1)e + 1)-space π. In that case, it’s not hard to
check that supp(c′) are the points P in PG(n, qe), such that B(P ) intersects π in a single point
and this point belongs to supp(c).

8 The dimension

In general, the dimension of Cj,k(n, q) is still unknown. The dimension of Ck(k + 1, q) has been
determined independently in several articles.

Result 8.1 ([GD68, MM68, Smi69]).

dim Ck(k + 1, q) =

(
p+ k

k + 1

)h
+ 1.

This formula has been generalised by Hamada to cover all codes Ck(n, q).
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Result 8.2 ([Ham68]). The dimension of Ck(n, q), with q = ph, and p prime, is given by

dim Ck(n, q) =
∑

s0,...,sh−1

h−1∏
j=0

⌊
sj+1p−sj

p

⌋∑
i=0

(−1)i
(
n+ 1

i

)(
n+ sj+1p− sj − ip

n

)
,

where sh = s0 and the summation runs over s0, . . . , sh−1 under the restriction that k+ 1 6 sj 6
n+ 1, and 0 6 sj+1p− sj 6 (n+ 1)(p− 1).

The following equality seems to have remained unnoticed.

Lemma 8.3.
dim Cj,k(n, q) = dim Cn−k−1,n−j−1(n, q).

Proof. As was noted in Subsection 3.1, Cj,k(n, q) can be seen as the row space of the p-ary
incidence matrix of k-spaces and j-spaces of PG(n, q). Call this matrix A. Then by duality, A
can also be seen as the transposed incidence matrix of (n− j − 1)-spaces and (n− k− 1)-spaces
of PG(n, q). Thus, Cn−k−1,n−j−1(n, q) is the column space of A. Therefore, the dimensions of
both codes equal the rank of A.

Hence, the dimension of Cj,k(n, q) is known whenever j = 0 or k = n − 1. These are the only
cases in which the dimension is known. As the expression in Result 8.2 is such a mouthful, one
should not expect an easy formula for the general case to exist.

9 Open problems

A first open problem is solving the minimum weight problem of C1(n, q)⊥. It would be inter-
esting to investigate whether (all) minimum weight codewords of C1(n, q)⊥, n > 2, come from
Construction 7.12, and it would be delightful if the answer is affirmative. In that case, the
minimum weight problem is entirely reduced to C1(2, q)⊥, which remains an interesting case in
itself.

Secondly, it would also be nice if the characterisations for Cj,k(n, q) could be improved beyond

the bound W (j, k, q), and if the minimum weight of Hj,k(n, q) could be proven to be 2qk−j
[
k
j

]
q

for small values of q as well.

Finally, determining a general formula for dim
(
Cj,k(n, q)

)
is an interesting challenge.
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